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Abstract

Let Λ ⊂ R be a uniformly discrete sequence and S ⊂ R a compact set.
We prove that if there exists a bounded sequence of functions in Paley-
Wiener space PWS , which approximates δ−functions on Λ with l2−error
d, then measure(S) ≥ 2π(1− d2)D+(Λ). This estimate is sharp for every
d. Analogous estimate holds when the norms of approximating functions
have a moderate growth, and we find a sharp growth restriction.

Keywords: Paley–Wiener space; Bernstein space; Set of interpola-
tion; Approximation of discrete functions

1 Introduction

1.1. Let S be a compact set in R, and let m(E) denote the Lebesgue
measure of S. By PWS we denote the Paley–Wiener space

PWS := {f ∈ L2(R) : f = F̂ , F = 0 on R \ S}

endowed with L2−norm. Here F̂ stands for the Fourier transform:

F̂ (x) :=

∫
R
eitxF (t) dt.

By BS we denote the Bernstein space of bounded functions f
(with the sup-norm), which are the Fourier transforms of Schwartz
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distributions supported by S. Clearly, every function f ∈ PWS (and
every f ∈ BS) can be extended to an entire function of finite expo-
nential type.

Let Λ be a uniformly discrete set, that is

γ(Λ) := inf
λ,λ′∈Λ,λ 6=λ′

|λ− λ′| > 0. (1)

The restriction operator
f → f |Λ

is a bounded linear operator from PWS into l2(Λ). When this oper-
ator is surjective, the set Λ is called a set of interpolation for PWS.
Similarly, if the restriction operator acts surjectively from BS onto
l∞, then Λ is called a set of interpolation for BS. The interpolation
problem is to determine when Λ is a set of interpolation for PWS

or BS.
The case S = [a, b] is classical. Beurling and Kahane proved that

in this case the answer can be essentially given in terms of the upper
uniform density of Λ,

D+(Λ) := lim
r→∞

max
a∈R

card(Λ ∩ (a, a+ r))

r
.

Namely, it was shown in [6] that the condition

m(S) > 2πD+(Λ)

is sufficient while the condition

m(S) ≥ 2πD+(Λ) (2)

is necessary for Λ to be a set of interpolation for PWS.
The first condition above is necessary and sufficient for Λ to be

a set of interpolation for BS, see [2].

1.2. The situation becomes more delicate for the disconnected spec-
tra. For the sufficiency part, not only the size but also the arith-
metical structure of Λ is important. On the other hand, Landau [6]
proved that (2) is still necessary for Λ to be a set of interpolation
for PWS, for every bounded set S.

For compact spectrum S, Landau’s result can be stated in a more
general form, which requires interpolation of δ−functions only. For
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each ξ ∈ Λ, let δξ denote the corresponding δ–function on Λ:

δξ(λ) :=

{
1 λ = ξ
0 λ 6= ξ

, λ ∈ Λ.

Proposition 1 ([10], Theorem 1) Let S be a compact. Suppose
there exist functions fξ ∈ PWS satisfying fξ|Λ = δξ, ξ ∈ Λ, and

sup
ξ∈Λ
‖fξ‖L2(R) <∞. (3)

Then inequality (2) holds. The statement is also true for BS−spaces.

1.3. The present paper is a direct continuation of [10]. We prove that
the possibility of approximation of δ−functions on Λ with a given
l2−error already implies an estimate from below on the measure of
spectrum:

Theorem 1 Let 0 < d < 1, S be a compact set, and Λ be a uniformly
discrete set. Suppose there exist functions fξ ∈ PWS satisfying (3)
and such that

‖fξ|Λ − δξ‖l2(Λ) ≤ d, for every ξ ∈ Λ. (4)

Then
m(S) ≥ 2π(1− d2)D+(Λ). (5)

Inequality (5) is sharp for every d.

In sec. 4 we show that a similar result holds when the norms of fξ
have a moderate growth. No estimate on the measure of spectrum
is possible when the norms of approximating functions have a fast
growth, and we present a sharp growth restriction (see Theorem 2
below).

Clearly, by letting d → 0, Theorem 1 implies the necessary con-
dition (2) for interpolation in PWS.

However, the possibility of l∞−approximation does not imply any
estimate on the measure of S:

Proposition 2 Given a number 0 < d < 1 and a uniformly discrete
set Λ, there exist a compact set S of measure zero and a bounded
sequence of functions fξ ∈ BS satisfying

‖fξ|Λ − δξ‖l∞(Λ) ≤ d, for every ξ ∈ Λ.
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The set S can be chosen depending only on d and the separation
constant in (1).

Versions of the theorems above for approximation in lp are dis-
cussed in sec. 6.

Some of results of this paper were announced in [9].

2 Lemmas

Our approach to proof of Theorem 1 includes Landau’s method (see
[8] and sec. 2 in [10]) and some arguments from Kolmogorov’s width
theory.

2.1. Concentration.

Definition: Given a number c, 0 < c < 1, we say that a linear
subspace X of L2(R) is c-concentrated on a set Q if∫

Q

|f(x)|2 dx ≥ c‖f‖2
L2(R), for every f ∈ X.

Lemma 1 Given sets S,Q ⊂ R of positive measure and a number
0 < c < 1, let X be a linear subspace of PWS which is c-concentrated
on Q. Then

dimX ≤ m(Q)m(S)

2πc
.

This lemma is contained in [8] (see statements (iii) and (iv) in
Lemma 1).

2.2. A remark on Kolmogorov’s width estimate.

Lemma 2 Let 0 < d < 1, and {uj}, 1 ≤ j ≤ n, be an orthonormal
basis in an n-dimensional complex Euclidean space U . Suppose that
{vj}, 1 ≤ j ≤ n, is a family of vectors in U satisfying

‖vj − uj‖ ≤ d, j = 1, ..., n. (6)

Then for every α, 1 < α < 1/d, there is a linear subspace X in Cn

such that
(i) dimX > (1− α2d2)n− 1;
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(ii) the estimate

Q(c) := ‖
n∑
j=1

cjvj‖2 ≥ (1− 1

α
)2

n∑
j=1

|cj|2,

holds for every vector c = (c1, ..., cn) ∈ X.

The classical equality for Kolmogorov’s width of ”octahedron” (see
[7]) implies that the dimension of the linear span of vj is at least
(1 − d2)n. This means that there exists a linear space X ⊂ Cn,
dimX ≥ (1 − d2)n, such that the quadratic form Q(c) is positive
on the unite sphere of X. Lemma 2 shows that by a small relative
reduction of the dimension, one can get an estimate of this form
from below by a positive constant independent of n.

We are indebted to E.Gluskin for the following simple proof of
this lemma.

Proof. Given an n × n matrix T = (tk,l), k, l = 1, ..., n, denote by
s1(T ) ≥ ... ≥ sn(T ) the singular values of this matrix (=the positive
square roots of the eigenvalues of TT ∗).

The following properties are well–known (see [3], ch. 3):

(a) (Hilbert–Schmidt norm of T via singular values)

n∑
j=1

s2
j(T ) =

n∑
k,l=1

|tk,l|2.

(b) (Minimax–principle for singular values)

sk(T ) = max
Lk

min
x∈Lk,‖x‖=1

‖Tx‖,

where ‖ · ‖ is the norm in Cn, and the maximum is taken over all
linear subspaces Lk ⊆ Cn of dimension k.

(c) sk+j−1(T1+T2) ≤ sk(T1)+sj(T2), for all k, j ≥ 1, k+j−1 ≤ n.

Denote by T1 the matrix, whose columns are the coordinates of
vl in the basis uk, and set T2 := I − T1, where I is the identity
matrix. Then property (a) and (6) imply:

n∑
j=1

s2
j(T2) < d2n,
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and hence:
s2
j(T2) ≤ d2n

j
, 1 ≤ j ≤ n.

This and (c) give:

sk(T1) ≥ sn(I)− sn−k+1(T2) ≥ 1− d
√

n

n− k + 1
.

Since sn(I) = 1, by setting k = n − [α2d2n], where [·] means the
integer part, we obtain:

sk(T1) ≥ 1− 1

α
, k = n− [α2d2n].

Now, one can obtain from (b) that there exists X satisfying the
conclusions of the lemma.

3 Proof of Theorem 1

3.1. Observe that condition (3) implies the uniform boundedness of
interpolating functions fξ:

|fξ(x)| =
∣∣∣∣∫
S

Fξ(t)e
ixtdt

∣∣∣∣ ≤√m(S)‖Fξ‖L2(R) < C1. (7)

We shall also use the following well–known fact: given a bounded
spectrum S and a uniformly discrete set S, there exists C(S,Λ) such
that ∑

λ∈Λ

|f(λ)|2 ≤ C(S,Λ)

∫
R
|f(x)|2 dx, for every f ∈ PWS. (8)

3.2. Fix a small number δ > 0. Set S(δ) := S + [−δ, δ] and

gξ(x) := fξ(x)ϕ(x− ξ), ξ ∈ Λ, ϕ(x) :=

(
sin(δx/2)

δx/2

)2

. (9)

Clearly, ϕ ∈ PW[−δ,δ], so that gξ ∈ PWS(δ). Also, since ϕ(0) = 0 and
|ϕ(x)| ≤ 1, x ∈ R, it follows from (4) that each gξ|Λ approximates
δξ with an l2−error ≤ d:

‖gξ|Λ − δξ‖l2(Λ) ≤ d, ξ ∈ Λ. (10)
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3.3. Fix numbers a ∈ R and r > 0, and set

I := (a− r, a+ r), ν = ν(I) := card(Λ ∩ I).

From (1) we have:
ν < C|I|. (11)

Here and below in this proof we denote by C constants which do
not depend on I.

Denote by λ1 < ... < λν the elements of Λ ∩ I. It follows from
(10) that the vectors

vj := (gλj(λ1), ..., gλj(λν)) ∈ Cν , j = 1, ..., ν,

satisfy (6) where {uj, j = 1, ..., ν} is the standard orthonormal basis
in Cν .

Fix a number α, 1 < α < 1/d. By Lemma 2 there exists a
subspace X = X(a, r, α) ⊂ Cν such that:

(i) dim X > (1− α2d2)ν − 1,

(ii) for every vector c = (c1, c2, ..., cν) ∈ X the inequality holds:

‖
ν∑
j=1

cjvj‖2 =
ν∑
k=1

∣∣∣∣∣
ν∑
j=1

cjgλj(λk)

∣∣∣∣∣
2

≥ (1− 1

α
)2

ν∑
j=1

|cj|2.

Hence, we have from (8) that∫
R

∣∣∣∣∣
ν∑
j=1

cjgλj(x)

∣∣∣∣∣
2

dx ≥ C
ν∑
j=1

|cj|2, (c1, ..., cν) ∈ X. (12)

3.4. Set I ′ := (a− r(1 + δ), a+ r(1 + δ)). Then, due to (7), (9) and
(11), every function

g(x) :=
ν∑
j=1

cjgλj(x)

satisfies:∫
R\I′
|g(x)|2 dx =

∫
R\I′

∣∣∣∣∣
ν∑
j=1

cjfλj(x)

(
sin δ(x− λj)/2
δ(x− λj)/2

)2
∣∣∣∣∣
2

dx
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≤ C

(
ν∑
j=1

|cj|2
)∫

R\I′

ν∑
j=1

1

δ4(x− λj)4
dx

≤ C|I|

(
ν∑
j=1

|cj|2
)

1

δ4

∫
|y|>δr

dy

y4
≤ C

δ7r2

ν∑
j=1

|cj|2. (13)

Fix ε > 0. Inequalities (12) and (13) show that there is a number
r0 = r(δ, ε) (not depending on a and c) such that r > r0 implies:∫

I′
|g(x)|2 dx ≥ (1− ε)

∫
R
|g(x)|2 dx.

This means that the subspace

G := {g(x) =
ν∑
j=1

cjgλj(x); (c1, ..., cν) ∈ X} ⊂ L2(R)

is (1− ε)-concentrated on I ′, provided r > r0.

3.5. Clearly, dimG ≥ dimX, so Lemma 1 now implies:

dimX ≤ m(Sδ)|I ′|
2π(1− ε)

.

Using inequality (i) for dimX, we obtain:

(1− α2d2)ν − 1 ≤ 2r(1 + δ)
m(Sδ)

2π(1− ε)
,

and so

card (Λ ∩ (a− r, a+ r))

2r
≤ (1 + δ)m(Sδ)

2π(1− ε)(1− α2d2)
+

1

2r(1− α2d2)
.

Now, for each fixed number r we choose a so that the left part is
maximal, and then take limit as r →∞:

D+(Λ) ≤ (1 + δ)m(Sδ)

2π(1− ε)(1− α2d2)
.

Since this inequality is true for all positive ε, δ and every α ∈
(1, 1/d), we conclude that estimate (5) is true.
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3.6. Let us show that estimate (5) is sharp for every d. Pick up a
number a ∈ (0, π), and set S := [−a, a], Λ := Z and

fj(x) :=
sin a(x− j)
π(x− j)

∈ PWS, j ∈ Z.

We have for every j ∈ Z that

‖fj|Z − δj‖2
l2(Z) = ‖f0|Z − δ0‖2

l2(Z) =
∑
k 6=0

(
sin ak

πk

)2

+
(a
π
− 1
)2

=

a

π
− a2

π2
+
(a
π
− 1
)2

= 1− a

π
.

Hence, the assumptions of Theorem 1 hold with d2 = 1−a/π. On the
other hand, since D+(Z) = 1, we see that m(S) = 2π(1−d2)D+(Z),
so that estimate (5) is sharp.

4 Interpolation with moderate growth of norms

Assume that the norms of functions satisfying (4) satisfy

‖fξ‖L2(R) ≤ Ce|ξ|
γ

, ξ ∈ Λ, (14)

where C and γ are some positive constants. In this section we show
that the statement of Theorem 1 remains true, provided γ < 1 and
the density D+(Λ) is replaced by the upper density D∗(Λ),

D∗(Λ) := lim sup
a→∞

card (Λ ∩ (−a, a))

2a
.

Restriction γ < 1 is sharp: we show also that no estimate on the
measure of spectrum is possible, when the norms of fξ grow expo-
nentially.

Observe that D∗(Λ) ≤ D+(Λ), for each Λ. However, one has
D∗(Λ) = D+(Λ) whenever Λ is regularly distributed (in particular,
when Λ is a bounded perturbation of integers).

Theorem 2 Let 0 < d < 1.
(i) Suppose S is a compact set and Λ is a uniformly discrete set.

If there exist functions fξ ∈ PWS satisfying (4) and (14) with some
0 < γ < 1, then

m(S) ≥ 2π(1− d2)D∗(Λ). (15)
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(ii) For every ε > 0 and d > 0 there is a compact S,m (S) < ε,
a sequence Λ = {n+ o(1)} and functions fξ ∈ PWS that satisfy (4)
and (14) with γ = 1.

Remarks. 1. The upper density in part (i) of this theorem cannot
be replaced with the upper uniform density, see Theorem 2.3 in [10].

2. Similarly to [10], Theorem 2.4, one can check that the as-
sumption γ < 1 in part (i) can be weakened by replacing it with
any ‘non–quasianalytic’ growth. It looks likely that the assumption
γ = 1 in part (ii) can be replaced with any ‘quasianalytic’ growth.
We leave this question open.

3. The compact S in part (ii) must be disconnected. Indeed,
every sequence Λ in (ii) is a sampling set for PW[a,b], whenever 0 <
b − a < 2π. Hence, the boundedness of the norms ‖fξ‖l2(Λ) implies
(3). Therefore, due to Theorem 1, condition (4) yields: m (S) ≥
2π(1− d2).

On the other hand we shall see that S can be chosen a union of
two intervals.

Proof of Theorem 2.

The proof of part (i) is quite similar to the proof of Theorem 1.

4.1. Fix numbers δ > 0 and β, γ < β < 1. There exists a function
ψ ∈ PW(−δ,δ) with the properties:

ψ(0) = 1, |ψ(x)| ≤ 1, |ψ(x)| ≤ Ce−|x|
β

, x ∈ R, (16)

where C > 0 is some constant. It is well-known that such a func-
tion can be constructed as a product of sin(δjx)/(δjx) for a certain
sequence δj → 0.

Set
hξ(x) := fξ(x)ψ(x− ξ), ξ ∈ Λ.

Then each hξ belongs to PWS(δ) and the restriction hξ|Λ approxi-
mates δξ with an l2−error ≤ d.

4.2. Set
Λr := Λ ∩ (−r, r),

and denote by C different positive constants independent on r.
The argument in step 3.3 of the previous proof shows that there

exists a linear space X = X(r) of dimension > (1−α2d2)card(Λr)−1
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such that
‖
∑
ξ∈Λr

cξhξ(x)‖2
L2(R) ≥ C

∑
ξ∈Λr

|cξ|2,

for every vector (cξ) ∈ X.

4.3. Since Λ is uniformly discrete, we have card(Λr) ≤ Cr. Further,
using (14), similarly to (7), we show that

|fξ(x)|2 ≤ Cm(S)‖fξ‖2
L2(R) ≤ CeC|ξ|

γ ≤ CeCr
γ

, ξ ∈ Λr.

These estimates and (16) imply:∫
|x|≥r+δr

∣∣∣∣∣∑
ξ∈Λr

cξhξ(x)

∣∣∣∣∣
2

dx =

∫
|x|≥r+δr

∣∣∣∣∣∑
ξ∈Λr

cξfξ(x)ψ(x− ξ)

∣∣∣∣∣
2

dx ≤

(∑
ξ∈Λr

|cξ|2
)(

CreCr
γ

∫
|x|>δr

e−2|x|βdx

)
.

Since β > γ, the last factor tends to zero as r → ∞. This and the
estimate in step 4.2 show that for every ε > 0 there exists r0 = r(δ, ε)
such that the linear space of functions

{h(x) =
∑
ξ∈Λr

cξhξ(x); (cξ) ∈ X}

is (1−ε)−concentrated on (−r−δr, r+δr), for all r ≥ r0. Moreover,
the dimension of this space is at least (1− α2d2)card(Λr)− 1.

4.4. By Lemma 1, we obtain:

m(S(δ)) ≥ 2π(1− ε)
1 + δ

(1− α2d2)(card(Λ
⋂

(−r, r))− 1)

2r
.

Take now the upper limit as r →∞:

m(S(δ)) ≥ 2π(1− ε)
1 + δ

(1− α2d2)D∗(Λ).

Since this inequality holds for all ε > 0, δ > 0 and α ∈ (1, 1/d), we
conclude that (15) is true.
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4.5. We shall now prove part (ii) of Theorem 2. We choose S a
union of two intervals and Λ a small perturbation of integers, as
follows:

S := [−π − ε, π + ε] ∪ [π − ε, π + ε], Λ := {n+R−|n|−1, n ∈ Z}.
Here ε > 0 is a given small number and R > 1.

Denote by λn := n+R−|n|−1 the elements of Λ, and set

fλ0(x) :=
sin πx

sin πλ0

· sin ε(x− λ0)

ε(x− λ0)
,

and

fλn(x) :=
sin πx

sin πλn
·sin ν(n)(x− λn)

ν(n)(x− λn)
·

∏
|j|≤2|n|,j 6=n

sin ν(j)(x− λj)
sin ν(j)(λn − λj)

, n 6= 0,

where ν(n) := ε/(4|n|+1). Observe that m(S) = 4ε, so to prove part
(ii) it suffices to show that the functions fλn satisfy (4), provided R
is sufficiently large.

It is clear that fλn ∈ PWS, and that we have

fλn(λn) = 1, n ∈ Z, fλn(λk) = 0, |k| ≤ 2n, k 6= n, n 6= 0. (17)

Further, we assume that R is large enough so that the following
three estimates hold for every n 6= 0 and every |k| > 2|n|:∣∣∣∣ sin πλksin πλn

∣∣∣∣ ≤ 2πR−|k|−1

πR−|n|−1
= 2R−|k|+|n|;∣∣∣∣sin ν(n)(λk − λn)

ν(n)(λk − λn)

∣∣∣∣ ≤ 2

ν(n)(|k| − |n|)
≤ 8

ε
,

and ∣∣∣∣∣∣
∏

|j|≤2|n|,j 6=n

sin ν(j)(λk − λj)
sin ν(j)(λn − λj)

∣∣∣∣∣∣ ≤
∏

|j|≤2|n|,j 6=n

2

ν(j)|j − n|
≤

(
2

ν(2n)

)4|n|
1

|n|!(3|n|)!
≤
(
C

ε

)4|n|

,

where C > 1 is an absolute constant. These estimates yield:

|fλn(λk)| ≤ 16

(
C

ε

)4|n|+1

R−|k|+|n|, |k| > 2|n|, n 6= 0.

A similar estimate holds for fλ0(λk) for each k 6= 0. Clearly, these
estimates and (17) prove (4), provided R is large enough.
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5 l∞−approximation.

5.1. In a sharp contrast to Theorem 1, the possibility of l∞–approximation
of δ–functions on Λ does not imply any restrictions on the measure
of spectrum.

For approximation by PW−functions this follows from Lemma 3.1
in [8]: For every N ≥ 2 there exists a set S(N) ⊂ (−N,N),
mesS(N) = 2

N
, such that∣∣∣∣N2
∫
S(N)

eitx dt− sinNx

Nx

∣∣∣∣ ≤ C

N
, x ∈ R,

where C > 0 is an absolute constant.
The function sinNx/Nx is essentially localized in a small neigh-

borhood of the origin. Its Fourier transform is the unite mass uni-
formly distributed over the interval [−N,N ]. It follows that one
can re-distribute this mass over a set of small measure so that the
‘uniform error’ in the Fourier transform is O(1/N).

For the BS−functions, the result can be stated even in a stronger
form, with the spectrum S of measure zero:

Lemma 3 For every ε > 0 there is a compact set S ⊂ R of Lebesgue
measure zero and a function f ∈ BS, such that

f(0) = ‖f‖L∞(R) = 1, and |f(t)| < ε, |t| > ε.

This lemma is a consequence of an important Menshov’s example
(see [1] ch.14, sec.12, and remark in sec.18): There is a singular
probability measure ν with compact support, such that

ν̂(x)→ 0, |x| → ∞.

Indeed, it suffices to set f(x) = ν̂(cx), where c is sufficiently large.
Proposition 2 follows from Lemma 3: take a positive number

ε < min{d, γ(Λ)}, where γ(Λ) is defined in (1). Let f be a function
from Lemma 3. Then the functions fξ(x) := f(x− ξ), ξ ∈ Λ, satisfy
the assumptions of Proposition 2.

5.2. Notice that the Bernstein space BS can be defined in a similar
way for every unbounded closed spectrum S of finite measure. In [10]
(see Theorem 3.1) we constructed unbounded spectra S of arbitrarily
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small measure such that every uniformly discrete set Λ is a set of
interpolation for BS. This was done by a certain iteration argument,
using Lemma 3.1 from that paper. Using instead Lemma 3 above,
one obtains the following slightly stronger result:

Proposition 3 There is a closed set S of measure zero such that
every uniformly discrete set Λ is a set of interpolation for BS.

Remark Assumption m(S) = 0 in Propositions 2 and 3 can be
replaced by a stronger metrical ‘thinness’ condition: S may have
measure zero with respect to any given Hausdorff scaling function.
For such an improvement one needs to use measures ν constructed
in [4].

6 Bp
S−spaces and lp−approximation

One can include spaces PWS and BS into a continuous chain of
Banach spaces: Given a compact set S and a number p, 1 ≤ p ≤ ∞,
denote by Bp

S the space of all entire functions f ∈ Lp(R) which
can be represented as the Fourier transform of a distribution F
supported by S. Clearly, B2

S = PWS and B∞S = BS.
Observe that for p < p′, one has the embedding

Bp
S ⊂ Bp′

S (18)

with the corresponding inequality for norms.
Let Λ be a uniformly discrete set. It is well-known that the

restriction operator f → f |Λ acts boundedly from Bp
S into lp(Λ)

(see, for example, [11], p.82). Λ is called a set of interpolation for
Bp
S if this operator is surjective.
Proposition 1 implies:

Proposition 4 Let S be a compact and p ≥ 1. If there exist func-
tions fξ ∈ Bp

S satisfying fξ|Λ = δξ, ξ ∈ Λ, and

supξ∈Λ‖fξ‖Lp(R) <∞, (19)

then condition (2) holds.

In particular, this shows that if Λ is a set of interpolation for Bp
S,

then estimate (2) is true.
However, when considering lp(Λ)−approximation by functions

from Bp
S, one should distinguish between the following two cases:
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1 ≤ p ≤ 2 and 2 < p ≤ ∞. In the first case, the measure of spec-
trum admits an estimate from below as in Theorem 1, while in the
second case it does not as in Proposition 2:

Theorem 3 Let 0 < d < 1, S be a compact set and Λ be a uniformly
discrete set.

(i) Suppose 1 ≤ p ≤ 2. If every δξ, ξ ∈ Λ, admits approximation

‖fξ|Λ − δξ‖lp(Λ) ≤ d, ξ ∈ Λ, (20)

by functions fξ ∈ Bp
S satisfying (19), then condition (5) holds true.

(ii) Suppose p > 2. There exist a compact set S ⊂ R of measure
zero and functions fξ ∈ Bp

S satisfying (19) and (20).

Part (i) is a consequence of Theorem 1, embedding (18) and the
standard inequality between lp norms.

Part (ii) follows form the refinement of Menshov’s example (see
[5]): There is a singular measure ν with compact support satisfying

ν̂(x) = O(|x|−1/2), |x| → ∞.
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