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Simple vector bundles on plane degenerations

of an elliptic curve

Lesya Bodnarchuk, Yuriy Drozd and Gert-Martin Greuel

Abstract

In 1957 Atiyah classified simple and indecomposable vector bundles on an elliptic curve.
In this article we generalize his classification by describing the simple vector bundles on
all reduced plane cubic curves. Our main result states that a simple vector bundle on
such a curve is completely determined by its rank, multidegree and determinant. Our
approach, based on the representation theory of boxes, also yields an explicit description
of the corresponding universal families of simple vector bundles.

1. Introduction

The theory of vector bundles on an elliptic curve and its degenerations is known to be closely
related with the theory of integrable systems (see e.g. [Kri77, Ma78, Mu94]). Another motivation
for studying vector bundles on elliptic fibrations comes from the work of Friedman, Morgan and
Witten [FMW99], who discovered their importance for heterotic string theory. The main motivation
of our investigation was the following problem. Let E→ T be an elliptic fibration, where T is some
basis such that for any point t ∈ T the fiber Et is a reduced projective curve with the trivial dualizing
sheaf.

E

T
²²

Et

Et E0

•• t
•t 0

In most applications, a generic fiber of this fibration is an elliptic curve and for the points of the
discriminant locus ∆ ⊂ T the fibers are singular (and possibly reducible). Can one give a uniform
description of simple vector bundles both on the smooth and the singular fibers?

It is known that the category of all vector bundles of a singular genus one curve E essentially
depends on the singularity type of the curve. For example, in the case of the Weierstraß family
E → C2 given by the equation zy2 = 4x3 + g2xz2 + g3z

3, the cuspidal fiber E = E(0,0) is vector-
bundle-wild, whereas all the other fibers E=E(g2,g3) (smooth and nodal) are vector-bundle-tame1.
This phenomenon seems to be rather strange, since very strong continuity results for the Picard

2000 Mathematics Subject Classification 14H10, 14H60 and 16G60
Keywords: simple vector bundles and their moduli, degeneration of an elliptic curve, tame and wild, small reduction.

We express our sincere thanks to Professor Serge Ovsienko for fruitful discussions and helpful advice. The first
named author would like to thank the Mathematisches Forschungsinstitut Oberwolfach, where she stayed as a Leibniz
fellow during the period that this paper was written.
1 In representation theory a category is called tame if its indecomposable objects can be described by some discrete and
one continuous parameters, and wild if they are non-classifiable. An algebraic variety X is called vector-bundle-wild
or vector-bundle-tame if the category VBX of vector bundles on X is wild or respectively tame (see [DG01]).

http://www.ams.org/msc/�


Lesya Bodnarchuk, Yuriy Drozd and Gert-Martin Greuel

functor are known to be true [AK79]. It is one of the results of this paper that the situation is
completely different if one restricts to the study of the simple 2 vector bundles. Namely we prove
that the category VBs

E of simple vector bundles on E is indeed tame. Moreover, we provide a
complete classification of simple bundles and describe a bundle on the moduli space, having certain
universal properties.

The starting point of our investigation and the main source of inspiration was the following
classical result of Atiyah.

Theorem 1.1 ([Ati57]) Let E be an elliptic curve over an algebraically closed field k. Then a
simple vector bundle E on E is uniquely determined by its rank r, degree d, which should be coprime,
and determinant det(E) ∈ Picd(E) ∼= E.

The main result of our article generalizes Atiyah’s theorem to all reduced plane degenerations of an
elliptic curve. Singular fibers of elliptic fibered surfaces were described by Kodaira and throughout
this article we make use of his classification, see for example [BPV84, Table 3, p.150]. In what
follows the cycles of projective lines (also called Kodaira cycles) are denoted by IN , where N is
the number of irreducible components. Note that a Kodaira cycle IN is a plane curve if and only if
N ≤ 3. Besides them, there are precisely three other Kodaira fibers. Thus, we study simple vector
bundles on the following six configurations:

N Kodaira cycles Kodaira fibers

N = 1 I1 : y2z = x3 + x2z II : y2z = x3

==
==

¢¢
¢¢

N = 2 I2 : z3 = xyz III : y2z = x2y

N = 3 I3 : xyz = 0 IV : xy2 = x2y

55
55

55

¯̄
¯̄
¯̄

©©©©©©©©

66666666

Table 1.

In order to present our main theorem, let us fix some notations. Throughout this article, let k be an
algebraically closed field and a curve be a reduced projective curve. Let E be a plane degeneration
of an elliptic curve, N = 1, 2, 3 the number of its irreducible components and Lk the k-th component
of E. For a vector bundle E on E we denote

– dk = dk(E) = deg(E|Lk
) ∈ Z the degree of the restriction of E on Lk;

– d = d(E) = (d1, . . . , dN ) ∈ ZN the multidegree of E ;

– d = deg(E) = d1 + · · · + dN the degree of E . In our cases it is equal to the Euler-Poincaré
characteristic: χ(E) = h0(E)− h1(E);

– r = rank(E) the rank of E .

2A bundle is called simple if it admits no endomorphisms but homotheties.
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Simple vector bundles on plane degenerations of an elliptic curve

Moreover, let Picd(E)3 be the Picard group of invertible sheaves of multidegree d on E. The following
theorem generalizes Atiyah’s classification and is the main result of this article.

Theorem 1.2 Let E be a reduced plane cubic curve with N irreducible components, 1 ≤ N ≤ 3.

(i) Then the rank r and the degree d of a simple vector bundle on E are coprime. For any tuple
of integers (r,d) ∈ N× ZN such that gcd(r, d1 + · · ·+ dN ) = 1, let M = VBs

E(r,d) be the set
of simple vector bundles of rank r and multidegree d. Then the map det : M → Picd(E) is a
bijection.

(ii) The Jacobian Pic(0,...,0)(E) acts transitively on M . The stabilizer of a point is isomorphic to
Zr if E is a Kodaira cycle, and is trivial in the remaining cases.

Let Λ := k∗ if E is a Kodaira cycle and Λ := k if E is a Kodaira fiber of type II, III or IV. By
1.2 (i) Λ is a moduli space of simple vector bundles of given rank r and multidegree d provided
gcd(r, d) = 1. By an observation of Burban and Kreußler [BK4], for a given tuple of integers
(r,d) ∈ N×ZN such that gcd(r, d) = 1, our method yields an explicit construction of a vector bundle
P = P(r,d) ∈ VBE×Λ satisfying in the general case only the following universality properties:

– for any point λ ∈ Λ the vector bundle P(λ) := P|E×{λ} ∈ VB(E) is simple of rank r and
multidegree d;

– for any vector bundle E ∈ VBs
E(r,d) there exists a unique λ ∈ Λ such that E ∼= P(λ);

– for two points λ 6= µ from Λ we have P(λ) 6∼= P(µ).

If the curve E is irreducible, the vector bundle P is the universal family of stable vector bundles of
rank r and degree d.

Similarly to Atiyah’s proof [Ati57], the main ingredient of our approach is a construction of
various bijections VBs

E(r,d) → VBs
E(r′,d′), where r′ < r. However, our method is completely

different from Atiyah’s. We use a reduction of our classification problem to the description of bricks
in the category of representations of a certain box (or a differential biquiver). Moreover, we provide
an explicit algorithm (algorithm 7.2) that for a given tuple (r,d) ∈ N× ZN constructs a canonical
form of a matrix, describing the universal family of simple vector bundles of rank r and multidegree
d. The core of this algorithm is the automaton of reduction, which is given for each of the listed
curves and operates on discrete parameters like Euclidean algorithm.

For a rather long time (till the middle of the 70s) there were no efficient methods for studying
moduli spaces of vector bundles of higher ranks on singular curves. In order to study vector bundles
on (possibly reducible) projective curves with only nodes or cusps as singularities, Seshadri intro-
duced the concept of the so-called parabolic bundles (see [Ses82, Section 3]). This approach was later
developed by Bhosle, who introduced the notion of generalized parabolic bundles [Bho92, Bho96].

Our method of studying vector bundles on genus one curves is a certain categorification of
the language of parabolic bundles of Seshadri and Bhosle. It was originally proposed in [DG01],
see also [BDG01] and [BBDG] for some further elaborations. The idea of this method can be
explained as follows. Let X be a singular reduced projective curve (typically rational, but with
arbitrary singularities), π : X̃ → X its normalization. Then a description of the fibers of the functor
π∗ : VBX → VB

X̃
can be converted to some representation theory problem, called a matrix problem.

The main application of this method concerns the case of curves of arithmetic genus one. In the case
of a cycle of N projective lines (Kodaira cycles IN ), the obtained matrix problem turns out to be
representation-tame, see [Bon92] and [CB89]. As a result, it allows to obtain a complete classification
of indecomposable torsion free sheaves on these genus one curves, see [DG01] and [BBDG].

3 Note that Picd(E) is E for an elliptic curve, k∗ for Kodaira cycles and k for the other Kodaira fibers.
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However, a description of the exact combinatorics of simple vector bundles on a cycle of projective
lines requires some extra work. This was done in [BDG01], but the resulting answer was not very
explicit. For the case of a nodal cubic curve zy2 = x3+x2z, in [Bur03] Burban derived the statement
of Theorem 1.2 using the classification of all indecomposable objects. In this article we give an
improved description of simple vector bundles on cycles I1, I2 and I3 using the technique of the
so-called small reductions of matrix problems.

As we have mentioned above, the representation-theoretic properties of the category of torsion
free sheaves on Kodaira cycles and the other degenerations of elliptic curves are rather different. For
example, for a cuspidal rational curve zy2 = x3 even the classification of indecomposable semi-stable
vector bundles of a given slope is a representation-wild problem. However, if we additionally impose
the simplicity assumption, then the wild fragments of the matrix problem disappear and we can
reduce the matrices to a canonical form (see [BD03]).

The matrix problems describing simple vector bundles on nodal and cuspidal cubic curves are
relatively easy to deal with, since they are self-reproducing, i.e. after applying one step of small
reduction we obtain the same problem but with matrices of smaller sizes. In fact, the matrix re-
duction operates on discrete parameters of vector bundles as Euclidean algorithm. Carrying this
out we obtain the statement of Theorem 1.2 for irreducible degenerations of an elliptic curve. Un-
fortunately, the matrix problems for curves with many components are no longer self-reproducing.
However, they turn out to be such in some bigger class of matrix problems. To study this class
in a conceptual way we need more sophisticated methods from representation theory. Namely, we
describe our matrix problem as the category of representations of a certain box (also called bocs,
“bimodule over a category with a coalgebra structure” or differential biquiver) see [Bod07, BD09].

The technique of boxes is known to be very useful for proving tame-wild dichotomy theorems and
various semi-continuity results, see [Dro79], [Dro01], [Dro05], [CB90] etc. A new feature, illustrated
in this article, is that the formalism of boxes can be very efficiently applied for constructing canonical
forms of representations “in general position”. A usual approach to a matrix problem is a consecutive
application of a minimal edge reduction, which is a reduction of a certain block to its Gauß form.
However, since we are interested in bricks it turns out that it is sufficient to take into account only
small reductions, which are Gauß reductions provided that the rank of the block is maximal. This
way for each plane singular cubic curve and the matrix problem corresponding to the family of
simple vector bundles of rank r and multidegree d we get an explicit algorithm constructing its
canonical form. The course of the construction is given as a path on some automaton, whose states
are boxes and transition arrows are small reductions.

To put our results in a broader mathematical context we would like to mention that the case
of singular curves of genus one is special in many respects. We are especially interested in the
study of vector bundles on curves having trivial dualizing bundle. This automatically implies that
they have arithmetic genus one, but not vice versa. In [FMW99] Friedman, Morgan and Witten
proposed a powerful method of constructing vector bundles on irreducible genus one curves and
elliptic fibrations, based on the technique of the so-called spectral covers. Later, it was realized that
their construction can be alternatively described using the language of Fourier-Mukai transforms, see
e.g. [BK05], [BBHM02], [HLSP]. Although for irreducible cubic curves Theorem 1.2 was previously
known and can be proven using either geometric invariant theory or Fourier-Mukai transforms, our
approach has one particular advantage. Namely, it yields a very explicit description of a universal
family of simple vector bundles, which turned out to be important in applications. In particular, it
was used to get new solutions of the associative and quantum Yang-Baxter equations, see [Pol07]
and [BK4, Section 8].

We should also mention that the geometric point of view suggests to replace the simplicity
condition by Simpson stability. Both notions are closely related for curves of arithmetic genus one.
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By this method in [Lo05] and [Lo06] López-Martin described geometry of the compactified Jacobian
in case of Kodaira fibers and elliptic fibrations.

Organization of the material
In Section 2 we recall the construction of [DG01] and replace the category of vector bundles VBE

by the equivalent category of triples TrE . Fixing bases of triples we obtain the category of matrices
MPE . In Sections 3 and 4 this procedure is applied to all the curves from Table 1. In Section 5
we study the properties induced by the simplicity condition and obtain some additional restrictions
for the matrix problem MPE . In Section 6 we fix discrete parameters (r,d) and reduce a brick-
object4 of MPE(r,d) to its partial canonical form. Remarkably, this new matrix problem and its
dimension vector s are completely determined by the curve E the rank r and the multidegree d.
This correspondence for the curves with many components is given in Tables 2 – 4.

In Section 7 we provide a formal approach to the partially reduced matrix problem: we interpret
a it as the category of bricks BrA(s) of some box A and dimension vector s. We prove that any
break is a module in a general position, thus the Gauß reduction can be replaced by the small one.
A course of reduction can be presented as a path on some automaton, where the states are matrix
problems and transitions are small reductions. We call a box principal if BrA(s) ∼= VBs

E(r,d). For
fixed rank r and multidegree d, if the set BrA(s) is nonempty, then there is a path p : A → A′,
where A′ is principal, reducing the dimension vector s to (1, 0, . . . , 0) :

VBs
E(r,d)

∼=
²²

Pic
(0,...,0)
E

∼=
²²

BrA(s)
p

∼ // BrA′(1, 0, . . . , 0).

A transition operates on the pair (d mod r, r−d mod r) as Euclidean algorithm and for E ∈ VBs
E(r,d)

we obtain gcd(r, d) = 1. It turns out that this condition is not only necessary but also sufficient for
VBs

E(r,d) to be nonempty. The canonical form of a brick from BrA(s) can be recovered by reversing
the path p. The whole procedure is emphasized in algorithm 7.2.

In Sections 8 – 10 we construct automatons for each Kodaira cycle IN (N ≤ 3) and show that
a path on it also encodes a course of reduction for the Kodaira fiber with N -components.

Analyzing how a path operates on the dimension vector s we deduce the first part of Theorem
1.2. In Section 11 we illustrate algorithm 7.2 on some concrete examples. In Section 12 we describe
the action of Pic(0,...,0)(E) on VBs

E(r,d) and morphisms between simple bundles, thus deduce the
second part of the Theorem 1.2.

2. General approach

Category of triples
Let k be an algebraically closed field5, Sch := Sch /k the category of Noetherian schemes over k
and for any scheme T ∈ Sch by VBT , TFT and CohT we denote the categories of vector bundles,
torsion free coherent and coherent sheaves on T respectively.

Let X be a singular curve over k. Fix the following notations:

– π : X̃ −→ X the normalization of X;

4A brick or a schurian object is a representation with no nonscalar endomorphisms.
5 Although the construction of triples and many classification results are valid for an arbitrary field, the matrix
problems that we obtain can be quite special and require different methods to deal with. In order to get a uniform
description for all cases we assume from the beginning the ground field k to be algebraically closed.
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– O := OX and Õ := O
X̃

the structure sheaves of X and X̃ respectively;

– J = AnnO(π∗Õ/O) the conductor of O in π∗Õ;

– ı : S ↪→ X the subscheme of X defined by the conductor J and ı̃ : S̃ ↪→ X̃ its scheme-theoretic
pull-back to the normalization X̃.

Altogether they fit into a cartesian diagram:

S̃
ı̃ //

π̃

²²

X̃

π

²²
S

ı // X.

(1)

Remark 2.1 1. In what follows we shall identify the structure sheaf OT of an artinian scheme
T with the coordinate ring k[T ].

2. The main property of the conductor is that for the ideal J̃ := I
S̃

in Õ we have J = π∗J̃ .

3. Let F ∈ CohX and F̃ ∈ Coh
X̃

be coherent sheaves on X and X̃ respectively. With a little
abuse of notation one can write: ı∗F = F ⊗O OS = F/JF ∈ CohS and ı̃∗F̃ = F̃ ⊗Õ OS̃

=
F̃/J̃ F̃ ∈ Coh

S̃
. Since S and S̃ are schemes of dimension zero, ı∗ı∗F and ı̃∗ı̃∗F̃ are skyscraper

sheaves on X and X̃ respectively.

The usual way to deal with vector bundles on a singular curve is to lift them to the normalization,
and then to work on a smooth curve, see for example [Ses82, Bho92, Bho96]. To describe the fibers
of the map VBX → VB

X̃
we recall the following construction:

Definition 2.2 The category of triples TrX is defined as follows:

– Its objects are triples (F̃ ,M, µ̃), where F̃ ∈ VB
X̃

, M ∈ VBS and µ̃ : π̃∗M → ı̃∗F̃ is an
isomorphism of O

S̃
–modules.

– A morphism (F̃ ,M, µ̃)
(F,f) // (F̃ ′,M′, µ̃′) is given by a pair (F, f), where F : F̃ → F̃ ′ is

a morphism in VB
X̃

and f : M→M′ is a morphism in CohS, such that the following diagram
commutes in Coh

S̃
:

π̃∗M µ̃ //

π̃∗f
²²

ı̃∗F̃
ı̃∗F

²²
π̃∗M′ µ̃′ // ı̃∗F̃ ′.

(2)

Raison d’être for the formalism of triples is the following theorem:

Theorem 2.3 ([DG01]) The functor Ψ : VBX −→ TrX taking a vector bundle F to the triple
(F̃ ,M, µ̃), where F̃ := π∗F , M := ı∗F and µ̃ is the canonical morphism µ̃ : π̃∗ı∗F → ı̃∗π∗F is an
equivalence of categories.

Although the statement of Theorem 2.3 holds for arbitrary reduced curves, the method based it can
be efficiently used mainly for rational curves, since in this case the description of vector bundles on
the normalization is well understood.

6
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Vector bundles on a projective line

According to the classical result known as the Theorem of Birkhoff-Grothendieck, a vector bundle
F̃ on a projective line P1 splits into a direct sum of line bundles:

F̃ ∼= ⊕
n∈Z

(OP1(n)
)rn . (3)

Let (z0 : z1) be homogeneous coordinates on P1. Then an endomorphism F of F̃ can be written in
a matrix form:

F =




. . . 0 . . . 0 0
. . . Fnn . . . 0 0

...
. . .

...
...

. . . Fmn . . . Fmm 0
...

...
. . .




, (4)

where Fmn are blocks of sizes rm × rn with coefficients in the vector space

HomP1

(OP1(n),OP1(m)
) ∼= k[z0, z1]m−n, (5)

since a morphism OP1(n) → OP1(m) is determined by a homogeneous form Q(z0, z1) of degree
m − n. In particular, the matrix F is lower-block-triangular and the diagonal rn × rn blocks Fnn

are matrices over k. The morphism F is an isomorphism if and only if all the diagonal blocks Fnn

are invertible.

Matrix problem MPX .

To classify vector bundles on a rational projective curve X with the normalization X̃ =
Nt

k=1
Lk one

should describe iso-classes of objects in TrX . Note that two triples (F̃ ,M, µ̃) and (F̃ ′,M′, µ̃′) are
isomorphic only if F̃ ∼= F̃ ′ and M ∼= M′. By Birkhoff-Grothendieck theorem a bundle F̃ on X̃
can be given by a tuple of integers r := {r(n, k)|n ∈ Z, 1 ≤ k ≤ N}. Let MPX :=

⋃
rMPX(r)

be the following Krull-Schmidt category: an object of a stratum MPX(r) is a matrix µ̃ for which
there exists a triple (F̃ ,M, µ̃) ∈ TrX and the vector bundle F̃ ∈ VB

X̃
splits into a direct sum of

line bundles with the tuple of multiplicities r. For two objects µ̃ and µ̃′ with triples (F̃ ,M, µ̃) and
(F̃ ′,M′, µ̃′) respectively, a morphism from µ̃ to µ̃′ is a pair (̃ı∗F , π̃∗f) such that ı̃∗F · µ̃ = µ̃′ · π̃∗f,
where F ∈ Hom

X̃
(F̃ , F̃ ′) and f ∈ Hom(M,M′). The functor H : TrX −→ MPX is full and dense

and there is a natural projection

HomTrX

(
(F̃ ,M, µ̃), (F̃ ,M, µ̃′)

)
³ HomMPX

(µ̃, µ̃′). (6)

Definition 2.4 Replacing the set of morphisms by the set of invertible morphisms in MPX(r)
(also called matrix transformations) we obtain some groupoid. A matrix problem is the problem of
describing orbits of indecomposable (respectively simple) objects. If it is possible, a solution consists
in finding a canonical form of µ̃.

The precise description of this procedure can be found in [Bod07]. For convenience we choose
k-bases of OS and O

S̃
and rewrite µ̃, ı̃∗F and π̃∗f as tuples of matrices over k.

7
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3. Matrix problem for cycles of projective lines.

Let E be a cycle of N projective lines. The normalization Ẽ is a disjoint union of N copies of P1.
For example, for N = 3 we have:

L1

•∞

•0

L2

•∞

•0

L3

•∞

•0

π //

55
55

55
55

5

¯̄
¯̄
¯̄
¯̄
¯•

• •

s1

s2 s3

E

Let s1, . . . sN be the intersection points ordered in such a way that sk and sk+1 belong to the
component Lk for k = 1, . . . , N−1 and the points sN and s1 lay on LN . On each component L := Lk

choose the local coordinates such that the preimages of sk and sk+1 on Lk, for k = 1, . . . , N − 1,
and sN and s1 on LN have coordinates 0 := (0 : 1) and ∞ := (1 : 0). Then

OS = k(s1)⊕ · · · ⊕ k(sN ) and O
S̃

=
N⊕

k=1

(k(0k)⊕ k(∞k)).

To describe vector bundles on E for a triple (F̃ ,M, µ̃) we fix:

– a splitting F̃ ∼=
N⊕

k=1

(
⊕

n∈Z
OLk

(n)r(n,k)
)

with
∑
n∈Z

r(n, k) = r for each component k;

– an isomorphism M∼= Or
S = (⊕N

k=1k(sk))r.

– The choice of coordinates on each component L of X̃ fixes two canonical sections z0 and z1 of
H0

(OL(1)
)
, and we use the following trivializations

OL(n)⊗O
L∩S̃

∼−→ k(0)× k(∞)
ζ ⊗ 1 7−→ (ζ/zn

1 (0), ζ/zn
0 (∞)).

This isomorphism only depends on the choice of coordinates on L ∼= P1. In such a way we
equip the O

S̃
–module ı̃∗F̃ , where ı̃∗F̃ |L = F̃ |L(0) ⊕ F̃|L(∞), with a basis and get isomorphisms

F̃ |L(0) ∼= ⊕
n∈Z

k(0)rn and F̃ |L(∞) ∼= ⊕
n∈Z

k(∞)rn .

Matrix problem MPE for Kodaira cycles IN

With respect to all the choices the maps µ̃, ı̃∗F and π̃∗f can be written as matrices.

– The gluing map µ̃ : π̃∗M−→ ı̃∗F̃ can be given by 2N matrices over k

µ̃ =
(
µ1(0), µ1(∞), µ2(0), µ2(∞), . . . , µN (0), µN (∞)

)
. (7)

From the definition of the category of triples it follows that a vector bundle on E corresponds
to a tuple µ̃ such that all its matrices µk(0) and µk(∞) are square and invertible.

– If we have a morphismOL(n) → OL(m) given by a homogeneous form Q(z0, z1) of degree m−n,
then it induces a map OL(n) ⊗ O

S̃
−→ OL(m) ⊗ O

S̃
given by

(Q(0), Q(∞)) := (Q(0 : 1), Q(1 : 0)). Hence, with respect to the chosen trivializations of OL(n)
at 0 and ∞ the map

ı̃∗F |L =
(
F k(0), F k(∞)

)
: kr(0)⊕ kr(∞) −→ kr(0)⊕ kr(∞) (8)

is given by a pair of lower block triangular matrices
(
F k(0), F k(∞)

)
consisting of blocks

F k
mn(0), F k

mn(∞) ∈ Matk(r(m, k) × r(n, k)), for m > n and with common diagonal blocks
Fnn ∈ Matk(r(n, k) × r(n, k)). The morphism F is invertible, if all the diagonal blocks F k

nn

belong to GL(k, r(n, k)).
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– The same holds for the induced map π̃∗f = (f1, . . . , fN ) : if (F, f) is invertible then
fk ∈ GL(k, r) for each component k.

– The transformation rule µ̃ 7→ (̃ı∗F ) · µ̃ · (π̃∗f)−1 can be rewritten for each component k as
µk(0) 7→ Fk(0)µk(0)f−1

k−1 and µk(∞) 7→ Fk(∞)µk(∞)f−1
k assuming f0 = fN . For N = 3 it can

be sketched as follows:

F1(0)

¼¼

f1

F1(∞)

¦¦

f2

F2(0)

¼¼

f3

F2(∞)

¦¦

F3(∞)

¼¼

F3(0)

¦¦

Matrices µk(0) and µk(∞) are simultaneously divided into horizontal blocks labelled by integers,
called weights. A pair of such blocks with the same weight are called conjugated and have the same
number of rows. These types of matrix problems are well-known in representation theory. They
are called Gelfand problems or representations of bunches of chains (see [GP68, Bon92]). For an
application of Gelfand problems to the classification of torsion free sheaves on cycles of projective
lines we refer to [DG01] (see also[BBDG]).

4. Matrix problem for Kodaira fibers II, III and IV

In this section we formulate the matrix problem MPE for the other curves from the Table 1. Let E
be a Kodaira fiber with N (N ≤ 3) components. Let s be the unique singular point and π : Ẽ → E
the normalization map. For example, for N = 3 we have

L1 L2 L3

•0 •0 •0 π //

ttttttttttttt

JJJJJJJJJJJJJ
s•

E

Note that Ẽ consists of a disjoint union of N projective lines. On each component Lk choose
coordinates (z0 : z1) such that the preimage of the singular point s = (0 : 0 : 1) on Lk is 0 := (0 : 1).
Let Uk = {(z0 : z1)|z1 6= 0} be affine neighborhoods of 0 on Lk with local coordinates tk := z0/z1

for k = 1, . . . , N ; and let U be the union
⋃N

k=1 π(Uk). Let us calculate the normalization map

O ↪→ π∗Õ = π∗
( N⊕

k=1
OLk

)
, the conductor J and the structure sheaves OS , and O

S̃
for each Kodaira

fiber:

II. Let E be a cuspidal cubic curve in P2 given by the equation x3 − y2z = 0. Then locally the
normalization map is k[U ] = k[t2, t3] ↪→ k[t]. Since on π(U) the conductor is J = 〈t2, t3〉, we
have OS

∼= k(s) and O
S̃
∼=

(
k[ε]/ε2

)
(s).

III. Let E be a tacnode curve given by the equation y(zy−x2) = 0. Then the normalization map is

9
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k[U ] ↪→ k[t1]⊕k[t2] taking 1 7→ (1, 1), x 7→ (t1, t2), and y 7→ (0, t22). On π(U) for the conductor
we have J = 〈(t21, 0), (0, t22)〉. In other words, the ideal sheaf of the scheme-theoretic preimage
of s is J̃ =

(
I2

L1,0, I2
L2,0

)
, where ILk,0 denotes the ideal sheaf of the point 0 on the component

Lk. Hence, O
S̃
∼= Õ/J̃ = O1/I2

L1,0 ⊕ O2/I2
L2,0. Altogether we get OS

∼=
(
k[ε]/ε2

)
(s), and

O
S̃
∼=

(
k1[ε1]/ε2

1

)
(s̃1)⊕

(
k2[ε2]/ε2

2

)
(s̃2) and the induced map OS ↪→ O

S̃
takes ε to (ε1, ε2).

IV. Let E be a curve consisting of three concurrent projective lines in P2, given by the equation
xy(x−y) = 0. Then the normalization map is k[U ] ↪→ k[t1]⊕k[t2]⊕k[t3], sending 1 7→ (1, 1, 1),
x 7→ (t1, t2, 0), and y 7→ (t1, 0, t3). Since J (U) = 〈x2, y2, xy〉, we have OS = k[x, y]/〈x2, y2, xy〉.
Note that the ideal sheaf J̃ := π∗J is locally generated by (t21, 0, 0), (0, t22, 0) and (0, 0, t23) i.e.

J̃ =
(
I2

L1,0, I2
L2,0, I2

L2,0

)
, where ILk,0 is as above. Hence, O

S̃
∼= Õ/J̃ ∼= 3⊕

k=1
OLk

/I2
Lk,0.

Generalities for matrix problems MPE for Kodaira fibers II, III and IV

For a triple (F̃ ,M, µ̃) we fix:

– a splitting F̃ ∼=
N⊕

k=1

(
⊕

n∈Z
OLk

(n)r(n,k)
)

with
∑
n∈Z

r(n, k) = r;

– an isomorphism M∼= Or
S ;

– for each component L := Lk we take the trivializations

OL(n)⊗OL/I2
L,0 −→ k[εk]/ε2

k,

ζ ⊗ 1 7−→ pr(
ζ

zn
1

)

for a local section ζ of OLk
(n) on the open set Uk, where the projection pr : k[Uk] −→ k[εk]/ε2

k

is the map induced by k[tk] −→ k[εk]/ε2
k, mapping tk 7→ εk.

With respect to all these choices in terms of matrices we have:

– The map µ̃ can be written as a combination of 2N r × r-matrices over k:

µ̃ = (µ1, . . . , µN ) =
(
µ1(0) + ε1 · µε1(0), . . . , µN (0) + εN · µεN (0)

)
. (9)

The morphism µ̃ is invertible if and only if all µk(0), for k = 1, . . . , N, are invertible.

– If on a component L we have a morphism OL(n) → OL(m) given by a homogeneous form
Q(z0, z1) of degree m−n, then the induced map OL(n)⊗O

S̃
−→ OL(m)⊗O

S̃
is given by the

map

pr(Q(z0, z1)/zm−n
1 ) = Q(0 : 1) + ε dQ

dz0
(0 : 1).

Hence, for a morphism (F, f) : (F̃ ,M, µ̃) −→ (F̃ ′,M′, µ̃′) the induced map ı̃∗F : ı̃∗F̃ −→ ı̃∗F̃ ′
on each component L := Lk is

ı̃∗F |L = Fk(0) + εdFk
dz0

(0) ∈ Mat(k[ε]/ε2, r),

where, as usual, F (0) denotes F (0 : 1).

– The morphism π̃∗f consists of N copies of the matrix f, where

∗ f ∈ Mat(k, r × r) for the cuspidal cubic;
∗ f = f(0) + fε(0) ∈ Mat(k[ε]/ε2, r × r), for ε = (ε1, ε2) for the tacnode curve;
∗ f = f(0)+x · fx(0)+ y · fy(0) ∈ Mat

(
k[x, y]/〈x2, y2, xy〉, r× r

)
for the three lines through

a point in a plane (Kodaira fiber IV).

10
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A morphism (F, f) is an automorphism if and only if all Fk(0) for k ∈ {1, . . . , N} and f(0) are
invertible r × r matrices over k. For example, for the Kodaira fiber IV we get the following matrix
problem. There are six r× r matrices µ1(0), µε1(0), µ2(0), µε2(0) and µ3(0), µε3(0), where all µk(0)
are invertible. The pairs µk(0), µεk

(0) are simultaneously divided into horizontal blocks labelled by
integers called weights.

F1(0)

¼¼

fy(0)

44

fx(0) **

F1(0)

¦¦
//

dF1
dz0

(0)

F2(0)

¼¼

fx(0) **

f(0) f(0)

F2(0)

¦¦
//

dF2
dz0

(0)

f(0) f(0)

F3(0)

¼¼

fy(0)

44

F3(0)

¦¦
//

dF3
dz0

(0)

If we restrict this problem on the first two components and assuming fy(0) = 0 and fε := fx(0)
we obtain the problem for a tacnode curve. If we restrict the problem to the first component with
fy(0) = fx(0) = 0 we get the problem for the cuspidal cubic curve. Each of this problems is wild
even for two horizontal blocks, see [Dro92, Section 1] or [BD09] . However, the simplicity condition
of a triple (F̃ ,M, µ̃) imposes some additional restrictions making the problem tame.

5. Simplicity condition

A vector bundle on a curve X is called simple if it admits no endomorphisms but homotheties, i.e.
EndX(F) = k and the subcategory of simple vector bundles is denoted by VBs

X . This notion can be
obviously translated to the language of triples. In terms of matrix problems: an object µ̃ of MPX is
called a brick if EndMPX

(µ̃) = k. The full subcategory of bricks is denoted by MPs
X and MPs

X(r) if
the dimension vector r is fixed. Note that a nonscalar morphism (F, f) can have a scalar restriction
(̃ı∗F, π∗f).

Lemma 5.1 Let X be a rational singular curve and (F̃ ,M, µ̃) ∈ TrX be a triple. Then the map
EndTrX (F̃ ,M, µ̃) → EndMPX

(µ̃) is bijective if and only if for all the components L of X̃ and for
all summands OL(n)⊕OL(m) of F̃ |L the canonical maps Hom(OL(n),OL(m)) → k[S̃ ∩ L], taking
Q 7→ ı̃∗Q, are bijective.

This obvious lemma implies certain nice properties for a matrix problem under the simplicity con-
dition. For the curves under consideration, we have the following:

Lemma 5.2 Let E be a Kodaira fiber IN , (for N ∈ N) II, III or IV, and let (F̃ ,M, µ̃) ∈ TrX be a
simple triple. Then for each component L := Lk (1 ≤ k ≤ N) we have

F̃ |L =
(OL(nk)

)r−d̄k ⊕ (OL(nk + 1)
)d̄k (10)

for some nk ∈ Z and 1 ≤ d̄k ≤ r.

11
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Proof. Assume that π∗F|L contains a summand OL(n) ⊕ OL(m) with m ≥ n + 2. Let (z0 : z1)
be the local coordinates as in Section 3 and 4. Since the degree m − n ≥ 2 there exists a nonzero
homogeneous form Q ∈ HomL(OL(n),OL(m)) ∼= k[z0, z1]m−n such that ı̃∗Q = 0. Indeed, if E is a
Kodaira cycle then ı̃∗Q = (Q(0), Q(∞)) and if E is a Kodaira fiber of type II, III or IV then the
restriction of J̃ to the component L is I2

L,0 ⊂ OL,0 and thus ı̃∗Q = Q(0)+ ∂Q
∂z0

(0). In both cases the
map Q 7→ ı̃∗Q is not injective and we get a contradiction to the condition of Lemma 5.1.

Remark 5.3 Note that the twists nk do not affect the matrix problem. Hence we can assume that
the blocks have weights 0 and 1 for each component Lk and replace the multidegree d by (d̄1, . . . , d̄N )
and the degree d by d̄ := d̄1 + · · · + d̄N , where d̄k = dk mod r. Having the twists nk we can recover
the multidegree of d by the rule dk = r · nk + d̄k.

6. Primary reduction.

Applying condition (10) to the matrix problem MPE we obtain that each matrix consists of at
most two horizontal blocks. Despite of this simplification the problem remains quite cumbersome.
However, it can be reduced to a partial canonical form, such that all its matrices but one consist of
identity and zero blocks. We denote by M the remaining nonreduced matrix and formulate for it a
new matrix problem. It seems reasonable to introduce some simplified system of notations.

– Let 1 denotes the identity blocks, 0 the zero blocks,

– use the star ∗ to denote nonreduced blocks and small Latin letters for a finer specification.

The matrix M is divided into blocks, the set of column-blocks coincides with the set of row-blocks
and is denoted by I = {1, 2, . . . |I|}. Then s = (s1, . . . , s|I|) ∈ NI is the dimension vector of M.

6.1 Nodal cubic curve

According to Section 3 the matrix problem MPE for the nodal cubic curve E and on two blocks is
as follows:

F (0)

½½
F (∞)

¥¥

f

µ(0) µ(∞)

Since the normalization consists of a unique component L we skip the indices by F, f and µ. As it
was mentioned above both matrices µ(0) and µ(∞) are invertible. We reduce one of them, say µ(0),
to the identity form:

µ(0) =
1 0
0 1

and M := µ(∞) =
a1 b

c a2

.

To preserve µ(0) unchanged we assume f = F (0). Reformulate the problem for the matrix
M := µ(∞). The transformation rule is M 7→ SM(S′)−1, where

(S, S′) := (F (∞), F (0)) =

(
w1 0
u w2

w1 0
v w2

)
.

Note that the sizes of blocks are determined by rank and degree: (s1, s2) = (r − d̄, d̄), where
d̄ := d mod r.

12
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6.2 Cuspidal cubic curve

Recall the problem MPE on two blocks for the cuspidal curve:

F (0)

½½
F (0)

¥¥

f

//
dF
dz0

(0)
µ(0) µε(0)

As in the case of a nodal curve we skip the indices by F, f and µ. The matrix µ(0) can be re-
duced to the identity form. To preserve this form unchanged we assume F (0) = f. Moreover, using
transformations 4 we can make zero on the left lower block of µε(0):

µ(0) =
1 0
0 1

and M := µε(0) =
a1 b

0 a2

.

We obtain a new matrix problem which reads: M 7→ SMS−1 mod
(

0 0× 0

)
, where the matrix S

inherits the same lower-block-triangular structure as F (0) :

S := F (0) = f =
w1 0
u w2

.

As in the previous case the sizes of blocks are determined by rank and degree: (s1, s2) = (r − d̄, d̄),
where d̄ := d mod r.

6.3 Cycle of two lines

According to Section 3 the original matrix problem MPE for a cycle of two lines with two blocks
on each component is

F1(0)

½½
F1(∞)

¥¥

f1 f2

F2(∞)

½½
F2(0)

¥¥

All four matrices (µ1(0), µ1(∞), µ2(∞)µ2(0)) are invertible. Two diagonal matrices, say µ1(0) and
µ2(0), can be reduced to the identity form. Then one of the others, say µ2(∞), can be reduced to
the form:

µ2(∞) =

1 2 3 4

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

3

2

4

(11)

Transformations (F, f) preserving the reduced matrices µ1(0), µ2(0) and µ2(∞) unchanged satisfy
the equations

f1 = F1(0), f2 = F2(0) and F2(∞)µ2(∞) = µ2(∞)f1. (12)

13
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This implies the following triangular structures for F1(0) and F2(∞) :

F1(0) =

w1 0 0 0
x21 w2 0 0
x31 0 w3 0
x41x42x43 w4

and F2(∞) =

w1 0 0 0
x31 w3 0 0
x21 0 w2 0
x41x43x42 w4

. (13)

Since the diagonal blocks of Fk(0) and Fk(∞) coincide (for k = 1, 2), we also have:

F1(∞) =

w1 0 0 0
x12 w2 0 0
y31 y32 w3 0
y41 y42 x43 w4

and F2(0) =

w1 0 0 0
x31 w3 0 0
z21 z23 w2 0
z41 z43 x42 w4

.

Reduced matrix problem

Thus we obtain a new problem for the matrix B := µ1(∞) with the transformations
M 7→ SM(S′)−1, where (S, S′) := (F1(∞), F2(0)). Note that if the sizes of blocks 1 and 4 are
both nonzero then taking a nonzero entry x41 of the matrices F2(∞) and F1(0) we obtain a non-
scalar endomorphism. Hence, there are no sincere bricks and the maximal tuples of blocks are
I = (1, 2, 3) and its dual I = (2, 3, 4). The dimension vector s = (s1, s2, s3) and the matrix problem
are determined by r and (d̄1, d̄2), where d̄k = dk mod r and d̄ = d̄1 + d̄2, as follows:

condition set I dimention vector s state

1. r ≥ d̄ (1, 2, 3) (r − d̄, d̄2, d̄1) A+

1′. r < d̄ (2, 3, 4) (r − d̄1, r − d̄2, d̄− r) A−

Table 2.

where A+ denotes the problem M 7→ SM(S′)−1, on the set of blocks I = {i1, i2, i3} with

M =

i1 i3 i2

a1 ∗ ∗
∗ ∗ a2

∗ a3 ∗

i1

i2

i3

and (S, S′) =




i1 i2 i3

i1

i2

i3

w1 0 0
∗ w2 0
∗ ∗ w3

i1 i3 i2

w1 0 0
∗ w3 0
∗ ∗ w2

i1

i3

i2




;

in accordance with our notations, the problem A− : is M 7→ SM(S′)−1, on the set of vertices
I = {i1, i2, i3}, where

M =

i2 i1 i3

∗ a1 ∗
a2 ∗ ∗
∗ ∗ a3

i1

i2

i3

and (S, S′) =




i1 i2 i3

i1

i2

i3

w1 0 0
∗ w2 0
∗ ∗ w3

i2 i1 i3

w2 0 0
∗ w1 0
∗ ∗ w3

i2

i1

i3




.

Note that since matrices S and S′ are low triangular, both problems A+ or A− can be recognized
by the form of the matrix M.
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6.4 Tacnode curve

Analogously as in the previous case, we reduce the matrix µ1(0) to the identity form and the matrix
µ2(0) to the form (11). Then for the transformations we have the restrictions:

f(0) = F1(0) and F2(0)µ2(0) = µ2(0)f(0), (14)

and consequently F1(0) is as in (13). By the transformation fε we can reduce one of the matrices
µε1(0) or µε2 , say µε2(0), to the zero form. In the remaining matrix M := µε1(0) : the blocks
(31),(32), (41) and (42) can be reduced to zero by the transformation dFk

dz0
(0) and the blocks (21),

(23), (41) and (43) can be killed by fε.

Reduced matrix problem

Thus we obtain a new problem for the matrix M with the transformations M 7→ SMS−1 modulo
zero block-entries of M :

M := µε1(0) =

a1 b12 b13 b14

0 a2 0 b24

0 0 a3 b34

0 0 0 a4

and S := F1(0) =

w1 0 0 0
x21 w2 0 0
x31 0 w3 0
x41x42x43 w4

.

It is easy to see that if the sizes of blocks 1 and 4 are both nonzero then there is a nontrivial
endomorphism. As in the previous case there are no sincere bricks and the admissible tuples of blocks
I and sizes s are the same as in Table 2, whereas the configurations A+ and A− are respectively
the matrix problems with

M =
a1 ∗ ∗

a2

a3

S =
w1 0 0
∗ w2 0
∗ 0 w3

and M =
a2 ∗

a3 ∗
a4

S =
w2 0 0
0 w3 0
∗ ∗ w4

.

In the matrix M, we replaced the zero-blocks by the empty spaces, since they do not play any role
in calculations, (they can be recovered by some outer reasons) and thus, such notation seems to be
more appropriate.

Example 6.1 Let E be a Kodaira fiber I2 or III and (F̃ ,M, µ̃) be a triple corresponding to a simple
vector bundle. If r ≥ d̄ then the matrix µ̃ can be respectively transformed to the form




1 0 0
0 1 0
0 0 1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1 0 0
0 0 1
0 1 0

1 0 0
0 1 0
0 0 1




or




1 0 0
0 1 0
0 0 1

+ ε1

∗ ∗ ∗
0 ∗ 0
0 0 ∗

1 0 0
0 0 1
0 1 0

+ ε2

0 0 0
0 0 0
0 0 0




.
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6.5 Cycle of tree lines

According to Section 3 the original matrix problem MPE with two blocks on each component is

F1(0)

½½

f1

F1(∞)

¥¥

f2

F2(0)

½½

f3

F2(∞)

¥¥

F3(∞)

½½
F3(0)

¥¥

Matrices µ1(0), µ2(0) and µ3(0) can be reduced to the identity form. The matrix µ3(∞) can be
reduced to the form (11). For the morphisms we have

f1 = F1(0), f2 = F2(0), f3 = F3(0) and F3(∞)µ3(∞) = µ3(∞)f1. (15)

Then the matrix f3 has a special block-triangular structure. In other words, the matrix µ2(∞) is
subdivided into four column-blocks: a column can be added to any other column from a block on
the left and it cannot be added to a column from another block on the right. Thus µ2(∞) can be
reduced to the form

µ2(∞) =

1 2 5 6 3 4 7 8

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

1

5

3

7

2

6

4

8

(16)

Reduced matrix problem

The remaining nonreduced matrix is M := µ1(∞). For it we obtain the problem M 7→ SM(S′)−1,
where the transformations are (S, S′) = (F1(∞), f3). Equations (15) together with
F2(∞)µ2(∞) = µ2(∞)f3 imply the triangular forms for the matrices Fk(0), Fk(∞) and fk (for
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k = 1, 2, 3); in particular:

(S, S′) =




1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

w1 0 0 0 0 0 0 0
∗ w2 0 0 0 0 0 0
∗ ∗ w3 0 0 0 0 0
∗ ∗ ∗ w4 0 0 0 0
∗ ∗ ∗ ∗ w5 0 0 0
∗ ∗ ∗ ∗ ∗ w6 0 0
∗ ∗ ∗ ∗ ∗ ∗ w7 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ w8

1 5 3 7 2 6 4 8

w1 0 0 0 0 0 0 0
∗ w5 0 0 0 0 0 0
∗ ∗ w3 0 0 0 0 0
∗ ∗ ∗ w7 0 0 0 0
∗ ∗ ∗ ∗ w2 0 0 0
∗ ∗ ∗ ∗ ∗ w6 0 0
∗ ∗ ∗ ∗ ∗ ∗ w4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ w8

1

5

3

7

2

6

4

8




The stars ∗ denote arbitrary blocks and wi for i = 1, . . . , 8 are the common diagonal blocks. The
transformations of row and column-blocks of M are clear: a row can be added to any other one from
a block below and it can’t be added to a row from a block above it; and a column can be added to
any other column from a block on the left and it can not be added to a column from a block on the
right.

Nontrivial morphisms

Analogously as in the case of a cycle of two lines there are some pairs (ij) ∈ I × I such that if
si · sj > 0 then there exists a nontrivial endomorphism. Such blocks are called mutually excluding
and denoted by i ∩ j.

– If the matrices F3(∞) and F1(0) contain at least one of the following entries: (71), (81), (72)
or (82) then there is a nontrivial endomorphism. In our short notations we have intersections
1, 2 ∩ 7, 8. Analogously we have 1, 5 ∩ 4, 8 coming from the matrices F3(0) and F2(∞).

– The blocks 1 and 6 are mutually excluding; the endomorphism is induced by the entry (61) of
the matrices F3(0), F3(∞) and F2(∞). Similarly, there is an endomorphism for the pair (38)
induced by the matrices F1(0), F3(∞) and F3(0).

All the mutually excluding blocks can be indicated on the intersection diagram:

1
2 3 − 5⋂
7 − 6 4

8

(17)

The diagram reads as follows: a matrix M is a brick if it contains no pair of blocks (ij) such that i
and j in the diagram are separated by ∩ and either in the same column or one of them is 1 or 8.

In the following table we present the maximal tuples of blocks I = (i1, i2, i3, i4) for M being
a brick, express the dimension vector s = (si1 , si2 , si3 , si4) ∈ N4 in terms of rank and multidegree
and moreover, answer the question when such tuple of blocks appears and specialize the matrix
problems in each case.

17
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condition set I dimention vector s state

1. r ≥ d̄ (1, 2, 3, 5) (r − d̄, d̄3, d̄2, d̄1) A+

1′. d̄ ≥ 2r (4, 6, 7, 8) (r − d̄1, r − d̄3, r − d̄2, d̄− 2r) A−

2. d̄ > r > (d̄2 + d̄3), (d̄1 + d̄3) (2, 3, 5, 6) (r − (d̄1 + d̄3), d̄3, r − (d̄2 + d̄3), d̄− r) A−

2′. (d̄2 + d̄3), (d̄1 + d̄3) > r (3, 4, 6, 7) (2r − d̄, (d̄2 + d̄3)− r, r − d̄3, (d̄1 + d̄3)− r) A+

3. (d̄2 + d̄3) ≥ r ≥ (d̄1 + d̄3) (2, 3, 4, 6) (r − (d̄1 + d̄3), r − d̄2, (d̄2 + d̄3)− r, d1) C

3′. (d̄1 + d̄3) ≥ r ≥ (d̄2 + d̄3) (3, 5, 6, 7) (r − d̄1, r − (d̄2 + d̄3), d̄2, (d̄1 + d̄3)− r) C

Table 3.

The configurations A+, A− and C on the set of blocks I = {i1, i2, i3, i4} encode matrix problems
M 7→ SM(S′)−1, where S and S′ are block-triangular and the matrix M is defined as follows:

A+ =

i1 i4 i3 i2

ai1 ∗ ∗ ∗
∗ ∗ ∗ ai2

∗ ∗ ai3 ∗
∗ ai4 ∗ ∗

i1

i2

i3

i4

A− =

i3 i2 i1 i4

∗ ∗ ai1 ∗
∗ ai2 ∗ ∗

ai3 ∗ ∗ ∗
∗ ∗ ∗ ai4

i1

i2

i3

i4

and C =

i2 i1 i4 i3

∗ ai1 ∗ ∗
ai2 ∗ ∗ ∗
∗ ∗ ∗ ai3

∗ ∗ ai4 ∗

i1

i2

i3

i4

. (18)

6.6 Thee concurrent lines in a plane

Let E be the Kodaira fiber IV and MPE the matrix problem formulated in Subsection 4 with
two blocks for each component. In this section we reduce it to a partial canonical form. At first
we reduce matrices µ1(0) and µ2(0) as in the case of a tacnode curve. Then the transformations
satisfy equations (14). Let us find a canonical form of µ3(0) with respect to the transformations
µ3(0) 7→ F3(0)µ3(0)f(0)−1. The splitting of F3(0) and f(0) into blocks induces the same column
block structure for µ3(0) as in the case of a cycle of three lines. However, on the contrary to that
case, there is no addition from the third column-block to the second one. Thus proceeding as before
instead of the form (16) we obtain only the following:

µ3(0) =

1 2 5 6 3 4 7 8

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 ∗ 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

1

5

3

7

2

6

4

8

It turns out that the remaining block ∗ can be reduced to the form ( 0 0
1 0 ) as well. That implies

subdivisions for the reduced blocks marked by 3 and 6: and change of notations is required: 3 7→ (3, 0)
and 6 7→ (0, 6). The equation F3(0)µ3(0) = µ3(0)f(0) implies that the matrix F1(0) preserving µ3(0)
is as follows:

18
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F1(0) =

1 2 3 0 4 5 0 6 7 8

1 w0 0 0 0 0 0 0 0 0 0
2 ∗ w1 0 0 0 0 0 0 0 0
3 ∗ 0 w2 0 0 0 0 0 0 0
0 ∗ x ∗ z 0 0 0 0 0 0
4 ∗ ∗ ∗ ∗ w4 0 0 0 0 0
5 ∗ 0 0 0 0 w5 0 0 0 0
0 ∗ x 0 0 0 ∗ z 0 0 0
6 ∗ ∗ 0 0 0 ∗ ∗ w7 0 0
7 ∗ 0 ∗ y 0 ∗ y 0 w8 0
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ w9

As usually the stars ∗ denote different blocks appearing only one time and x, y and z are some
blocks appearing twice. By proper fx(0) and fy(0) the matrices µε2(0) and µε3(0) can be reduced
to zero.

Reduced matrix problem
As usually take M := µε1(0) and transformations M 7→ SMS−1 modulo zero blocks of M, where
S := F1(0). By proper F1(0), fx(0) and fy(0) it can be reduced to the form

M =

1 2 3 0 4 5 0 6 7 8

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 0 ∗ 0 0y ∗ 0 0y ∗ 0 ∗
3 0 0 ∗ ∗ ∗ 0 0 0 ∗ ∗
0 0 0 0 0z ∗ 0 0 0 0x ∗
4 0 0 0 0 ∗ 0 0 0 0 ∗
5 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0z ∗ 0x ∗
6 0 0 0 0 0 0 0 ∗ 0 ∗
7 0 0 0 0 0 0 0 0 ∗ ∗
8 0 0 0 0 0 0 0 0 0 ∗

The blocks denoted by 0x (respectively 0y or 0z) are the so called adjoint blocks, which means that
there is a unique block x (respectively y or z) operating on both of them, and thus only one block
from an adjoint pair can be reduced to zero.

Nontrivial morphisms
Let us analyze matrices dFk

dz0
(0), fx(0) and fy(0) looking for an endomorphism. Taking into account

equations Fk(0)µk(0) = µk(0)f(0) for k = 2, 3 we see that there are nonzero matrices fx(0) and
fy(0) leaving the matrices µε2(0) and µε3(0) in the zero form. Hence, as in the case of a tacnode
curve, there are places (ij), where zero can be obtained in two or more different ways (that is if
si · sj > 0 then there exists a nonscalar endomorphism). The diagram of mutually excluding blocks
is almost the same as the diagram (17):

1

2 0 3 − 5⋂
7 − 6 0 4

8

(19)

In Table 4 we present the maximal tuples I = {i1, i2, i3, i4}, interpret the dimension vector s in
terms of rank and multidegree and specialize matrices that we get in each case.
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condition set I dimention vector s state

1. r ≥ d̄ (1, 2, 3, 5)
(
r − d̄, d̄3, d̄2, d̄1

)
A+

1′. d̄ > 2r (4, 6, 7, 8)
(
r − d̄1, r − d̄2, r − d̄3, d̄− 2r

)
A−

2.
d̄ > r > d̄i + d̄j

for all i, j ∈ {1, 2, 3}; (2, 3, 5, 0)
(
r − (d̄1 + d̄2), r − (d̄1 + d̄3), r − (d̄2 + d̄3), d̄− r

)
A−

2′. d̄i + d̄j > r and 2r > d̄
for all i, j ∈ {1, 2, 3}; (0, 4, 6, 7)

(
2r − d̄, (d̄2 + d̄3)− r, (d̄1 + d̄3)− r, (d̄1 + d̄2)− r

)
A+

3.
(d̄2 + d̄3) > r and

r > (d̄1 + d̄2), (d̄1 + d̄3)
(2, 3, 0, 4)

(
r − (d̄1 + d̄2), r − (d̄1 + d̄3), d̄1, (d̄2 + d̄3)− r

)
B−(0)

3′. (d̄1 + d̄2), (d̄1 + d̄3) > r
r > (d̄2 + d̄3)

(5, 0, 6, 7)
(
r − (d̄2 + d̄3), r − d̄1, (d̄1 + d̄3)− r, (d̄1 + d̄2)− r

)
B+(0)

4.
(d̄1 + d̄3), (d̄2 + d̄3) > r

and r > (d̄1 + d̄2),
(2, 0, 4, 6)

(
r − (d̄1 + d̄2), r − d̄3, (d̄2 + d̄3)− r, (d̄1 + d̄3)− r

)
B+(0)

4′. (d̄1 + d̄2) > r and
r > (d̄1 + d̄3), (d̄2 + d̄3)

(3, 5, 0, 7)
(
r − (d̄1 + d̄3), r − (d̄2 + d̄3), d̄3, (d̄1 + d̄2)− r

)
B−(0)

5.
(d̄1 + d̄3) > r and

r > (d̄1 + d̄2), (d̄2 + d̄3)
(2, 5, 0, 6)

(
r − (d̄1 + d̄2), r − (d̄2 + d̄3), d̄2, (d̄1 + d̄3)− r

)
B−(0)

5′. (d̄1 + d̄2), (d̄2 + d̄3) > r
and r > (d̄1 + d̄3)

(2, 0, 4, 7)
(
r − (d̄1 + d̄3), r − d̄2, (d̄2 + d̄3)− r, (d̄1 + d̄2)− r

)
B+(0)

Table 4.

By Aσ and Bσ(j) we denote the matrix problems given by the following coincidence matrices M :

i1 i2 i3 i4

∗ ∗ ∗ ∗
∗

∗
∗

i1

i2

i3

i4

A+

i1 i2 i3 i4

∗ ∗
∗ ∗

∗ ∗
∗

i1

i2

i3

i4

A−

i1 i2 i3 i4

∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗

i1

i2

i3

i4

B−(i3)

i1 i2 i3 i4

∗ ∗ ∗ ∗
∗ ∗ ∗

∗
∗

i1

i2

i3

i4

B+(i2)

. (20)

As usually, the matrix problems are M 7→ SMS−1 modulo empty spaces and the transformation S
has the form transposed to M.

7. Matrix problems

In this section we use the technique of boxes and follow the notations of [BD09]. From now on let A

be a Roiter box and (Q, ∂) its differential biquiver, where Q = (I,Q0, Q1) with the set of vertices I
and the sets of solid and dotted arrows respectively Q0 and Q1. Let A-mod be the category of finite
dimensional A-modules and BrA its full subcategory of bricks. For details concerning boxes we also
refer to [Dro01] and [Bod07]. Summarizing previous sections we conclude that our approach provides
a full and dense functor VBE

∼−→ TrE −→ MPE and the primary reduction is an equivalence of
categories MPs

E(r) ∼−→ BrA(s), for some special box A and dimension vector s. The composition of
these functors yields an equivalence VBs

E(r,d) ∼−→ BrA(s), where both the box A and the tuple s
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are uniquely defined by the curve E, the rank r and the multidegree d.

In most situations it is useful to present a representation M as a block-matrix with the block
M(x) on the place (ij) for x ∈ Q0(j, i). With a little abuse of notations we write the matrices
M and S in a form of a table with x on the ij-entry instead of M(x), as we did in the previous
sections. In accordance with Section 6 we denote an identity block and a zero block by “1” and “0”
respectively. Thus adjust our former notations an that of the theory of boxes.

Class of BC-boxes
A box A with the differential biquiver (Q, ∂) is of BC-type if its solid arrows form an I × I
matrix. There are two total orders on the set I : a row order denoted by <r and a column order
denoted by <c . The set of dotted arrows Q1 consists of two subsets: {u ∈ Q1(k, j)|j >r k} and
{v ∈ Q1(i, l)|l >c i}. For each x ∈ Q0(i, j), the differential is

∂(x) =
∑
l<ci

x′v − ∑
j<rk

ux′′,

where x′ ∈ Q0(l, j) and x′′ ∈ Q0(i, k) are uniquely defined as the entries (jl) and (ki) of the
matrix I × I. Such boxes can be presented via matrices M and (S, S′) and matrix multiplications:
M 7→ SM(S′)−1, where

M =

c1 . . . cn

xr1c1 . . . xr1cn

...
. . .

...

xrnc1 . . . xrncn

r1

...

rn

(S, S′) =




wr1 0 0
...

. . . 0

urnr1 . . . wrn

wc1 0 0
...

. . . 0

vcnc1 . . . wcn




and (r1 . . . rn) and (c1, . . . cn) are orders <r and <c on I, i.e. r1 <r r2 <r · · · <r rn and c1 <c

c2 <c · · · <c cn. The reduced matrix problem for a nodal curve from Subsection 6.1 as well as all
the problems A+, A− and C from Subsections 6.3 and 6.5 are of BC-type. Note that BC-matrix
problems are examples of bunches of chains.

Class of BT-boxes
A box A with the differential biquiver (Q, ∂) is of BT-type if there exists a set of distinguished
loops: a := {ai ∈ Q0(i, i)|i ∈ I}, an injective map: v : Q0 \ a ↪→ Q1, mapping a solid arrow a : i → j

to an opposite directed dotted arrow va := v(a) : j +3 i , and for each distinguished loop ai ∈ a we
have

∂ai =
∑

c: ·→i
c · vc −

∑
d: i→·

vd · d. (21)

The class of BT-boxes was studied in details in [BD09]. The main property is that a connected BT-
box with more than one vertex is wild but brick-tame. However, here we do not use any theoretical
results. Our arguments are based on the concrete calculations for BT-boxes with at most four
vertices. For a box A of BT-type its biquiver Q can be encoded as follows: a vertex i ∈ I is denoted
by a bullet •; on the set of vertices we draw the graph with arrows Q0 \ a. Such system of notations
becomes quite useful since in most of our cases it is is clear how to recover the differential .

The BT-box A obtained Subsection 6.2 for a cuspidal cubic curve is 1• •2oo . The problems
on three vertices A+ and A− from Subsection 6.4 and the problems on four vertices: A+, A−, B+(j)
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and B−(i) from Subsection 6.6 are also of BT-type:

• •

•

oo
¦¦®®
®®

i • •

•

oo

[[6666
j •

• •

•i
²²

oo
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

•

• •

•

j

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

oo

²² •

• •

•i

j

²²

//
OO

oo
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

•

• •

•i

j
OO

oo

²²
//

??ÄÄÄÄÄÄÄÄ

A+ A− A+ A− B+(j) B−(i)

Remark 7.1 The listed BT-boxes and that which appear in the following sections determine par-
tially ordered sets (I,≺), by the rule i ≺ j if there exists x ∈ Q0(j, i). In most of our cases a poset
defines a box, however in general, it does not provide enough information to recover the differential.
On the other hand, a pair of linear orders <r and <c in the definition of a BC-box determine a
partial order ≺ by the rule i ≺ j if i <r j and i <c j. Posets obtained in such a way relay BC and
BT-boxes. Moreover, for the BT-box they determine the canonical minimal edge (ij), where i is the
minimal with respect to the total order <r and j is the maximal with respect to <c . Thus having a
fixed dimension vector s, not only for a BC-box but also for the corresponding BT-box we have the
canonical course of reduction.

Bricks and small reduction
Boxes of BC and BT-types possess a common property. The following proposition allows to replace
the usual matrix reduction by the small one.

Proposition 7.2 Let A be a box of BC or BT type, b : i → j its minimal edge and M a brick. Then
M(b) has maximal rank.

Proof. Let A be a box of BC-type. Since A is an example of bunches of chains, we can assume that
M is reduced to its canonical form. Also assume that M(b) =

(
0 0
I 0

)
. Let rows and columns of M

be ordered 1, . . . , R. For a place t ∈ {1, . . . , R} by r(t) and c(t) we denote the row-block and the
column-block containing t. For example, since rows and columns are ordered, we have r(1) = j and
c(R) = i. If M is invertible then there exist places m and n such that M1m = MnR = 1 and all the
other entries in the first row and the last (R-th) column are zero. A nonscalar endomorphism (S, S′)
of M can be constructed by taking nonzero Sn1 = −S′Rm, diagonal entries to be, for example, 1
and all the other non-diagonal entries to be zero. Since c(m) <c i and r(n) >r j the block Sr(n)r(1)

containing the entry Sn1 and the block S′c(R)c(m) containing the entry S′Rm are nonempty. If M is
degenerated the proof is even simpler: if the first row (or the last column) is zero we add it to any
other one and obtain a nonscalar endomorphism.

If A is a box of BT-type then after a step of minimal edge reduction there is a dotted arrow
which is not involved in any differential and hence there is a nonscalar endomorphism (for details
see [BD09, Lemma 3.1]).

7.1 Small reduction automaton
Recall that an automaton is an oriented graph on the set of vertices called states, whose arrows are
transitions from a state to a state. In our case the states are the matrix problems and the transitions
encode either admissible or canonical steps of reduction.

Definition 7.3 A small-reduction automaton is an oriented graph Γ on the set of internal states,
where

– Γ is a finite set of boxes, whose differential biquivers have the same finite set of vertices I.

– The set of transitions is I × I.
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– For a minimal solid arrow either j → i or i → j the transition (ij) : γ → γ′ acts on the space
of sizes N|I| as : s 7→ s′, where s′k = sk for k 6= i and si 7→ si − sj , provided si > sj . If an
arrow l → k is not minimal then the transitions (lk), (kl) : γ → γ do not act at all and we
omit them.

A sequence p := (injn) . . . (i2j2)(i1j1) of transitions is called a path if the target of (ikjk) coincides
with the source of (ik+1jk+1). A path operates on the set of sizes: p : s 7→ s′, where s ≥ s′ i.e.
si ≥ s′i for all i ∈ I. Two paths p1 and p2 with a common source and a common target are called
equivalent if for any tuple of sizes s ∈ NI we have p1(s) = p2(s). The semigroup of paths modulo
the equivalence relation is called the semigroup of the automaton.

Principal states

Let Γ be an automaton of small reduction starting with one of the boxes form Tables 2–4. A state
γ ∈ Γ is called principal if it can be interpreted in terms of vector bundles Brγ(s) ∼= VBs

E(r,d).
Note that an interpretation of a state is not unique in general. In the following sections our main
goal is to show that the set Brγ(s) ∼= VBs

E(r,d) is nonempty if and only if gcd(r, d) = 1. Then we
obtain that for a rank r and a multidegree d such that gcd(r, d) = 1 there exists a path p connecting
principal states on the automaton such that

VBs
E(r,d)

∼=
²²

Pic(0,...,0)(E)

∼=
²²

BrA(s)
p

∼ // BrA′(1, 0, . . . , 0).

In the following sections we construct the small reduction automaton for each plane degeneration
of an elliptic curve. Then a canonical form of a simple vector bundle can be constructed as follows.

7.2 Algorithm.

Let E be a plane degeneration of an elliptic curve with N components, (r,d) ∈ N× ZN be a tuple
of integers, such that gcd(r, d) = 1; where d =

∑N
k=1 dk and let λ ∈ k be a continuous parameter.

i) By Euclidean algorithm we find integers nk, d̄k such that dk = nkr + d̄k for k = 1, . . . , N, and
recover the normalization vector bundle (10): F̃ |Lk

=
(OLk

(nk)
)r−d̄k ⊕ (OLk

(nk + 1)
)d̄k .

ii) By the primary reduction we obtain the matrix problem BrA and the tuple of integers s ∈ NN+1.

iii) Use the matrix problem BrA(s) as the input data for the corresponding small-reduction au-
tomaton. Choose a path p on it such that p(s) = (1, 0, . . . , 0).

iv) Starting with the one-dimensional matrix λ ∈ Brk[t](1) reverse course of reduction
along the path p. This way, step-by-step we recover the canonical form
B(λ) = p−1(λ) ∈ BrA(s) ∼= VBs

E(r,d).

8. Small reduction for nodal and cuspidal cubic curves

The categories obtained in Subsections 6.1 and 6.2 can be interpreted as the categories A-mod(s1, s2),
where A are boxes of either BC and BT-types. In order to illustrate the language of boxes we present
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A for a nodal curve as a differential biquiver, despite the agreement to present BC-boxes by tables:

1a1 99

c

ÀÀ

u
33

v

AA 2
b

ss a2ee

∂(b) = 0,
∂(a1) = bu,
∂(a2) = −vb,
∂(c) = −va1 + a2u.

and

1a1 99
v

55 2
b

uu a2ee

∂(b) = 0,
∂(a1) = bv
∂(a2) = −vb.

In both cases the steps of small reduction are A
(12),(21)+3 A. In other words, both problems are

self-reproducing, and the small-reduction automaton is

Ã'!&"%#$(21) :: (12)dd . (22)

The transitions act on sizes as (21) : (s1, s2) 7→ (s1, s2 − s1) and (12) : (s1, s2) 7→ (s1 − s2, s2). In
terms or rank and degree we get

(21) : VBs
E(r, d̄) → VBs

E(r − d̄, 2d− r) and (12) : VBs
E(r, d̄) → VBs

E(r − d̄, d̄).

That implies the statement of Theorem 1.2 for irreducible cubic curves.

Remark 8.1 The semigroup of paths 〈(21), (12)〉 generates the group SL(2,Z). On the other hand
it is interesting to note that the group of autoequivalences Aut(Db(CohE)) = 〈TO, Tk(p0)〉 also acts
as SL(2,Z) on the K-group, or what is equivalent, on rank and degree. By Theorem 4.1 of [BK06]
autoequivalences TO and Tk(p0) send stable sheaves to stable sheaves. Moreover, a continuous pa-
rameter λ can be considered as a regular point on the curve E, hence it is preserved under the action
of TO and Tkp0 . Therefore, for singular Weierstraß curves the action on discrete parameters of the
matrix reduction coincides with the action of Fourier-Mukai transforms, namely: (21) acts as TO
and (12) acts as (Tk(p0))−1.

9. Small reduction for Kodaira fibers I2 and III.

In Subsections 6.3 and 6.4 we obtained an equivalence MPs(r,d)
∼=−→ BrA(s), where the box A is the

configuration Aσ, of BC or BT-type, σ ∈ {+,−} depending on whether r > d̄ or r < d̄. Applying
small reduction to the box Aσ we obtain another type of boxes on 3 blocks, called B configuration
defined by the standard numeration of blocks (1,2,3). In the BC-case we get:

B =

1 2 3

a1 ∗ ∗
∗ a2 ∗
∗ ∗ a3

1

2

3

(S, S′) =




1 2 3

1

2

3

w1 0 0
u3 w2 0
u2 u1 w3

1 2 3

w1 0 0
v3 w2 0
v2 v1 w3

1

2

3




.

As was mentioned in Remark 7.1 column and row-orders define a poset. Configurations A+, A− and
B determine respectively the posets

• •

•

oo
¦¦®®

®®
®

1 3

2

A+

• •

•

oo

[[666666
1 3

2

A−

and
• •

•

oo

[[666666¦¦®®
®®

®

1 3

2

B
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Lets illustrate on an example how to associate a BT-differential biquiver to a poset. For A− and B
we have respectively:

2

a2

§§
vc

´´
1a1 99

vb

88 3 a3ee
boo

c

^^=====

∂(b) = ∂(c) = 0,
∂(a3) = −vbb− vcc
∂(a1) = bvb,
∂(a2) = cvc,

2

a2

§§
vc

´´a¡¡¢¢
¢¢

¢

1a1 99

va
11

vb

88 3 a3ee
boo

c

^^=====

∂(b) = 0,
∂(a) = bvc,
∂(c) = −vab,
∂(a1) = bvb + ava,
∂(a2) = cvc − vaa,
∂(a3) = −vbb− vcc.

(23)

In Subsection 6.4 we obtained an equivalence MPs(r, d1, d2)
∼=−→ BrA(s1, s2, s3), where A was a

BT-box of type either A+ or A−. The small reduction automaton starting at, let us say A+, is

A+

(12)

((
(21) 77 B

(31)

((

(13)

hh A−

(32)

hh (23)gg (24)

This is the small reduction automaton for a cycle of two lines, which is also the canonical one for
a tacnode curve. We claim that the reduction can terminate only at the states A+ and A−, which
are principal. Indeed, assume that we have the box B with sizes s1 = s3. Then the matrix can be
reduced to the canonical form:

1 2 3

0 0 1
0 J1 0
J2 0 0

1

2

3

where J1 and J2 are Jordan cells with nonzero eigenvalues. It is quite obvious that this matrix
is decomposable. Analogously in the case of Kodaira fiber III: the reduction can terminate only
at a state of type A. Indeed, if s1 = s3 then the configuration B produces a splitting; and for
A+ we get the problem BrA(s1, s2), where A is the box as for a cuspidal cubic curve with sizes
(s1, s2, s3) 7→ (s1, s2) :

• •

•

b
oo

c
[[666666

a

¦¦®®
®®

®

1 3

2

(31),(13)+3 •2 •3 and
• •

•

b
oo

a

¦¦®®
®®

®

1 3

2

(31) +3 • •aoo1 2

By gluing paths we can construct the automaton on principal states:

A+

(31)(12)

((
(21)

,,

(13)(12)

22 A−

(13)(32)

ii

(23)
rr

(31)(32)

ll (25)

For a principal configuration Aσ we introduce its new discrete parameters (α, β). For A+ let
(α, β) := (s1, s2 + s3) and and (α, β) := (s1 + s2, s3) for A−.

Lemma 9.1 Let p : Aσ → Aσ′ be a path on the principal automaton (25) taking s 7→ s′ and
respectively (α, β) → (α′, β′). Then gcd(α, β) = gcd(α′, β′).

Proof. It is sufficient to prove the statement on the following transitions: (23), (32)(31) : A− → A−

and (13)(32) : A− → A+. Indeed, we have
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(23) : (s1, s2, s3) 7→ (s1, s2 − s3, s3) and hence (α, β) 7→ (α− β, β);

(32)(31) : (s1, s2, s3) 7→ (s1, s2, s3 − (s1 + s2)) and (α, β) 7→ (α, β − α);

(13)(32) : (s1, s2, s3) 7→ (s1 + s2 − s3, s2, s3 − s2) and (α, β) 7→ (α− β, β).

Let VBs
E(r,d)

∼=−→ VBs
E(r′,d′) be a functorial bijection obtained by the course of small reduc-

tions along the path p. Replacing the dimension vector s by the tuple (r,d) using Table 2 we obtain
(α, β) = (r − d mod r, d mod r). If gcd(r, d) = 1, at the end of reduction we get
VBs

E(r,d)
∼=−→ Pic(0,0)(E), and there is no bricks otherwise. Hence, Lemma 9.1 implies Theorem

1.2 for curves I2 and III.

10. Small reduction for Kodaira fibers I3 and IV.

In Subsection 6.5 we obtained some equivalences MPs(r,d)
∼=−→ BrA(s), where s ∈ N4 and A is

a BC-box of type A+, A− or C. To fix the notations we rewrite the configurations for the set of
vertices I = {1, 2, 3, 4}. Then a small reduction automaton starting from the configuration A+ is as
follows:

A+
(12) //(21) 77 B+(2)

(31) //

(13)

²²

C(2,3)
(32)

oo
(23) //

B−(3)
(24)

oo

(42)

²²

A−
(43)

oo (34)gg

D

(14)

bbEEEEEEEEEEEE

(41)

||yy
yy

yy
yy

yy
yy

D∗

(41)

<<yyyyyyyyyyyy

(14)

""EE
EE

EE
EE

EE
EE

A−∗
(42) //(24) 55 B−(2)

(34) //

(43)

OO

C(3,2)
(32)

oo
(23) //

B+(3)
(21)

oo

(12)

OO

A+∗
(13)

oo (31)ii

(26)

Let us explain the notations: the other configurations of type A are

1 4 3 2

a1 ∗ ∗ ∗
∗ ∗ ∗ a2

∗ ∗ a3 ∗
∗ a4 ∗ ∗

1

2

3

4

A+

1 2 3 4

∗ ∗ a3 ∗
∗ a2 ∗ ∗
a1 ∗ ∗ ∗
∗ ∗ ∗ a4

3

2

1

4

A−

1 4 2 3

a1 ∗ ∗ ∗
∗ ∗ ∗ a3

∗ ∗ a2 ∗
∗ a4 ∗ ∗

1

3

2

4

A+∗

1 3 2 4

∗ ∗ a2 ∗
∗ a3 ∗ ∗
a1 ∗ ∗ ∗
∗ ∗ ∗ a4

2

3

1

4

;

A−∗

the configurations of type B are

1 2 4 3

a1 ∗ ∗ ∗
∗ a2 ∗ ∗
∗ ∗ ∗ a3

∗ ∗ a4 ∗

1

2

3

4

B+(2)

1 2 3 4

∗ a2 ∗ ∗
a1 ∗ ∗ ∗
∗ ∗ a3 ∗
∗ ∗ ∗ a4

2

1

3

4

B−(3)

1 3 4 2

a1 ∗ ∗ ∗
∗ a3 ∗ ∗
∗ ∗ ∗ a2

∗ ∗ a4 ∗

1

3

2

4

B+(3)

1 3 2 4

∗ a3 ∗ ∗
a1 ∗ ∗ ∗
∗ ∗ a2 ∗
∗ ∗ ∗ a4

3

1

2

4

B−(2)
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and configurations of types C and D are

1 2 4 3

∗ a2 ∗ ∗
a1 ∗ ∗ ∗
∗ ∗ ∗ a3

∗ ∗ a4 ∗

2

1

3

4

C(2,3)

1 3 4 2

∗ a3 ∗ ∗
a1 ∗ ∗ ∗
∗ ∗ ∗ a2

∗ ∗ a4 ∗

3

1

2

4

C(3,2)

1 3 2 4

a1 ∗ ∗ ∗
∗ ∗ a2 ∗
∗ a3 ∗ ∗
∗ ∗ ∗ a4

1

2

3

4

D

1 2 3 4

a1 ∗ ∗ ∗
∗ ∗ a3 ∗
∗ a2 ∗ ∗
∗ ∗ ∗ a4

1

3

2

4.

D∗

In Subsection 6.6 we obtained equivalences MPs(r,d)
∼=−→ BrA(s), s ∈ N4, where A is a BC-box

of type A+, A− or B. As explained in the Remark 7.1 the boxes of BC and BT types are related.
Therefore the canonical small reduction automaton for the Kodira fiber IV can be obtained from
the automaton (26) by gluing states Aσ with Aσ∗ and D with D∗ :

B+(2)

(31) //

(13)

##GGGGGGGGGGGGG C(2,3)
(32)

oo
(23) //

B−(3)
(24)

oo

(42)

{{wwwwwwwwwwwww

A+

(13)
""EE

EE
EE

EE
EE

EE

(12)

<<yyyyyyyyyyyy
(31)

´´

(21)

MM D
(14)oo (41) // A−

(43)

bbEEEEEEEEEEEE

(42)
||yy

yy
yy

yy
yy

yy

(34)

°°

(24)

QQ

B+(3)

(21) //

(12)

;;wwwwwwwwwwwww
C(3,2)

(32)
oo

(23) //
B−(2)

(34)
oo

(43)

ccGGGGGGGGGGGGG

(27)

For the BT-boxes we have

•

• •

•1

2 3

4
²²

oo
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

•

• •

•1

2 3

4oo

__????????

OO

•

• •

•1

2 3

4

oo
__????????ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

oooo •

• •

•1

2 3

4

//

²²
oo

OO

•

• •

•1

2 3

4

OO

²²

__????????ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

oooo

A+=A+∗ A−=A−∗ C(2,3) C(3,2) D=D∗

and four configurations of type B :

•

• •

•1

2 3

4

oo

²²

__????????ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

oo •

• •

•1

2 3

4

//

²²

__????????

OO

oo •

• •

•1

2 3

4

//

²²

OO

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

oo •

• •

•1

2 3

4

oo
__????????

OO

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

oo

B+(2) B−(2) B+(3) B−(3)

All edge arrows of the poset A are minimal. The posets B and D are of height 2. Their differential
biquivers are uniquely defined by the rule as follows: for any triangle i ≺ j ≺ k with arrows a : j → i,
b : k → i, and c : k → j the arrow b is minimal ∂(a) =

∑
k bvc + φ and ∂(c) = −∑

i vab + ψ, where
φ and ψ are summands coming from the other triangles. That is, in a triangle the differential is as
in (23) of type B. For the poset C one should additionally give a pair of minimal edges: for C(2, 3)
they are 3 → 2 and 4 → 1, for C(3, 2) they are 2 → 3 and 4 → 1. The differentials of the other
arrows consist of the paths of length 3 and degree one.

Rank and degree
For configurations of types A, C and B let Imin ⊂ I and Imax ⊂ I be respectively the subsets of
minimal and maximal vertices with respect to the partial order ≺ . For a dimension vector s ∈ N4

let us introduce new discrete parameters (α, β):
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– for a box of type either A or C define α :=
∑

i∈Imin

si and β :=
∑

k∈Imax

sk;

– for a box Bσ(j) define define α := sj +
∑

i∈Imin

si and β := sj +
∑

k∈Imax

sk.

Lemma 10.1 Let Γ be the automaton either (26) or (27) and p : γ → γ′ a path on it connecting
principal states γ and γ′ and taking s 7→ s′ and (α, β) 7→ (α′, β′). Then gcd(α, β) = gcd(α′, β′).

Proof. It is sufficient to check the statement on the shortest paths. For the transitions (i.e. paths
paths of length one.) A → B or C → B we have (α′, β′) = (α, β). For the transitions A → A,
B → C or a path of length two B → A, we have

(α′, β′) =
{

(α− β, β), if α ≥ β;
(α, β − α), if otherwise.

That completes the proof.

To obtain the statement of the Theorem 1.2 for Kodaira fibers I3 and IV we should replace the
pair (α, β) by the rank and degree (r, d) using Tables 3 and 4. In each case but cases 2 and 2′

of Table 4 we have (α, β) = (r − d mod r, d mod r). I the cases 2 and 2′ we have respectively
(α + β, β) = (r − d mod r, d mod r) and (α, α + β) = (r − d mod r, d mod r).

11. Examples and remarks

Example 11.1 Let E be a curve from the list with 2 components i.e. the Kodaira cycle I2 or the
fiber III. Let us describe vector bundles on E of rank r = 9 and multidegree (d1, d2) = (3, 2) using
the algorithm 7.2.

i) The normalization bundle F̃ is

F̃ |L1 = O6
L1
⊕ (OL1(1)

)3 and F̃ |L2 = O7
L2
⊕ (OL1(1)

)2
.

ii) Since d̄ = d = 5 < 9 = r thus the input state for the automaton is A+ and the dimension
vector is s = (s1, s2, s3) = (4, 2, 3).

iii) Taking on automaton (24) the path

p : A+ (12)−→ B
(31)−→ A−

(23)−→ A−
(23)−→ A−

(32)−→ B
(13)−→ A+ (12)−→ B

(31)−→ A−

we get the reduction of sizes:

(4, 2, 3)
(12)7−→ (2, 2, 3)

(31)7−→ (2, 2, 1)
(23)7−→ (2, 1, 1)

(23)7−→ (2, 0, 1)
(32)7−→ (2, 0, 1)

(13)7−→ (1, 0, 1)
(12)7−→ (1, 0, 1)

(31)7−→ (1, 0, 0).

iv) Reversing the path p we construct a canonical form of the matrix M ∈ BrA(4, 2, 3).

If E is a Kodaira cycle I2 then

1

λ 1
(31)7−→

1 3

0 1
λ 0

1

3

(12)7−→
1 3

0 1
λ 0

1

3

(13)7−→

1 3

0 1 0
0 0 1
λ 0 0

1

3

(32)7−→

1 3

0 1 0
0 0 1
λ 0 0

1

3

(23)7−→

1 2 3

0 0 0 1
0 1 0 0
0 0 1 0
λ 0 0 0

2

1

3
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(23)7−→

1 2 3

0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
λ 0 0 0 0

2

1

3

(31)7−→

1 2 3

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
λ 0 0 0 0 0 0

1

2

3

(12)7−→

1 3 2

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
λ 0 0 0 0 0 0 0 0

1

2

3

Let us construct the canonical form for the tacnode curve. Besides zeros we also use the empty spaces
to mark out the blocks (ij), where zeros appear for some general reasons and the corresponding box
contains no arrow j → i. Note that the order of row and column blocks are chosen in such a way
that the matrices have block triangular form (probably with some additional holes).

1

λ 1
(31)7−→

1 3

λ 1
0

1

3

(12)7−→
1 3

λ 1
0

1

3

(13)7−→

1 3

λ 1 0
0 0 1

0

1

3

(32)7−→

1 3

λ 1 0
0 0 1

0

1

3

(23)7−→

2 1 3

0 1
λ 1 0
0 0 1

0

2

1

3

(23)7−→

2 1 3

0 1 0
0 0 1

λ 1 0
0 0 1

0

2

1

3

(31)7−→

1 2 3

0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 1 0 0 0
0 0 0 0 1

λ 1 0
0 0 1
0 0 0

1

2

3

(12)7−→

1 3 2

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 1

λ 1 0
0 0 1
0 0 0

0 0
0 0

1

3

2

Remark 11.2 For a Kodaira fiber II, III and IV the parameter λ of the canonical form of M(λ)
can be moved to any place on the diagonal, as well as it can be distributed as λ

r to all the diagonal
entries. This way the canonical form resembles to the Jordan normal form. For instance in the last
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example we get:
λ
9 0 0 0 1 0 0 0 0
0 λ

9 0 0 0 1 0 0 0
0 0 λ

9 1 0 0 0 1 0
0 0 0 λ

9 0 0 1 0 1
λ
9 1 0
0 λ

9 1
0 0 λ

9
λ
9 0
0 λ

9

(28)

12. Properties of simple vector bundles

12.1 Tensor products
Let Λ := k∗ if E a Kodaira cycle and k if E is a Kodaira fiber (Λ ∼= Pic(0,...,0)(E)). Let
E(λ) ∈ VBs

E(r,d) and L(λ) ∈ Pic
(0,...,0)
E be respectively a simple vector bundle and the line bun-

dle with the matrix M = M(λ) ∈ BrA and the parameter λ ∈ Λ.

Proposition 12.1 For λ1, λ2 ∈ Λ we have

E(λ1)⊗ L(λ2) =
{ E(λ1 · λr

2) if E is a Kodaira cycle I1, I2 or I3;
E(λ1 + r · λ2) if E is a Kodaira fiber II, III or IV.

Proof. Let (F̃ , V, µ̃′(λ1)) and (Õ,OS , µ̃′′(λ2)) be the triples of the vector bundle E(λ1) and the line
bundle L(λ2). Then the triple of the vector bundle E(λ1) ⊗O L(λ2) is (F̃ , V, µ̃), where
µ̃ := µ̃′(λ1)⊗ µ̃′′(λ2)).
For Kodaira fiber I: OS = k and O

S̃
= k⊕ k, µ̃′(λ1)) = (I, M(λ1)) and µ̃′′(λ2)) = (1, λ2).

µ̃ = µ̃′(λ1) ⊗O
S̃

µ̃′′(λ2)) =
(
I, M(λ1

) · (1, λ2)

= (I, λ2 ·M(λ1)
)

= (I, M(λ1 · λr
2)

)
.

To obtain the last equality one should reduce λ2 ·M(λ1) to the canonical form preserving the first
I-matrix. Let as illustrate it on the case r = 2 :

(
µ̃(0), µ̃(∞)

)
=

(
1 0
0 1

, λ2
0 1
λ1 0

)
=

(
1 0
0 1

,
0 λ2

λ1λ2 0

)

=

(
1
λ2

0

0 1
,

0 1
λ1λ2 0

)
=

(
1 0
0 1

,
0 1

λ1λ
2
2 0

)
.

For Kodaira fiber II: OS = k and O
S̃

= k[ε]/ε2, µ̃′(λ1)) = I+ ε ·M(λ1) and µ̃′′(λ2)) = 1 + ε · λ2.

µ̃ = µ̃′(λ1) ⊗O
S̃

µ̃′′(λ2)) =
(
I+ ε ·M(λ1)

) · (1 + ε · λ2)

= I+ ε · (M(λ1) + λ2 · I
)

= I+ ε ·M(λ1 + λ2).

The last equality follows emmediately if we rewrite M(λ) in the “diagonal” form (28). For example,
if r = 2 and d = 1 we have

µ̃ = µ̃(0) + εµ̃ε(0) =
1 0
0 1

+ ε ·
(

λ1
2 1
0 λ1

2

+
λ2 0
0 λ2

)
=

1 0
0 1

+ ε
λ1+2λ2

2 1
0 λ1+2λ2

2

.
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For Kodaira cycles I2, I3 and fibers III and IV the calculations should be carried out on each
component. On the first component the picture is similar to the cases of I and II. On the other
components we have µ̃k = µ̃′k.

Example 12.2 If r = 3 and d = (1, 1) for Kodaira cycle I2 we have



1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
λ1 0 0

1 0 0
0 0 1
0 1 0

1 0 0
0 1 0
0 0 1




·
(

1 λ2

1 1

)
=




1 0 0
0 1 0
0 0 1

0 1 0
0 0 1

λ1λ
3
2 0 0

1 0 0
0 0 1
0 1 0

1 0 0
0 1 0
0 0 1




and for Kodaira fiber III taking λ := λ1 + 3λ2 we have



1 0 0
0 1 0
0 0 1

+ ε1

λ1 1 0
0 0 1
0 0 0

1 0 0
0 0 1
0 1 0

+ ε2

0 0 0
0 0 0
0 0 0




·
(

1 + ε1 λ2

1 + ε2 0

)
=




1 0 0
0 1 0
0 0 1

+ ε1

λ 1 0
0 0 1
0 0 0

1 0 0
0 0 1
0 1 0

+ ε2

0 0 0
0 0 0
0 0 0




.

12.2 Morphisms
Proposition 12.3 Let E be one of the curves from Table (1) and E(λ1), E(λ2) ∈ VBs

E(r,d) with
λ1 6= λ2. Then HomE

(E(λ1), E(λ2)
)

= 0.

Proof. From the equivalence VBs
E(r,d) ∼→ BrA(s) we have:

HomE

(E(λ1), E(λ2)
)

= HomA

(
M(λ1),M(λ2)

)
.

Let (S, S′) or S ∈ HomA

(
M(λ1),M(λ2)

)
. If r = 1 and (S, S′) 6= 0 then S′ = S ∈ k∗ and since

M(λ1) = λ1 , and M(λ2) = λ2 , we get a contradiction: Sλ1S
−1 = λ2. Recall that a path p on a

small reduction automaton gives an equivalence of the categories BrA(s) p−→ BrA′(s′), where s′ ≤ s.
Thus the statement follows by induction on the dimension vector s along the path p.

Remark 12.4 By the same approach one can also describe torsion free sheaves which are not vector
bundles. We are going to consider this situation in further works. One can also consult [Bod07]
Sections 3.3, 4.5 and 7.7 about torsion free sheaves on cuspidal and tacnode curves.
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over elliptic fibrations. Math. Nachr. 238, 23-36 (2002)
BPV84 W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und

ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1984
BBDG Bodnarchuk, L., Burban, I., Drozd, Yu., Greuel, G.-M.: Vector bundles and torsion free sheaves on de-

generations of elliptic curves. Global Aspects of Complex Geometry 83–128,(2006), arxiv: math.AG/16796

31



Lesya Bodnarchuk, Yuriy Drozd and Gert-Martin Greuel

BD03 Bodnarchuk, L., Drozd, Yu. A.: Stable vector bundles on cuspidal cubics Central European Journal
of Mathematics 4, 650–660, (2003)

BD09 Bodnarchuk, L., Drozd, Yu. A.: One class of wild but brick-tame matrix problems arXiv: math.RT
/0903.4374v2

Bho92 Bhosle, U.N.,: Generalised parabolic bundles and applications to torsion free sheaves on nodal curves
Ark. Mat 30, 187–215 (1992)

Bho93 Bhosle, U.N.,: Moduli of vector bundles on curves with many components, TIFR Preprint (1993)
Bho96 Bhosle, U.N.,: Generalised parabolic bundles and applications II Proc. Indean Acad Sci (Math. Sci)

106, N4 403–420 (1996)
Bod07 Bodnarchuk, L.: Simple vector bundles on degenerations of elliptic curves of type II, III and IV. PhD

thesis, Kaiserslautern (2007) http://kluedo.ub.uni-kl.de/volltexte/2008/2281/
Bon92 Bondarenko, V. M.: Representations of bundles of semi-chains and their applications. St. Petersburg

Math. J., 3, 973–996 (1992)
Bur03 Burban, I.: Stable vector bundles on a rational curve with one simple node Ukrainian Mathematical

Jornal 5, (2003)
BD04 Burban, I., Drozd, Yu.: Coherent sheaves on rational curves with simple double points and transversal

intersections. Duke Math. J. 121, no. 2, 189–229 (2004)
BDG01 Burban, I., Drozd, Yu., Greuel, G.-M.: Vector bundles on singular projective curves, Ciliberto (ed.)

et al., Applications of algebraic geometry to coding theory, physics and computation (Eilat, Israel, 2001),
Dordrecht: Kluwer Academic Publishers, NATO Sci. Ser. II, Math. Phys. Chem. 36, 1-15 (2001)

BK05 Burban, I., Kreußler, B.: Fourier-Mukai transforms and semi-stable sheaves on nodal Weierstraß cu-
bics. J. Reine Angew. Math., 584, 45–82 (2005); arxiv: math.AG/0401437

BK06 Burban, I., Kreußler, B.: Derived categories of irreducible projective curves of arithmetic genus one.
Compositio Mathematica, 142, 1231–1262 (2006); arxiv: math.AG/0503496

BK4 Burban, I., Kreußler, B.: Vector bundles on cubic curves and Yang-Baxter equations. arxiv:
math.AG/0708.1685v1

CB88 Crawley-Boevey, W.: On tame algebras and BOCS’s. Proc. London Math. Soc. 56, 451-483 (1988)
CB89 Crawley-Boevey, W.: Functorial filtrations II: clans and the Gelfand problem, J. London Math. Soc.,

40, 9–30 (1989)
CB90 Crawley-Boevey, W.: Matrix problems and Drozd’s theorem. Topics in Algebra, (eds) Balcerzyk,

S.,et al., Banach Center publications, vol. 26 part 1 (PWN-Polish Scientific Publishers, Warsaw), 199–
222 (1990)

Dro79 Drozd, Yu.: Tame and wild matrix problems. Representations and Quadratic Forms. Institute of
Mathematiks, Kiev, 39–74 (1979) (English translation: Amer. Math. Soc. Transl. 128, 31–55 (1986))

Dro92 Drozd, Yu.: Matrix problems, small reduction and representations of a class of mixed Lie groups.
Representations of Algebras and Related Topics. Cambridge Univ. Press, 225–249 (1992)

Dro05 Semi-continuity for derived categories. Algebras and Representation Theory, 8 239–248 (2005)
(arXiv:math.RT/0212015)

Dro01 Drozd, Yu.: Reduction Algorithm and representations of boxes and algebras C.R. Math.Pep. Acad.Sci.
Canada, 23, 97–125 (2001)

DG01 Drozd, Yu., Greuel, G.-M.: Tame and Wild Projective Curves and Classification of Vector Bundels.
Journal of Algebra 246, 1–54 (2001)

FMW99 Friedman, R., Morgan, J., Witten, E.: Vector bundles over elliptic fibrations. J. Algebr. Geom.8,
279–401 (1999)
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