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On Siegel modular forms of level p and their
properties mod p

Siegfried Böcherer Shoyu Nagaoka

august4, 2009

Abstract

Using theta series we construct Siegel modular forms of level p
which behave well modulo p in all cusps. This construction allows
us to show (under a mild condition) that all Siegel modular forms of
level p and weight 2 are congruent mod p to level one modular forms
of weight p + 1; in particular, this is true for Yoshidal lifts of level p.

In [12] Serre showed (among many other things) that elliptic modular forms
of weight 2 for Γ0(p) are congruent mod p to level one modular forms of
weight p + 1. Our principal aim in this paper is to extend this result to
Siegel modular forms under some “mild condition” (roughly speaking, the p-
denominators of the Fourier expansions in the cusps different from∞ should
not grow too much). This mild condition is always satisfied in Serre’s case
but also for all linear combinations of degree n theta series attached to qua-
ternary positive definite quadratic forms of determinant p2 and level p; in
other words, all Yoshida lifts of degree n and level p are congruent mod p to
level one Siegel modular forms of weight p+ 1, at least if p is large compared
to n. Results of this type have been quite usefull in the past, see e.g. [2, 11]
and we may hope for similar applications in the Siegel case.
To obtain these results we construct Siegel modular forms of level p which
are congruent to 1 mod p such that their Fourier expansions at the cusps
different from ∞ are as good as possible mod p. This construction is more
subtle than the corresponding one in [12] because we have now n+1 inequiv-
alent cusps. We use linear combinations of theta series attached to lattices
with automorphisms of order p. Sufficiently many such lattices are provided
by powers of the ramified prime ideal p in the cyclotomic field of p-th roots of
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unity. The existence of such modular forms with prescribed behaviour mod
p in all cusps may be also of independent interest.
Using these modular forms, we can now generalize Serre’s technique of traces
to switch form a modular form f of level p and weight k to a level one mod-
ular form g of weight k + p − 1 such that f is congruent to g mod p, at
least if f satisfies the “mild condition” mentioned above. The arithmetic of
the quaternary quadratic forms involved (they are anisotropic mod p) then
implies that this mild condition is automatically satisfied for all Yoshida lifts
of level p.
In Section 1 we discuss the existence of sufficiently many lattices with au-
tomorphisms of order p. We then proceed to show the existence of modular
forms of level p and congruent 1 mod p with prescribed behaviour mod p in
the cusps different from ∞. We include here the case of real nebentypus. In
section 3 we consider the trace operator and its properties mod p, in par-
ticular we discuss the “mild condition”. Finally we show in section 4 that
Yoshida lifts satisfy the required condions.

Parts of this work were done during a stay within the RESEARCH IN PAIRS programme
at the Mathematisches Forschungsinstitut Oberwolfach from december 7 to december 20,
2008. We thank E.Bayer-Fluckiger for advice by email concerning p-special lattices. The
first author also thanks Professor T.Oda for financial support in Japan (spring 2009),
which allowed us to continue our work.

0 Preliminaries

0.1 Siegel modular forms

For standard facts about Siegel modular forms we refer to [1, 9, 10]. The
group Sp(n,R) acts on the upper half space Hn in the usual way. For an

integer k, a function f : Hn −→ C and M =

(
A B
C D

)
we define the slash

operator by

(f |k M)(Z) := det(CZ +D)−kf((AZ +B)(CZ +D)−1).

For a congruence subgroup Γ of Sp(n,Z) and a character χ of Γ we denote by
Mk

n(Γ, χ) the space of Siegel modular forms for Γ of weight k and character χ.
If χ is trivial, we just omit it. We will mainly be concerned with congruence
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subgroups of type

Γn0 (N) := {M =

(
A B
C D

)
| C ≡ 0 mod N}

and with groups arising from these by conjugation within Sp(n,Z). If N = 1
we just write Γn instead of Γn0 (1). The only characters of Γn0 (N) occuring
are those arising from Dirichlet characters mod N in the ususal way (i.e.
χ(M) = χ(D)), the most important one will be the quadratic character

χp(∗) :=

(
(−1)

p−1
2 p

∗

)
for an odd prime p.
If f is an element of Mn

k (Γ) for an arbitrary Γ, then f has a Fourier expansion

f(Z) =
∑
T

a(T )e2πitr(TZ)

where T runs over positive semidefinite rational symmetric matrices with
bounded denominator. In particular, for Γ = Γ0(N), T runs over positive
semidefinite matrices in

Λn := {T = (tij) ∈ Symn(Q) | tii, 2tij ∈ Z}.

0.2 Traces

We need the explict from of the trace map

Tr :

{
Mk

n(Γn0 (p)) −→Mk
n(Γn)

f 7−→
∑

γ f |k γ

where γ runs over Γn0 (p)\Γn, see also [4]. To obtain an explicit set of rep-
resentatives for these cosets we start from a Bruhat decomposition over the
finite field Fp:

Sp(n,Fp) = ∪nj=0 P (Fp) · ωj · P (Fp),
where P ⊂ Sp(n,Fp) denotes the Siegel parabolic defined by C = 0 and for
0 ≤ j ≤ n we put

ωj =


0j 0
0 1n−j

−1j 0
0 0n−j

1j 0
0 0n−j

0j 0
0 1n−j

 .
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Using the Levi decomposition P = MN with Levi factor

M = Mn = {m(A) =

(
A 0
0 A−t

)
| A ∈ GLn(Fp)}

and unipotent radical

N = {n(B) =

(
1n B
0 1n

)
| B ∈Mn(Fp) symmetric}

we easily see that

{ωj · n(Bj) ·m(A) | Bj ∈Mj(Fp) symmetric, A ∈ Pn,j(Fp)\GLn(Fp)}

is a complete set of representatives for the cosets P (Fp)\P (Fp) · ωj · P (Fp).

Here Mj is naturally embedded into Mn by Bj 7−→
(
B 0
0 0n−j

)
and Pn,j is

a standard parabolic subgroup of GLn defined by 0(n−j,j) being the lower left
corner of g. We tacitly identify the matrices above with corresponding repre-
sentatives with entries in Z and obtain sets of representatives for Γn0 (n)\Γn.
We analyse the contribution of fixed j to the trace of a given f ∈Mn

k (Γ0(p)):
The function f |k ωj is itself a modular form for the group conjugate to Γn0 (p)
by ωj, it has a Fourier expansion

f |k ωj(Z) =
∑
T

af,j(T )e2πitr(TZ))

where the tit are integral or semi-integral except for the tit in the upper
left block of size j in T , where p may occur in the denominator. Then an
elementary calculation using orthogonality of exponential sums shows that∑

Bj

(f | ωj) |k n(Bj)(Z) = p
j(j+1)

2

∑
T∈Λn

aF,j(T )e2πitr(TZ).

The result of the action of the matrices m(A) is:∑
Bj ,A

f |k (ωj · n(Bj) ·m(A)) = p
j(j+1)

2

∑
T∈Λn

bF,j(T )e2πitr(TZ)

with
bF,j(T ) =

∑
A

aF,j(A
−1T A−t).
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We can therefore write the contribution of a fixed j to the trace as

p
j(j+1)

2 f | ωj | Ũ(j),

where Ũ(j) is an operator which maps a Fourier series to a new Fourier series,
where the new coefficients are certain finite sums of of the Fourier coefficients
in the series we started from. The exact shape of this operator will not be
important for us. We just mention the extreme cases: For j = 0 the operator
Ũ(0) is just the identity and Ũ(n) is quite similar to the usual U -operator:

Ũ(n) :
∑

T∈ 1
p

Λn

a(T )e2πitr(TZ) 7→
∑
T∈Λn

a(T )e2πitr(TZ).

With this terminology we get
Proposition 0.1: For f ∈Mk

n(Γ0(p))

Tr(f) =
n∑
j=0

p
j(j+1)

2 (f |k ωj) | Ũ(j).

Remark: It should be clear that this expression for the trace has an analogue
for the more general case of taking the trace from Γn0 (NR) to Γn0 (N) if N
and R are coprime and R is squarefree (see e.g. [4]).

0.3 Congruences

For a prime number p we denote by νp the normalized additive valuation
on Q (i.e. νp(p) = 1). For a Siegel modular form f ∈ Mk

n(Γ) with Fourier
expansion f(Z) =

∑
T aF (T )e2πitr(TZ) we define

νp(f) := min{νp(Af (T ) | T ≥ 0}.

We remark that this makes sense not only for modular forms with rational
Fourier coefficients but also for the arbitrary case by tacitly extending the
valuation to the field generated by all Fourier coefficients. For two modular
forms f and g we define

f ≡ g mod p :⇐⇒ νp(f − g) ≥ 1 + νp(f).

We finally remark that in this setting, νp(f |k γ) also makes sense for arbi-
trary γ ∈ Γn. In particular, for f ∈Mk

n(Γ0(p), χ) we may consider νp(f |k ωj);
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the Fourier expansions of f |k ωj may be viewed as “expansion of f in the cusp
ωj”. (Strictly speaking, we should consider the double coset Γn0 (p) ·ωj ·P (Z)
as a cusp for Γn0 (p); by abuse of language we will call the ωj “the cusps for
Γn0 (p)”).

0.4 Lattices and theta series

For an even integral positive definite matrix S of size m = 2k we define the
degree n theta series in the usual way:

θnS(Z) :=
∑

R∈Z(m,n)

eπitr(
tXSXZ) (Z ∈ Hn).

We will freely switch between the languages of matrices S and corresponding
lattices L and we write sometimes θn(L) instead of θnS. For the transformation
properties of such theta series see e.g. [1].
Following [6] a lattice L will be called p-special, if it has an isometry of
order p with no fixed point in L \ {0}. The theta series of such a lattices
automatically satisfies

θn(L) ≡ 1 mod p.

In this paper, we consider the theta series of such p-special lattice as principal
source for congruences among modular forms.

1 On the construction of many p-special lat-

tices

For later applications, we need p-special lattices with many different deter-
minants.
Proposition 1.1:1 Let p be an odd prime, then there are p-special (positive
definite, even) lattices of rank p − 1, level p and determinant pt for all 1 ≤
t ≤ p− 2.

Proof: Let ξ be a primitive p-th root of unity and consider the cyclotomic
field K := Q(ξ) together with its ring of integers OK. Then the discriminant
of this field is ±pp−2 and the dual O∗K of OK (the inverse of the different)

1this result is based on an email communication by E.Bayer-Fluckiger
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is p−p+2 where p is the unique ramified prime ideal in OK. For i ∈ Z we
consider pi; this is a Z- lattice of rank p-1 , equipped with the Q - bilinear
form

qi(x, y) := trK/Q(x · y).

This form is is positive definite, it is Q- valued in general, its values are in Z
iff

p2i ⊆ O∗K, i.e. 2i ≥ 2− p.

The discriminant of the (fractional) ideal pi is

NK/Q(pi)2 · discK = p2i · pp−2.

Let 2i ≥ 2− p.
Then lattice pi has level p ⇐⇒ the quadratic form given by trK/Q is Z-
valued on p · (pi)dual, i.e. (

p · (pi)dual
)2 ⊆ O∗K

Using
(pi)dual = p−i · O∗K = p−i+2−p

and (p) = pp−1 we obtain

pi has level p ⇐⇒ 2− p ≤ 2i ≤ p

Clearly, these lattices pi are p-special, because the multiplication with ξ
defines an automorphism of order p with no fixed points (except zero).
It remains to show that the lattices pi are even for 2i ≥ 2− p:
Let K+ be the maximal real subfield of K. Then for x ∈ pi we have x·x ∈ K+

and
trK/Q(x · x) = 2trK+/Q(x · x)

We only need to observe that

O∗K ∩K+ = O∗K+ .

By the definition of the dual and writing trK/Q = trK/K+ ◦ trK+/Q we first
obtain O∗K+ ⊆ O∗K ∩K+ ⊆ 1

[K:K+]
· OK+ ; the prime 2 however is unramified

in these extensions.

The corollaries below are formulated with later applications in mind:
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By taking two (orthogonal) copies of the lattices pi in the proposition above,
we obtain (taking into account results from [6] and also [3, 8]):
Corollary 1.2: Let p be an odd prime. There exist positive definite p-special
even lattices of rank 2p− 2, level p and determinant p2t (1 ≤ t ≤ p− 2). In
particular, the number of such lattices with pairwise different determinants
p2t is larger or equal to the number of cusps for Γn0 (p) if n + 1 ≤ p − 1. In
the case p ≡ 1 mod 4 we have in addition a p-special even unimodular lattice
L of rank 2p− 2 together with the lattice p · L. For p ≡ 3 mod 4 we have as
a substitute for L (or better: as a substitute for its theta series) a modular
form f of level 1 with f ≡ 1 mod p together with f(p · Z), if p ≥ n + 3, see
[6].

The case of odd powers of p yields a slightly different result: We request p to
be larger, but at the same time the rank of the lattices is p − 1 (not 2p − 2
as in Corollary 1.2):
Corollary 1.3: Let p be an odd prime. There exist positive definite p-special
lattices of rank p − 1, level p and determinant p1+2t with 0 ≤ t ≤ p−3

2
. The

number of such lattices with pairwise different determinants is larger or equal
to the number of cusps for Γn0 (p) if n + 1 ≤ p−1

2
. The corresponding theta

series are elements of M
p−1
2

n (Γn0 (p), χp) with χp =

(
(−1)

p−1
2 ·p
.

)
.

2 Existence of good modular forms of level p

We start with two examples, whose behaviour with respect to p-integrality
of Fourier coefficients in the cusps is typical in some sense:
Example 1: It is easy to construct modular forms of level p such that

νp(f |k ωi) < νp(f |k ωj) ∀i > j,

namely we can take f = θn(S,Z) with a quadratic form S in m = 2k vari-
ables of level p and det(S) = pr; the transformation properties of theta series
then imply νp(θ

n(S) |k ωi) = − ri
2

.

Example 2: This is more interesting: We denote by fn any modular form
of level 1, weight p− 1 such that fn ≡ 1 mod p. For 0 ≤ i ≤ n we put

h(i)(Z) := fn − p(p−1)·ifn(p · Z)
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Then we easily see that

νp(h
(i) |p−1 ωj)


= 0 if i > j
≥ 1 if j = i
= −(j − i)(p− 1) if i < j

.

The case n = i = 1 is considered in [12]. The case i = 0 is extreme in some
sense, because νp(h

(0)) ≥ 1 and for j ≥ 1

νp(h
(0) | ωj) = −j(p− 1) ≤ −j(p− 1)− 1 + νp(h

(0)),

in particular, the p-denominator of h(0) | ωn is very large.
These examples suggest that νp(f | ωi) > νp(f | ωj) for i > j is very rare.
Therefore we call f ∈Mn

k (Γ0(p)) regular if the sequence (νp(f | ωi))(0≤i≤n) is
non-increasing and irregular otherwise.
In view of the applications we have in mind it is desirable to construct irreg-
ular modular forms H with H ≡ 1 mod p and νp(H | ωj) as large as possible
for j > 0 in the sense that we want to maximize the νp(H | ωj) successively.
We now present such a construction using the existence of sufficiently many
p-special lattices :
Theorem 2.1: Assume that p ≥ n if p ≡ 1 mod 4 or p ≥ n+ 3 if
p ≡ 3 mod 4. Then there exists a modular form h of level p, weight p − 1
with the following properties:

(A)
h ≡ 1 mod p

(B) For 1 ≤ j ≤ n

νp(h | ωj) ≥ −
j(j − 1)

2
+ 1

The Fourier expansion of h | ωj has coefficients in Z for j = 0 and in Z[1
p
]

for j ≥ 1.

A similar statement is true for case of real nebentypus χp:
Theorem 2.2: Assume that p ≥ 2n + 3. Then there exists a modular form
of weight p−1

2
, level p and nebentypus χp such that

(A)
h ≡ 1 mod p

9



(B) For 1 ≤ j ≤ n

νp(h | ωj) ≥ −
j(j + 1)

4
+ 1

The Fourier expansion of h | ωj has coefficients in OK for K = Q(
√
p) for

j = 0 and in OK [ 1√
p
]) for j ≥ 1 .

We start with a simple fact from elementary number theory:
Lemma 2.3: Suppose that nonnegative integers

α(0) < α(1) < · · · < α(n)

are given. We put
m(j) := α(0) + · · ·+ α(j − 1)

Then there are integers A0, . . . , An such that

A0 ≡ 1 mod p

min{νp(Ajp−iα(j)) | 0 ≤ j ≤ n} = −m(i) (1 ≤ i ≤ n)

νp(
n∑
j=0

Ajp
−iα(j)) ≥ −m(i) + 1 (1 ≤ i ≤ n)

Proof (of the lemma): We put

Aj := (−1)jpj·α(j)−m(j).

These are integers because j · α(j) ≥ m(j).
Then for j ≥ i:

νp(Aj · p−iα(j)) = −m(j) + jα(j)− iα(j)

= −α(0)− · · · − α(j − 1) + (j − i)α(j)

≥ −α(0)− · · · − α(i− 1)

with equality only for j = i.
Furthermorefor j < i:

νp(Aj · p−iα(j)) = −m(j) + jα(j)− iα(j)

= −m(i) + α(j) + . . . α(i− 1)− (i− j)α(j)

≥ −m(i)
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with equality only for j = i−1. Therefore in νp(
∑n

j=0Ajp
−iα(j)) we only need

to consider the summands with j = i − 1 and j = i. The desired property
follows from

Ai−1p
−iα(i−1) + Aip

−iα(i) =
(
(−1)i−1 + (−1)i

)
· p−m(i).

Proof of theorem 2.1:
First we consider a more general situation with arbitrary α(i) as in the
lemma; assume that Li are p -special lattices of level p, rank 2p − 2 and
determinant p2α(i) and we put gi = θn(Li). We remark that (see e.g. [5])

gi | ωj = (−1)(p−1)jp−jα(i)(1 + p ·X)

where X denotes a Fourier series with integral Fourier coefficients (the p in
front of X is a consequence of the special automorphism of Li).
Then we put

g :=
n∑
j=0

(−1)(p−1)jAj · gj.

The lemma yields
g ≡ 1 mod p

and for all 1 ≤ i ≤ n we have

νp(g | ωi) ≥ min{νp(Ajgj | ωi) | 0 ≤ j ≤ n}
≥ min{νp(Ajp−α(i)j | 0 ≤ j ≤ n} = −m(i)

Moreover the constant term of pm(i)g | ωi is pm(i)
∑n

j=0Ajp
α(i)j, hence divisi-

ble by p and therefore

νp(g | ωi) ≥ −m(i) + 1.

The assumptions of the theorem guarantee the existence of p-special lattices
Li with α(i) = i and therefore we get in this case m(i) = (i−1)i

2
. If necessary

(in the case p ≡ 3 mod 4) we could choose fn0 as a substitute for g0 and also
fn0 (p · Z) as substitute for gn.

The proof of Theorem 2.2 goes along the same lines, but we must allow half-
integers in the lemma. We may choose 2α(i) = i+1 and we get m(j) = j(j+1)

4

in this case.
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A refinement of theorem 2.1 is possible by varying the number i as in example
2:
Theorem 2.4: For 1 ≤ i ≤ n and p ≥ n − i + 1 if p ≡ 1 mod 4 and
p ≥ (n− i+ 1) + 3 if p ≡ 3 mod 4 there is H(i) ∈Mp−1

n (Γ0(p)) such that

H(i) | ωj ≡ 1 mod p (0 ≤ j < i)

H(i) | ωi ≡ 0 mod p

νp(H
(i) | ωj) ≥ −(j − i)(j − i− 1)

2
+ 1 (j > i)

Proof: The case i = 1 is just Theorem 2.1.For the general case we apply
Theorem 2.1 for degree n-i+1: With the notion of the proof of that theorem
we have

g :=
n−i+1∑
t=0

At · θn−i+1(Li)

Then indeed g ≡ 1 mod p and

νp(g | ωj) ≥
j(j − 1)

2
+ 1 (j ≥ 1)

It is easy to see that

H(i) :=
n−i+1∑
t=0

(−1)(i−1)(p−1)pt(i−1)At · θn(Lt)

has the requested properties.

Remark 1: An inspection of the proof of the lemma shows the results above
are the best possible if we allow as a resource for congruences only the action
of order p- automorphisms of our lattices (we omit details here).

Remark 2: Some further variants of theorem 3 are possible: For given
numbers 0 ≤ i′ < i we may construct modular forms H i′,i of weight p − 1
and level p such that H | ωj is divisible by p for j < i′, H | ωj ≡ 1 mod p for
i′ ≤ j < i, H | ωi ≡ 0 mod p and maximized values of νp(H | ωj) for j > i.

Remark 3: It seems very difficult to construct (for n ≥ 2) an irregular
modular form f such that f ≡ 1 mod p and f | ωj ≡ 0 mod p for all j > 0.
Indeed, it seems that for an irregular modular form f the p-denominators
grow “rapidly after the occurence of the irregularity”.
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3 Changing the weight by p− 1 or by p−1
2

We put

Mk
n(Γn0 (p))0 := {F ∈Mk

n(Γn0 (p) | νp(F | ωj) > −j − 1 + νp(F )}
and for χp(−1)n = (−1)nk

Mk
n(Γn0 (p), χp)

0 := {F ∈Mk
n(Γ0(p), χp) | νp(F | ωj) > −

j(j + 1)

4
−1+νp(F )}.

We remark that these sets are in general not vector spaces ! The aim in this
part is
Theorem 3.1: Assume that p ≥ n if p ≡ 1 mod 4 or p ≥ n + 3 if p ≡
3 mod 4.
Then for all F ∈Mk

n(Γn0 (p))0 there is G ∈Mk+p−1
n (Γn) with

F ≡ G mod p.

Proof: Let h ∈Mp−1
n (Γn0 (p) be as in Theorem 1 of the previous section.

We consider the trace

tr(F · h) = F · h+
n∑
j=1

p
j(j+1

2 (F · h) | ωj | Ũ(j)

Then the contributions for j ≥ 1 are all congruent zero modp.

Theorem 3.2:Assume that p ≥ 2n+ 3.

Then for all F ∈Mk
n(Γn0 (p), χp)

0 there is G ∈Mk+ p−1
2

n (Γn) with

F ≡ G mod p

The proof works along the same lines of reasoning as in Theorem 3.1, using
the h from Theorem 2.2.
Remarks:

• The set of modular forms satisfying the conditions of the Theorems is
not a vector space in general.
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• Clearly certain theta series do satisfy the conditions above, namely if
det(T ) = p2 in the first case and det(T ) = p in the second case. For
slightly different statements about theta series we refer to Skoruppa
[13].

• A statement similar to theorem 2 can be found in [11] for the special
case of degree 1.

• In [2] we treated a similar situation for degree 1. There is was easy to
apply the theorem also for situations where the condition on νp(F |k ω1)
was not satisfied: We just enlarged the weight of the function h by
taking an appropriate power of h. This does no longer work in our case
because νp(h | ωj) is negative for j ≥ 2. The same is true in the case
of nebentypus.

• To get results like Theorem 3.1 for congruences modulo pl arbitrary
l ≥ 1 one should use a somewhat different method, which does in
general not give exact information about the weight of the level one
modular form, see [7].

It is remarkable that the full space generated by quaternary theta series of
determinant p2 satisfies the condition above:
Definition: For a prime p we put

Y n(p) := C < θn(S) >,

where S runs over all positive definite quaternary quadratic forms of level p
and determinant p2. This is precisely the space of “Yoshida liftings” , see
[14, 5]. Indeed, we will show in the next section that

Y n(p) ⊆M2
n(Γn0 (p))0.

From this we obtain
Corollary 3.3:Assume that p ≥ n if p ≡ 1 mod 4 or p ≥ n + 3 if p ≡
3 mod 4.
Then all elements of the space Y n(p) of Yoshida liftings are congruent mod p
to modular forms of level one of weight p+ 1.

Remark: Assume that n is greater or equal to 5. Then the Yoshida lifts
are singular modular forms [9]. The Corollary asserts that we have found
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degree n modular forms of level one, weight p+ 1 such that all their Fourier
coefficients a(T ) with T of rank greater than 4 are congruent zero mod p.

Remark: The theory of singular modular forms [9] assures that there are no
modular forms of level 1, weight p+1 and degree n > p+1

2
if p+1 ≡ 2 mod 4.

Therefore it is natural that there is some condition on n and p in the Corollar
We do not know whether the bound p ≥ n is best possible for p ≡ 1 mod 4.

4 On certain theta series and their behaviour

in the cusps

It follows from the standard transformation properties of theta series that

θnS |k ωj = (−1)jkdet(S)−
j
2

∑
(X,Y )∈S−1Z(m,j)×Z(m,n−j)

eπitr((X,Y )tS(X,Y )·Z).

This is true for S positiv definite, of even rank m = 2k. In particular, if S
has determinant pν

νp(θ
n |k ωj) = −jν

2
.

This property may get lost, if we consider linear combinations of theta series.
Certain theta series however behave well in this respect:
We consider positive definite quadratic forms of even rank m = 2k, level p
and determinant pν with the additional property

{x ∈ Zm | S[x] ≡ 0(p) } = (p · S−1) · Zm (∗)

We denote by Θn
k(p) the space of linear combinations of such theta series.

Proposition 4.1 :
For 1 ≤ j ≤ n we decompose Z ∈ Hn as

Z =

(
τ z
zt w

)
(τ ∈ Hj, w ∈ Hn−j)

Then we have for all f ∈Mn
k (Γ0(p))0 and all j

f |k ωj(
(
pτ1 z
zt 1

p
w

)
) = (−1)jkp−

jν
2 f(

1

p
Z) | Ũ j(p).
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In particular, all f ∈Mk(Γ0(p))0 satisfy

νp(f | ωj) ≥ −
jν

2
+ νp(f) (0 ≤ j ≤ n).

Here Ũ j(p) acts on periodic functions defined on Hn which are periodic for
p · Symn(Z) by

f =
∑
T

a(T )exptr(2πitr(
1

p
TZ) 7−→ f | Ũ j(p) =

∑
T,t1≡0(p)

a(T )exptr(
1

p
TZ)

and t1 denotes the symmetric matrix of size j in the upper left corner of T .

Proof: It suffices to prove this proposition for theta series. We compute
both sides separately for a theta series θnS:

θS |k ωj = (−1)jkp−
jν
2

∑
(x,y)∈Zm,j×Zm,n−j

exptr(πi

(
S−1[x] xt · y
yt · x S[y]

)
· Z)

and on the other hand

θnS(
1

p
· Z) | Ũ j(p) =

∑
x,y,S[x]≡0(p)

exptr(πi
1

p

(
S[x] xtSy

ytSx S[y]

)
· Z).

By the property (*) mentioned before we can write such x as

x = pS−1 · z (z ∈ Zm,j).

Then
S[x] = S[pS−1z] = p2S−1[z]

xtSy = pzty

and hence

θnS(
1

p
· Z) | Ũ j(p) =

∑
z,y

exptr(πi

(
(pS−1[z] zt · y

yt · z 1
p
S[y]

)
· Z).
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Remark: The condition (*) is essentially a local condition. It is satisfied if
S is anisotropic mod p, in particular, it is satisfied for positive definite qua-
ternary quadratic forms of level p determinant p2 and we have the inclusion
already mentioned in section 3:

Y n(p) = Θn
2 (p) ⊆M2

n(Γn0 (p))0.

Remark: There is also a version of Proposition 4.1 for theta series with
harmonic polynomials.
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