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WEIGHTED FOURIER INEQUALITIES FOR RADIAL FUNCTIONS

D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

Abstract. Weighted Lp(Rn) → Lq(Rn) Fourier inequalities are studied. We prove Pitt–Boas type
results on integrability with power weights of the Fourier transform of a radial function.

1. Introduction

Weighted norm inequalities for the Fourier transform provide a natural way to describe the
balance between the relative sizes of a function and its Fourier transform at infinity. What is
more, such inequalities with sharp constants imply the uncertainty principle relations ([2], [3]).
The celebrated Pitt inequality illustrates this idea at the spectral level ([2]):

∫

Rn

Φ(1/|y|)|f̂(y)|2dy ≤ CΦ

∫

Rn

Φ(|x|)|f(x)|2dx,

where Φ is an increasing function and f̂ is the Fourier transform of a function f from the Schwartz
class S(Rn),

(1) f̂(y) = Ff(y) =

∫

Rn

f(x)eixydx.

In the (Lp, Lq) setting such inequalities have been studied extensively (see for instance [2]–[6], [10],
[11], [12], [18], [23]). In this case Pitt’s inequality is written as follows: for 1 < p ≤ q < ∞,
0 ≤ γ < n/q, 0 ≤ β < n/p′ and n ≥ 1

(∫

Rn

(|y|−γ|f̂(y)|)q
dy

)1/q

≤ C

(∫

Rn

(|x|β|f(x)|)p
dx

)1/p

(2)

with the index constraint

β − γ = n− n

(
1

p
+

1

q

)

(the primes denote dual exponents, 1/p + 1/p′ = 1).
The restrictions on γ and β can be written as

max

{
0, n

(1

p
+

1

q
− 1

)}
≤ γ <

n

q
.(3)

It is worth mentioning that inequality (2) contains classical (non-weighted) versions of the

Plancherel theorem, that is, ‖f̂‖2 = ‖f‖2, Hardy–Littlewood’s theorem (1 < p = q ≤ 2, β = 0 or
p = q ≥ 2, γ = 0), and Hausdorff–Young’s theorem (q = p′ ≥ 2, β = γ = 0).

For n = 1, inequality (2) can be found in [4], [16], [17], [21]; for n ≥ 1 see [3], [4]. In [2],
W. Beckner found a sharp constant in (2) for p = q = 2 and used this result to prove a logarithmic
estimate for uncertainty.

In this paper we address the following two problems.

1991 Mathematics Subject Classification. Primary 42B10, 42A38; Secondary 42B35, 46E30.
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2 D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

Problem 1: The range (3) is sharp if f is simply assumed to be in Lp
u, u(x) = |x|pβ. Is it

possible to extend this range if additional regularity of f is assumed?
Problem 2: Under which additional assumption on f it is possible to reverse inequality (2) for

p = q?

Let us first recall several known results in dimension 1. Some progress toward extending the range
of γ in (3) was made in [5], [18], and [23], where the authors assumed that the function has vanishing
moments up to certain order.

Another approach, which is related to both Problems 1 and 2, is due to Hardy, Littlewood, and,
later, Boas. The well-known Hardy–Littlewood theorem (see [24, Ch.IV]) states that if 1 < p < ∞
and f is an even non-increasing function that vanishes at infinity, then

C1

(∫

R
|f̂(x)|pdy

)1/p

≤
(∫

R+

|f(t)|ptp−2dx

)1/p

≤ C2

(∫

R
|f̂(x)|pdy

)1/p

.(4)

Boas conjectured in [8] that the weighted version of (4) is also true: under the same conditions
on f and p,

|x|−γ|f̂(x)| ∈ Lp(R) if and only if t1+γ−2/pf(t) ∈ Lp(R+),(5)

provided −1/p′ = −1 + 1/p < γ < 1/p.
Relation (5) was proved in [19]. Thus, assuming a function to be monotone allows one to extend

the range of γ as well as to reverse inequality (2) for p = q.
In [13], Boas-type results were obtained for the cosine and sine Fourier transforms, separately.

To describe it briefly, we denote

f̂c(x) =

∫ ∞

0

f(t) cos xt dt and f̂s(x) =

∫ ∞

0

f(t) sin xt dt.

We call a function admissible if it is locally of bounded variation on (0,∞) and vanishes at infinity.
For any admissible non-negative function f satisfying

∫ 2t

t

|dh(u)| ≤ C

∫ ct

t/c

u−1|h(u)| du(6)

for some c > 1, relation (5) holds for f and f̂c provided −1/p′ < γ < 1/p, while for f and f̂s

provided −1/p′ < γ < 1/p + 1 (note the larger range).
In the higher-dimensional setting, the situation is expectedly more complex. For radial functions

f(x) = f0(|x|), x ∈ Rn, the Fourier transform is also radial, i.e. f̂(x) = F0(|x|). One then can
apply the one-dimensional results. For example, in R3 the Fourier transform is given by

f̂(x) = 4π|x|−1

∫ ∞

0

tf0(t) sin |x|t dt.

So, applying the result for the sine transform f̂s to the function tf0(t), we obtain

|x|−γ f̂(x) ∈ Lp(R3) if and only if t3+γ−4/pf0(t) ∈ Lp(0,∞),(7)

provided −2 + 3/p < γ < 3/p. Note that it is enough to assume that f0 itself satisfies (6), since
this implies the same for tf0(t).

For n 6= 3, we can also apply (5) using fractional integrals. If f0 is such that
∫ ∞

0

tn−1(1 + t)(1−n)/2|f0(t)| dt < ∞,(8)
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one has the following Leray’s formula (see, e.g., Lemma 25.1′ in [20]):

f̂(x) = 2π(n−1)/2

∫ ∞

0

I(t) cos |x|t dt,(9)

where the fractional integral I is given by

I(t) =
2

Γ
(

n−1
2

)
∫ ∞

t

sf0(s)(s
2 − t2)(n−3)/2ds.

Then, the one-dimensional Boas’s relation (5) implies that if f0 ≥ 0 satisfies (8), then

|x|−γ f̂(x) ∈ Lp(Rn) if and only if t1+γ−(n+1)/pI(t) ∈ Lp(0,∞),

provided −1 + n/p < γ < n/p. However, the condition on I is difficult to verify and so it is
desirable to obtain more direct Boas-type conditions. This is the main goal of the present paper.

Definition. We call an admissible function f0 general monotone, written GM, if for any t > 0∫ ∞

t

|df0(u)| ≤ C

∫ ∞

t/c

|f0(u)| du

u
(10)

for some c > 1.
In the context of our results, we always deal with functions satisfying

∫∞ |f0(u)| du/u < ∞. It is
clear that any such function being monotone, or satisfying (6), is general monotone. However, this
class also contains functions with much more complex structure (see, e.g., [14]-[15]).

It is natural in our study that f0 ∈ GM satisfies a less restrictive condition than (8):

(11)

∫ 1

0

tn−1|f0(t)| dt +

∫ ∞

1

t(n−1)/2 |df0(t)| < ∞.

Our main result reads as follows.

Theorem 1. Let 1 ≤ p < ∞ and n ≥ 1. Then, for any radial function f(x) = f0(|x|), x ∈ Rn,
such that f0 ≥ 0, f0 ∈ GM , and satisfying (11),

∥∥∥|x|−γ f̂(x)
∥∥∥

Lp(Rn)
³

∥∥∥tβf0(t)
∥∥∥

Lp(0,∞)
(12)

if and only if

β = γ + n− n + 1

p
and − n + 1

2
+

n

p
< γ <

n

p
.

The paper is organized as follows. Section 2 provides some useful facts about the Fourier trans-
form of a radial function. In Sections 3 and 4, we prove auxiliary upper and lower estimates for the
Fourier transform; these estimates are used in Section 6. General (Lp, Lq) inequalities of Pitt-Boas
type are delivered by Theorem 2 in Section 5. In the case p = q this gives Theorem 1. Section 6
contains the proof of Theorem 2.

Concerning Problem 1, we observe that the upper estimate of f̂ in Theorem 2 is Pitt’s inequality,

which holds in the case of general monotone functions only when
n

q
− n + 1

2
< γ <

n

p
. Since in

any case
n

q
− n + 1

2
< max

{
0, n

(1

p
+

1

q
− 1

)}
,

we extend the range of γ given by (3). Theorem 1 exhibits a solution of Problem 2. Note that for
n = 1 and n = 3 Theorem 1 gives (5) and (7), correspondingly.
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The notation “ . ” and “ & ” means “≤ C ” and “≥ C ”, respectively (with C independent of
essential quantities), while “³ ” stands for “ . ” and “ & ” to hold simultaneously.

2. The Fourier transform of radial functions

The facts we are going to make use of can be found in [7, 20, 22]. For n ≥ 1, x ∈ Rn, let
f(x) = f0(|x|) be a radial function. Then

(13)

∫

Rn

f(x) dx = |Sn−1|
∫ ∞

0

f0(t)t
n−1 dt,

where |Sn−1| = 2πn/2/Γ(n/2) is the area of the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}.
The Fourier transform (1) of the radial function f is also radial and is given via the Hankel–

Fourier transform [22] as

(14) f̂(y) = F0(|y|) = |Sn−1|
∫ ∞

0

f0(t)jα(|y|t)tn−1 dt.

Here jα(z) is the normed Bessel function

(15) jα(z) = Γ(α + 1)
(z

2

)−α

Jα(z) =
∞∏

k=1

(
1− z2

ρ2
α,k

)
,

where Jα(z) is the classical Bessel function of first kind and order α, and 0 < ρα,1 < ρα,2 < . . . are
the positive zeros of Jα(z). We denote

α :=
n

2
− 1 ≥ −1

2
.

Let us give several useful properties of the function jα(z), α ≥ −1/2, which follow from the
known properties of Jα(z) (see, e.g., [7, Ch.VII]): j−1/2(z) = cos z, j1/2(z) = sin z

z
;

(16) |jα(z)| ≤ jα(0) = 1, z ≥ 0;

(17)
d

dz

(
z2α+2jα+1(z)

)
= (2α + 2)z2α+1jα(z);

(18) jα(z) =
2αΓ(α + 1)(2/π)1/2

zα+1/2
cos

(
z − π(α + 1/2)

2

)
+ O(z−α−3/2), z →∞;

(19) |jα(z)| ≤ Mα

zα+1/2
, z > 0;

(20) ρα,k = πk + O(1/k), k →∞;

the zeros of the Bessel function are separated:

(21) 0 < ρα,1 < ρα+1,1 < ρα,2 < ρα+1,2 < ρα,3 < . . . .

It follows from (17) and (21) that the function z2α+2jα+1(z) increases when z ∈ [0, ρα,1] and
decreases when z ∈ [ρα,1, ρα+1,1]. The function jα+1(z) decreases on the interval [0, ρα+1,1]. This
yields the estimate

(22) z2α+2j2
α+1(z) ≥ mb > 0, 1/b ≤ z ≤ b, 1 < b = bα < ρα+1,1.
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In what follows we understand integral (14) as improper:

(23) F0(s) = |Sn−1| lim
a→0

A→∞

∫ A

a

f0(t)jα(st)tn−1 dt, s = |y| > 0.

Note that for admissible f0, (16) implies∣∣∣∣
∫ A

a

f0(t)jα(st)tn−1 dt

∣∣∣∣ ≤
∫ A

a

|f0(t)|tn−1 dt < ∞.

Further, for a radial function f(x) = f0(|x|), by properties (16) and (19), the integral in (14)
converges uniformly for s > 0 in improper sense to the continuous function F0(s), provided (8)
holds (see [20]). In Lemma 1 below, we prove this fact for F0(s) via a pointwise estimate of F0.
Note that for n ≥ 2 condition (11), as well as condition (8), is less restrictive than f ∈ L1(Rn).

3. Estimates from above for the Fourier transforms

Let f(x) = f0(|x|) with f0 admissible and satisfying (11), that is,
∫ 1

0
tn−1|f0(t)| dt +∫∞

1
t(n−1)/2 |df0(t)| < ∞. We observe that (11) implies for t > 1

t(n−1)/2|f0(t)| ≤ t(n−1)/2

∫ ∞

t

|df0(s)| ≤
∫ ∞

t

s(n−1)/2|df0(s)|.
Therefore

(24) t(n−1)/2f0(t) → 0 as t →∞.

Lemma 1. Given f0 as above, for s > 0 the Fourier transform F0(s) is continuous, and satisfies

|F0(s)| .
∫ 1/s

0

tn−1|f0(t)| dt + s−(n+1)/2

∫ ∞

1/s

t(n−1)/2 |df0(t)|.

Proof. Let for s > 0

(25) I =

∫ ∞

0

f0(t)jα(st)tn−1 dt =
F0(s)

|Sn−1| .

Let ρ > 1 be a zero of the Bessel function Jα+1(·). Then, by (16),

(26) I ≤
∫ 1/s

0

|f0(t)| tn−1 dt +

∫ ρ/s

1/s

|f0(t)| tn−1 dt +
∣∣∣
∫ ∞

ρ/s

f0(t)jα(st)tn−1 dt
∣∣∣ = I1 + I2 + I3.

Estimating I2 we obtain

I2 .
∫ ρ/s

1/s

tn−1
( ∫ 1/s

t

|df0(u)|+
∫ ∞

1/s

|df0(u)|
)

dt

.
∫ ρ/s

1/s

un|df0(u)|+ s−n

∫ ∞

1/s

|df0(u)| . s−(n+1)/2

∫ ∞

1/s

t(n−1)/2 |df0(t)|.(27)

It follows from (17) that

(28)
d

dt
(tnjα+1(st)) = ntn−1jα(st).

Integrating by parts, we obtain

I3 =
1

n

∫ ∞

ρ/s

f0(t) d(tnjα+1(st)) =
1

n
f0(t)t

njα+1(st)
∣∣∣
∞

ρ/s
− 1

n

∫ ∞

ρ/s

tnjα+1(st) df0(t).
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Then (19) and (24) yield

|f0(t)t
njα+1(st)| . |f0(t)|tn(st)−(n+1)/2 . |f0(t)|t(n−1)/2 → 0 as t →∞,

and hence

(29) I3 .
∫ ∞

ρ/s

tn(st)−(n+1)/2 |df0(t)| . s−(n+1)/2

∫ ∞

1/s

t(n−1)/2 |df0(t)|.

Combining (27) and (29), we finish the proof of the lemma. ¤
We will also use similar estimates of the Fourier transform in terms of the following functions:

Φ∗(t) =

∫ 2t

t

|df0(u)|, Φ(t) =

∫ ∞

t

|df0(u)|, Ψ(t) =

∫ ∞

t

s(n−1)/2|df0(s)|.

These functions are continuous for t > 0, and Φ∗(t) ≤ Φ(t).

Corollary 1. The estimate holds for s > 0

|F0(s)| .
∫ 1/s

0

tn−1Φ∗(t) dt + s−(n+1)/2

∫ ∞

1/s

t(n−3)/2Φ∗(t) dt

.
∫ 1/s

0

tn−1Φ(t) dt + s−(n+1)/2

∫ ∞

1/s

t(n−3)/2Φ(t) dt.

Proof. Similar to (27), we first get

(30)

∫ 1/s

0

tn−1|f0(t)| dt .
∫ 1/s

0

tn |df0(t)|+ s−(n+1)/2

∫ ∞

1/s

t(n−1)/2 |df0(t)|.

Then the required estimates follows from Lemma 1 and inequalities

(31) ln 2

∫ B

0

|ψ(u)| du ≤
∫ B

0

t−1

∫ 2t

t

|ψ(u)| du dt,

(32) ln 2

∫ ∞

2A

|ψ(u)| du ≤
∫ ∞

A

t−1

∫ 2t

t

|ψ(u)| du dt,

valid for any integrable ψ. ¤
Corollary 2. The estimate holds for s > 0

(33) |F0(s)| .
∫ 1/s

0

t(n−1)/2Ψ(t) dt.

Proof. Indeed, by Lemma 1 and (30),

|F0(s)| .
∫ 1/s

0

tn |df0(t)|+ s−(n+1)/2

∫ ∞

1/s

t(n−1)/2 |df0(t)| = I1 + I2.

We have

I2 = s−(n+1)/2Ψ(1/s) ³ Ψ(1/s)

∫ 1/s

1/(2s)

t(n−1)/2 dt ≤
∫ 1/s

1/(2s)

t(n−1)/2Ψ(t) dt ≤
∫ 1/s

0

t(n−1)/2Ψ(t) dt.

Using (31), we get

I1 .
∫ 1/s

0

tn−1

(∫ 2t

t

|df0(s)|
)

dt ³
∫ 1/s

0

t(n−1)/2

(∫ 2t

t

s(n−1)/2 |df0(s)|
)

dt ≤
∫ 1/s

0

t(n−1)/2Ψ(t) dt.
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The obtained bounds for I1 and I2 give (33). ¤

Note that in this section we have no assumption on positivity of f0 so far. This will come into
play in the next section.

4. Estimates from below for the Fourier transforms

Let us consider a radial function f(x) = f0(|x|) such that f0 is admissible and f0(t) ≥ 0 when
t > 0. We assume that f0 satisfies condition (11). Then, by Lemma 1, the integral in (23) converges
uniformly on any compact set away from zero and F0(s) is continuous for s > 0. Suppose also that

(34)

∫ 1

0

|F0(s)|s(n−1)/2 ds < ∞.

In particular, this implies that f̂ is integrable in a neighborhood of zero. We will need the following

Lemma 2. For u > 0 and 1 < b < ρα+1,1, the inequality holds

u(1−n)/2

∫ 2/u

0

s(n−1)/2|F0(s)| ds &
∫ bu

u/b

f0(t)

t
dt.

Proof. We denote by Bn = {x ∈ Rn : |x| ≤ 1} the unit ball, |Bn| = |Sn−1|/n is the volume of this
ball.

Let us consider the following well-known compactly supported function

k(y) = |Bn|−1(χ ∗ χ)(y),

where χ is the indicator function of the unit ball Bn. For n = 1, it is the Fejér kernel (1− |y|/2)+.
The kernel k is radial k(y) = k0(|y|) and possesses the following properties:

(35) 0 ≤ k0(s) ≤ k0(0) = 1, 0 ≤ s ≤ 2; k0(s) = 0, s ≥ 2;

and the Fourier transform of k is

k̂(x) = K0(|x|) = |Bn|−1(χ̂(x))2 ≥ 0.

By (28), for t = |x|

(36) χ̂(x) = |Sn−1|
∫ 1

0

jα(ts)sn−1 ds =
|Sn−1|

n
jα+1(t) = |Bn|jα+1(t).

Therefore,

(37) K0(t) = |Sn−1|
∫ 2

0

k0(s)jα(ts)sn−1 ds = |Bn|j2
α+1(t).

Let ε be small enough. Denoting

Jε :=

∫ 2/u

ε/u

F0(s)k0(us)sn−1 ds = u−n

∫ 2

ε

F0(s/u)k0(s)s
n−1 ds.

We have, by (34) and (35),

(38) |Jε| ≤
∫ 2/u

0

|F0(s)|sn−1 ds . u(1−n)/2

∫ 2/u

0

s(n−1)/2|F0(s)| ds.



8 D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

The uniform convergence of integral (23) implies

Jε = u−n

∫ 2

ε

(
|Sn−1|

∫ ∞

0

f0(t)jα(st/u)tn−1 dt

)
k0(s)s

n−1 ds

= u−n

∫ ∞

0

f0(t)

(
|Sn−1|

∫ 2

ε

k0(s)jα(st/u)sn−1 ds

)
tn−1 dt.

Using (37), we get

|Sn−1|
∫ 2

ε

k0(s)jα(st/u)sn−1 ds = K0(t/u)− λε(t),

where

λε(t) = |Sn−1|
∫ ε

0

k0(s)jα(st/u)sn−1 ds.

Taking into account (22) and (37), we have (t/u)nK0(t/u) & 1 for u/b ≤ t ≤ bu. Therefore,

(39) Jε &
∫ bu

u/b

f0(t)

t
dt− J ′ε, J ′ε = u−n

∫ ∞

0

f0(t)λε(t)t
n−1 dt.

We are going to prove that J ′ε → 0 as ε → 0. Take A > 1. It follows from (35) and (16) that

(40) |λε(t)| ≤ |Sn−1|
∫ ε

0

sn−1 ds . εn,

and hence

(41)

∣∣∣∣u−n

∫ A

0

f0(t)λε(t)t
n−1 dt

∣∣∣∣ . εn

∫ A

0

|f0(t)|tn−1 dt.

Let t ≥ A. Define

Λε(t) =

∫ t

0

λε(v)vn−1 dv = |Sn−1|
∫ ε

0

k0(s)s
n−1

(∫ t

0

jα(sv/u)vn−1 dv

)
ds.

Making use of (28), we obtain

(42) Λε(t) =
|Sn−1|tn

n

∫ ε

0

k0(s)jα+1(st/u)sn−1 ds.

For n = 1,

|Λε(t)| =
∣∣∣∣2t

∫ ε

0

(1− s/2)
sin(st/u)

st/u
ds

∣∣∣∣ =

∣∣∣∣∣2u
∫ εt/u

0

sin s

s
ds− u2(1− cos(εt/u))

t

∣∣∣∣∣ .

It is well-known that

∣∣∣∣
∫ v

0

sin s

s
ds

∣∣∣∣ ≤
∫ π

0

sin s

s
ds for v > 0, and |Λε(t)| . 1 . t(n−1)/2.

Let now n ≥ 2. We have

Λε(t) =
|Sn−1|tn

n

(∫ ε/t

0

+

∫ ε

ε/t

)
k0(s)jα+1(st/u)sn−1 ds.

As above ∣∣∣∣∣
|Sn−1|tn

n

∫ ε/t

0

k0(s)jα+1(st/u)sn−1 ds

∣∣∣∣∣ . tn
∫ ε/t

0

sn−1 ds . εn . 1 . t(n−1)/2.
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Applying (19), we get
∣∣∣∣
|Sn−1|tn

n

∫ ε

ε/t

k0(s)jα+1(st/u)sn−1 ds

∣∣∣∣ . tn
∫ ε

ε/t

|jα+1(st/u)|sn−1 ds

. tn(t/u)−(n+1)/2

∫ ε

ε/t

s(n−1)/2−1 ds . t(n−1)/2ε(n−1)/2 . t(n−1)/2.

Therefore, |Λε(t)| . t(n−1)/2 for t ≥ A and n ≥ 1.
Integrating by parts yields

∫ ∞

A

f0(t)λε(t)t
n−1 dt =

∫ ∞

A

f0(t) dΛε(t) = f0(t)Λε(t)
∣∣∞
A
−

∫ ∞

A

Λε(t) df0(t).

It follows from (24) and |Λε(t)| . t(n−1)/2 that f0(t)Λε(t) → 0 as t →∞. Since (40) and (42) imply
|Λε(A)| . εnAn,

(43)

∣∣∣∣
∫ ∞

A

f0(t)λε(t)t
n−1 dt

∣∣∣∣ ≤ εn|f0(A)|An +

∫ ∞

A

t(n−1)/2 |df0(t)|.

Combining (41) and (43), we get

|J ′ε| . εn

(∫ A

0

|f0(t)|tn−1 dt + |f0(A)|An

)
+

∫ ∞

A

t(n−1)/2 |df0(t)|.

Letting first ε → 0 and then A → ∞, we obtain J ′ε → 0. Using this, (38), and (39), we arrive at
the assertion of the lemma. ¤

5. Pitt-type theorem: Lp–Lq Fourier inequalities with power weights

The following result captures the part “if” of Theorem 1. To show this, take p = q.

Theorem 2. Let 1 ≤ p, q < ∞ and n ∈ N. Let f be radial on Rn such that f0 is a general monotone
function on R+.(

A
)

If p ≤ q and

(44)
n

q
− n + 1

2
< γ <

n

q
,

then

tn+γ−n/q−1/pf0(t) ∈ Lp(0,∞) implies |x|−γ f̂(x) ∈ Lq(Rn);
(
B

)
Let a non-negative function f0 satisfy (11). If q ≤ p and

(45)
n

q
− n + 1

2
< γ,

then

|x|−γ f̂(x) ∈ Lq(Rn) implies tn+γ−n/q−1/pf0(t) ∈ Lp(0,∞).
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5.1. Discussion. Let us discuss the conditions for a function and its Fourier transform in Theorem
2. To this end, we make sure that (A) and (B) imply corresponding assumptions of Lemmas 1 and
2.

(A) If tβf0(t) ∈ Lp(0,∞), β = n + γ − n

q
− 1

p
, then Hölder’s inequality implies

∫ ∞

0

tn−1(1 + t)−(n+1)/2|f0(t)| dt ≤ ‖tn−1−β(1 + t)−(n+1)/2‖Lp′ (0,∞)‖tβf0(t)‖Lp(0,∞) = I1I2 . I1.

Since (44) is equivalent to
n− 1

2
− 1

p
< β < n− 1

p
, we get

(n− 1− β)p′ >
(

n− 1 +
1

p
− n

)
p′ = −1

and (
n− 1− β − n + 1

2

)
p′ <

(
n− 1 +

1

p
− n− 1

2
− n + 1

2

)
p′ = −1.

This guarantees that the integral I1 converges. Therefore,

(46)

∫ ∞

0

tn−1(1 + t)−(n+1)/2|f0(t)| dt < ∞.

Since for any GM function f0 we have∫ ∞

1

tσ |df0(t)| .
∫ ∞

1

tσ−1|f0(t)| dt, σ > 0,

provided tσ−1f0(t) ∈ L1(0,∞), inequality (46) implies condition (11) of Lemma 1. Thus, Theorem 2
(A) states that condition tn+γ−n/q−1/pf0(t) ∈ Lp(0,∞) ensures the existence of the Fourier transform

in the improper sense and that |x|−γ f̂(x) ∈ Lq(Rn).

Let us now proceed to (B). Assume |y|−γ f̂(y) ∈ Lq(Rn), or equivalently, s
n−1

q
−γF0(s) ∈ Lq(0,∞).

Applying Hölder’s inequality, we obtain
∫ 1

0

s(n−1)/2|F0(s)| ds ≤ ‖s(n−1)/2−(n−1)/q+γ‖Lq′ (0,1)‖s(n−1)/q−γF0(s)‖Lq(0,1) = I1I2 . I1.

Condition (45) yields
(

n−1
2
− n−1

q
+ γ

)
q′ >

(
n−1

2
− n+1

2
+ 1

q

)
q′ = −1. Therefore, I1 . 1 and

condition (34) of Lemma 2 is fulfilled. Hence, part (B) of Theorem 2 asserts that condition (11)

and |y|−γ f̂(y) ∈ Lq(Rn) imply that F0 is the Fourier transform (23), continuous for s > 0, and
tn+γ−n/q−1/pf0(t) ∈ Lp(0,∞).

5.2. Sharpness of conditions on γ. Let us rewrite part (A) of Theorem 2 in the following way.

Theorem 2′. Let 1 ≤ p ≤ q < ∞ and n ∈ N. Let f be radial on Rn such that f0 is a general
monotone function on R+. Then∥∥∥|x|−γ f̂(x)

∥∥∥
Lq(Rn)

.
∥∥∥tβf0(t)

∥∥∥
Lp(0,∞)

(47)

if and only if

(48) β = γ + n− n

q
− 1

p
and

n

q
− n + 1

2
< γ <

n

q
.
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We restrict ourselves to the “only if” direction in Theorem 2′ so far. This captures the cor-
responding part in Theorem 1 when p = q. The proof of the “if” part will be given in Section
6.

Proof. Consider f(x) = χ(x), then f0(t) = χ[0,1](t) ∈ GM . Then we have

‖tn+γ−n/q−1/pf0(t)‖Lp(0,∞) =

(∫ 1

0

tpn+pγ−pn/q−1 dt

)1/p

.

This integral converges if pn + pγ − pn/q > 0, or equivalently γ > n
q
− n.

Let us figure out when |y|−γχ̂(y) ∈ Lq(Rn). By (36), the Fourier transform of f is χ̂(y) =
|Bn|jα+1(|y|) = F0(s). Therefore, we obtain

(49)
∥∥∥|y|−γχ̂(y)

∥∥∥
Lq(Rn)

³
(∫ ∞

0

(
s−γ|F0(s)|

)q
sn−1 ds

)1/q

³
(∫ ∞

0

sn−qγ−1|jα+1(s)|q ds

)1/q

.

There holds jα+1(s) ³ 1 in a neighborhood of zero, hence the integral in (49) converges if n−qγ > 0,
that is, when γ < n

q
. The upper bound is established.

There holds for s large, jα+1(s) . s−(n+1)/2, therefore the integral in (49) converges if
n

q
−n + 1

2
<

γ. We will now show that if this condition does not hold, then the integral in (49) diverges. It
follows from (20) that for an integer number k0 large enough

ρα+1,k ³ k, ρα+1,k+1 − ρα+1,k ³ 1, k ≥ k0,

and there is a small ε > 0, independent of k, such that

|jα+1(s)| & s−(n+1)/2, s ∈ [ρα+1,k + ε, ρα+1,k+1 − ε], k ≥ k0.

Therefore,
∫ ∞

0

sn−qγ−1|jα+1(s)|q ds &
∞∑

k=k0

∫ ρα+1,k+1−ε

ρα+1,k+ε

sn−qγ−1s−q(n+1)/2 ds

&
∞∑

k=k0

(ρα+1,k+1 − ε)n−qγ−1−q(n+1)/2 &
∞∑

k=k0

kn−qγ−1−q(n+1)/2.

The last series diverges provided γ ≤ n

q
− n + 1

2
.

Let us verify that β and γ should be related by β = γ + n − n/q − 1/p. Let u > 0 and
g(x) = f0(|x|/u) = χ(x/u). Then for t = |y| with 0 < t < 1/u

ĝ(y) = G0(|y|) = unF0(u|y|) = |Bn|unjα+1(ut) ³ un.

We then have

‖tβg0(t)‖Lp(0,∞) ³
(∫ u

0

tβp+1 dt

t

)1/p

³ uβ+1/p,

and

∥∥|x|−γ ĝ(x)
∥∥

Lq(Rn)
&

(∫ u

0

t−γq+n|G0(t)|q dt

t

)1/q

& un

(∫ u

0

t−γq+n dt

t

)1/q

³ uγ+n−n/q.

These yield uβ+1/p & uγ+n−n/q for any u > 0, that is, β = γ + n− n

q
− 1

p
. ¤
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6. Proof of Theorem 2

We begin with the upper estimate of
∥∥f̂(x)|x|−γ

∥∥
Lq . First, by Corollary 1,

(∫

Rn

|f̂(x)|q
|x|qγ

dx

)1/q

.
[∫

R+

|F0(t)|qtn−qγ−1dt

]1/q

.
[∫

R+

tn−qγ−1

(∫ 1/t

0

sn−1Φ(s) ds

)q

dt

]1/q

+

[∫

R+

tn−qγ−1−nq/2−q/2

(∫ ∞

1/t

sn/2−3/2Φ(s) ds

)q

dt

]1/q

=: K1 + K2.

We will use the (p, q) version of Hardy’s inequalities ([9]) with general weights u, v ≥ 0: for
1 ≤ α ≤ β < ∞,

[∫ ∞

0

u(t)

(∫ t

0

ψ(s) ds

)β

dt

]1/β

≤ C

[∫ ∞

0

v(t)ψ(t)α dt

]1/α

(50)

holds for every ψ ≥ 0 if and only if

sup
r>0

(∫ ∞

r

u(t) dt

)1/β (∫ r

0

v(t)1−α′ dt

)1/α′

< ∞,

and
[∫ ∞

0

u(t)

(∫ ∞

t

ψ(s) ds

)β

dt

]1/β

≤ C

[∫ ∞

0

v(t)ψ(t)α dt

]1/α

(51)

if and only if

sup
r>0

(∫ r

0

u(t) dt

)1/β (∫ ∞

r

v(t)1−α′ dt

)1/α′

< ∞.

Here we consider the usual modification of the integral
[ ∫

v(t)θ dt
]1/θ

when θ = ∞.

Remark 1. In particular, (50) holds with u(t) = tε−1 and v(t) = tδ−1 if and only if ε < 0 and
δ = εα/β + α.

To estimate K1, substitution 1/t → t yields

K1 .
[∫

R+

tqγ−n−1

(∫ t

0

sn−1Φ(s) ds

)q

dt

]1/q

.

Using Remark 1 with ε = qγ − n and α = p, β = q, we obtain

K1 .
[∫

R+

tγp−np/q+p−1
(
tn−1Φ(t)

)p
dt

]1/p

=

[∫

R+

(
tn+γ−n/q−1/pΦ(t)

)p
dt

]1/p

,

which holds for γ < n/q.
Further, to estimate K2, we change variables 1/s → s in the inner integral:
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K2 .
[∫

R+

tn−qγ−1−nq/2−q/2

(∫ t

0

s−n/2−1/2Φ(1/s) ds

)q

dt

]1/q

.

We wish to have
[∫

R+

tn−qγ−1−nq/2−q/2

(∫ t

0

s−n/2−1/2Φ(1/s) ds

)q

dt

]1/q

.
[∫

R+

t−γp−np/2+p/2+np/q−1
(
t−n/2−1/2Φ(1/t)

)p
dt

]1/p

=

[∫

R+

(
tγ−n/q+n−1/pΦ(t)

)p
dt

]1/p

.

This estimate holds, by Hardy’ inequality (see Remark 1), with ε = n− qγ − nq/2− q/2, α = p,
and β = q under assumption

ε < 0 ⇐⇒ γ >
n

q
− n + 1

2
.

Combining estimates for K1 and K2, and using the definition of the GM class, we get

(∫

Rn

|f̂(x)|q
|x|qγ

dx

)1/q

≤ C

[∫

R+

(
tγ−n/q+n−1/pΦ(t)

)p
dt

]1/p

≤ C

[∫

R+

tγp−np/q−1

(∫ ∞

t/c

s−1|f0(s)| ds

)p

dt

]1/p

≤ C

[∫

R+

tγp−np/q+np−1
∣∣f0(t)

∣∣p dt

]1/p

.

In the second estimate we have used, after appropriate changes of variables, inequality (51) with
α = β = p under condition γ > n/q − n. This proves the first part of the theorem.

To prove the part (B), we first note that for any f0 ∈ GM there holds

|f0(x)| ≤
∫ ∞

x

|df0(t)| .
∫ ∞

x/c

f0(t)
dt

t
.(52)

Secondly, by (32) and Lemma 2, we have

|f0(x)| ≤
∫ ∞

x

|df0(t)| .
∫ ∞

x/bc

t−1
( ∫ bt

t/b

f0(s)

s
ds

)
dt

.
∫ ∞

x/bc

t(1−n)/2−1
( ∫ 2/t

0

z(n−1)/2|F0(z)|dz
)

dt

.
∫ 2bc/x

0

t(n−1)/2−1
( ∫ t

0

z(n−1)/2|F0(z)|dz
)

dt.(53)

Let us assume p ≥ q and obtain appropriate upper estimates for

J :=

[∫

R+

sγp−np/q+np−1|f0(s)|p ds

]1/p

.(54)
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By (53), we have

J .
[∫

R+

s−γp+np/q−np−1

(∫ s

0

t(n−1)/2−1
( ∫ t

0

z(n−1)/2|F0(z)|dz
)

dt

)p

ds

]1/p

.

Using Remark 1 with α = q, β = p, and

ε = −γp + np/q − np, δ = −γq + n− nq + q, γ > n/q − n,

we get

J .
[∫

R+

t−γq+n−q(n+1)/2−1

(∫ t

0

z(n−1)/2|F0(z)|dz

)q

dt

]1/q

.

Applying again Remark 1, now with α = β = q, and

ε = −γq + n− q(n + 1)/2, δ = −γq + n− q(n− 1)/2, γ > n/q − (n + 1)/2,

we obtain

J .
[∫

R+

tn−qγ−1
∣∣∣F0(t)

∣∣∣
q

dt

]1/q

=

(∫

Rn

|f̂(x)|q
|x|qγ

dx

)1/q

,

the required bound. ¤
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[15] E. Liflyand, S. Tikhonov, A concept of general monotonicity and applications, To appear in Math. Nachr.
[16] H. R. Pitt, Theorems on Fourier series and power series, Duke Math. J. 3 (1937), 747–755.
[17] P. G. Rooney, Generalized Hp spaces and Laplace transforms, Abstract Spaces and Approximation (Proc. Conf.,

Oberwolfach, 1968), pp. 258–269. Birkhäuser, 1969.
[18] C. Sadosky, R. L. Wheeden, Some weighted norm inequalities for the Fourier transform of functions with

vanishing moments, Trans. Amer. Math. Soc. 300(1987), 521–533.
[19] Y. Sagher, Integrability conditions for the Fourier transform, J. Math. Anal. Appl. 54(1976), 151–156.
[20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, New

York, NY: Gordon and Breach, 1993.
[21] E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492.
[22] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, N. J., 1971.
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