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FIBONACCI-LIKE UNIMODAL INVERSE LIMIT SPACES

H. BRUIN AND S. ŠTIMAC

Abstract. We study the structure of inverse limit space of so-called Fibonacci-like tent
maps. The combinatorial constraints implied by the Fibonacci-like assumption allows
us to introduce certain chains that enable a more detailed analysis of symmetric arcs
within this space than is possible in the general case. We show that link-symmetric
arcs are always symmetric or a well-understood concatenation of quasi-symmetric arcs.
This leads to simplification of some existing results, including the Ingram Conjecture for
Fibonacci-like unimodal inverse limits.

1. Introduction

A unimodal map is called Fibonacci-like if it satisfies certain combinatorial conditions
implying an extreme recurrence behavior of the critical point. The Fibonacci unimodal
map itself was first described by Hofbauer and Keller [16] as a candidate to have a so-called
wild attractor. (The combinatorial property defining the Fibonacci unimodal map is that
its so-called cutting times are exactly the Fibonacci numbers 1, 2, 3, 5, 8, . . . ) In [13] it was
indeed shown that Fibonacci unimodal maps with sufficiently large critical order possess a
wild attractor, whereas Lyubich [21] showed that such is not the case if the critical order is
2 (or ≤ 2+ε as was shown in [20]). This answered a question in Milnor’s well-known paper
on the structure of metric attracts [23]. In [9] the strict Fibonacci combinatorics were
relaxed to Fibonacci-like. Intricate number-theoretic properties of Fibonacci-like critical
omega-limit sets were revealed in [22] and [14], and [10, Theorem 2] shows that Fibonacci-
like combinatoric are incompatible with the Collet-Eckmann condition of exponential
derivative growth along the critical orbit. This shows that Fibonacci-like maps are an
extremely interesting class of maps in between the regular and the stochastic unimodal
maps in the classification of [1].

One of the reasons for studying the inverse limit spaces of Fibonacci-like unimodal maps
is that they present a toy model of invertible strange attractors (such as Hénon attractors)
for which as of today very little is known beyond the Benedicks-Carleson parameters [4]
resulting in strange attractors with positive unstable Lyapunov exponent. It is for example

2000 Mathematics Subject Classification. 54H20, 37B45, 37E05.
Key words and phrases. tent map, inverse limit space, Fibonacci unimodal map, structure of inverse

limit spaces.
HB was supported by EPSRC grant EP/F037112/1. SŠ was supported in part by NSF 0604958 and
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2 H. BRUIN AND S. ŠTIMAC

unknown if invertible wild attractors exist in the smooth planar context, or to what
extent Hénon-like attractors satisfy Collet-Eckmann-like growth conditions. The precise
recurrence and folding structure of Hénon-like attractors may be of crucial importance
to answer such questions, and we therefore focus on these aspects of the structure of
Fibonacci-like inverse limit spaces.

A second reason for this paper is to provide a better understanding and a potential
simplification of the solution of the Ingram Conjecture. This conjecture was posed by
Tom Ingram in 1992 for tent maps Ts : [0, 1] → [0, 1] with slope ±s, s ∈ [1, 2], defined as
Ts(x) = min{sx, s(1− x)}:

If 1 ≤ s < s′ ≤ 2, then the corresponding inverse limit spaces lim←−([0, s/2], Ts)

and lim←−([0, s′/2], Ts′) are non-homeomorphic.

The first results towards solving this conjecture were been obtained for tent maps with
a finite critical orbit [18, 19, 26, 5]. Raines and Štimac [25] extended these results to
tent maps with a possibly infinite, but non-recurrent critical orbit. Recently Ingram’s
Conjecture was solved completely (in the affirmative) in [3], but we still know very little
of the structure of inverse limit spaces (and their subcontinua) for the case that orb(c) is
infinite and recurrent, see [2, 6, 11].

The folding structure of a unimodal inverse limit space can be described by so-called p-
points (where arc-components fold back on themselves) and their levels. The existence of
such points is the reason why, contrary to (substitution) tiling spaces, unimodal inverse
limits are locally not homeomorphic to a Cantor set of arcs. For Fibonacci-like maps,
these p-points observe some hierarchical structure which allows us to introduce a special
kind of chains in this paper. Using these chains, we are able to describe the symmetries
and link-symmetries (w.r.t. chains) within the zero-composant C in much more detail
than is currently known for general unimodal inverse limits. In the proof of Ingram’s
Conjecture [3], such symmetric arcs are a crucial ingredient, especially those centered
around so-called snappy points, see Definition 5.11. The methods developed here provide
a more insightful proof for Fibonacci-like inverse limits that link-symmetric arcs, unless
they are centered around a snappy point, can contain at most one snappy point.

The paper is organized as follows. In Section 2 we review the basic definitions of inverse
limit spaces and tent maps and their symbolic dynamics. Section 3 is devoted to the
construction of the chains C having special properties that allow us to prove desired
properties of folding structure of the arc component C in Section 4. In Section 5, we
show that link-symmetric arcs are always symmetric or a well-understood concatenation
of symmetric arcs. A simple and intuitive corollary of the revealed folding structure is the
following very important property for the proof of the Ingram conjecture: Every p-link
symmetric arc of C that is not centered at a snappy point, contains at most one snappy
p-point.
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2. Preliminaries

Basic definitions: The tent map Ts : [0, 1] → [0, 1] with slope ±s is defined as Ts(x) =
min{sx, s(1− x)}. The critical or turning point is c = 1/2 and we write ck = T k

s (c), so in
particular c1 = s/2 and c2 = s(1 − s/2). We will restrict Ts to the interval I = [0, s/2];
this is larger than the core [T 2

s (c), Ts(c)] = [s− s2/2, s/2], but it contains the fixed point
0 on which the 0-composant C is based.

The inverse limit space lim←−([0, s/2], Ts) is

{x = (. . . , x−2, x−1, x0) : Ts(xi−1) = xi ∈ [0, s/2] for all i ≤ 0},
equipped with metric d(x, y) =

∑
n60 2n|xn − yn| and induced (or shift) homeomorphism

σ(. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, Ts(x0)).

Let πk : lim←−([0, s/2], Ts) → I, πk(x) = x−k be the k-th projection map. Since 0 ∈ I,

the endpoint (. . . , 0, 0, 0) is contained in lim←−([0, s/2], Ts). The composant of x ∈ X is

defined as the union of all proper subcontinua of X containing x. The composant of
lim←−([0, s/2], Ts) of (. . . , 0, 0, 0) will be denoted as C; it is a ray converging to, but disjoint

from the core lim←−([c2, c1], Ts) of the inverse limit space. We fix s ∈ (
√

2, 2]; for these

parameters Ts is not renormalizable and lim←−([c2, c1], Ts) is indecomposable.

Combinatorics of tent maps: Recall now some background on the combinatorics of
unimodal maps, see e.g. [8]. The cutting times {Sk}k≥0 are those iterates n (written
in increasing order) for which the central branch of T n

s covers c. More precisely, let
Zn ⊂ [0, c] be the maximal interval with boundary point c on which T n

s is monotone, and
let Dn = T n

s (Zn). Then n is a cutting time if Dn 3 c. Let N = {1, 2, 3, . . . } be the set of
natural numbers and N0 = N ∪ {0}. There is a function Q : N→ N0 called the kneading
map such that

(2.1) Sk − Sk−1 = SQ(k)

for all k. The kneading map Q(k) = {k−2, 0} (with cutting times {Sk}k≥0 = {1, 2, 3, 5, 8, . . . })
belongs to the Fibonacci map. We call Ts Fibonacci-like if its kneading map is eventually
non-decreasing, satisfying Condition (2.2) below as well.

(2.2) Q(k + 1) > Q(Q(k) + 1) for all k sufficiently large.

Remark 2.1. Condition (2.2) follows if the Q is eventually non-decreasing and Q(k) ≤
k − 2 for k sufficiently large. Geometrically, it means that |c − cSk

| < |c − cSQ(k)
|, see

Lemma 2.2 and also [8].

Lemma 2.2. If the kneading map of Ts satisfies (2.2), then

(2.3) |cSk
− c| < |cSQ(k)

− c| and |cSk
− c| < 1

2
|cSQ2(k)

− c|.
for all k sufficiently large.

Proof. For each cutting time Sk, let ζk ∈ ZSk
be the point such that T Sk

s (ζk) = c. Then ζk

together with its symmetric image ζ̂k := 1− ζk are closest precritical points in the sense
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that T j
s ((ζk, c)) 63 c for 0 6 j 6 Sk. Consider the points ζk−1, ζk and c, and their images

under T Sk
s , see Figure 1. Note that ZSk

= [ζk−1, c] and T Sk
s ([ζk−1, c]) = DSk

= [cSQ(k)
, cSk

].

r
cSQ(k)

r
c

r
cSk

r
cSQ2(k)

rζ̂Q(Q2(k)+1)+1 rζ̂Q(Q2(k)+1)

︸ ︷︷ ︸
DSk

?
TSk

s

r
ζk−1

r
ζk

r
c

Figure 1. The points ζk−1, ζk and c, and their images under T Sk
s .

Since Sk+1 = Sk + SQ(k+1) is the first cutting time after Sk, the precritical point of lowest

order on [c, cSk
] is ζQ(k+1) or its symmetric image ζ̂Q(k+1). Applying this to cSk

and cQ(k),
and using (2.2), we find

cSk
⊂ (ζQ(k+1)−1, ζ̂Q(k+1)−1) ⊂ (ζQ(Q(k)+1), ζ̂Q(Q(k)+1)) ⊂ (cSQ(k)

, ĉSQ(k)
).

Therefore |cSk
− c| < |cSQ(k)

− c|. Since T Sk
s |[ζk−1,c] is affine, also the preimages ζk−1 and

ζk of cSQ(k)
and c satisfy |ζk − c| < |ζk−1 − ζk|. Applying (2.2) twice we obtain

(2.4) Q(k + 1) > Q(Q2(k) + 1) + 1,

for all k sufficiently large. Therefore there are at least two closest precritical points
(ζ̂Q(Q2(k)+1) and ζ̂Q(Q2(k)+1)+1 in Figure 1) between cSk

and cSQ2(k)
. Therefore

(2.5) |cSk
− c| < |ζ̂Q(Q2(k)+1)+1 − c| < 1

2
|ζ̂Q(Q2(k)+1) − c| < 1

2
|cSQ2(k)

− c|.
¤

Not all maps Q : N→ N0 nor all sequences of cutting times (as defined in (2.1)) correspond
to a unimodal map. As was shown by Hofbauer [15], a kneading map Q belongs to a
unimodal map (with infinitely many cutting times) if and only if

(2.6) {Q(k + j)}j≥1 ≥lex {Q(Q2(k) + j)}j≥1

for all k ≥ 1, where ≥lex indicates lexicographical order. Clearly, Condition (2.2) is
compatible with (and for large k implies) (2.6).

Remark 2.3. The condition {Q(k + j)}j≥1 ≥lex {Q(l + j)}j≥1 is equivalent to |c− cSk
| <

|c− cSl
|. Therefore, because cSk−1

∈ (ζQ(k)−1, ζQ(k)), we find by taking the T
SQ(k)
s -images,

that cSk
∈ [cSQ2(k)

, c] and (2.6) follows. The other direction, namely that (2.6) is sufficient

for admissibility is much more involved, see [15, 8].

Let β(n) = n − sup{Sk < n} for n ≥ 2 and find recursively the images of the central
branch of T n

s (the levels in the Hofbauer tower, see e.g. [8, 7]) as

D1 = [0, c1] and Dn = [cn, cβ(n)].



FIBONACCI-LIKE UNIMODAL INVERSE LIMIT SPACES 5

It is not hard to see that Dn ⊂ Dβ(n) for each n, see [8], and that if J ⊂ [0, s/2] is a
maximal interval on which T n

s is monotone, then T n
s (J) = Dm for some m 6 n.

The condition that Q(k) →∞ has consequence on the structure of the critical orbit:

Lemma 2.4. If Q(k) → ∞, then |Dn| → 0 as n → ∞, c is recurrent and ω(c) is a
minimal Cantor set.

Proof. See e.g. [8]. ¤

Further definitions for inverse limit spaces: A point x = (. . . , x−2, x−1, x0) ∈ C is
called a p-point if x−p−l = c for some l ∈ N0. The number Lp(x) := l is the p-level of x.
In particular, x0 = T p+l

s (c). By convention, the endpoint 0̄ = (. . . , 0, 0, 0) of C is also a
p-point and Lp(0̄) := ∞, for every p. The ordered set of all p-points of composant C is
denoted by Ep, and the ordered set of all p-points of p-level l by Ep,l. Given an arc A ⊂ C
with successive p-points x0, . . . , xn, the p-folding pattern of A is the sequence

FPp(A) := Lp(x
0), . . . , Lp(x

n).

The folding pattern of composant C, denoted by FP (C), is the sequence Lp(z
1), Lp(z

2), . . . ,
Lp(z

n), . . . , where Ep = {z1, z2, . . . , zn, . . . } and p is any nonnegative integer. Let q ∈ N,
q > p, and Eq = {y0, y1, y2, . . . }. Since σq−p is an order-preserving homeomorphism of C,
it is easy to see that σq−p(zi) = yi for every i ∈ N, and Lp(z

i) = Lq(y
i). Therefore the

folding pattern of C does not depend on p.

An arc A in lim←−([0, s/2], Ts) is said to p-turn at cn if there is a p-point a ∈ A such that

a−(p+n) = c, so Lp(a) = n. This implies that πp : A → [0, s/2] achieves cn as a local
extremum at a. If x and y are two adjacent p-turning points on the same arc-component,
then πp([x, y]) = Dn for some n, so πp(x) = cn and πp(y) = cβ(n) or vice versa. Let us call
x and y (or πp(x) and πp(y)) β-neighbors in this case. Notice, however, that there may be
many post-critical points between πp(x) and πp(y). Obviously, every p-turning point has
exactly two β-neighbors, except the endpoint (. . . , 0, 0, 0) of C whose β-neighbor (w.r.t.
p) is by convention the first proper p-turning point in C, necessarily with p-level 1.

3. The Construction of Chains

A space is chainable if there are finite open covers C = {`i}N
i=1, called chains, of arbitrarily

small mesh (mesh C = maxi diam `i) with the property that the links `i satisfy `i ∩ `j 6= ∅
if and only if |i− j| 6 1. The combinatorial properties of Fibonacci-like maps allow us to
construct chains Cp such that whenever an arc A p-turns in ` ∈ Cp, i.e., enters and exits
` through the same neighboring link, then the projections πp(x) = πp(y) of the first and
last p-point x and y of A ∩ ` depend only on ` and not on A, see Proposition 3.3.

We will work with the chains which are the π−1
p images of chains of the interval [0, s/2].

More precisely, we will define a finite collection of points G = {g0, g1, . . . , gN} ⊂ [0, s/2]
such that |gm − gm+1| ≤ s−pε/2 for all 0 ≤ m < N and |0 − g0| and |s/2 − gN | positive
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but very small. From this one can make a chain C = {`n}2N
n=0 by setting

(3.1)

{
`2m+1 = π−1

p ((gm, gm+1)) 0 ≤ m < N,
`2m = π−1

p ((gm − δ, gm + δ) ∩ [0, s/2]) 0 ≤ m ≤ N,

where min{|0 − g0|, |s/2 − gN |} < δ ¿ minm{|gm − gm+1|}. Any chain of this type has
link of diameter < ε.

Remark 3.1. We could have included all the points ∪j≤pT
−j
s (c) in G to ensure that

T p
s |(gm,gm+1) is monotone for each m, but that is not necessary. Naturally, there are chains

of lim←−([0, s/2], Ts) that are not of this form.

For a component A of C ∩ `, we have the following two possibilities:
(i) C goes straight through ` at A, i.e., A contains no p-point and πp(∂A) = ∂πp(`); in
this case A enters and exits ` from different sides.
(ii) C turns in `: A contains (an odd number of) p-points x0, . . . , x2n+1 of which the middle
one xn has the highest level, and πp(∂A) is a single point in ∂πp(`), in this case A enters
and exits ` from the same side.

Before giving the details of the p-chains we will use, we need a lemma.

Lemma 3.2. If the kneading map Q of Ts is eventually non-decreasing and satisfies
Condition (2.4), then for all n ∈ N there are arbitrarily small numbers ηn > 0 with the
following property: If n′ > n is such that n ∈ orbβ(n′), then either |cn′ − cn| > ηn or
|cn′′ − cn| < ηn for all n ≤ n′′ ≤ n′ with n′′ ∈ orbβ(n′).

To clarify what this lemma says, Figure 2 shows the configuration of levels Dk that should
be avoided, because then ηn cannot be found.

¨
§

¨
§

¨
§

¨
§

Dm1 cn

Dk1 ,m1 = β(k1)
Dm2

Dk2 ,m2 = β(k2)
Dm3

Dk3 ,m3 = β(k3)
Dm4

Dk4 ,m4 = β(k4)
. . . . . .

. . .
·

Figure 2. Linking of levels Dmi
with β(m1) = β(m2) = β(m3) = · · · = n.

The semi-circles indicates that two intervals have an endpoint in common.
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Proof. We will show that the pattern in Figure 2 (namely with cm1 < cm2 < cm3 < . . .
and cmi−1

< cki
for each i) does not continue indefinitely. To do this, we redraw the first

few levels from Figure 2, and discuss four positions in Dm1 where the precritical point
T−r

s (c) ∈ Dm1 of lowest order r could be, indicated by points a1, . . . , a4, see Figure 3.

¨
§

¨
§

¨
§

Dm1

r
cn

r
cm1

rck1Dk1 ,m1 = β(k1)
Dm2

r
cn

r
cm2

rck2
Dk2 ,m2 = β(k2)

Dm3

Dk3 ,m3 = β(k3)

r
cn

r
cm3

rck3

a1 a2 a3 a4

Figure 3. Linking of levels Dmi
, i = 1, 2, 3 and three possible positions of

the precritical point aj = T−r
s (c) ∈ Dm1 of lowest order r.

Case a1 ∈ (cm1 , cm2): Take the r + 1-th iterate of the picture, which moves Dm1 and Dk1

to levels with lower endpoint c1. then we can repeat the argument, until we arrive in one
of the cases below.

Case a2 ∈ (cm2 , ck1): Take the r-th iterate of the picture, which moves Dm1 , Dk1 , Dm2

and Dk2 all to cutting levels and cr+k2 ∈ (c, cr+k3). But m2 > m1, whence k2 > k1, and
this contradicts that |cSk2

− c| < |cSk1
− c|. (If a2 ∈ (cm3 , ck2), then the same argument

would give that r + k2 < r + k3 are both cutting times, but |c− cr+k2| < |c− cr+k3|.)
Case a3 ∈ (ck1 , cm3): Take the r-th iterate of the picture, which moves Dm1 , Dm2 and
Dk2 to cutting levels, and Dm3 to a non-cutting level Du with u := m3 + r such that

Sj := n + r = β(u) = β(m2 + r) = β2(k2 + r).

The integer u such that cu is closest to c is for u = Si + Sj where j is minimal such
that Q(i + 1) > i, and in this case, the itineraries of Ts(c) and Ts(cu) agree for at most
SQ2(i+1)+1−1 iterates (if Q(i+1) = j+1) or at most SQ(j+1)−1 iterates (if Q(i+1) > j+1).
Call Sh := k2+r, then j = Q2(h) and the itineraries of Ts(cSh

) and c agree up to SQ(h+1)−1
iterates. By assumption (2.4), we have

Q(j + 1) ≤ Q2(i + 1) + 1 = Q(j + 1) + 1 = Q(Q2(h) + 1) + 1 < Q(h + 1),

but this means that Du and DSh
cannot overlap, a contradiction.

Case a4 ∈ (ck2 , cn): Then take the r + 1-st iterate of the picture, which has the same
structure, with cn replaced by T r+1

s (a1) = c1. Repeating this argument, we will eventually
arrive at Case a2 or a3 above.
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Therefore we can find ηn such that cn − ηn separates cn from all levels Dki
, β2(ki) = n

that intersect Dm1 . Indeed, in Case a2, we place cn − ηn just to the right of ck1 and in
Case a3 (and hence ck1 ∈ Dk2), we place cn − ηn just to the right of ck2 . ¤
Proposition 3.3. Under the assumption of Lemma 3.2, given ε > 0, there exists p ∈ N
and a chain C = Cp of lim←−([0, s/2], Ts) with the following properties:

(1) The links of C have diameter < ε.
(2) For each n ∈ N, there is exactly one link ` ∈ C such that every x ∈ lim←−([0, s/2], Ts)

that p-turns at cn belongs to `.
(3) If y ∈ ` is a p-point not having the lowest p-level of p-points in `, then both

β-neighbors of y belong to `.
(4) If y 6∈ ` is a β-neighbor of x above, then the other β-neighbor of y either lies

outside `, or has p-level n as well.

Proof. We will construct the chain C as outlined in the beginning of this section, see
(3.1). So let us specify the collection G by starting with at least d2sp/εe approximately
equidistant points gm ∈ [0, s/2] so that no gm lies on the critical orbit, and then refining
this collection inductively to satisfy parts 2.-4. of the proposition.

Start the induction with n = 1, i.e., the point c1. Note that c1 /∈ G, so there will be only
one link ` ∈ C with c1 ∈ πp(`). Let η1 ∈ (0, s−pε/2) be as in Lemma 3.2. Then, since each
k contains 1 in its β-orbit, each Dk intersecting (c1−η1, c1] is either contained in (c1−η1, c1]
or has c1 as lower endpoint (i.e., β(k) = 1). In the latter case, also Dl ∩ (c1 − η1, c1] = ∅
for each l with β(l) = k. Hence by inserting c1 − η1 into G, we can refine the chain C so
that properties 3. and 4. holds for the link ` with πp(`) 3 c1.

Suppose we have refined the chain to accommodate links ` such that πp(`) 3 ci for each
i < n. Then cn does not belong to the set G created so far, so there will be only one link
` ∈ C with πp(`) 3 cn. Again, find ηn ∈ (0, s−pε/2) as in Lemma 3.2 and extend G with
cn + ηn if cn is a local minimum of T n

s or with cn − ηn if cn is a local minimum of T n
s .

We skip the induction step if Dn already belongs to complementary interval to G extended
with all point ci ± ηi created so far. Since |Dn| → 0, the induction will eventually cease
altogether, and then the required set G is found. ¤

4. Symmetric and Quasi-Symmetric Arcs

From now on all chains Cp are as in Proposition 3.3. Also, we assume that the slope s is
such that Ts is Fibonacci-like and we abbreviate T := Ts.

Definition 4.1. An arc A ⊂ C such that ∂A = {u, v} and A∩Ep = {x0, . . . , xn} is called
p-symmetric if πp(u) = πp(v) and Lp(x

i) = Lp(x
n−i), for every 0 6 i 6 n.

It is easy to see that if A is p-symmetric, then n is even and Lp(x
n/2) = max{Lp(x

i) :
xi ∈ A ∩ Ep}. The point xn/2 is called the center or midpoint of A.
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It frequently happens that πp(u) 6= πp(v), but u and v belong to the same link ` 3 Cp. Let
us call the arc components Au, Av of C∩ ` that contain u and v respectively the link-tips
of A, see Figure 4. Sometimes we can make A p-symmetric by removing the link-tips.
Let us denote this as A \ `-tips. Adding the closure of the link-tips can sometimes also
produce a p-symmetric arc.

¤£ ¡¢¨
§ ¡¢

A = [u, v]`

¡
¡

¡ª

link-tips Au and Av

¢
¢

¢
¢

¢
¢¢®

'

&

$

%
¤£ r

r

v

u

Figure 4. The arc A is neither p-symmetric, nor quasi-p-symmetric, but
both arcs A \ `-tips and A ∪ Cl(`-tips) are p-symmetric.

Remark 4.2. (a) Let A be an arc and m ∈ A be a p-point of maximal p-level, say
Lp(m) = L. Then πp is one-to-one of both components of σ1−L(A\{m}), so m is the only
p-point of p-level L. It follows that between every two p-points of the same p-level, there
is a p-point m of higher p-level.

(b) If A 3 m is the maximal open arc such that m has the highest p-level on A, then we
can write Cl A = [x, y] or [y, x] with Lp(x) > Lp(y) > Lp(m) =: L, and πp is one-to-one
on σ−L(Cl A). Here Lp(x) = ∞ is possible, but if Lp(x) < ∞, then A′ := πp ◦ σ−L(A) is a
neighborhood of c with boundary points cSk

= πp ◦σ−L(x) and cSl
= πp ◦σ−L(y) for some

k, l ∈ N such that l = Q(k). By Lemma 2.2 this means that the arc [x,m] is shorter than
[m, y].

Definition 4.3. Let A be an arc of the composant C. We say that the arc A is quasi-p-
symmetric with respect to Cp if

(i) A is not p-symmetric;
(ii) ∂A belongs to a single link `;
(iii) A \ `-tips is p-symmetric;
(iv) A∪`-tips is not p-symmetric. (So A cannot be extended to a symmetric arc within

its boundary link `.)

Suppose A = [u, v] ⊂ C is a quasi-p-symmetric arc with u, v ∈ `, and let Au and Av be arc
components of ` that contain u and v respectively. We will sometimes say, for simplicity,
that the arc [Au, Av] between Au and Av, including Au and Av, is quasi-p-symmetric.

Definition 4.4. A quasi-p-symmetric arc A = [u, v] with midpoint m is called basic if
there is no p-point w ∈ (u, v) such that either [u,w] ⊂ [u,m] or [w, v] ⊂ [m, v] is a
quasi-p-symmetric arc.

Example 4.5. Let us consider the Fibonacci map and the corresponding inverse limit
space. Then the composant C contains the arc A = [x0, x33] such that the folding pattern
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of A is as follows (see Figure 5):

(4.1) 27 6

quasi-p-symmetric︷ ︸︸ ︷
1 14 1 6 1︸ ︷︷ ︸

basic

0 3 0 1 0 2 0 1 4 1 9 1 4 1 0 2 0 1 0 3 0 1 6 1︸ ︷︷ ︸
sym

0 3 0

We can choose a chain Cp such that the p-points with p-levels 1 and 14 belong to the same
link. The arc [x2, x6] with the folding pattern 1 14 1 6 1 is a basic quasi-p-symmetric

¤ ¤ ¤ ¤ ¤ ¡¢¤££££££ ¤£¤ ¤££ ¤ ¤££¤ ¤ ¤£££

¡¢
¡

¢

¡
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¡
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¡

¢ ¢

¡

¢

¡

¢

¡

¢

¡

¢

¡
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¡

¢

¡

¢

︸ ︷︷ ︸
1

︸︷︷︸
14

︸︷︷︸
9

︸︷︷︸
27

︸ ︷︷ ︸
6

︸︷︷︸
4

?
0

︸ ︷︷ ︸
3

︸︷︷︸
2

'

&

$

%

`

rx17

rx0

rx1

rx3

rx4 rx2 r
x30

rx6

rx8rx32

Figure 5. The arc A with folding pattern as in (4.1), with p-points of
p-level 1 and 14 in a single link `.

arc; the arc [x2, x30] with the folding pattern as in (4.1) under the wide brace is also a
quasi-p-symmetric but not basic, because it contains [x2, x6]. Notice also that the arc
[x3, x30] is a quasi-p-symmetric arc for which Proposition 4.12 and Proposition 4.10 do
not work (see the folding patterns to the left of [x3, x30] and to the right of [x3, x30]).

Lemma 4.6. Let Cp be a chain and [x, y] a quasi-p-symmetric arc with respect to this
chain (not contained in a single link) with midpoint m and such that Lp(x) ≥ Lp(m).
Let Ax be the link-tip of [x, y] which contains x. Then Lp(m) > Lp(z) for all p-points
z ∈ [x, y] \ ({m} ∪ Ax).

Proof. Let A = [a, b] 3 m be the smallest arc with p-points a, b of higher p-level than
Lp(m), say m ∈ [a, b] and Lp(m) ≤ Lp(a) ≤ Lp(b). By part (a) of Remark 4.2 we obtain
L := Lp(m) < Lp(a) < Lp(b). Since Lp(x) ≥ Lp(m), [x, m] contains one endpoint of A.
We can assume that [x, m]\A is contained in a single link, because otherwise [x, y]\`-tips
is not p-symmetric. If [y, m] does not contain the other endpoint of A, then the statement
is proved.

Let us now assume by contradiction that A ⊂ [x, y]. Again, we can assume that [y, m]\A
is contained in a single link, because otherwise [x, y] \ `-tips is not p-symmetric. By part
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(a) of Remark 4.2 once more we have πp+L([a, b]) = [cSl
, cSk

] 3 c = πp+L(m) for some k
and l = Q(k), and |πp+L(a) − c| > |πp+L(b) − c|, see the top line of Figure 6. It follows
that [a, b] contains a symmetric open arc (b′, b) where b′ ∈ (a, b) is the unique point such
that T (πp+L(b′)) = T (πp+L(b)). Since [x, y] \ `-tips is p-symmetric, Lp(b) > Lp(m) implies
b, b′ ∈ `-tips. Moreover, the arc [a, b′] is contained in the same link ` as b.

If k and l are relatively small, then π−1
p (cSl

) and π−1
p (cSk

) belong to different links of Cp, so
we can assume that they are so large that we can apply Condition (2.2). Let r = Q(k+1)

πp+L(a) = cSl
cSk

= πp+L(b)c = πp+L(m)

ζ̂r′

πp+L(b′)

ζ̂r ζr = πp+L(n)

?

T Sr′ = T SQ(l+1)

cSl+1

cSQ(l+1)
= πp+L−Sr′ (m)

c ζt
¥
¦cSk+Sr′

?

T St = T Sr−Sr′

¨
§cSQ(Q(k+1))

= cSt cSQ(k+1)
= πp+L−Sr(m)

c
¥
¦cSk+1

?

T

¨
§c1+St c1 = πp+L−Sr−1(n)¥

¦¨
§c1+SQ(k+1)

= πp+L−Sr−1(m) ¥
¦c1¨

c1+Sk+1

πp+L−Sr(b
′)

Figure 6. The image of πp+L([x, y]) 3 c = πp+L(m) under appropriate
iterates of T .

and r′ = Q(l +1) be the lowest indices such that the closest precritical points ζ̂r′ ∈ [cSl
, c]

and ζr ∈ [c, cSk
]. By (2.2), r′ = Q(l + 1) = Q(Q(k) + 1) < Q(k + 1) = r. Consider the

image of [cSl
, cSk

] first under T Sr′ and then under T Sr (second and third level in Figure 6).

By the choice of r, we obtain πp+L−Sr([m, b]) = [cSk+1
, cSQ(k+1)

], and πp+L−Sr([a, b′]) 3 cSt

for t = Q(Q(k+1)). As in (2.5), |cSt−c| > |cSQ(k+1)
−c| > |cSk+1

−c|, and taking one more

iterate, we see that [c1+Sk+1
, c1] ⊂ [c1+SQ(k+1)

, c1] ⊂ [1 + cSt , c1] (last level in Figure 6).

Let n ∈ [m, b] be such that πp+L(n) = ζr, see the first level in Figure 6. Since [a, b′] belongs
to a single link ` ∈ Cp, m ∈ ` as well. Suppose that [a,m] is not contained in `. Then
there is a maximal symmetric arc [d′, d] with midpoint n such that the points d, d′ /∈ `.
Then the arcs [d′, a] and [d,m] both enter the same link ` but they have different ‘first’
turning levels in `, contradicting the properties of Cp from Proposition 3.3.
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This shows that [a,m] ⊂ `. In the beginning of the proof we argued that the components
of [x, y] \ A belong to the same link, so that means that the entire arc [x, y] is contained
in a single link, contradicting the assumptions of the proposition. This concludes the
proof. ¤
Remark 4.7. In fact, this proof shows that the p-point b ∈ ∂A of the highest p-level
belongs to [m, x]. Indeed, if a ∈ [m,x], then because [m, b] has shorter arclength than
[m, a], either a and b, and therefore x and y do not belong to the same link ` (whence
[x, y] is not quasi-p-symmetric), or the arc [a, b] itself is quasi-p-symmetric and contradicts
Lemma 4.6.

Corollary 4.8. Let [x, y] ⊂ C be a quasi-p-symmetric arc, not contained in a single
link, such that Lp(x) > Lp(m) > Lp(y) for the midpoint m. If [m,x] is longer than [y,m]
measured in arc-length, then there exists a p-point y′ ∈ Ax such that [y, y′] is p-symmetric.

Proof. As in the previous proof, b ∈ [x,m] and y ∈ [m, b′] and take y′ ∈ [m, b] such that
πp+L(y′) = πp+L(y). ¤
Remark 4.9. If Ax 3 x and Ay 3 y are maximal arc components of C ∩ ` (with still
Lp(x) > Lp(m) > Lp(y)), and my is the midpoint of Ay, then there is y′ ∈ Ax such that
[y′,my] is p-symmetric.

In other words, when C enters and turns in a link `, then it folds in a symmetric pattern,
say with levels L1, L2, . . . , Lm−1, Lm, Lm−1, . . . , L2, L1. The nature of the chain Cp is such
that L1 depends only on `. The Corollary 4.8 does not say that the rest of the pattern
is the same also, but only that if A ⊂ C is such that A \ `-tips is p-symmetric, then the
folding pattern at the one link-tip is a subpattern (stopping at a lower center level) of the
folding pattern at the other link-tip.

Proposition 4.10 (Extending a quasi-p-symmetric arc at its higher level endpoint). Let
A = [x, y] ⊂ C be a basic quasi-p-symmetric arc, not contained in a single link, such
that the p-points x, y ∈ ` are the midpoints of the link-tips of A and Lp(x) > Lp(y).
Let m be the midpoint of A. Then there exists a p-point m′ such that the arc [m,m′] is
(quasi-)p-symmetric with x as its midpoint.

Remark 4.11. The conditions are all crucial in this lemma:

(a) It is important that y is a p-point. Otherwise, if C goes straight through ` at y,
then it is possible that x is the single p-point in Ax (where Ax is the arc components
of C ∩ ` containing x) and [v, x] is shorter than [x, m], and the lemma would fail.

(b) Without the assumption that [x, y] is basic the lemma can fail. If Figure 5 the
quasi-p-symmetric arc [x, y] = [x3, x30] is not basic, and indeed there is no p-point
m′ ∈ [x, v] = [x3, x0] with Lp(m

′) = Lp(m) = Lp(x
17) = 9.

Proof. Since [u, y] is p-symmetric, Lp(u) = Lp(y) < Lp(m) and x 6= u. Let w be the
first p-point ‘beyond’ y such that Lp(w) > Lp(x). Take L = Lp(x); Figure 8 shows the
configuration of the relevant points on [w, v] and their images under πp ◦ σ−L denoted by
˜-accents. Clearly x̃ = c.
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Figure 7. The configuration in Proposition 4.10 where the existence of p-
point m′ is proved. v is the first p-point ’beyond’ x such that Lp(v) > Lp(x)
and u is such that [u, y] is p-symmetric with the midpoint m.

rw ry rm ru rx ru
′

rvra
′

?
πp ◦ σ−L

rw̃ rỹ rm̃ rũ rx̃ = c rũ
′

rṽrã
′

rãrũ
′′

?
T r

HHHHHHHHHHHj ¡¢rr
c rT r(ũ)rT r(ũ′′)rT r(m̃)

r
T r(ṽ)

r T r(x̃)

Figure 8. The configuration of points on [w, v] and their images under
πp ◦ σ−L and an additional T r.

Case I: |w̃ − c| < |ṽ − c|. Then by Remark 4.2 (b), w̃ = cSl
and ṽ = cSk

with k = Q(l).
The points ỹ, m̃, ũ have symmetric copies ỹ′, m̃′, ũ′ (i.e., T (ỹ) = T (ỹ′), etc.) in reverse
order on [c, ṽ], and the preimage under σL ◦π−1

p of the copy of m̃′ yields the required point
m′.

Case II: |w̃ − c| > |ṽ − c|, so in this case, l = Q(k). We can in fact assume that
|m̃ − c| > |ṽ − c| because otherwise we can find m′ precisely as in Case I. Now take the
p-point a′ ∈ (x, v) of maximal p-level, and let a ∈ [m, x] be such that their πp◦σ−L-images
ã and ã′ are each other symmetric copies. Let r be such that T r(ã) = c; the bottom part
of Figure 8 shows the image of [m̃, ṽ] under T r. The point T r(x̃) and T r(v) are each others
β-neighbors, and since Lp(v) > Lp(x), and by (2.2), |T r(x̃)− c| > |T r(v)− c|. Therefore
[T r+j(x̃), T r+j(ã′)] ⊃ [T r+j(ṽ), T r+j(ã′)] for all j ≥ 1.
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If a, a′ ∈ `, then since [x, a] ⊂ `, this would imply that [a′, v] ⊂ ` as well, contrary to the
fact that x is the midpoint of Ax.

If on the other hand a, a′ /∈ `, then there is a point u′′ ∈ [m, a] such that T r(ũ′′) and
T r(ũ) are each other symmetric copies. It follows that [u′′, x] is a quasi-p-symmetric arc
properly contained in [x, y], contradicting that [x, y] is basic. ¤
Proposition 4.12 (Extending a quasi-p-symmetric arc at its lower level endpoint). Let
A = [x, y] ⊂ C be a basic quasi-p-symmetric arc, not contained in a single link, such that
x and y are the midpoints of the link-tips of A and Lp(x) > Lp(y). Let m be the midpoint
of A. Then there exists a point a such that [m, a] is a quasi-p-symmetric arc with y as
the midpoint.

Remark 4.13. The assumption that [x, y] is basic is essential. Without it, we would have
a counter-example in [x, y] = [x3, x30] in Figure 5. The quasi-p-symmetric arc [x3, x30] is
indeed not basic, because [x3, x6] is a shorter quasi-p-symmetric arc in the figure. There
is a point n = x32 beyond y with Lp(n) = Lp(x

32) = 3 > 1 = Lp(y), making it impossible
that y is the midpoint of a quasi-p-symmetric arc stretching unto m.
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A B

Figure 9. The arcs A and B and the relevant points for Proposition 4.12,
which is meant to show that the point n does not exist in B.

Proof. A quasi-p-symmetric arc is not contained in a single link, so [x,m] 6⊂ `. Let
H = [x, n] ⊃ A be the smallest arc containing a point n ‘beyond’ y with Lp(n) > Lp(y).

Corollary 4.8 implies that the arc [x,m] contains a p-point y′ with Lp(y
′) = Lp(y). Let b

and b′ be the p-points having the highest p-level on the arcs [y, m) and [y′,m) respectively.
By symmetry, Lp(b) = Lp(b

′), and possibly b = y, b′ = y′. Let z ∈ [x, y′] be the point
closest to y′ such that Lp(z) > Lp(b); possibly z = x. Since b′ ∈ [y′,m), we have

Lp(y) = Lp(y
′) 6 Lp(b) = Lp(b

′) < Lp(m).

Take L := Lp(b) and let H̃ = πp◦σ−L(H). Since y is the midpoint of its link-tip, [y, n] 6⊂ `.
Therefore π−1

p (c)∩σ−L(H) ⊃ {σ−L(b), σ−L(b′)}, and z̃ = πp ◦σ−L(z) and ñ = πp ◦σ−L(n)

have m̃ = πp ◦ σ−L(m) as common β-neighbor, see Figure 10. Since Lp(z) > Lp(b) there
is k such that z̃ = cSk

. Also take l such that ñ = cSl
and j such that m̃ = cSj

. Let
ỹ = πp ◦ σ−L(y) and ỹ′ = πp ◦ σ−L(y′).
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Figure 10. The arc H̃ drawn as multiple curve, its preimage under T
Sj
s

and the relevant points on them.

We claim that there is a point a ∈ [n,m] such that

ã := πp ◦ σ−L(a) ∈ [cSl
, ỹ] and Ts(ã) = Ts(m̃).

Since cSj
is β-neighbor to both cSl

and cSk
, we have three cases:

(1) j = Q(k) and l = Q(j), so l = Q2(k). In this case, Equation (2.2) and Remark 2.1
imply that |c − cSl

| > |c − cSQ(k)
|, so [cSl

, c] contains the required point ã with

Ts(ã) = Ts(m̃). By the same token, |cSk
− c| < |cSj

− c| = 1
2
|ã − m̃|. Since

|ỹ − c| = |ỹ′ − c| < |cSk
− c|, we indeed obtain that ã ∈ [cSl

, ỹ].
(2) j = Q(l) and k = Q(j), so k = Q2(l). Then Remark 2.3 implies that |c − cSk

| >
|c − cSl

|. But this would mean that the arc [n,m] is shorter than [z, m] and in
particular that [y, n] ⊂ `, contradicting that y is the midpoint of its link-tip.

(3) j = Q(k) = Q(l). In this case, we pull H̃ back for another Sj iterates, or more
precisely, we look at the arc πp ◦ σ−Sj−L(H). The endpoints of this arc are cSk−1

and cSl−1
which are therefore β-neighbors. If l − 1 = Q(k − 1), then we find

Q(k) = Q(l) = Q(Q(k − 1) + 1)

which contradicts Condition (2.2) with k replaced by k − 1. If k − 1 = Q(l − 1),
then we find

Q(l) = Q(k) = Q(Q(l − 1) + 1)

which contradicts Condition (2.2) with k replaced by l − 1.

This proves the claim.

Suppose now that ỹ 6= c (i.e., y 6= b). Then b, b′ /∈ ` because y has the largest p-
level in its link-tip. Since |cSk

− c| < |c − m̃|, there is a point u ∈ [z, m] such that
ũ = πp ◦σ−L(u) ∈ [c, m̃] and Ts(ũ) = Ts(ỹ). This means that [x, u] is a quasi-p-symmetric
arc properly contained in [x,m], contradicting the assumption that [x, y] is a basic quasi-
symmetric arc.
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Therefore y = b, so there are no p-points between y and m of level higher than Lp(y).
Instead, the arc [a,m] has midpoint y, and is the required quasi-p-symmetric arc, proving
the lemma. ¤

Remark 4.14. Let A = [x, y] be a basic quasi-p-symmetric arc such that x and y are the
midpoints of the link-tips of A and Lp(x) > Lp(y). Let `m be the link which contains the
midpoint m of A, and let Am be the arc component of `m containing m. Then, by the
lemma above, A \ (`-tips ∪ Am) does not contain any p-point z with Lp(z) > Lp(y).

5. Concatenation of Quasi-p-symmetric Arcs

Definition 5.1. We say that the arc [x, y] is decreasingly (basic) quasi-p-symmetric if it
is the concatenation of (basic) quasi-p-symmetric arcs where the p-levels of the midpoints
decrease. To be precise, if there are p-points x = x0, x1, x2, . . . , xn−1 and xn = y can be a
p-point or not, such that the following hold:

(i) [xi−1, xi+1] is a (basic) quasi-p-symmetric arc with midpoint xi, for i = 1, . . . , n−1.
(By definition of a (basic) quasi-p-symmetric arc, the points x2i all belong to a
single link, and the points x2i−1 belong to a single link as well.)

(ii) Lp(x
i) > Lp(x

i+1), for i = 1, . . . , n− 1 (and if y is a p-point then also Lp(x
n−1) >

Lp(y)).

Similarly, we say that the arc [x, y] is increasingly (basic) quasi-p-symmetric if it is the
concatenation of (basic) quasi-p-symmetric arcs where the p-levels of the midpoints in-
crease.

Example 5.2. Consider the Fibonacci inverse limit space, and let our chain Cp be such
that p-points with p-levels 1 and 14 belong to the same link `, but p-points with the
p-level 9 are not contained in `. Since p-points with p-level 14 belong to the same link `
as p-points with p-level 1, also the p-points with p-levels 22, 35, 56 and 77 belong to `.
Let p-points with p-level 43 belong to the same link as p-points with p-level 9.

(1) Example of a basic decreasingly quasi-p-symmetric arc. Let A = [y0, y12]
be an arc with the following folding pattern:

1 22 77 22 1 9 43 9 1︸ ︷︷ ︸
basic

basic︷ ︸︸ ︷
22 1 9 1

Let xi be as in the above definition. Then x1 = y2, x2 = y6, x3 = y9, x4 = y11,
and x5 = y12. So [y2, y9] is basic quasi-p-symmetric with midpoint y6, [y6, y11] is
basic quasi-p-symmetric with midpoint y9, and [y9, y12] is basic quasi-p-symmetric
with midpoint y11. Also Lp(y

2) = 77 > Lp(y
6) = 43 > Lp(y

9) = 22 > Lp(y
11) =

9 > Lp(y
12) = 1.
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Figure 11. Illustration of a basic decreasingly quasi-p-symmetric arc. The
point y is not a p-point here; instead, the arc A goes straight through ˆ̀ at
y.

(2) Example of a non-basic decreasingly quasi-p-symmetric arc. Let [y0, y72]
be an arc with the following folding pattern:

quasi-p-symmetric︷ ︸︸ ︷
1 22 1 56 1 22 1 9 1︸ ︷︷ ︸

basic

4 1 0 2 0 1 0 3 0 1 6 1 14 1 35 1 14 1 6 1 0 3 0 1 0 2 0 1 4 1 9 1︸ ︷︷ ︸
basic

basic︷ ︸︸ ︷
22 1 9 1 4 1 0 2 0 1 0 3 0 1 6 1 14 1 6 1 0 3 0 1 0 2 0 1 4

sym︷ ︸︸ ︷
1 9 1︸ ︷︷ ︸

quasi-p-symmetric

Let xi be again as in the above definition. Then x1 = y3, x2 = y23, x3 = y41, x4 =
y57, and x5 = y72. So, arcs [y3, y41], [y23, y57] and [y41, y72] are quasi-p-symmetric,
and Lp(y

3) = 56 > Lp(y
23) = 35 > Lp(y

41) = 22 > Lp(y
57) = 14 > Lp(y

72) = 1.
(3) Example of an arc that is the concatenation of two quasi-p-symmetric

arcs (one of them is basic), but not decreasingly quasi-p-symmetric. Let
[y0, y40] be an arc with the following folding pattern:

1 22 77 22 1 9 43 9 1︸ ︷︷ ︸
basic

22 1 9 1 4 1 0 2 0 1 0 3 0 1 6 1 14 1 6 1 0 3 0 1 0 2 0 1 4 1 9 1︸ ︷︷ ︸
quasi-p-symmetric

Then [y2, y9] is basic quasi-p-symmetric with midpoint y6, [y6, y11] is basic quasi-p-
symmetric with midpoint y9, and [y9, y12] is basic quasi-p-symmetric with midpoint
y11. However, [y9, y40] is quasi-p-symmetric with midpoint y25 and [y6, y25] is
neither basic quasi-p-symmetric, nor quasi-p-symmetric. So A = [y0, y40] is not a
decreasingly quasi-p-symmetric arc. Note that [y0, y12] is a decreasingly quasi-p-
symmetric arc.

Definition 5.3. Let `0, `1, . . . , `k be the links in Cp that are successively visited by an arc
A ⊂ C, and let Ai ⊂ Cl(`i) be the corresponding maximal subarcs of A. (Hence `i 6= `i+1,
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`i ∩ `i+1 6= ∅ but `i = `i+2 is possible if A turns in `i+1.) We call A p-link-symmetric if
`i = `k−i for i = 0, . . . , k. In this case, we say that Ai is p-link-symmetric to Ak−i.

Remark 5.4. Every p-symmetric and quasi-p-symmetric arc is p-link-symmetric by defini-
tion, but there are p-link-symmetric arcs which are not p-symmetric or quasi-p-symmetric.
This occurs if A turns both at Ai and Ak−i, but the midpoint of Ai has a higher p-level
than the midpoint of Ak−i and i /∈ {0, k}. Note that for a p-link-symmetric arc A, if U
and V are p-link-symmetric arc components which do not contain any boundary point of
A, then U contains at least one p-point if and only if V contains at least one p-point.

Proposition 5.5. Let A be a non-basic quasi-p-symmetric arc. Then there are k, n,m, d ∈
N, d < k, such that

A ∩ Ep = {x0, . . . , xk, . . . , xk+n, . . . , xk+n+m},
[x0, xk] is a basic quasi-p-symmetric arc with midpoint xk−d and [xk, xk+n] is p-symmetric.
Moreover,

(i) If [xk+n, xk+n+m] is p-symmetric, then [x−k+m/2, xk+n+3m/2] is not p-link-symmetric.
(ii) If [xk+n, xk+n+m] is a basic quasi-p-symmetric arc, then A is contained in a de-

creasingly quasi-p-symmetric arc consisting of at least two quasi-p-symmetric arcs.
More precisely, [x−k−n/2, xk+n/2] and [xk+n/2, xk+2m+3n/2] are the quasi-p-symmetric
arcs contained in the decreasingly quasi-p-symmetric arc [x−k−n/2, xk+2m+3n/2] con-
taining A.

Proof. Since A is a non-basic quasi-p-symmetric arc, there is a basic quasi-p-symmetric arc
which we can label [x0, xk]. The arc [xk, xk+n] in the middle is p-symmetric by definition
of quasi-p-symmetry, and it has the same midpoint xk+n/2 as A. The arc [xk+n, xk+n+m]
could be either p-symmetric or basic quasi-p-symmetric.

(i) Assume that [xk+n, xk+n+m] is p-symmetric. Without loss of generality we can suppose
that x0 and xk+n+m are the midpoints of the link-tips of A, and also that xk and xk+n are
the midpoints of their arc components. Since the point xk+n+m/2 is the midpoint of the
p-symmetric arc [xk+n, xk+n+m], and the symmetry of the arc [xk, xk+n] can be extended to
the midpoints of its neighboring (quasi-)symmetric arcs, we obtain that d = m/2 and the
point xk−m/2 is the midpoint of the basic quasi-p-symmetric arc [x0, xk]. Proposition 4.10
implies that we can extend [x0, xk−m/2] beyond x0 to obtain the arc [x−k+m/2, xk−m/2]
which is either p-symmetric, or quasi-p-symmetric, and hence p-link-symmetric.

First, let us assume that Lp(x
k+n+m) = 1. Let us consider the arc [xk+n+m/2, xk+n+3m/2].

Its midpoint xk+n+m has p-level 1. If Lp(x
k+n+m−1) = Lp(x

k+n+m+1), then Lp(x
k+n+m−1) =

0. Furthermore xk+n+m−1 6= xk+n+m/2 since a midpoint cannot have p-level zero. It fol-
lows that xk+n+m−2 and xk+n+m+2 have different p-levels, and are not in the same link,
since by Lemma 4.6 there is no quasi-p-symmetric arc whose both boundary points are
p-points and whose midpoint has p-level 1.

If Lp(x
k+n+m−1) 6= Lp(x

k+n+m+1) then again xk+n+m−1 and xk+n+m+1 are not in the same
link (by Lemma 4.6 there is no quasi-p-symmetric arc whose both boundary points are
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p-points and whose midpoint has p-level 1). In either case, [xk+n+m/2, xk+n+3m/2] is not
p-link-symmetric and hence [x−m/2, xk+n+3m/2] is not p-link-symmetric. This proves state-
ment (i) in the case that Lp(x

k+n+m) = 1.

Now for the general case, let L := Lp(x
k+n+m). The basic idea is to shift [x0, xk+n+m]

back by L iterates, and use the above argument. Note that the arcs [xk, xk+n] and
[xk+n, xk+n+m] are p-symmetric and hence Lp(x

k+n/2) > Lp(x
k+n) = Lp(x

k+n+m) = L.
Then σ−L+1(A) is also a quasi-p-symmetric arc which is not basic, the arc σ−L+1([x0, xk])
is a basic quasi-p-symmetric arc and Lp(σ

−L+1(xk+n+m)) = 1. Let

σ−L+1(A) ∩ Ep = {u0, . . . , uk̂, . . . , uk̂+n̂, . . . , uk̂+n̂+m̂},

where uî = σ−L+1(xi). (Note that k̂ 6 k, n̂ 6 n and m̂ 6 m, since note every σ−L+1(xi)

needs to be a p-point.) Then G = [u−k̂+m̂/2, uk̂+n̂+3m̂/2] is an arc with ‘boundary arcs’

[u−k̂+m̂/2, uk̂−m̂/2] and [uk+n+m̂/2, uk+n+3m̂/2] and the midpoint of the latter has p-level 1.
The above argument shows that this arc cannot be p-link-symmetric, and therefore the
whole arc G is not p-link-symmetric with midpoint u = σ−L+1(xk+n/2).

We want to prove that σj(G) is also not p-link-symmetric with the midpoint σj(u) for
j = L− 1.

Let us assume by contradiction that σj(G) is p-link-symmetric. Since [x−k+m/2, xk−m/2] is

p-symmetric, also σj([uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2]) is p-link-symmetric. But [uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2]
has its midpoint at p-level 1, and hence is not p-link-symmetric. Therefore, there exists l <

j such that σl([uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2]) is not p-link-symmetric and σl+1([uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2])

is p-link-symmetric. By Proposition 3.3, and since Lp(σ
l(uk̂+n̂+m̂)) = l+1 6= 0, there exist

v ∈ σl([uk̂+n̂+m̂/2, uk̂+n̂+m̂]) and w ∈ σl([uk̂+n̂+m̂, uk̂+n̂+3m̂/2]) such that Lp(v) = Lp(w) = 0.

Since σl+1(uk̂+n̂+m̂/2) and σl+1(uk̂+n̂+3m̂/2) belong to the same link and Lp(σ
l+1(uk̂+n̂+m̂/2)) 6=

Lp(σ
l+1(uk̂+n̂+3m̂/2)), Proposition 3.3 implies that σl+1(uk̂+n̂+m̂/2) and σl+1(uk̂+n̂+3m̂/2) be-

long to the same link as σ(v) and σ(w). But then σl(uk̂+n̂+m̂/2) and σl(uk̂+n̂+3m̂/2) belong
to the same link as v and w, contradicting the choice of l.

(ii) The rough idea of this proof is as follows: Whenever [xk+n, xk+n+m] is not p-symmetric,
there exists N ∈ N such that σ−N(A) is a basic quasi-p-symmetric arc and we can apply
Propositions 4.10 and 4.12 to obtain the arc B ⊃ σ−N(A) which is decreasingly basic
quasi-p-symmetric. Then σN(B) ⊃ A is the required decreasingly quasi-p-symmetric arc.

Let us assume now that [xk+n, xk+n+m] is basic quasi-p-symmetric. Let us denote by `
the link which contains x0. Then xk, xk+n, xk+n+m ∈ `. We can assume without loss of
generality that xk and xk+n are the p-points in the link-tips of [xk, xk+n] furthest away
from the midpoint xk+n/2 and, similarly, x0 and xk+n+m are the p-points in the link-tips
of [x0, xk+n+m] furthest away from the midpoint xk+n/2. Then from the properties of the
chain in Proposition 3.3 we conclude that Lp(x

0) = Lp(x
k) = Lp(x

k+n) = Lp(x
k+n+m).

Let us denote by xa and xb the midpoints of arc components which contains x0 and xk+n+m
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Figure 12. The configuration of p-levels that does not exist. Here x =

σl(uk̂+n̂+m̂/2), y = σl(uk̂+n̂+m̂) and z = σl(uk̂+n̂+3m̂/2).

respectively. Then xa, xb ∈ ` and xb 6= xk+n+m. Without loss of generality we can assume
that Lp(x

a) > Lp(x
b).

Since xk−d is the midpoint of [x0, xk] and A is quasi-p-symmetric, xk+n+d is the midpoint
of [xk+n, xk+n+m].

By Proposition 4.10, Lp(x
−d) = Lp(x

k−d) and Lp(x
k+n+d) = Lp(x

k+n+m+d), see Figure 13.

Let us denote by `d the link which contains x−d, and by Ad the arc component of `d which
contains x−d.

Claim x−d is the midpoint of its arc component Ad.

Consider the arc σ−L+1(A), where L := Lp(x
b). Since Lp(x

a) > Lp(x
k+n/2) > Lp(x

b) = L,
the preimage σ−L+1(A) contains the points σ−L+1(xb) with Lp(σ

−L+1(xb)) = 1, σ−L+1(xa)
and σ−L+1(xk+n/2) is the midpoint of σ−L+1(A).

By Corollary 4.8 the arc component containing xa also contains p-points x′ and x′′ with
the property that [x′, x′′] is p-symmetric with midpoint xa and Lp(x

′) = Lp(x
′′) =

Lp(x
b), Assume also that x′ and x′′ are furthest away from xa with these properties.

Therefore, σ−L+1(A) ∩ Ep ⊇ {u0, uâ, u2â, u2â+n̂, u2â+2n̂}, where uâ = σ−L+1(xa), u2â+n̂ =
σ−L+1(xk+n/2), u2â+2n̂ = σ−L+1(xb), u0 = σ−L+1(x′), u2â = σ−L+1(x′′) and Lp(u

0) =
Lp(u

2â) = 1.

Let us suppose that σ−L+1(A) is not contained in a single link. Since σ−L+1(xa) and
σ−L+1(xb) are contained in the same link, σ−L+1(A) is a basic quasi-p-symmetric arc. Let
`n be the link containing u2â+n̂, and let A2a+n be the arc component of `n containing
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u2â+n̂. Since Lp(u
2â+2n̂) = 1, by Remark 4.14, (u2â+n̂, u2â+2n̂) \A2a+n can contain at most

one p-point and its p-level is 0. Therefore (u2â, u2â+n̂)\A2a+n can also contain at most one
p-point and its p-level is 0. By Proposition 4.10, [u−n̂, u2â+n̂] is either a p-symmetric arc,
or a basic quasi-p-symmetric arc, see Figure 13. Let us denote by An the arc component
of `n containing u−n̂. Then (u−n̂, u0)\An also does not contain any p-point with non-zero
p-level.

rx rx
−d

Ad

r
x0

r
xa

rx
k−2d

rx
k−d

r
xk

rxk+n/2

r
xk+n

rxk+n+d

rx
k+n+2d

r
xb

r
xk+n+m

rx
k+n+m+d

?

σ−L+1

ru
−n̂ Anr

u

r
u0

r
uâ

Aa r
u2â

r
u2â+n̂

r
u2â+2n̂

ru
2â+3n̂

Figure 13. The configuration of points on [x−d, xk+n+m+2d] and their
images under σ−L+1 as in (ii).

Assume by contradiction that x−d is not the midpoint of its arc component Ad. Let us
denote the midpoint of Ad by x, and let u := σ−L+1(x). Since Lp(x) > Lp(x

a), also
Lp(u) > Lp(u

â). Let `a be the link which contains uâ, and let Aa be the arc component
of `a containing uâ. Then u ∈ An and [u−n̂, u2â+n̂] is basic quasi-p-symmetric. But,
since u2â+n̂ ∈ `n and σL−1(u2â+n̂) = xk+n/2, xk+n/2 ∈ `d. Since the arc [x, xk−d] is
quasi-p-symmetric, [xk−d, xk+n/2] is also quasi-p-symmetric and Lp(x

a) > Lp(x
k−d) implies

Lp(x
k−d) > Lp(x

k+n/2), a contradiction.

Let us assume now that σ−L+1(A) is contained in a single link. Since Lp(u) > Lp(u
â)

and Lp(u
0) = 1, we have πp([u, u0]) ⊂ πp([u

â, u0]). Then σL−1([uâ, u0]) ⊂ ` implies
σL−1([u, uâ]) ⊂ ` and hence [x−d, xk−d] ⊂ `, a contradiction.

These two contradiction prove the claim.

In the same way we can prove that xk+n+m+d is the midpoint of its arc component, and
by Proposition 4.12 the arc [u2â+n̂, u2â+3n̂] is either p-symmetric, or quasi-p-symmetric.

So we have proved that the arcs [u−n̂, u2â+n̂] and [u2â+n̂, u2â+3n̂] are both either p-symmetric,
or quasi-p-symmetric. Since [xa, xb] = σL−1([uâ, u2â+2n̂]) is quasi-p-symmetric, the arcs
σL−1([u−n̂, u2â+n̂]) and σL−1([u2â+n̂, u2â+3n̂]) are both either p-symmetric, or quasi-p-symmetric.
This implies that [x−2d−n/2, xk+n/2] and [xk+n/2, xk+n+m+2d+n/2] are contained in the de-
creasingly quasi-p-symmetric arc [x−2d−n/2, xk+n+m+2d+n/2] containing A. ¤
Example 5.6. (Example for (ii) of Proposition 5.5.) Let us consider the Fibonacci map
and the corresponding inverse limit space. The composant C contains an arc A = [x0, x77]
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with the following folding pattern:

1 9 1 22 1 56 1 22 1 9 1︸ ︷︷ ︸
basic

4 1 0 2 0 1 0 3 0 1 6

quasi-p-symmetric︷ ︸︸ ︷
1 14 1 35 1 14 1 6 1︸ ︷︷ ︸

basic

0 3 0 1 0 2 0 1 4 1 9 1 22 1 9 1 4 1 0 2 0 1 0 3 0 1 6 1 14 1︸ ︷︷ ︸
basic

6 1 0 3 0 1 0 2 0 1 4 1 9 1︸ ︷︷ ︸
sym

4 1 0

We can choose a chain Cp such that the p-points with p-levels 1, 14, 22, 35 and 56 belong
to the same link. Then the arc [x22, x60] is quasi-p-symmetric, and it is not basic. The arc
σ−13([x22, x60]) is basic quasi-p-symmetric with the folding pattern 1 22 1 9 1. So we can
apply Propositions 4.10 and 4.12 as in the above proof. The arc [x2, x74] is decreasingly
quasi-p-symmetric. Note that the arc [x1, x75] is not p-link-symmetric.

Definition 5.7. We say that an arc A = [x, y] is maximal decreasingly (basic) quasi-
p-symmetric if it is decreasingly (basic) quasi-p-symmetric and there is no decreasingly
(basic) quasi-p-symmetric arc B ⊃ A that consists of more (basic) quasi-p-symmetric arcs
than A.

Similarly we define a maximal increasingly (basic) quasi-p-symmetric arc.

Remark 5.8. Propositions 4.10 and 4.12 imply that A = [x, y] is a maximal decreasingly
basic quasi-p-symmetric arc if and only if A is decreasingly basic quasi-p-symmetric and
for x = x1, x2, . . . , xn−1, xn = y which satisfy (i) of Definition 5.3, there exists a point z
such that [z, x2] is p-symmetric with midpoint x and y is not a p-point.

Lemma 5.9. Every (basic) quasi-p-symmetric arc A can be extended to a maximal de-
creasingly/increasingly (basic) quasi-p-symmetric arc B ⊃ A.

Proof. We take the largest decreasingly (basic) quasi-p-symmetric arc B containing A.
The only thing to prove is that there really is a largest B. If this were not the case, then
there would be an infinite sequence (xi)i>0 with x0 ∈ ∂A, Lp(xi) < Lp(xi+1) and [xi, xi+2]
is a (basic) quasi-p-symmetric arc for all i > 0. By definition of (basic) quasi-p-symmetric

arc, there are two links ` and ˆ̀ containing xi for all even i and odd i respectively. (Note

that ` = ˆ̀ is possible.) By Lemma 4.6 for the basic case, the p-points in
⋃

i>0[x0, xi] \
(` ∪ ˆ̀) can only have finitely many different p-levels. By the construction in the proof
of Proposition 5.5 (ii) the same conclusion is true for the non-basic case as well. But⋃

i>0[x0, xi] is a ray, and contains p-points of all (sufficiently high) p-levels. Since the
closure of πp({x : Lp(x) > N}) contains ω(c) for all N , this set is not contained in the

πp-images of the two links ` and ˆ̀ only. So we have a contradiction. ¤
Theorem 5.10. Let A be a p-link-symmetric arc with midpoint m and ∂A = {x, y} ⊂ Ep.
Then A is either p-symmetric, or is contained in a maximal decreasingly/increasingly
(basic) quasi-p-symmetric arc.
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Proof. Let A ∩Ep = {x−l, . . . , x−1, x0, x1, . . . xk}, where k and l are such that x0 = m. If
k = l and Lp(x

−i) = Lp(x
i), for i = 1, . . . , k − 1, then the arc A is either p-symmetric, or

(basic) quasi-p-symmetric. Hence in this case the theorem is true.

Let us assume that there exists j < min{k, l} such that Lp(x
−i) = Lp(x

i), for i =
1, . . . , j − 1, and Lp(x

−j) 6= Lp(x
j). The arc [x−j, xj] is (basic) quasi-p-symmetric and by

Lemma 5.9, there exists the maximal decreasingly/increasingly (basic) quasi-p-symmetric
arc which contains [x−j, xj]. Hence in this case the theorem is also true. ¤
Definition 5.11. Let (si)i∈N be a sequence of p-points such that 0 ≤ Lp(x) < Lp(si) for
every p-point x ∈ (0̄, si). We call p-points satisfying this property snappy.

Since for every slope s > 1 and p ∈ N0, the folding pattern of C starts as∞ 0 1 0 2 0 1 . . . ,
and since by definition Lp(s1) > 0, we have Lp(s1) = 1. Also, since si = σi−1(s1),
Lp(si) = i, for every i ∈ N. Note that the snappy p-points depend on p: if p ≥ q, then
the snappy p-point si equals the snappy q-point si+p−q.

For i ∈ N, let Ai be the maximal p-link-symmetric arc with midpoint si.

Corollary 5.12. Fix i ∈ N and let `i and `i−1 be the links of Cp containing si and si−1

respectively. Let y ∈ [si−1, si] be neither contained in the same arc-component of `i as si,
nor in the same arc-component of `i−1 as si−1. Then the maximal p-link-symmetric arc J
with midpoint y contains at most one snappy p-point and J ⊂ Ai.

This was proved in more generality in [3] but the proof here is easier.

Proof. Let us suppose that J contains si. Then J is a maximal increasingly (basic) quasi-
p-symmetric arc, and si is a boundary point of one of the (basic) quasi-p-symmetric arcs
contained in J . Therefore, all p-points in [0, y)∩ J have p-levels less than Lp(y) implying
si−1 /∈ J . Also, J ⊂ (si−1, x) ⊂ Ai, where x ∈ (si, si+1) is a unique p-point with p-level
i− 1.

If J contains si−1, J is a decreasingly (basic) quasi-p-symmetric arc. Since Lp(x) <
Lp(si−1) for every x ∈ (0̄, si−1), si−2 /∈ J . Since all p-points in J \ [0, y] have p-levels less
then Lp(y), si+1 /∈ J . So, J ⊂ (si−2, si+1) ⊂ Ai. ¤
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[7] K. Brucks, H. Bruin, Topics in one-dimensional dynamics, London Math. Soc. Student texts 62
Cambridge University Press 2004.

[8] H. Bruin, Combinatorics of the kneading map, Int. Jour. of Bifur. and Chaos 5 (1995), 1339–1349.
[9] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc.

350 (1998) 2229–2263.
[10] H. Bruin, Quasi-symmetry of conjugacies between interval maps, Nonlinearity 9, (1996) 1191-1207.
[11] H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces, Topology Proceedings 31

(2007), 37-50.
[12] H. Bruin, (Non)invertibility of Fibonacci-like unimodal maps restricted to their critical omega-limit

sets, Preprint 2008.
[13] H. Bruin, G. Keller, T. Nowicki, S. van Strien, Wild Cantor Attractors exist, Ann. of Math. (2) 143

(1996) 97–130.
[14] H. Bruin, G. Keller, M. St.-Pierre, Adding machines and wild attractors, Ergodic Theory Dynam.

Systems 17 (1997) 1267–1287.
[15] F. Hofbauer, The topological entropy of a transformation x 7→ ax(1− x), Monath. Math. 90 (1980)

117-141.
[16] F. Hofbauer, G. Keller, Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri
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Bijenička 30, 10 000 Zagreb
Croatia
sonja@math.hr

http://www.math.hr/∼sonja


	OWP2010_03Deckblatt.pdf
	OWP 2010 - 03
	H.Bruin and S. Štimac
	Fibonacci-like Unimodal Inverse Limit Spaces


