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Abstract

In [7] we define a Curtis-Tits group as a certain generalization of a Kac-Moody
group. We distinguish between orientable and non-orientable Curtis-Tits groups and
identify all orientable Curtis-Tits groups as Kac-Moody groups associated to twin-
buildings. We mention that non-orientable Curtis-Tits groups exist. In the present
paper we construct families of orientable and non-orientable Curtis-Tits groups. The
resulting groups are quite interesting in their own right. The orientable ones are
related to Drinfel’d’ s construction of vector bundles over a non-commutative projec-
tive line and to the classical groups over cyclic algebras. The non-orientable ones are
related to q-CCR algebras in physics and have symplectic, orthogonal and unitary
groups as quotients.
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1 Introduction
In [25], the author defines Kac-Moody groups to be groups with a twin-root datum, which
implies that they are symmetry groups of Moufang twin-buildings. A celebrated theorem
of Curtis and Tits on groups with finite BN-pair (later extended by P. Abramenko and
B. Mühlherr to Kac-Moody groups [2]) shows that by and large these groups are determined
by their local structure, that is by an amalgam of rank 2 algebraic groups.

This motivated the study in [7] of what we call Curtis-Tits groups. These are groups
that are the universal completion of an amalgam of rank 2 whose groups are copies of
SL2(k) and SL3(k), where the inclusions of such groups are described by a Dynkin diagram.
Examples arise naturally from the Curtis-Tits theorem. However in loc. cit. it was shown
that the same diagrams in fact describe a wider class of amalgams, called Curtis-Tits
amalgams. In fact the Curtis-Tits amalgams coming from Kac-Moody groups via the
Curtis-Tits theorem can be viewed as “orientable” amalgams in the sense that one can
coherently pick a “set of positive roots”. However, it was shown that there also exist
non-orientable Curtis-Tits amalgams. In fact we have the following classification result:

Theorem 1.1 Let Γ be a simply laced Dynkin diagram with no triangles and k a field with
at least 4 elements. There is a natural bijection between isomorphism classes of Curtis-
Tits amalgams over the field k on a graph Γ and elements of the set {Φ: π(Γ, i0) → 〈τ〉 ×
Aut(k)| Φ is a group homomorphism}, where τ has order 2.

Here, π(Γ, i0) denotes the fundamental group of the graph Γ with base point i0. The
orientable Curtis-Tits amalgams are exactly those for which the image of Φ lies inside
Aut(k).

It is not at all immediate that all the amalgams arising from Theorem 1.1 are non-
collapsing, i.e. that their universal completion is non-trivial. We shall call a non-trivial
group a Curtis-Tits group if it is the universal completion of a Curtis-Tits amalgam. The
purpose of the present paper is to construct orientable and non-orientable Curtis-Tits
groups of type Ãn−1 and to study their properties. More precisely, we prove the following.

Theorem 1 There is a natural bijection between Curtis-Tits groups of type Ãn−1 and
Aut(k) × 〈τ〉, where τ has order 2. Moreover, those corresponding to elements of the
torsion subgroup of Aut(k)× 〈τ〉 appear as subgroups of a Kac-Moody group of type Ãm−1

for some positive integer m.

The resulting groups are quite interesting in their own right. The orientable ones are related
to Drinfel’d’ s construction of vector bundles over a non-commutative projective line and
to the classical groups over cyclic algebras. The non-orientable ones are related to q-CCR
algebras in physics and have symplectic, orthogonal and unitary groups as quotients. The
reader only interested in applications will find a brief description in Section 2. We note
here that some of these groups have been studied in a different context, namely that of
abstract involutions of Kac-Moody groups [13]. In that paper, also connectedness, but not
simple-connectedness, of geometries such as those defined in Section 6 is proved.
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For technical reasons, in this paper we concentrate on describing the groups that cor-
respond to elements of Aut(k) and the element τ respectively. The general mixed case is
obtained by combining the two constructions.

The paper is structured as follows. In Section 2 we introduce the Curtis-Tits groups and
list some surprising connections to number theory, finite groups and theoretical physics.
This chapter is independent of the rest of the paper. In Section 3 we introduce the relevant
notions about amalgams and in Section 4 we specialize to the case Γ = Ãn−1 and describe
all possible amalgams. Section 5 deals with the description of the universal completion
of orientable Curtis-Tits amalgams and Section 6 does the same for the non-orientable
amalgam corresponding to τ .

Acknowledgement This project was started during a visit to the Banff International
Research Station and finished during a visit to the Mathematisches Forschungsinstitut
Oberwolfach in the Research in Pairs program from October 25 until November 7, 2009. We
thank both institutes for providing such a pleasant and stimulating research environment.

2 The Curtis-Tits groups and some applications
2.1 The orientable Curtis-Tits groups SLn(A)

Consider the ring A = k{t, t−1} of skew Laurent polynomials. More precisely if x ∈ k, then
t−1xt = xδ for some fixed automorphism δ of k.

In Section 5 we will construct a group G ≤ GLn(A) and show that it admits a copy
of the Curtis-Tits amalgam corresponding to the automorphism δ. Moreover, if the order
of δ is finite we show that it can be regarded as SLn(A) for a coherent definition of a
determinant detR, and that it is the universal completion of the Curtis-Tits amalgam,
hence a Kac-Moody group.

The objects of the twin-building associated to this Kac-Moody group correspond to
vector bundles over the non-commutative projective line P1(δ) in the sense of Drinfel’d.
More precisely, let k{t}, k{t−1} ≤ k{t, t−1} be the corresponding skew polynomial rings and
fix M a free k{t, t−1}module of rank r. Following [14] and [23] one can define a rank r vector
bundle over the non-commutative projective line P1(δ) as a collection (M+,M−, φ+, φ−)
where Mε is a free r-dimensional module over k{tε} and φε:Mε ⊗ k{t, t−1} → M is an
isomorphism of k{t, t−1}-modules. By analogy to the commutative case (see [18, 19] for
example) one can describe the building structure in terms of these vector bundles. We
intend to explore these relations to number theory in a future paper.

To give a different perspective on these groups we note that the skew Laurent polyno-
mials are closely related to cyclic algebras as defined by Dickson. More precisely let k′ ≤ k
be a cyclic field extension, of degree n, and let δ be the generator of its Galois group. Given
any a ∈ k′, define the k′-algebra (k/k′, δ, a) to be generated by the elements of k, viewed
as an extension of k′, together with some element u subject to the following relations:

un = a, xu = uxδ for x ∈ k.
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These algebras are central simple algebras. The celebrated Brauer-Hasse-Noether the-
orem states that every central division algebra over a number field k′ is isomorphic to
(k/k′, δ, a) for some k, a, δ.

For each a ∈ k′ one constructs the map εa : k{t, t−1} → (k/k′, δ, a) via t 7→ u. This in-
duces a map εa: SLn(A)→ SLn((k/k′, δ, a)), realizing the linear groups over cyclic algebras
as completions of the Curtis-Tits amalgams.

2.2 The non-orientable groups Gτ

Let V be a free k[t, t−1]-module of rank 2n with basis {ei, fi | i = 1, . . . , n}. In this case
k[t, t−1] denotes the ring of commutative Laurent polynomials in the variable t over a field
k. The group Gτ is the isometry group of the unique non-symmetric σ-sesquilinear form
β on V with the property that β(ei, ej) = β(fi, fj) = 0, β(ei, fj) = tδij and β(fi, ej) = δij
where σ: k[t, t−1]→ k[t, t−1] is the identity on k and interchanges t and t−1. More precisely

Gτ := {g ∈ SL2n(k[t, t−1])|∀x, y ∈ V, β(gx, gy) = β(x, y)}

In Section 6 we prove that Gτ is the Curtis-Tits group corresponding to the element τ from
Theorem 1.

It turns out that the group Gτ has some very interesting natural quotients and that its
action on certain Clifford-like algebras are related to phenomena in quantum physics.

Let k denote the algebraic closure of k. For any a ∈ k
∗ consider the specializa-

tion map εa: k[t, t−1] → k given by εa(f) = f(a). The map induces a homomorphism
εa: SL2n(k[t, t−1]) → SL2n(k(a)). In some instances the map commutes with the automor-
phism σ and so one can define a map εa:Gτ → SL2n(k)

The most important specialization maps are those given by evaluating t at a = ±1 or
a = ζ, a (qm + 1)-st root of 1 where q is a power of the characteristic.

Consider first a = −1. In this case the automorphism σ becomes trivial. Note that for
g ∈ Gτ we have ε−1(g) ∈ Sp2n(k). In this case, the image of the group Gτ is the group
generated by the Curtis-Tits amalgam Aτ inside Sp2n(k). Preliminary studies suggest that
we have equality. Similarly, if a = 1, the automorphism σ is trivial and the map ε1 takes
Gτ into SO+

2n(k). Preliminary results suggest that in fact the image of this map is Ω+
2n(k).

Finally assume that k = Fq and a ∈ Fq is a primitive (q+ 1)-st root of 1. The Fq-linear
map Fq(a) → Fq(a) induced by σ sends a to a−1. Thus, σ coincides with the Frobenius
automorphism of the field Fq(a) = Fq2 . It is easy to verify that a change of coordinates
e′i = ei and f ′i = bfi where b2 = a standardizes the Gram matrix of β ◦ (εa × εa) to
a hermitian one, thus idenfying the image of εa with a subgroup of a conjugate of the
unitary group SU2n(q). Again, preliminary results suggest that in fact the image of this
map is isomorphic to SU2n(q). This easily generalizes to the case where a is a (qm + 1)-st
root of unity and indeed to other cases where a is Galois-conjugate to a−1.

An intriguing connection comes from mathematical physics, where the form β has been
considered in the context of q-CCR algebras (see for example [12, 3]). The related infinite
dimensional Clifford algebra is a higher GK-dimensional version of Manin’s quantum plane.
This algebra is related to both the Clifford algebra of the orthogonal groups and the
Heisenberg algebra for the symplectic groups in a similar fashion.
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These application will be discussed in more detail in an upcoming paper.

3 CT-groups
In this section we introduce the notion of a Curtis-Tits group over a commutative field and
define their category. Throughout the paper k will be a commutative field.

Definition 3.1 Let V be a vector space of dimension 3 over k. We call (S1, S2) a standard
pair for S = SL(V ) if there are decompositions V = Ui ⊕ Vi, i = 1, 2, with dim(Ui) = 1
and dim(Vi) = 2 such that U1 ⊆ V2 and U2 ⊆ V1 and Si centralizes Ui and preserves Vi.

One also calls S1 a standard complement of S2 and vice-versa. We set D1 = NS1(S2)
and D2 = NS2(S1). A simple calculation shows that Di is a maximal torus in Si, for
i = 1, 2. In general if G ∼= SL3(k), then (G1, G2) is a standard pair for G if there is an
isomorphism ψ:G→ S such that ψ(Gi) = Si for i = 1, 2.

Definition 3.2 A simply laced Dynkin diagram over the set I is a simple graph Γ = (I, E).
That is, Γ has vertex set I, and an edge set E that contains no loops or double edges.

Definition 3.3 An amalgam over a set I is a collection A = {Gi, Gi,j | i, j ∈ I} of groups,
together with a collection ϕ = {ϕi,j | i, j ∈ I} of monomorphisms ϕi,j:Gi ↪→ Gi,j, called
inclusion maps. A completion of A is a group G together with a collection φ = {φi, φi,j |
i, j ∈ I} of homomorphisms φi:Gi → G and φi,j:Gi,j → G, such that for any i, j we have
φi,j ◦ ϕi,j = φi. For simplicity we denote by Gi = ϕi,j(Gi) ≤ Gi,j. The amalgam A is
non-collapsing if it has a non-trivial completion. A completion (Ĝ, φ̂) is called universal
if for any completion (G, φ) there is a unique surjective group homomorphism π: Ĝ → G

such that φ = π ◦ φ̂.

Definition 3.4 Let Γ = (I, E) be a simply laced Dynkin diagram. A Curtis-Tits amalgam
over Γ is a non-collapsing amalgam A(Γ) = {Gi, Gi j | i, j ∈ I}, with connecting maps
ϕ = {ϕi,j | i, j ∈ I}, such that

(CT1) for any vertex i, the group Gi = SL2(k) and for each pair i, j ∈ I,

Gi,j
∼=
{

SL(Vi,j) if {i, j} ∈ E
Gi ×Gj if {i, j} 6∈ E ,

where Vi,j is a 3-dimensional vector space over k;

(CT2) if {i, j} ∈ E then (Gi, Gj) is a standard pair in Gi,j.

Definition 3.5 A Dynkin diagram is admissible if it is connected and has no circuits of
length ≤ 3.
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From now on Γ = (I, E) will be an admissible Dynkin diagram and A = A(Γ) = {Gi, Gi,j |
i, j ∈ I} will be a non-collapsing Curtis-Tits amalgam over Γ with connecting maps ϕ =
{ϕi,j | i, j ∈ I}.

It is proved in [7] that if the Dynkin diagram is admissible then the following is well-defined.

Definition 3.6 For i, j ∈ I, we let Di = NGi,j(Gj) ∩Gi, where {i, j} ∈ E. Note that this
defines Di for all i since Γ is connected. We also denote Di = ϕ−1

i,j (Di).

We then have the following.

Lemma 3.7 [7, Section 2] If {i, j} ∈ E, then Di and Dj are contained in a unique common
maximal torus Di,j of Gi,j.

Definition 3.8 Note that a torus in SL2(k) uniquely determines a pair of opposite root
groups X+ and X−. We now choose one root group Xi normalized by the torus Di of Gi

for each i. An orientable Curtis-Tits (OCT) amalgam (respectively orientable Curtis-Tits
(OCT) group) is a Curtis-Tits amalgam that admits a system {Xi | i ∈ I} of root groups
as above such that for any i, j ∈ I, the groups ϕi,j(Xi) and ϕj,i(Xj) are contained in a
common Borel subgroup Bi,j of Gi,j.

3.1 Morphisms

In this subsection, for k = 1, 2, let Γk = (Ik, Ek) be a Dynkin diagram.
Now, for k = 1, 2, let Ak = {Gk

i , G
k
i,j | i, j ∈ Ik} be a Curtis-Tits amalgam with admissible

Dynkin diagram Γk.

Definition 3.9 A homomorphism between the amalgams A1(Γ) and A2(Γ) is a collection
φ = {φi, φi,j | i, j ∈ I1} of group homomorphisms φ:G1

i → G2
i and φi,j:G1

i,j → G2
i,j such

that
φi,j ◦ ϕ1

i,j = ϕ2
i,j ◦ φi.

We call φ an isomorphism of amalgams if φi and φi,j are bijective for all i, j ∈ I, and φ−1

is a homomorphism of amalgams.

4 Classification of Curtis-Tits groups of type Ãn−1

Theorem 1.1 classifies all Curtis-Tits amalgams. For the rest of this paper however we will
only consider Curtis-Tits amalgams with Dynkin diagram Γ of type Ãn−1 where n ≥ 4.
Therefore we can assume that the set of indices is I = {0, . . . , n− 1}.
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4.1 The role of Aut(k)× 〈τ〉

In this subsection we describe all amalgams of type Ãn−1 using Theorem 1.1.
To this end we first discuss certain automorphisms of the Curtis-Tits amalgam with

diagram A2. Let W be a (left) vector space of dimension n over k. Let G = SL(W ) act on
W as the matrix group SLn(k) with respect to some fixed basis E = {ei | i = 1, 2, . . . , n}.
Let τ ∈ Aut(SLn(k)) be the automorphism given by

A 7→ tA−1

where tA denotes the transpose of A.
Let Φ = {(i, j) | 1 ≤ i 6= j ≤ n}. For any (i, j) ∈ Φ and λ ∈ k, we define the root group

Xi,j = {Xi,j(λ) | λ ∈ k}, where Xi,j(λ) acts as

ej 7→ ej + λei and
ek 7→ ek for all k 6= j.

Let Φ+ = {(i, j) ∈ Φ | i < j} and Φ− = {(i, j) ∈ Φ | j < i}. We call Xi,j positive if
(i, j) ∈ Φ+ and negative otherwise. Let H be the torus of diagonal matrices in SLn(k)
and for ε ∈ {+,−}, let Xε = 〈Xi,j | (i, j) ∈ Φε〉 and Bε = H n Xε. The following lemma
describes the action of τ on these root groups.

Lemma 4.1 Xτ
i,j = Xj,i for all (i, j) ∈ Φ and Bτ

ε = B−ε, for ε ∈ {+,−}.

Let ΓLn(k) be the group of all semilinear automorphisms of the vector space W and let
PΓLn(k) = ΓLn(k)/Z(ΓLn(k)). Then ΓLn(k) ∼= GLn(k)oAut(k), where we view t ∈ Aut(k)
as an element of ΓLn(k) by setting ((ai,j)

n
i,j=1)

t = (ati,j)
n
i,j=1. The automorphism group of

SLn(k) can be expressed using PΓLn(k) and τ as follows [20].

Lemma 4.2
Aut(SLn(k)) =

{
PΓLn(k) if n = 2;
PΓLn(k) o 〈τ〉 if n ≥ 3.

Definition 4.3 Given an element δ ∈ Aut(k)×〈τ〉 ≤ Aut(SL2(k)) we shall now construct
a Curtis-Tits amalgam Aδ of type Ãn−1. For each i ∈ {0, 1, . . . , n− 1} we let Gi = SL2(k)
and Aδ = {Gi, Gi j | i, j ∈ I} with connecting maps ψ = {ψi,j | i, j ∈ I}, where

(SCT1) for any vertex i, the group Gi = SL2(k) and for each pair i, j ∈ I,

Gi,j
∼=
{

SL3(k) if {i, j} = {i, i+ 1}
Gi ×Gj if {i, j} 6= {i, i+ 1} ;

(SCT2) For i = 0, 1, . . . , n− 2 we have

ψi,i+1:Gi → Gi,i+1

A 7→
(
A 0
0 1

) ψi+1,i:Gi+1 → Gi,i+1

A 7→
(

1 0
0 A

)
,
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and we have

ψn−1,0:Gn−1 → Gn−1,0

A 7→
(
A 0
0 1

) ψ0,n−1:G0 → G0,n−1

A 7→
(

1 0
0 Aδ

)
,

whereas for all other pairs (i, j), ψi,j is the natural inclusion of Gi in Gi ×Gj.

Theorem 1.1 reduces to the following particular case:

Corollary 4.4 Every Curtis-Tits amalgam with diagram Ãn−1 is isomorphic to Aδ for
some unique δ ∈ Aut(k)× 〈τ〉.

Our next goal is to construct universal completions of each one of the amalgams Aδ.
More precisely we shall construct such completions for the special cases δ ∈ Aut(k) and
δ = τ . All other completions arise by taking a suitable composition of these constructions.

5 Orientable Curtis-Tits groups
Let k[T, T−1] be the ring of Laurent polynomials over the field k and let δ ∈ Aut(k).

Theorem 2 If δ has order s then the universal completion Gδ of Aδ is a simply connected
Kac-Moody group of type Ãn−1. It is a subgroup of finite index ℵ inside SLsn(k[T, T−1]).
Moreover if the norm k→ kδ is surjective then ℵ = ns[(kδ)∗ : ((kδ)∗)sn].

5.1 Linear groups over twisted Laurent polynomials

Let k be a commutative field and δ ∈ Aut(k). The ring of twisted Laurent polynomials is
the non-commutative ring

R = k{t, t−1}

where t−1xt = xδ for all x ∈ k. For some given n ≥ 1, let I = {1, 2, . . . , n} and let
M be an n-dimensional free left R-module with ordered basis E = {e1, . . . , en}. The
group of all R-linear invertible transformations of M is denoted GLR(M). Representation
of transformations as matrices w.r.t. the basis E acting from the left yields the usual
identification:

EndR(M) →Mn(R)
g 7→ (gi,j)i,j∈I , where, for all j ∈ I, gej =

∑
i gi,jei

Note that since R is in general not commutative, for a, b, c ∈ EndR(M) with ab = c, we
have

cik =
∑
j∈I

bjkai,j.

At the very end of [25] it is claimed that a realization of the Kac-Moody group Gδ can be
obtained as a subgroup of index n inside PGLn(k{t, t−1}). We shall now proceed to give
an explicit description of this realization.
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Consider the following collection Lδ = {Li, Li,j | i, j = 0, 1, . . . , n− 1} of subgroups of
SLn(k{t, t−1}). For i = 0, 1, . . . , n− 2, let

Li =


Ii A

In−i−2

 | A ∈ SL2(k)


and

Ln−1 =


dδ−1

ct−1

In−2

tb a

 | (a b
c d

)
∈ SL2(k)


Moreover, for each i, j ∈ I we let

Li,j = 〈Li, Lj〉.
Finally we let the inclusion maps ϕi,j be given by natural inclusion of subgroups of GLR(M).

Proposition 5.1 We have an isomorphism of CT amalgams Lδ ∼= Aδ.

Proof Consider the following matrix:

F =

(
0 In−1

t 0

)
.

We now define the automorphism Φ of PGLn(k{t, t−1}) given by X 7→ F−1XF . We first
note that we have isomorphisms φi: SL2(k)→ Li. For i = 0, 1, . . . , n− 2 we take

φi:A 7→

Ii A
In−i−2

 .

Moreover, we define
φn−1: SL2(k) → Ln−1(

a b
c d

)
7→

dδ−1
ct−1

In−2

tb a

 .

One verifies that, for i = 0, 1, . . . , n − 1 we have φi = Φi ◦ φ0. In particular φn−1 is an
isomorphism. We now turn to the rank 2 groups. For distinct i, j ∈ {0, 1, . . . , n − 1}, let
φi,j be the canonical isomorphism between Gi,j = 〈Gi, Gj〉 and Li,j = 〈Li, Lj〉 induced by
φi and φj. Note that this implies that φi,i+1 = Φi ◦ φ0,1.

We claim that the collection φ = {φi, φi,j | i, j ∈ I} is the required isomorphism between
Aδ and Lδ. This is completely straightforward except for the maps φ0, φn−1,0. Note that

φn,0:

a b c
d e f
g h i

 7→

tet−1 tft−1 dt−1

tht−1 tit−1 gt−1

In−3

tb tc a


9



Thus we have
φi,j ◦ ψi,j = ϕi,j ◦ φi,

for all i, j ∈ I. �

5.2 A presentation over the ring k[T, T−1]

In the case when the order of the automorphism δ ∈ Aut(k) is finite we give another
interpretation of the group Gδ. To do so, let s = |δ| and consider the rings

R = k{t, t−1}
A = k[T, T−1]

where T = ts. Note that T commutes with k so that A is the usual ring of Laurent
polynomials in T over k.

Now let M be the free left R-module of dimension n with basis e1, · · · , en. Then M is
also a free A-module of dimension sn with basis B = {tiej | i = 0, · · · s−1 and j = 1, · · ·n},
ordered lexicographically (that is, tiej < tkel whenever i < k and j, l are arbitrary, or i = k
and j < l). Using the basis B we have an embedding

ρ: EndR(M) ↪→ EndA(M) ∼= Msn(A).

Scalar multiplication on M by the element t ∈ R is a δ−1-semi A-linear transformation on
M and so we can interpret this as an element from ΓLsn(A), acting on the basis B as xn,
where x is given by

x =

(
T

Ins−1

)
.

Now an A-linear map g represents an R-linear transformation precisely if it satisfies tg = gt.
We phrase this in a lemma.

Lemma 5.2 EndR(M)ρ = CMsn(A)(t).

In matrix notation this means that xngδ−1
= gxn. More explicitly, if we represent g

with respect to B as a block-matrix g = (gi,j)
s
i,j=1, where gi,j ∈Mn(A), then the condition

tg = gt is equivalent to choosing g1,j randomly, and setting

gi+1,j+1 = gδ
−1

i,j 1 ≤ i, j ≤ s− 1

gi+1,1 = gδ
−1

i,s−1T
−1 i = 1, . . . , s− 1.

(5.1)

Definition 5.3 For any g ∈ EndR(M), let detR(g) = detA(gρ), where the latter denotes
the determinant in the matrix ring Msn(A).

Lemma 5.4 We have GLR(M) = {g ∈ EndR(M) | detR(g) ∈ A∗}.

Proof Let g ∈ EndR(M). Clearly if g ∈ GLR(M), then gρ is invertible in Msn(A) so that
detR(g) ∈ A∗, the ring of units of A. Conversely, suppose that detR(g) ∈ A∗, and let
g−1 be its inverse in Msn(A). Since g ∈ CMsn(A)(t), so is g−1 and the result follows from
Lemma 5.2. �

.
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Lemma 5.5 Consider the map detR: EndR(M)→ A and assume that the norm Nδ: k→ kδ

is surjective. Then, we have the following.

(a) The image of GLR(M) under detR is equal to {λT l | λ ∈ kδ, l ∈ Z}.

(b) The image of Zn(R) = Z(GLR(M)) under detR is equal to {λsnT lsn | λ ∈ kδ, l ∈ Z}.

Proof The relation xngδ = gxn implies that det(gδ) = det(g), that is, det(g) ∈ kδ[T, T−1]∗ =
{aT l | a ∈ kδ, l ∈ Z}. This shows ⊆. Moreover, note that the element x ∈ GLR(M)ρ has
determinant T and the diagonal matrix corresponding to the transformation e1 → ae1 with
a ∈ k and ei → ei for all i ≥ 2 has determinant Nδ(a). This shows the inclusion ⊇ and we
have proved part (a).

(b) As in commutative matrix algebra it is clear that any element of Zn(R) must be of
the form z id, for some z ∈ R. Moreover, since such an element must commute with all
other scalar matrices, z must belong to Z(R)∗ = (Aδ)∗ = {aT l | a ∈ (kδ)∗, l ∈ Z}. The
image of z id under ρ is a matrix of the form zIsn and therefore has determinant zsn. �

From now on we shall make the following assumption:

(S) The norm Nδ: k→ kδ is surjective.

Corollary 5.6 The index [PGLn(R):PSLn(R)] = sn[kδ : (kδ)sn].

Proof We have [PGLn(R) : PSLn(R)] = [GLR(M) : SLn(R) · Zn(R)] = [(Aδ)∗ : ((Aδ)∗)sn],
so the result follows from Lemma 5.5. �

5.3 Proof of Theorem 2

Let ∆ = (∆+,∆−, δ∗) be the affine twin-building of type Ãsn−1 afforded by V = M⊗Ak(T ).
Consider the standard twin-apartment Σ = (Σ+,Σ−) corresponding to the A-basis B =
{tiej | i = 0, . . . , s − 1; j = 1, . . . , n}. For ε = +,−, let vε be the discrete valuation on k
such that vε(T ε) = 1 and let Oε ≤ k be its valuation ring. Then, let cε = cε(B), where B
is considered as an ordered basis. Moreover, let Θε be the flag-complex of ∆ε.

Lemma 5.7 Let ε = +,−. Then, t acts as a type-permuting automorphism on Θε fixing
cε. Moreover, typ(t) acts as a deck-transformation group on the diagram Γ of ∆ in the
sense of Mühlherr [15].

Proof That t acts as an automorphism follows from the fact that it sends free Oε lattices
to free Oε lattices while preserving their rank and inclusion among such lattices. Since it is
δ−1-semilinear over k(T ), it preserves the A-module M, thereby preserving the opposition
relation of ∆.

That t preserves cε is an easy exercise. In fact t permutes the objects of cε by sending
the object of type i to the object of type i + n modulo ns. Since t is an automorphism
of ∆ the graph automorphism typ(t) acts accordingly. Thus the cyclic group of order s
generated by typ(t) is a deck transformation group of M in the sense of [15]. �
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Theorem 5.8 The universal completion of Aδ is SLn(R).

Proof In view of Lemma 5.7 we can apply Theorem B. of loc. cit. which says that the
subcomplex of ∆ fixed by t contains a Moufang twin-building ∆̃. Since Γ has finite rank,
in fact, this fixed subcomplex is equal to ∆̃.

Note that SLn(R), the centralizer in G = SLsn(A) of t, is a flag-transitive group of
automorphisms of ∆̃. Namely, identify ∆ with (G/B+, G/B−) via the Birkhoff decomposi-
tion associated to the twin-BN pair B+, B−, N for G. Here B+ and B− are the stabilizers
of the fundamental chambers c+ and c−, which are fixed by t. Then, t preserves B+ and
B−, so that the action of t on ∆ is given entirely by its action on G. Therefore the fixed
complex ∆̃ consists of those chambers gB+, gB−, where g ∈ CG(t). Clearly now the group
CG(t) is flag-transitive on ∆̃, acting by left-multiplication on these cosets.

Since Ãn−1 is simply-laced, ∆ satisfies condition (co) of [16]. Then, by the twin-building
version of the Curtis-Tits’ theorem [2] the automorphism group CG(t) of ∆̃ is the universal
completion of its Levi-components of rank 2 and 3. One verifies that the amalgam of
Levi-components of rank 2 and 3 in CG(t) is exactly Lδ.

The result follows from the fact that CG(t) = SLn(R) by Lemmas 5.2 and 5.4. �

6 The non-orientable Curtis-Tits group Gτ

In this section k[t, t−1] denotes the ring of commuting Laurent polynomials with coefficients
in the field k. Consider the group G = SL2n(k[t, t−1]) and let

s =

(
0n t−1In
In 0n

)
.

Let σ be the involutory automorphism of k(t) that fixes all of k and interchanges t and t−1.
We define the automorphism τ :G 7→ G by A 7→ s−1 tA−σs. As before let V be a k(t)-vector
space of dimension 2n with basis {e1, . . . , en, f1, . . . , fn}. Let M be the free k[t, t−1]-lattice
spanned by this basis.

Define a σ-sesquilinear form β on V such that β(ei, ej) = β(fi, fj) = 0, β(ei, fj) = tδij
and β(fi, ej) = δij and in addition, for u, v ∈ V and λ, µ ∈ k(t), we have

β(λu, µv) = λβ(u, v)µσ.

Theorem 3 Let k be a field of size at least 5. The universal completion Gτ of Aτ is the
group of symmetries in SL2n(k[t, t−1]) of the σ-sesquilinear form β.

In Subsection 6.2 we will prove that the geometry ∆τ is connected and simply connected
which by Tits’ Lemma implies that the groupGτ is the universal completion of the amalgam
of maximal parabolics. We then observe that Lτ is the amalgam of parabolics of rank 2 and
3. Moreover, we note that the maximal parabolics are all linear groups over k. Theorem 3
will then follow by applying the Curtis-Tits theorem for linear groups to the maximal
parabolics.
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We will first construct the amalgam Aτ from Corollary 4.4 inside SL2n(k[t, t−1]). Consider
the following matrix:

F =

(
0 I2n−1

1 0

)
.

We now define the automorphism Φ of SL2n(k[t, t−1]) given by X 7→ F−1XF . Also define
the map i: SL2(k)→ SL2n(k[t, t−1]) by

A 7→
(
A

I2n−2

)
.

Next, for k = 0, . . . , n− 1, let φk: SL2(k)→ SL2n(k[t, t−1]) by

φk(A) = F k(i(A)) · τ(F k(i(A)))

and let Lk be the image of φk. Note that for each k = 0, . . . n− 2 we have

Lk =




Ik

A
In−k−2

Ik
tA−1

In−k−2

 |A ∈ SL2(k)


and

Ln−1 =




a −bt−1

In−2

a b
c d

In−2

−ct d

 |
(
a b
c d

)
∈ SL2(k)


.

For distinct i, j ∈ {0, 1, . . . , n − 1}, let φi,j be the canonical isomorphism between Gi,j =
〈Gi, Gj〉 and Li,j = 〈Li, Lj〉G induced by φi and φj. It follows that Lij ∼= SL3(k) if
i− j ≡ ±1(modn) and Gij

∼= Li × Lj otherwise.
Now let Lτ = {Li, Li,j, ϕi,j | i, j ∈ {0, 1, . . . , n − 1}} be the amalgam of the Li, Lij

where the maps ϕi,j are the natural inclusion maps.

Proposition 6.1 We have an isomorphism of amalgams Lτ ∼= Aτ .

Proof We claim that the collection φ = {φi, φi,j | i, j ∈ I} is the required isomorphism
between Aτ and Lτ . This is completely straightforward after noting that if we define φn
in the same manner as φk for k = 0, 1, . . . , n− 1, then we have φ0 ◦ φ−1

n = τ . �
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6.1 The geometry ∆τ for Gτ

We now describe a group Gτ acting flag-transitively on a geometry ∆τ so that Lτ is the
amalgam of parabolic subgroups of rank 2 and 3.

Lemma 6.2 β is a non-degenerate trace-valued (σ, t)-sesquilinear form, that is for all
u, v ∈ V we have β(v, u) = tβ(u, v)σ and there exists x ∈ k(t) such that β(u, u) = x+ xσt.

Proof Let u =
∑n

i=1 λiei + µifi and let u′ =
∑n

i=1 λ
′
iei + µ′ifi. Then

β(u, u′) =
n∑
i=1

λiµ
′σ
i t+ µiλ

′σ
i = tβ(u′, u)σ

In particular, setting u = u′ we get x =
∑n

i=1 µiλ
σ
i . �

Given a k(t)-basis {a1, . . . , a2n} for V , the right dual basis for V with respect to β is
the unique basis {a∗1, . . . , a∗2n} such that β(ai, a

∗
j) = δij (note the order within β). The

right adjoint of a transformation g ∈ ΓL(V ), is the transformation g∗ ∈ ΓL(V ) such that
β(gu, g∗v) = β(u, v) for all u, v ∈ V .

One easily verifies the following two lemmas.

Lemma 6.3 If g ∈ GL(V ) is represented by a matrix (gij) with respect to {a1, . . . , a2n},
then g∗ =t (gσij)

−1 with respect to {a∗1, . . . , a∗2n}

Lemma 6.4 The right dual basis for {e1, . . . , en, f1, . . . , fn} is {tf1, . . . , tfn, e1, . . . , en}.
As a consequence, g∗ = gτ

Proof Let u, v ∈ V . Then β(gu, gτv) = tutgts−1(s−1tg−σsv)σ = tutgts−1s−σtg−1sσvσ =
tusσvσ = β(u, v) and since this holds for all u, v ∈ V and β is non-degenerate, we are done.
�

Let ∆ be the twin-building for the group G = SL2n(k[t, t−1]) with twinning determined by
M. Let (W,S) be the Coxeter system with diagram Γ of type Ã2n−1. Call S = {si | i =
0, . . . , 2n− 1}.

Lemma 6.5 The map induced by τ on ∆, is given by

Λτ
ε = {v ∈ V | β(u, v) ∈ Oε for all u ∈ Λε}

for all Oε-lattices Λε.

Proof This follows from the fact that g∗ = gτ . �

Lemma 6.6 (a) If {a1, . . . , a2n} is a basis for V with right dual {a∗1, . . . , a∗2n} with respect
to β, then Λτ

ε(a1, . . . , a2n) = Λ−ε(a
∗
1, . . . , a

∗
2n).
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(b) For all i, j we have (tjai)
∗ = tja∗i so Λτ

ε(t
j1a1, . . . , t

j2na2n) = Λ−ε(t
j1a∗1, . . . , t

j2na∗2n).

(c) The right dual of an A-basis for M is an A-basis for M.

Proof (a) and (b) are straightforward consequences of the fact that β is σ-sesquilinear.
(c) This follows from Lemma 6.4 and 6.3. �

The standard ordered t-hyperbolic basis for M is {e1, . . . , en, f1, . . . , fn} whose Gram matrix
is given by sσ. The standard chamber in ∆ε is cε(e1, . . . , en, f1, . . . , fn).

Proposition 6.7 The map τ induces isomorphisms τ : ∆ε → ∆−ε where typ(τ): I → I is
the graph isomorphism defined by i→ i− nmod (2n). Moreover the standard chambers c+
and c− are interchanged by τ .

Proof Let Xi,ε be the object of type i on cε. We show that Xτ
i,ε = Xn+i,−ε. This follows

immediately from Lemmas 6.6 and 6.4. In particular c+ and c− are interchanged.
We now consider an arbitrary lattice Λε = 〈a1, . . . , a2n〉Oε , where {a1, . . . , a2n} is some

k(t)-basis for M (note that this is always possible as the Kac Moody group acts flag
transitively on the twin building).

Let g be the transformation sending ei to ai and fi to an+i for i = 1, 2, . . . , n. It
follows that det g = atl for some a ∈ k, l ∈ Z. Now s−1tg−σ = gτs−1 is the transforma-
tion sending e1, . . . , fn to a∗1, . . . , a∗2n. Taking determinants we see that the type of Λτ

ε is
εvε(det(g)−σt−n) = εvε(det(g))− nmod (2n). �

Definition 6.8 Let
∆τ = {(d+, d

τ
+) | d+ opp dτ+}

Adjacency is induced by adjacency in ∆ so that

(d+, d
τ
+) ∼i (e+, e

τ
+) ⇐⇒ d+ ∼i e+( and d− ∼τ(i) e−)

Lemma 6.9 (d+, d−) ∈ ∆τ if and only if there is an A-basis {a1, . . . , an, b1, . . . , bn} for M
whose Gram matrix is sσ and such that dε = cε(a1, . . . , an, b1, . . . , bn).

Proof As in the proof of Proposition 6.7, one verifies that any such basis gives rise
to a pair of chambers in ∆τ . Conversely, let (d+, d−) ∈ ∆τ . That means that d− =
dτ+. Let Σ = Σ(d+, d−) be the twin-apartment containing d+ and d−. Then Στ = Σ.
Let {a1, . . . , an, b1, . . . , bn} be an A-basis for M such that Σ = Σ{a1, . . . , an, b1, . . . , bn}
and dε = cε(a1, . . . , an, b1, . . . , bn), where X0 = 〈a1, . . . , an, b1, . . . , bn〉Oε has type 0. Let
{a∗1, . . . , a∗n, b∗1, . . . , b∗n} be the right dual basis with respect to β. Then,

Σ = Σ{a∗1, . . . , a∗n, b∗1, . . . , b∗n}
dε = cε(a

∗
1, . . . , a

∗
n, b
∗
1, . . . , b

∗
n)
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Note that by Lemma 6.6 both bases are A-bases for M. Note that the type of the lattice
〈a∗1, . . . , a∗n, b∗1, . . . , b∗n〉Oε = 〈a1, . . . , an, b1, . . . , bn〉τO−ε is n. Now consider the k(t)-linear map

φ:V → V
bi 7→ a∗i
tai 7→ b∗i

for all i = 1, 2, . . . , n. It is easy to check that φ is a type-preserving automorphism of ∆ε

such that dφε = dε since it is a k(t)-linear map that sends the object of type i on dε to the
object of type i on dε. This implies that φ ∈ H = N ∩B+ ∩B− and it follows (see e.g. [1])
that

bi = λia
∗
i

tai = µib
∗
i

where λi, µi ∈ k∗ and in fact since (a∗i )
∗ = tai we have µi = λ−1

i . Without modifying the
chambers dε, we may scale so that λi = 1 for all i, that is

bi = a∗i
tai = b∗i

so the Gram matrix of {a1, . . . , an, b1, . . . , bn} is sσ. �

Recall the definition of Gτ .

Gτ := {g ∈ SL2n(k[t, t−1])|∀x, y ∈ V, β(gx, gy) = β(x, y)}

Theorem 6.10 The group Gτ acts flag-transitively on ∆τ .

Proof Let (d+, d−) ∈ ∆τ . By Lemma 6.9 there exists an A-basis {a1, . . . , an, b1, . . . , bn}
for M whose Gram matrix is sσ. The A-linear map

φ:V → V
ei 7→ ai
fi 7→ bi

for all i = 1, 2, . . . , n belongs to Gτ and sends (c+, c−) to (d+, d−). �

6.2 Simple connectedness

We will use the techniques developed in [8] to show that ∆τ is simply connected. In the
terminology of loc. cit. a collection {Cm}m∈N of subsets of ∆+ is a filtration if the following
are satisfied:

(F1) For any m ∈ N Cm ⊆ Cm+1,

(F2)
⋃
m∈N Cm = ∆+,
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(F3) For any m ∈ N>0, if Cm−1 6= ∅, there exists an i ∈ I such that for any c ∈ Cm, there
is a d ∈ Cm−1 that is i-adjacent to c.

It is called a residual filtration if the intersections of C with any given residue is a filtration
of that residue.

For any c ∈ ∆, let |c| = min{λ | c ∈ Cλ}. For a subset X ⊆ ∆ we accordingly define
|X| = min{|c| | c ∈ X} and aff(X) = {c ∈ X | |c| = |X|}. We shall make use of the
following result from loc. cit..

Theorem 6.11 Suppose C is a residual filtration such that for any rank 2 residue R, aff(R)
is connected and any rank 3 residue R, aff(R) is simply connected, then the following are
equivalent.

(a) ∆ is simply connected,

(b) Cn is simply connected for all n ∈ N.

We shall define a residual filtration C with the property that C0 = ∆τ . Then, since we
know that ∆ is simply connected, it suffices to show that C satisfies the conditions of the
theorem.

6.3 The filtration C
In order to define the filtration C we first let

W τ = {w ∈ W | ∃dε ∈ ∆ε:w = δ∗(dε, d
τ
ε)}.

We also fix an injective map | · |:W τ → N such that whenever l(w) > l(w′), we have
|w| > |w′| and for any m ∈ N. We then define a filtration on ∆+ using | · | as follows: Let

Cm = {c+ ∈ ∆+ | |δ∗(c+, cτ+)| ≤ m}.

In the remainder of this section we prove that C is a residual filtration. First however, we
will need some technical lemmas about W τ . Let

W (τ) = {u ∈ W | uτ = u−1}.

These elements are called twisted involutions in [22] and [13]. Some of the results
bellow have somewhat weaker forms in the most general case of a quasi-twist. See [13] for
details on both twisted involutions and of the corresponding geometries.

We now characterize W (τ) as follows:

Lemma 6.12
W (τ) = {w(w−1)τ | w ∈ W}.

More precisely, given any u ∈ W (τ) there exists a word w ∈ W such that w(w−1)τ is a
reduced expression for u.
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Proof It is obvious that we have ⊇. We now proceed to prove the reverse inclusion. Let
u ∈ W τ . We prove that u can be written as a reduced expression of the form w(w−1)τ

by induction on l = l(u). If l = 0, then 1 = u = 1 · (1−1)τ . Now let l ≥ 1 and write
u = si1 · · · sil . By assumption we can also write u = sτ(il) · · · sτ(i1). Consider u′ = si1usτ(i1).
Note that u′ ∈ W (τ). We note the following: l(si1u) < l(u) and so writing si1u =
si1sτ(il) · · · sτ(i1) it follows from the exchange property that there is some j such that si1u =
sτ(il) · · · ŝτ(ij) · · · sτ(i1). There are two cases:

(i) j > 1

(ii) j = 1

In case (i) it follows that l(si1usτi1) = l(u)− 2. By induction we have a word w′ of length
(l(u) − 2)/2 such that u = si1w

′(w′−1)τsτi1 and since this expression has length l(u) it is
reduced and we are done.

In case (ii) it follows that si1usτi1 = u. This means that u can also be written in the
form u = si2 · · · silsτ(i1). Repeating this process we either decrease the length as in case
(i), or u has the property that it can be written such that any of the sij come first. By
Theorem 2.16 of [17] this means that if J = {i1, . . . , il, τ(il), . . . , τ(i1)}, then J is finite
and u is the longest word in WJ . In particular J 6= I, then since typ(τ) acts on Ã2n−1 by
interchanging opposite nodes, there is a subset K ⊆ J such that J is the disjoint union of
K and Kτ . As a consequence, u = wK(wK)τ . �

The following lemma characterizes W τ .

Lemma 6.13 W τ = W (τ).

Proof Let cε ∈ ∆ε. Then u = δ∗(cε, c
τ
ε) satisfies uτ = u−1. Therefore the inclusion ⊆

follows by definition. Conversely, consider a chamber cε such that cε opp cτε . Then the
apartment Σ(cε, c

τ
ε) is preserved by τ and identifying it with the Coxeter group we see

that τ acts on Σ as it acts on W . Let u ∈ W (τ). Then, by Lemma 6.12 it is of the
form w(w−1)τ for some w ∈ W . Let dε be the chamber such that δε(cε, dε) = w, then
δ∗(dε, d

τ
ε) = w(w−1)τ = u as desired. �

In the sequel we shall use the following notation for projections. Given a residue R of ∆ε,
we denote projection from ∆ε onto R by projR and denote (co-) projection from ∆−ε onto
R by proj∗R.

Lemma 6.14 Suppose that cε ∈ ∆ satisfies δ∗(cε, cτε) = w, let i ∈ I and suppose that π is
the i-panel on cε. Then,

(a) If l(siw) > l(w), then all chambers dε ∈ π − {cε} except one satisfy δ∗(dε, dτε) = w.
The remaining chamber čε satisfies δ∗(čε, (čε)τ ) = siwsτ(i).

(b) If l(siw) < l(w), then all chambers dε ∈ π − {cε} satisfy δ∗(dε, dτε) = siwsτ(i).
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In particular, if w = 1, then all chambers dε ∈ π − {cε} except one satisfy δ∗(dε, dτε) = 1.

Proof (a) In this case, by the twin-building axioms, there is a unique chamber, called
č = proj∗π(cτε) such that δ∗(č, cτε) = siw. Let dε be any other chamber in π. Then, again by
the twin-building axioms we have δ∗(dε, cτε) = w. By applying τ we see that δ∗(dτε , cε) =
wτ = w−1. It follows that for any other chamber d′ ∈ π we either have δ∗(dτε , d′) = wτsτ(i)
or wτ . Note here that l(wτsτ(i)) = l(wτ ) + 1. However, δ∗(dε, dτε) ∈ W τ , where all lengths
are even. Since wτ ∈ W τ , wτsτ(i) 6∈ W τ and so we must have δ∗(dε, dτε) = w. By the same
token, the distance δ∗(č, čτ ) = siwsτ(i).

(b) In this case, by the twin-building axioms, every chamber dε ∈ π − {cε} satisfies
δ∗(dε, c

τ
ε) = siw, since now cε = proj∗π(cτε), which is unique. Applying τ we see that

δ∗(d
τ
ε , cε) = sτ(i)w

τ . It follows that for any other chamber d′ ∈ π we either have δ∗(dτε , d′) =
sτ(i)w

τsi or sτ(i)wτ . However, since wτ ∈ W τ , by looking at the lengths, wτsi 6∈ W τ , and
so we must have δ∗(dτε , dε) = sτ(i)w

τsi and we are done. �

Lemma 6.15 τ does not commute with any reflection.

Proof Let r be any reflection such that rτ = r. Then in fact r ∈ W τ . However, all
elements of W τ have even length and r being a conjugate of a fundamental reflection does
not. �

Lemma 6.16 For u ∈ W τ and i ∈ I, we have l(siusτ(i)) = l(u)± 2.

Proof By Lemma 6.12 u has a reduced expression of the form ww−τ . First note that
by Lemma 6.15 we cannot have siusτ(i) = u because that would imply that the reflection
w−1siw is fixed by τ . There are two cases to consider, namely,

(a) l(siu) > l(u),

(b) l(siu) < l(u).

In case (a) note that l(siu) = l(usτ(i)) > l(u), so that by Proposition 4.1(b) of [8] we have
l(siusτ(i)) = l(u) + 2 or siusτ(i) = u. The latter is impossible by the preceding argument.

In case (b) consider u′ = siu and assume that l(siusτ(i)) = l(u). We now have
l(u′sτ(i)) = l(siusτ(i)) = l(u) > l(u′) and l(siu

′) = l(u) > l(siu) = l(u′). Apply-
ing the aforementioned Proposition again, we find that either l(siu′sτ(i)) = l(u′) + 2 or
siu
′sτ(i) = u′. In the first case we find that l(siu) = l(usτ(i)) − 2, which contradicts the

equality l(siu) = l((siu)τ ) = l(sτ(i)u
−1) = l(usτ(i)). The second case is ruled out as in (a).

�

We define the following subset of a given residue R:

Aτ (R) = {c ∈ R | l(δ∗(c, cτ )) is minimal among all such distances}.
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Lemma 6.17 Let R be a J-residue. Let c ∈ Aτ (R) and let w = δ∗(c, c
τ ). Then, d ∈ Aτ (R)

if and only if w = δ∗(d, d
τ ). Moreover, w is determined by the fact that for any j ∈ J we

have l(sjw) = l(w) + 1.

Proof First note that by Lemma 6.14, {δ∗(x, xτ ) | x ∈ R} = {uwuτ | u ∈ WJ}. More-
over, the coset WJwWτ(J) has a minimal element m that is characterized by the fact that
l(sjm) = l(m)+1 and l(msτ(j)) = l(m)+1 for all j ∈ J . We claim that w has that property
as well. Namely, let j ∈ J have the property that l(wsτ(j)) = l(sjw) < l(w). Then, by
Lemma 6.14 (b) any element d in the j-panel on c has the property that δ∗(d, dτ ) = sjwsτ(j)
and by Lemma 6.16 this must have length l(w) − 2, a contradiction to the fact that
c ∈ Aτ (R). Thus, w satisfies the conditions on m and it follows that w = m. �

Proposition 6.18 Let c ∈ R and let w = δ∗(c, c
τ ). The following are equivalent:

(i) c ∈ Aτ (R),

(ii) w = wR, the unique element of minimal length in WJwWτ(J),

(iii) c ∈ Ck, where k = min{l | Cl ∩R 6= ∅}.

In particular, we have Aτ (R) = aff(R).

Proof By Lemma 6.17 (i) and (ii) are equivalent. Since | · | is strictly increasing, also (ii)
and (iii) are equivalent. �

Proposition 6.19 C is a residual filtration.

Proof Part (F1) and (F2) are immediate. Now let R be a J-residue, suppose that R ∩
Cn−1 6= ∅ and let c ∈ R∩Cn−Cn−1. Let w = δ∗(c, c

τ ). By Proposition 6.18, c 6∈ Aτ (R) and
so, by Lemma 6.17, there exists a j ∈ J with l(sjw) < l(w). Therefore by Lemma 6.16,
any j-neighbor d of of c has l(δ(d, dτ )) = l(w)− 2 and therefore belongs to Cn−1. �

Proposition 6.19 allows us to apply Theorem 6.11 and, by Proposition 6.18, in order to
show simple connectedness of ∆τ , it suffices to show that aff(R) = Aτ (R) is connected
when R has rank 2 and is simply connected when R has rank 3. We shall first obtain some
general properties of Aτ (R) and then verify the connectedness properties using concrete
models of Aτ (R).

Proposition 6.20 (See Corollary 7.4 of [6]) For ε = ±, let Sε ( Rε be residues of ∆ε such
that Sε = proj∗Rε(R−ε) and let xε ∈ Rε be an arbitrary chamber and assume in addition
that R−ε = Rτ

ε and x−ε = xτε , for ε = ±. Then, xε ∈ Aτ (Rε) if and only if

(i) xε belongs to a residue opposite to Sε in Rε whose type is also opposite to the type of
Sε in Rε and
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(ii) projSε(xε) ∈ Aτ (Sε).

Proof This is exactly the same as the proof in loc. cit. noting that it suffices for τ to be
an isomorphism between ∆+ and ∆− that preserves lengths of codistances. �

Lemma 6.21 With the notation of Proposition 6.20, proj∗Sε, proj∗S−ε define adjacency pre-
serving bijections between S−ε and Sε and (proj∗Sε)

−1 = proj∗S−ε. Let l = max{l(δ∗(cε, d−ε)) |
cε ∈ Sε, d−ε ∈ S−ε}. Then, d−ε = proj∗S−ε(cε) if and only if l(δ∗(cε, d−ε)) = l.

Proof This is the twin-building version of the main result of [9]. �

In view of Proposition 6.20, in order to study Aτ (R) entirely inside R we need to know what
Aτ (S) looks like if proj∗S ◦τ is a bijection on S. From now on we shall write τS = proj∗S ◦τ .

Corollary 6.22 In the notation of Proposition 6.20, τSε has order 2.

Proof Pick any c ∈ Sε. Then l(δ∗(c
τ , (proj∗S−ε(c))

τ )) = l(δ∗(c, (proj∗S−ε(c)))). Therefore,
by Lemma 6.21, proj∗Sε(c

τ ) = (proj∗S−ε(c))
τ . The claim of the lemma follows. �

Lemma 6.23 Let R be a residue of type MJ
∼= Am for some m and assume that proj∗Rτ

defines a bijection between R and Rτ . Then, τR is a type preserving automorphism of R.

Proof Note first that both τ and proj∗Rτ define a bijection between the type set of R and
the type set of τ(R). Both maps can either be equal or differ by opposition. We now prove
that they cannot differ by opposition.

Let x ∈ Aτ (R) and consider an arbitrary twin-apartment Σ on x and xτ . Note that
proj∗Rτ (x) ∈ Σ and proj∗R(xτ ) ∈ Σ. Moreover, since x ∈ Aτ (R), the chambers proj∗Rτ (x)
and xτ are opposite in Rτ ∩ Σ.

Let y = proj∗π(xτ ), where π is the j-panel on x in R. Then y ∈ Σ∩R and l(δ∗(y, yτ )) =
l(δ∗(x, x

τ )) + 2 by Lemma 6.14. More precisely, that lemma says that yτ = proj∗πτ (y). In
particular yτ ∈ Σ.

Note that l(δ∗(x, proj∗Rτ (x))) = l(δ∗(y, proj∗Rτ y)), but l(δ∗(x, xτ )) 6= l(δ∗(y, y
τ )). There-

fore, by definition of projection δ−ε(proj∗Rτ (y), yτ ) 6= δ−ε(proj∗Rτ (x), xτ ) = wτ(J). Therefore
if proj∗Rτ (y) and proj∗Rτ (x) are j′ adjacent, then j′ and τ(j) are not opposite. �

Proposition 6.24 Assume the terminology of Proposition 6.20. Then, we have the fol-
lowing.

(i) τSε cannot preserve a panel.

(ii) Sε cannot be of type A1;

(iii) Sε cannot be of type A2;

(iv) if Sε has type A1 × A1, then either Aτ (Sε) = Sε or τSε interchanges the types;
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Proof Suppose π is an i-panel that is preserved by τSε . Thus the bijection proj∗Sε :S
τ
ε → Sε

restricts to a bijection between πτ and π. Note that this bijection is proj∗π.
However, by Lemma 6.16 we see that there is a chamber cε ∈ π and a w ∈ W τ

with the property that δ∗(cε, cτε) = siwsτ(i) and δ∗(dε, dτε) = w, for all dε ∈ π − {cε} and
l(siwsτ(i)) = l(w)+2. From the twin-building axioms it now follows that cε = proj∗π(dτε) for
all dε ∈ π. Thus, proj∗π is not bijective on πτ , hence neither is proj∗Sε on S

τ
ε , a contradiction.

Part (ii) follows immediately from (i). To see (iii) note that in this case Sε is a projective
plane and any automorphism of order 2 necessarily has a fixed point. This fixed point is a
panel that is preserved by proj∗Sε ◦τ , contradicting (i).

(iv) Suppose Sε has type A1×A1. Then, by (i) τSε cannot preserve a panel. Therefore
if it fixes type, then, τSε has no fixed points so that Aτ (Sε) = Sε. �

Lemma 6.25 If R 6= S and S = Aτ (S), then Aτ (R) is connected in rank 2 and simply
connected in rank 3.

Proof By Proposition 6.20, Aτ (R) is the geometry opposite S. Connectedness is proved
in [5, 4, 1]. Now let R have rank 3. If the diagram of R is disconnected, Aτ (R) is the
product of connected residues, hence it is simply connected. Finally suppose R has type
A3. If S is a chamber then we are done by [1]. In view of Proposition 6.24 this leaves the
case where S has type A1×A1. Now Aτ (R) is the geometry of all points, lines and planes
of a projective 3-space that are opposite a fixed line l. That is the points and planes are
those not incident to l and the lines are those not intersecting l. Consider any gallery γ in
Aτ (R). It corresponds to a path of points and lines that all belong to Aτ (R). One easily
verifies the following: Any two points are on some plane. Hence the collinearity graph Ξ
on the point set of Aτ (R) has diameter 2. Any triangle in Ξ lies on a plane. Given any
line m and two points p1 and p2 off that line, there is a point q on m that is collinear to p1

and p2 since lines have at least three points. It follows that quadrangles and pentagons in
Ξ can be decomposed into triangles. Since triangles are geometric, γ is null-homotopic. �

Lemma 6.26 If R has rank 2, then Aτ (R) is connected.

Proof There are two cases: R has type A2 or A1 × A1. If R has type A2, then by
Proposition 6.24, S is a chamber and so by Lemma 6.25 we are done. Now let R have
type A1 × A1, then S is a chamber, in which case we are done again, or it is R. By
Proposition 6.24, either Aτ (R) = R, which is connected, or τR switches types and Aτ (R)
is a complete bipartite graph with a perfect matching removed. This is connected since
panels have at least three elements. �

Lemma 6.27 Assume the notation of Proposition 6.20. Suppose that R ∼= R1 × R2 and
S ∼= S1 × S2, where typ(Si) ⊆ typ(Ri) for i = 1, 2. Suppose moreover, that τS preserves
the type sets Ii of the residue Si (not necessarily point-wise). Then,

(i) τR = τR1 × τR2.

(ii) Aτ (R) ∼= Aτ (R1)× Aτ (R2).
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Proof For i = 1, 2, let Ji = typ(Ri) and let Ii = typ(Si). (i) Note that if, for i = 1, 2, R′i
is a residue of type J ′i in R then R′i ∩ R′2 = {c} for some chamber c and, for any x ∈ R′i,
projR′2(x) = c. By assumption on S the same is true for residues S ′i of type Ii. Note
further that the same applies to the residues Rτ and Sτ . Recall now that the isomorphism
R ∼= R1 × R2 is given by x 7→ (x1, x2), where xi = projRi(x). Thus in order to prove (i) it
suffices to show that

projRi ◦ proj∗R ◦τ = proj∗Ri ◦τ ◦ projRi .

However, note that in fact

τR = proj∗R ◦τ = proj∗S ◦τ,

By Lemma 7.3 of [6] we have proj∗S = proj∗S ◦ projSτ so that

τR = proj∗S ◦τ = proj∗S ◦ projSτ ◦τ,

and the same holds for Ri and Si. Since τ is an isomorphism we also have projSτ ◦τ =
τ ◦ projS, so that

τR = proj∗S ◦ projSτ ◦τ = proj∗S ◦τ ◦ projS,
τRi = proj∗Si ◦ projSiτ ◦τ = proj∗Si ◦τ ◦ projSi , for i = 1, 2.

Note at this point that projS(x) = projS((x1, x2)) = (projS1
◦ projR1

(x)), projS2
◦ projR2

(x)).
In other words: projS = projS1

× projS2
= (projS1

◦ projR1
, projS2

◦ projR2
). Thus in order

to prove (i) it suffices to show that

projSi ◦ proj∗S ◦τ ◦ projS = proj∗Si ◦τ ◦ projSi , for i = 1, 2.

This is equivalent to showing that on S we have

projSi ◦ proj∗S ◦τ = proj∗Si ◦τ ◦ projSi , for i = 1, 2.

To see this, first pick some x ∈ S and note that if x lies on the I2-residue S ′2, then
x, projS1

(x) ∈ S ′2, thus τ(x), τ ◦ projS1
(x) ∈ S ′τ2 . But since τS is type-preserving, we have

proj∗S ◦τ(x), proj∗S ◦τ ◦ projS1
(x) ∈ proj∗S(S ′2) = S ′′2 , and S ′′2 is again of type I2. There-

fore, the projection on S1 of these two chambers is the same, namely S1 ∩ S ′′2 . Namely,
projS1

◦ proj∗S ◦τ(x) = projS1
◦ proj∗S ◦τ◦projS1

(x) = S1∩S ′′2 . Noting that projS1
◦ proj∗S(y) =

proj∗S1
(y) for any y ∈ Sτ , we have projS1

◦ proj∗S ◦τ(x) = (projS1
◦ proj∗S) ◦ τ ◦ projS1

(x) =
proj∗S1

◦τ ◦ projS1
(x), that is, projS1

◦τS = τS1 ◦ projS1
,which proves the claim.

(ii) Let x = (x1, x2) ∈ R1 ×R2, and suppose R ⊆ ∆ε. Then, by (i),

δε(x, x
τ ) = δ((x1, x2), τR(x1, x2))

= δ((x1, x2), (τR1(x1), τR2(x2)))
= δ1(x1, τR1(x1)) · δ2(x2, τR2(x2)).

Since Aτ (R1) × Aτ (R2) ⊆ R1 × R2, we see that δ(x, τR(x)) is maximal if and only if
δ(xi, τRi(xi)) is maximal for i = 1, 2. Thus Aτ (R) ∼= Aτ (R1)× Aτ (R2). �
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Theorem 6.28 Suppose that |k| ≥ 5. If R has rank 3, then Aτ (R) is connected and simply
2-connected.

Proof The residue R has one of three possible types: A3, A2 × A1, or A1 × A1 × A1. In
view of Lemma 6.25 we will ignore the cases where S = Aτ (S) is a proper residue of R.

Since S is a residue, but not a chamber, a panel, or a residue of type A2, and S 6= Aτ (S),
it follows from Proposition 6.24 that either R = S or S has type A1 ×A1 and τS switches
types on S. The theorem will now follow from Lemmas 6.29 and 6.30. �

Lemma 6.29 If R has disconnected diagram of rank 3, then Aτ (R) is connected and simply
connected.

Proof We show that in all cases Lemma 6.27 applies. If R has type A1 × A1 × A1, then
let τ act on the types of R. It either fixes all types or it has two orbits I1 and I2, where
we may assume |I2| = 2. Moreover, if S has type A1×A1, then we can write S ∼= S1× S2,
where S1 = {c} ⊆ R1, S2 = R2 and Ri has type Ii, for i = 1, 2. If R = S, then we can take
Si = Ri, where Ri as above. One verifies that Lemma 6.27 applies.

We now turn to the case, where R has type A2 × A1. Let Ji be the underlying type
set of type Ai. Since τ is an adjacency preserving permutation of R of order 2, it must
preserve the type sets J1 and J2. In particular if S has type A1 × A1, τS must be type
preserving. Take Ri to be a residue on c ∈ R of type Ji. Let S1 = R1 and let S2 = S ∩R2.
Now again Lemma 6.27 applies.

By Lemma 6.27, Aτ (R) ∼= Aτ (R1) × Aτ (R2). By Lemma 6.26, Aτ (Ri) is connected,
hence Aτ (R) is connected and simply connected. �

Lemma 6.30 If R is of type A3 and |k| ≥ 5 then the geometry Aτ (R) is connected and
simply connected.

Proof

Case 1: S = R. By Lemma 6.23, τR is given by an involutory semilinear map φ on a
4-dimensional vector space. Since S = R, we also know that φ has no fixed points. We
now define the objects of the geometry Aτ (R). All points and all planes of PG(V ) belong
to Aτ (R). The only lines in the geometry are those 2-dimensional spaces of V that are not
fixed by φ. These will be called good lines. Points will be denoted by lowercase letters,
good lines will be denoted by uppercase letters and planes will be denoted by greek letters.

We now describe incidence. We shall use containment relations only for containment
in PG(V ), not to be confused with incidence in Aτ (R). Any point contained in a good line
will be incident to it and any plane containing a good line will be incident to it. A point
p will be incident to a plane π if and only if p ⊆ π and p 6⊆ πφ.

We now gather some basic properties of Aτ (R). Any plane π is incident to any point
p that is not contained in the only bad line π ∩ πφ of π. It follows that any two points
incident to a plane will be collinear. and any point p is incident to all planes π so that
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p ⊆ π but π does not contain the only bad line 〈p, pφ〉 containing p. If a line L is incident
to a plane π, then all but one point incident to L is incident to π.

Connectivity is quite immediate since any two points p1, p2 that are not collinear will
be collinear to any other point not in the unique bad line 〈p1, p2〉 on p1 (and p2).

In order to prove simple connectivity we first reduce any path to a path in the collinear-
ity graph. Indeed any path p1πp2 will be homotopically equivalent to the path p1Lp2 where
L = 〈p1, p2〉. Any path pπL will be homotopically equivalent to the path pL′p′L where p′ is
a point on L that is also incident to π and L′ = 〈p, p′〉. Note that since p′ is incident to π,
L′ is a good line. Finally a path L1πL2 is homotopically equivalent to the path L1p1L

′p2L2

where pi are points on Li that are incident to π and L′ = 〈p1, p2〉.
Therefore, to show simple connectedness we can restrict to paths in the collinearity

graph. Note also the fact that if p is a point and L is a good line not incident to p then p
will be collinear to all but at most one point on L (namely the intersection of the unique
bad line on p and L if this intersection exists). This enables the decomposition of any
path in the collinearity graph to triangles. Indeed, the diameter of the collinearity graph
is two and so any path can be decomposed into triangles, quadrangles and pentagons.
Moreover, if p1, p2, p3, p4 is a quadrangle then, since |k| ≥ 4, the line 〈p2, p3〉 will admit a
point collinear to both p1 and p4 decomposing the quadrangle into triangles. Similarly, if
p1, p2, p3, p4, p5 is a pentagon, then there will be a point on the good line 〈p3, p4〉 that is
collinear to p1. Thus, the pentagon decomposes into quadrangles. Therefore it suffices to
decompose triangles into geometric triangles.

Assume that p1, p2, p3 is a triangle. The plane π = 〈p1, p2, p3〉 is incident to all three
(good) lines in the triangle and so, either the triangle is geometric and then we are done,
or one of the points is not incident to π. Let us assume that p1 is not incident to π.

Consider a plane π′ that contains the line 〈p2, p3〉 and so that p2 and p3 are incident to
π′. This is certainly possible since |k| ≥ 4 and one only need to stay clear of the planes
〈p2, p3, p

φ
3〉 and 〈p2, p3, p

φ
2〉. Note that by choice of π′, any line L with pi ⊆ L ⊆ π′ is good.

Let now for each i = 2, 3

Li = {L ⊆ π′|L 6= 〈p2, p3〉, pi ⊆ L, and pi is incident to the plane 〈p1, pi, L〉}.

We have Li = |k| − 1, the only lines of π′ on pi not in Li are 〈p2, p3〉 and 〈p1, pi, p
φ
i 〉 ∩ π′.

Note that if L ∈ Li then L only admits one point not incident to π′. Pick lines distinct
lines Li,j ∈ Li with j = 1, 2, 3. Of the 9 intersection points at most 6 are not incident to
one of the three planes that they define. Pick any one of the remaining 3 points and use it
as the point p above.

Case 2: S of type A1 ×A1. The geometry is rather similar to the previous one. There
is a line L so that S is the residue corresponding to L and the map τS induces a pairing
between points of L and planes on L. The geometry Aτ (R) is described as follows. The
points of the geometry are all the points of V not in L, the lines of the geometry are all
the lines of V not intersecting L and the planes are all planes of V not containing L.
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We now describe incidence. Any line included in a plane is incident to it and any point
included in a line is incident to it. A point p is incident to a plane π if and only if the
plane π′ = 〈p,L〉 is not paired to the point p′ = L ∩ π.

We now gather a few useful properties of this geometry. Note a number of similarities
with the previous geometry. Any plane π is incident to all the points p ⊆ π so that p is not
contained in the bad line π′ ∩ π where π′ is the plane paired to the point π ∩ L. Similarly
any point p is incident to any plane π if p ⊆ π and 〈p, p′〉 6⊆ π where p′ is the point paired
to the plane 〈p,L〉. If p is a point and L is a good line not incident to p then p will be
collinear to all but one point on L; namely the non-collinear point on L is the intersection
of L with the bad plane 〈p,L〉.

Any two points p1, p2 that are not collinear have the property that 〈p1, p2〉 intersects L
and so any point not in 〈p1, p2,L〉 will be collinear to both p1 and p2. In particular, the
geometry Aτ (R) is connected and the diameter of the collinearity graph is 2.

The reduction to the collinearity graph is a little more involved because not every two
points on a good plane will be collinear. However any two non-collinear points incident to
a good plane π are collinear to any other point incident to π since L intersects π in exactly
one point.

The previous remark immediately shows that a path of type p1πp2 can be replaced by
a path p1, L1, p

′, L2, p2, where all elements are incident to π. Suppose we have a path of
type pπL. Since π is incident to all but one point on the line L and p is collinear to all but
one point on the line L, we can replace this path by one of type p1L1p2L, where all objects
are incident to π. Suppose we have a path of type L1πL2. This reduces to the previous
case since all but one point of L1 are incident to π.

As before, given any line L and two points p1 and p2 not on L, there are only two points
on L that are not collinear to at least one of p1 and p2. The proof that all paths in the
collinearity graph decompose into triangles is identical. Therefore it suffices to show that
any triangle decomposes into geometric triangles.

Finally we need to modify the argument above to decompose triangles. The only
difference is once more the fact that not every two points incident to a good plane are
collinear. As a consequence the sets Li only have |k|−2 lines because one needs to exclude
the space 〈pi, π′ ∩ L〉. Moreover, each line of Li has three forbidden points. Namely, in
addition to the two as in the previous case, it has one point that is not collinear to p1 since
it lies on the plane 〈p1,L〉. If |k| ≥ 5, then we can choose four lines from L2 and L3 and see
that out of the 16 intersection points at most 9 are bad. Pick any one of those remaining
points p and notice that it is collinear to all of the pi and ppipj is a geometric triangle for
all i 6= j. This decomposes the initial triangle into geometric triangles. �

Proof (of Theorem 3) By Lemma 6.26 and Theorem 6.28 the residual filtration C satisfies
the conditions of Theorem 6.11. It follows that ∆τ is connected and simply connected
and so by Tits’ Lemma [24, Corollaire 1], Gτ is the universal completion of the amalgam
of maximal parabolics {Pi}i∈I with respect to the action on ∆τ . From the diagram Γ of
type Ãn−1 we see that each of the maximal parabolics of Gτ is a quotient of SLn(k) and
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the intersection Li = {Lj, Lj,k | j, k 6= i} of Lτ with the maximal parabolic Pi is exactly
the Curtis-Tits amalgam for that linear group. Now let G̃ be the universal completion of
Lτ . Since Lτ generates Gτ , there is a unique surjective homomorphism φ̃: G̃ → Gτ that
restricts to the inclusions on the groups in Lτ . The classical Curtis-Tits theorem ensures
that each maximal parabolic Pi is the universal completion of the subamalgam Li. In
particular there exists a unique homomorphism φi:Pi → G̃ that maps surjectively to the
subgroup of G̃ generated by Li. This makes G̃ a completion of the amalgam of maximal
parabolics. It follows that there exists a unique surjective homomorphism φτ :Gτ → G̃.
The standard universality argument applied to φ̃ and φτ now ensures that Gτ ∼= G̃. �
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