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Locally conformally Kähler manifolds

admitting a holomorphic conformal flow

Liviu Ornea1 and Misha Verbitsky2

Abstract
A manifold M is locally conformally Kähler (LCK) if it
admits a Kähler covering M̃ with monodromy acting by
holomorphic homotheties. Let M be an LCK manifold ad-
mitting a holomorphic conformal flow of diffeomorphisms,
lifted to a non-isometric homothetic flow on M̃ . We show
that M admits an automorphic potential, and the mon-
odromy group of its conformal weight bundle is Z.
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1 Introduction

1.1 Conformal automorphisms of LCK manifolds

Locally conformally Kähler (LCK) manifolds are, by definition, complex
manifolds of dimC > 1 admitting a Kähler covering M̃ with deck transfor-
mations acting by holomorphic homotheties. The monodromy group of
an LCK manifold M is the deck transform group of the smallest Kähler
covering M̃ −→ M .

1Partially supported by a PN2-IDEI grant, nr. 525.
2Partially supported by the grant RFBR for support of scientific schools NSh-

3036.2008.2, RFBR grant 09-01-00242-a and Science Foundation of the SU-HSE award

No. 09-09-0009.

Both authors thank Oberwolfach Institute for funding a RIP visit in April 2010 when part

of this research was done.

Keywords: Locally conformally Kähler manifold, Kähler potential, conformal flow.

2000 Mathematics Subject Classification: 53C55.

– 1 – version 1.0, Apr. 24, 2010



L. Ornea, M. Verbitsky LCK manifolds admitting a holomorphic conformal flow

This condition is equivalent to the existence of a global closed one-form
θ (called the Lee form) such that the fundamental two-form ω satisfies
dω = θ ∧ ω.

We shall always assume that M is not globally conformally equivalent
to a Kähler manifold.

In the present paper, we prove that any compact LCK manifold which
admits a holomorphic conformal flow has monodromy Z, provided that this
flow does not act by isometries on the Kähler covering (Theorem 2.1).

An especially interesting class of LCK manifold is called LCK mani-
folds with potential (see Subsection 1.3). These are manifolds with the
Kähler metric on M̃ admitting a Kähler potential which is automorphic with
respect to the action of the monodromy group.

In the present paper, we characterize LCK manifolds with potential in
terms of a holomorphic conformal flow. We prove that M is an LCK man-
ifold with potential if and only if it admits a holomorphic conformal flow
which does not act by isometries on the Kähler covering (Theorem 2.3).

1.2 Vaisman manifolds

Definition 1.1: A Vaisman manifold is an LCK manifold (M,ω, θ) with
∇θ = 0, and ∇ the Levi-Civita connection.

Compact Vaisman manifolds can be characterized in terms of their au-
tomorphism group.

Theorem 1.2: ([KO]) Let (M,ω) be a compact LCK manifold admitting
a holomorphic, conformal action of C which lifts to an action by non-trivial
homotheties on its Kähler covering. Then (M,ω) is conformally equivalent
to a Vaisman manifold.

This characterization is superficially similar to the one given in the
present paper for LCK manifolds with the potential (Theorem 2.3). How-
ever, we ask for a holomorphic conformal S1-action only, and Kamishima-
Ornea theorem postulates existence of a holomorphic conformal C-action.

Vaisman manifolds are especially important because their topology is
easy to control. As shown in [OV2], any Vaisman manifold is diffeomorphic
to a locally trivial elliptic fibration over a projective orbifold.
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1.3 LCK manifolds with potential

Let (M̃ , ω̃) be a Kähler covering of an LCK manifold M , and let Γ be the
deck transform group of [M̃ : M ]. Denote by χ : Γ −→ R

>0 the correspond-
ing character of Γ, defined through the scale factor of ω̃:

γ∗ω̃ = χ(γ)ω̃, ∀γ ∈ Γ. (1.1)

Definition 1.3: A differential form α on M̃ is called automorphic if γ∗α =
χ(γ)α, where χ : Γ −→ R

>0 is the character of Γ defined above.

The Kähler form ω̃ on every Kähler covering (M̃ , ω̃) of an LCK manifold
is by definition automorphic.

Definition 1.4: Let (M̃, ω̃) be a Kähler covering of an LCK manifold M .
We say that M is an LCK manifold with an automorphic potential
if ω̃ = ddcϕ, for some automorphic function ϕ on M̃ .

As shown e.g. in [Ve1], a Vaisman manifold has an automorphic poten-
tial, which can be written down explicitely as |π∗θ|2, where π∗θ is the lift
of the Lee form to the Kähler covering of M , and | · | the metric associated
with its Kähler form.

In [OV3], a definition of an LCK manifold with potential was given.
In this definition, in addition to having an automorphic potential ϕ, the
function ϕ : M̃ −→ R was assumed to be proper, that is, with compact
fibers.

As shown in [OV5, Proposition 1.10], any complex manifold with an
LCK metric with automorphic potential admits another LCK metric which
also has an automorphic potential, ϕ′ : M̃ −→ R, but ϕ′ is proper. In the
present paper, we prove a stronger result, showing that the monodromy of
any LCK manifold with potential is Z (Theorem 2.1). This implies that
any automorphic potential is proper, and the definition of an LCK manifold
with potential in [OV3] is equivalent to Definition 1.4.

We showed in [OV5] that any compact LCK manifold with automorphic
potential can be obtained as a deformation of a Vaisman manifold. Many of
the known examples of LCK manifolds are Vaisman (see [B] for a complete
list of Vaisman compact complex surfaces), but there are also non-Vaisman
ones: one of the Inoue surfaces (see [B], [Tr]), its higher-dimensional gener-
alization in [OT], the non-diagonal Hopf manifolds (CN \ {0})/〈A〉 with A
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linear, with eigenvalues smaller than 1 in absolute value (see [GO], [OV3]),
and the new examples found in [FP] on parabolic and hyperbolic Inoue
surfaces.

Compact LCK manifolds with potential are embeddable in Hopf man-
ifolds, see [OV4]. The existence of an automorphic potential leads to im-
portant topological restrictions on the fundamental group, see [OV5] and
[KK].

The class of compact complex manifolds admitting an LCK metric with
potential is stable under small complex deformation ([OV3, Theorem 2.6]).
This statement should be considered as an LCK analogue of Kodaira’s
Kähler stability theorem. The only way (known to us) to construct LCK
metrics on some non-Vaisman manifolds, such as the Hopf manifolds not
admitting a Vaisman structure, is by deformation, applying the stability of
automorphic potential under small deformations.

In [OV6], it was shown that LCK manifolds with automorphic potential
can be characterized in terms of existence of a particular subgroup of au-
tomorphisms. To state the result, we need to introduce the weight bundle
L → M associed to the representation GL(2n, R) ∋ A 7→ |det A|1/n. It is
endowed with the flat connection form θ, thus producing a local system.
The holonomy of this local system holonomy is precisely the monodromy
group of M .

Theorem 1.5: ([OV6, Theorem 1.8]) Let M be a compact complex mani-
fold, equipped with a holomorphic S1-action and a LCK metric (not neces-
sarily compatible). Suppose that the weight bundle L, restricted to a general
orbit of this S1-action, is non-trivial as a 1-dimensional local system. Then
M admits a LCK metric with an automorphic potential.

Remark 1.6: The converse statement is true as well (Theorem 2.3). In
the present paper we prove that an LCK manifold M with an automorphic
potential always admits a holomorphic, conformal S1-action which lifts to
an action by non-trivial homotheties on its covering.

As shown in [OV5, Corollary 1.11], Theorem 1.5 implies the following
corollary.

Corollary 1.7: Let M be a compact LCK manifold of complex dimension
n > 3. Suppose that the weight bundle L restricted to a general orbit of
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this S1-action is non-trivial as a 1-dimensional local system. Then M̃ is
diffeomorphic to a Vaisman manifold, and admits a holomorphic embedding
to a Hopf manifold.

2 Holomorphic conformal flows on LCK manifolds

2.1 Holomorphic conformal flow and monodromy

Let M be an LCK manifold, M̃ its minimal Kähler covering, and χ :
Γ −→ R

>0 the character defined through the scale factor as in (1.1). Ob-
serve first that because we work with the minimal covering, the character χ
is injective and hence the monodromy Γ can be viewed as a subgroup of the
multiplicative group R

>0. As such, the monodromy group is abelian and
torsion-free.

Theorem 2.1: Let M be a compact LCK manifold, and ρ : R×M −→ M
a holomorphic conformal flow of diffeomorphisms on M . Assume that ρ is
lifted to a flow of non-isometric homotheties on the Kähler covering M̃ of
M . Then the monodromy group of M is Z.

Proof: Notice that any conformal holomorphic map ϕ : V −→ W of
Kähler manifolds of dimension > 1 is a homothety. Indeed, a pullback ϕ∗ωW

of the Kähler form on W under a holomorphic morphism is closed. Since
ϕ∗ωW = fωV , for some positive function f on V , this gives df ∧ ωV = 0,
hence df = 0.

Let G be the closure of the flow in the Lie group of all holomorphic
conformal diffeomorphisms of M . Then G is a Lie group. Let G̃ be its
lift to M̃ , where M̃ → M is smallest Kähler covering of M . Then G̃ is a
group of holomorphic homotheties (it was essential to know that the flow
is holomorphic to can deduce that its lift, formed by conformalities with
respect to the Kähler metric, contains in fact only homotheties). Denote
by G̃0 the subgroup of isometries of G̃. We then have the following exact
sequence:

0 → Γ → G̃ → G → 0.

Since the covering is chosen minimal, the monodromy group does not contain
isometries, and hence G̃0 injects in G through G̃. We have G̃0 →֒ G.

But G̃0 meets every connected component of G̃. Indeed, take an element
ã ∈ G̃ (where ã is the lift of an a ∈ G). It acts on the Kähler form ω̃ as
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ã∗ω̃ = Ca · ω̃, Ca = const. Consider an element ρC−1
a

of the conformal flow

which satisfies c̃∗ω̃ = C−1
a ω̃. Let b̃ = ρC−1

a

ã. Then b̃ is an isometry with

respect to ω̃ in the same component with ã. This implies that G̃/G̃0
∼= R

>0.
The natural homomorphism Γ −→ R

>0 mapping γ to χ(γ) (Subsection 1.3)
is clearly factorized through the map G̃/G̃0

∼= R
>0.

To prove Theorem 2.1, we need to show that the image of Γ is discrete
in R

>0. To this end, let G0 be the subgroup of G containing all elements
which lift to isometries. Obviously, we have an exact sequence:

0 → Γ → G̃/G̃0
∼= R → G/G0 → 0. (2.1)

The subgroup G̃0 ⊂ G̃ is a codimension 1 Lie subgroup, which is obvious
from the exact sequence

1 −→ G̃0 −→ G̃
χ

−→ R
>0 −→ 0,

where χ is the scale factor character (1.1), defined in Subsection 1.3. Since
G̃ −→ G is a covering, G0 is a Lie subgroup of G. From (2.1) it is clear that
to prove Γ ∼= Z it is enough to show that G/G0

∼= S1. As Γ is countable, we
find dim(G/G0) = 1. Hence G/G0 = R/Γ can be R or S1. Were it R, then
Γ = 0, which means that M is Kähler. It remains G/G0

∼= S1 and Γ ∼= Z.
The proof is complete.

2.2 Holomophic conformal flow and automorphic potential

Applying [OV6], we obtain that a compact LCK manifold which satisfies
the assumptions of Theorem 2.1 always admits an automorphic potential.
This gives the following corollary:

Corollary 2.2: Let M be a compact LCK manifold, and ρ : R×M −→ M
a holomorphic conformal flow of diffeomorphisms on M . Assume that ρ is
lifted to a flow of non-isometric homotheties on the Kähler covering M̃ of
M . Then M admits an authomorphic potential, and its monodromy is Z.

Corollary 2.2 can be used to give a characterization of LCK manifolds
with automorphic potential.

Theorem 2.3: Let (M, I, ω) be a compact LCK manifold. Then the fol-
lowing assertions are equivalent.
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(i) M admits an automorphic potential.

(ii) The complex manifold (M, I) admits an LCK metric ω′ with same
monodromy, and a conformal flow of holomorphic diffeomorphisms of
(M, I, ω′), which is lifted to a flow of non-isometric homotheties of the
Kähler covering (M̃ , ω̃′) of (M,ω′).

Proof: That (ii) implies (i) was proven in [OV6] (see also Theorem 1.5).
We now show how (i) implies (ii).

Embed M in a Hopf manifold H = (CN \ {0})/〈A〉, where A is a linear
(not necessarily diagonal) operator with eigenvalues strictly smaller than 1
in absolute value. Such an embedding was constructed in [OV3]. Then A
preserves the Kähler covering M̃ and hence can be considered as an element
of the deck group Γ. As such it acts as a homothety on the Kähler metric
and we can suppose it is a contraction (otherwise we work with A−1). What
we want is to construct (out of A) a holomorphic flow preserving M̃ .

Recall from [OV3] that the metric completion M̃c of M̃ is obtained by
adding one point z (here the existence of the global potential is crucial).
Then A acts trivially on z and we may consider the local ring OM̃c

at z.
Observe that A induces an automorphism of the ring OM̃c

, denoted
equally by A. Then one easily sees that the formal logarithm of A, log A,
is a derivation of OM̃c

(this follows, e.g., from [Bo, p. 209]; it is enough to

show that formally elog A = 1). This means that log A induces a vector field
on M̃ with associated flow et log A. Note that log A is a holomorphic object
because, as all eigenvalues of A are smaller than 1 in absolute value, the
corresponding formal series converges. As M = M̃/〈A〉, we see that et log A

projects on a one-parameter flow on M . But, as for t = 1 the flow on M̃ is
A which acts trivially on M , the orbits of the projected flow are closed, and
hence the projected flow corresponds to an S1-action on M . This action is
holomorphic because A acts holomorphically on M̃ .

Apply now the averaging (on S1) procedure described in [OV6, 2.1] to
obtain a new LCK metric ω′ on M with respect to which this S1 acts by
holomorphic isometries. We note that the averaging steps performed do
not change the cohomology class of the Lee form, and hence the new LCK
structure has the same monodromy.

It remains to justify why the lift of this isometric and holomorphic S1

to (M̃, ω̃′) is by non-trivial homotheties. This is because the lifted flow
contains A which is a contraction with respect to a certain metric and hence
cannot be an isometry with respect to any metric.
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Remark 2.4: The averaging construction used in the proof of Theorem 2.3
preserves the class of LCK metrics with potential. This means that ω′ of
Theorem 2.3 (ii) has an automorphic potential if and only if ω has one.

Corollary 2.5: Let M be a compact LCK manifold admitting an automor-
phic potential. Then the monodromy of M is Z.

Proof: By Theorem 2.3, M admits a flow of holomorphic conformal dif-
feomorphisms, and by Theorem 2.1 the monodromy group of such a manifold
is Z.
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