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Self-dual polygons and self-dual curves*

Dmitry Fuchs' and Serge Tabachnikov?

November 15, 2007

1 Introduction

The projective plane P is the projectivization of 3-dimensional space V' (we
consider the cases of two ground fields, R and C); the points and the lines
of P are 1- and 2-dimensional subspaces of V. The dual projective plane P*
is the projectivization of the dual space V*. Assign to a subspace in V its
annihilator in V*. This gives a correspondence between the points in P and
the lines in P*, and between the lines in P and the points in P*, called the
projective duality. Projective duality preserves the incidence relation: if a
point A belongs to a line B in P then the dual point B* belongs to the dual
line A* in P*. Projective duality is an involution: (4*)* = A.

Projective duality extends to polygons in P. An n-gon is a cyclically
ordered collection of n points and n lines satisfying the incidences: two
consecutive vertices lie on the respective side, and two consecutive sides
pass through the respective vertex. We assume that our polygons are non-
degenerate: no three consecutive vertices are collinear. Thus to every poly-
gon L C P there corresponds the dual polygon L* C P*. A polygon L is
called self-dual if there exists a projective map P — P* that takes L to L*.

Projective duality also extends to locally convex smooth curves. A
smooth curve v C P determines a one-parameter family of its tangent lines,
and projective duality takes it to a one-parameter family of points in P*,
the dual curve v* C P*. If v is locally convex then ~* is smooth as well.

*This research was done at the Mathematisches Forschungsinstitut Oberwolfach during
a stay within the Research in Pairs Programme from June 17 to July 7, 2007.

TDepartment of Mathematics, University of California, Davis, CA 95616, USA; e-mail:
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One has (7*)* = . Projective duality further extends to a broader class of
curves with inflections and cusps, called wave fronts (see end of Section 5 for
a precise definition). Projective duality interchanges inflections and cusps.
One defines self-dual curves similarly to self-dual polygons.

A motivation for this work is the following problem (No 1994-17 in [1])
of V. Arnold:

Find all projective curves equivalent to their duals. The answer
seems to be unknown even in RP2.

(A traditional interpretation of this question would be to consider alge-
braic curves, in which case the Plucker formulas play a critical role; see [6].
In particular, the Plucker formulas imply that a non-singular self-dual alge-
braic curve is a conic; however, there exist other, singular, self-dual curves,
for example, y = 3, projectively equivalent to its dual y = z3/ 2)

The main result of this paper is a description of self-dual polygons in
CP?. Let Ay, As,..., Agp_1 € P (where the indices are odd residues modulo
2n) be the vertices of an n-gon, and let Ba, By, ..., B, (where the indices
are even residues modulo 2n) be its respective sides: Bo; = Ag;_1Ag; 41 for
all 7. Let m be an odd number, 1 < m < n. The n-gon L is called m-self-
dual if there exists a projective map g: P — P* such that g(4;) = Bf,,,
for all i. An example of an m-self-dual n-gon, for arbitrary m, is a regular
n-gon. Denote by M,, , the moduli space of m-self-dual n-gons. Our result
is as follows.

Theorem 1 If (m,n) = 1 then M,,,, consists of one point, the class of
a reqular n-gon. If m < n, (m,n) > 1 and n # 2m then dim My, , =
(m,n) — 1. Finally, dim My, 2, =m — 3 and dim M,, , =n — 3.

Note, for comparison, that the dimension of the moduli space of n-gons
is 2n — 8. The proof of Theorem 1 occupies Sections 3 and 4. These sections
also contain explicit constructions of self-dual polygons.

The map g: P — P*, associated with an m-self-dual n-gon, determines
a linear map V — V™, defined up to a factor, and therefore a bilinear form
F on V. We prove that if the polygon is not a multiple of another polygon
then F' is symmetric if and only if m = n, see Proposition 2. We also show
that if an n-self-dual n-gon is convex then the symmetric bilinear form F' is
definite, Proposition 9.

We make additional observations. First, every pentagon is 5-self-dual,
see Proposition 5 below (five is the first interesting number because all tri-
angles are projectively equivalent, and so are all quadrilaterals). Secondly,



if an n-gon with odd n is inscribed in a conic and circumscribed about a
conic then it is n-self-dual, see Proposition 7. However the moduli space of
such “Poncelet” polygons has dimension two, which is less than n — 3 for
n>"7.

In the real case, one can also interpret a polygon as a closed polygonal
curve. In Section 5, we define a polygonal curve as a polygon in RP? with two
additional structures: every two consecutive vertices Ag;_1, A9; 11 partition
the real projective line By; into two segments, and one of these segments is
chosen (as a side); every two consecutive sides By; and Ba; 12 determine two
pairs of vertical angles at the vertex Ag;+1, and one of these pairs is chosen
(as an exterior angle). Polar duality naturally extends to these polygonal
curves, and one can consider self-dual polygonal curves. A given n-gon L
gives rise to 22" polygonal curves. We prove (Proposition 14) that if L is
m-self-dual then, out of these 22" polygonal curves, 20™™) are m-self-dual.

Section 6 concerns self-dual curves and wave fronts in the real projective
plane P. We do not attempt to give a complete classification of such curves.
A curve y(t) C P, t € S! = R/27Z, is called self-dual if there exists a
projective transformation g: P — P* and a diffeomorphism ¢ of S such
that g(v(¢(t)) = v*(t). The diffeomorphism ¢ is a continuous analog of the
cyclic shift by m in the definition of m-self-dual n-gons.

A number of results that we establish for polygons have analogs for
curves. For example, the bilinear form F is symmetric if and only if ¢? = id,
see Proposition 16. If, in addition, a self-dual curve is convex then F' is
definite, Proposition 17.

T
We observe that curves of constant width 5 on the unit sphere S? project

to self-dual curves with ¢? = id in RP2. We construct such curves of con-
stant width as Legendrian curves in the manifold of contact elements of S?
satisfying certain monodromy conditions. We also give a similar description
to self-dual curves with the diffeomorphism ¢ having higher order than 2.
This description leads to explicit formulas for self-dual curves.

Finally, we briefly discuss the Radon curves, the unit circles in two-
dimensional normed spaces for which the orthogonality relation is symmet-
ric. Radon curves have been extensively studied; they provide examples of
projectively self-dual curves.

Let us finish this introduction with a question: can a smooth convex
self-dual curve, other than a conic, be an oval of an algebraic curve?
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2 Polygons and duality

We use the notation from Section 1. Let P = CP? and V = C3. Let L
be an n-gon in P whose vertices are Ai, As, ..., As,_1 and whose sides are
Bs, By, ..., Bs,. The dual n-gon L* in the dual projective plane P* has the
vertices B3, By, ..., B5, and the sides A7, A3,..., A5, ;.

Assume that L is m-self-dual where m be an odd number, 1 < m < n.
Then there exists a linear isomorphism f: V — V™* that takes the line
A; C V to the line BX_ C V* for all i. Along with f, we shall consider the

i+m
corresponding projective isomorphism f : P — P* and the bilinear form F'
on V, F(v,w) = (f(v),w). Obviously, for a given m-self-dual polygon, fis
unique, while f and F' are unique up to a non-zero constant factor.

Along with an n-gon L = A1 As, ..., As,_1, we can consider the kn-gon
kL = A1A3 ce Aanfl with Az = Ai+2n. ObViOUSly, (k‘L)* = k‘L*, and if L is
m-self-dual, then kL is (m+ 2rn)-self-dual for r = 0,1,...,k—1. A polygon
L is called simple, if L # kL' for any k > 1 and L'.

Proposition 2 Let L be a simple m-self-dual n-gon and f: V — V* be the
corresponding isomorphism. Then f is self-adjoint (or, equivalently, F is
symmetric) if and only if m = n.

Proof. Notice that

F(Ai, Aj) =0 < (F(4) A4;) =0 (B}, A4;) =0
& Aj € Bivm = Airm—1Aitm41-

In particular, F/(A4;, Ajtm+1) = 0 for all i.
Let F' be symmetric. Then, for all i, F'(Aj+m+1,Ai) =0, and hence

Ai € Alirm—1)+m-1Arm—1)+(m+1) = Aitam—24itom,
Ai € Alrmr)+m—DArmr D)+ ma1) = AivomAiromo.

Since the points A;1om—2, Aitom, Aitom+o are not collinear, this means that
A; = Ajtom. Hence m = n (the polygon L is simple!).



Let m = n. For every i, F(A;, Aitm+1) = 0, and, in addition to that,

F(Aivm—1,4i) = F(Aiym—1, Aivom) = F(Airm—1, Arm—1)+(m+1)) = 0,
F(Aivmt1, 4i) = F(Aivmt1, Aivom) = F(Aipm+1, Aigme1)+m-1)) = 0.

This implies that the linear forms F'(A;,—) and F(—, A;) are proportional
for every ¢, that is, there exist non-zero complex numbers A; such that
F(A;,x) = NF(x, A;) for all @ and x. Hence F(A;, Aj) = NF(A),A;) =
XidjF(Ai, Aj), so if F(Ai, Aj) # 0, then A = A7'. But F(A, Aiym-3) # 0
(because A;jin—3 does not belong to the line A;i,—1A4;+m+1, which is the
zero locus of the form F'(A;,z)). Hence
X = Ao = Nita(m3) = Misims) = = Ajm(m_g) = N

so \; = 1. We state that all \;’s are the same. Indeed, if \; = 1,\; = —1
for some ¢, j, then for every k, one of F(A;, Ay), F(Aj, Ax) must be 0, that
is, Ay, belongs to one of two lines, A;im—1Aitms+1 and Ajm_1Aj1m1,
that is, all vertices of the polygon belong to two lines, which is impossible,
since the three lines A1As, AyAsz, A3A4 are all different. We see that our
form F is either symmetric or skew symmetric. However it cannot be skew-
symmetric because it is non-degenerate, and all skew-symmetric forms in an
odd-dimensional space are degenerate. O

Figure 1: Cross-ratios at the vertices of a polygon

Remark 3 The class of projective equivalence of an n-gon L is determined
by a collection of 2n numbers (p1,q1,P3,43 - - -, P2n—1, @2n—1) (the indices are
odd residues modulo 2n). The definition of these numbers refers to Figure
1:

p2it1 = [A2i—3, A2i—1, P, R], qoit1 = [R,Q, Azits, Aziys]



where P = Bgj_9 N Ba;yo, R = Baj_2 N Bojyr4,Q = Bo; N Byjyq and [ sy ]
denotes the cross-ratio of four points on a projective line, see [9, 10]. These
2n numbers are not independent: they satisfy 8 relations ensuring that
the polygon is closed. Similarly, the dual polygon L* is characterized by
the respective cross-ratios (p3, ¢, . .., D5, ¢,) (the indices are even residues
modulo 2n). It is easy to see that pj, = ¢o;—1 and ¢, = p2i+1. An n-
gon L is m-self-dual if and only if p; = pi, ., = ¢, and hence iff
Di = Gitm—1,9 = Pi+m+1. Lhis implies 2m-periodicity of the sequence of
cross-ratios: p; = Pitrom, @ = Git+om, cf. Section 4.

3 The case m =n

In this section, we consider n-gons with odd n and with every vertex dual
to the opposite side of a projectively equivalent n-gon. According to Propo-
sition 2, the bilinear form F' is symmetric in this case, so it determines a
(complex) Euclidean structure in space V. In an appropriate coordinate
system, the projective duality becomes the polar duality

(a,b,c) — {ax + by + cz = 0}.

(Geometrically, this means that we apply to a point of the standard Eu-
clidean plane the inversion in the unit circle centered at 0, then reflect the
point in 0, and then take a line through the obtained point perpendicular
to the position vector of this point.) For this duality, we will use the nota-
tions A +— A+ — (A1) = A. Two polygons, n-self-dual with respect to this
duality, are projectively equivalent if and only if they are O(3, C)-equivalent.

For a polygon A1 As ... As,_1, construct the star-like polygon C1Cs ... Cy,
where C; = Ay (i—1)(n—1)-

Lemma 4 The polygon Ai1As...As,—1 is n-self-dual (with respect to the
polar duality) if and only if Ciy1 € Ci- for all i (with i a residue modulo n).

Proof. Obvious. O

This leads to a simple explicit construction of all n-self-dual n-gons. Fix
a point C, then a point Cy € C’f‘ not equal to C (the latter is relevant only if
C € Cf). Notice that, modulo the action of O(3,C), there are four choices
of the pair Cy,Cy (depending on possible incidences C; € Ci,Cqy € C3).
Then choose C; € C’f_l, C; # Ci_9,Ci—q for i = 2,...,n — 1, with the
additional requirement C,,_1 # C7. In conclusion, we put C,, = C;- ; N Ct.



After this, we redenote the points, C; = Ay (;_1)(n—1), and get an n-self-dual
n-gon A1As...As,_1. Moreover, up to a projective equivalence preserving
the numeration of vertices, this construction gives all n-self-dual n-gons, one
time each.

In particular, the moduli space of n-self-dual n-gons has dimension n — 3
(each of the points Cs, ... C),_1 is arbitrarily chosen within a line with finitely
many punctures).

Pentagons. For an arbitrary n > 4, the moduli space of all n-gons has di-
mension 2n—8 (2n for n vertices, —8 for the action of the group PSL(3,C)).
In general, this exceeds the dimension n — 3 of n-self-dual n-gons, but for
n = b the two numbers coincide: both equal 2. Moreover, the following
holds.

Proposition 5 Fvery pentagon is 5-self-dual.

A B

Figure 2: Pentagons are self-dual

Proof. We will prove this for a “generic” pentagon with no three vertices
collinear; the general case can be resolved by a transition to limit. For a
pentagon ABCDE there are 5 cross-ratios pa,...,pr: pa is defined as the
cross-ratio of the lines AB, AC, AD, AFE, and the other four are defined in
a similar way. These cross-ratios projectively determine a pentagon: the
points A, B, C, D can be moved to chosen locations, and after that the lines
BE and CFE are determined by pp and pc. (Certainly, the five cross-ratios
are not independent: generally, two of them determine the rest.) For the
dual pentagon, these cross-ratos are pap,...,par where pap is the cross
ratio of the points DENAB, A, B, DC' N AB on the line AB, and the other
four are defined in a similar way. Figure 2 shows that pg = ppc, and four
similar equalities hold as well. O



Poncelet polygons. We begin with the following easy statement.

Lemma 6 Let C C P be a non-degenerate conic, and let L = Ei...E,
be an n-gon inscribed in C. Then the n-gon whose sides are tangent to
C at points E1, ..., E, is (projectively equivalent to the) dual to L. More
precisely, there exists a projective isomorphism P — P* that takes E; to the
tangent line to C' at E;.

Proof. Since all non-degenerate conics are projectively equivalent, we may
assume that C' is a unit circle in the Euclidean plane. Let E! be the point
of C opposite to E;. Then the polygon L is projectively equivalent to the
polygon L' = E} ... E] and the tangent to C' at E/ is polar dual to E;. O

Figure 3: Poncelet pentagons

An n-gon with an odd n is called a Poncelet polygon if it is both inscribed
into a non-degenerate conic and circumscribed about a non-degenerate conic
(see Figure 3).

Proposition 7 FEvery Poncelet n-gon is n-self-dual.



Proof.  This follows from Lemma 6 and the following known result ([11, 7]).
Let A1 As ... Ag,—1 be an n-gon (with an odd n) inscribed into a conic C' and
circumscribed about a conic C’. Then there exists a projective involution
h: P — P such that h(A4;) is the tangency point of A;1,—1A;4+n+1 and C.
O

Two more remarks. The first is that any non-degenerate pentagon is a
Poncelet polygon, so Proposition 5 follows from Proposition 7. The second
is the following proposition.

Proposition 8 For every odd n > 5, the projective moduli space of Poncelet
n-gons s two-dimensional.

Proof. The conics C,C’ from the definition of Poncelet polygons determine
a one-parameter family F of conics that have four common tangents. Gener-
ically, there exists a unique, up to a projective equivalence, such family F
(to specify this family, it suffices to fix a generic quadruple of lines). For
every C' € F, there exists a finite number of C’ € F such that some n-gon
inscribed in C'is circumsribed about C” (see [5] for an explicit condition due
to Cayley). Moreover, for such a pair C,C’, every point of C' is a vertex of
such an n-gon (Poncelet’s theorem, see [3]). Thus, a projective class of a
Poncelet n-gon is determined by two independent choices: the choice of a
C € F and the choice of a point in C. O

Thus, for an odd n > 5, Poncelet n-gons form a small fraction of the
space of n-self-dual n-gons.

The real Euclidean case. Let L be a real n-self-dual n-gon. Then F is
a real symmetric bilinear form (determined up to real non-zero factors), and
there are two possibilities: the form F' may be definite or indefinite. In the
definite (Euclidean) case, the construction of a self-dual polygon given in the
beginning of this section looks especially simple. Consider the unit sphere
S C R3. Choose an arbitrary point C; € S. Then choose a point Cy at the
distance — from C4. Then choose a point C3 at the distance T from Csy,
not equal to +C1, then choose Cy, C5,.... The last choice will be slightly
different from the preceding ones: we choose the point C,,_1 at the distance
g from C,,_9, not equal to £C,,_3, and also not equal to =C. After this,

m
we denote by C, a point at the distance 5 from each of the points C),—; and

C1. (There are two such points, they form the intersection of two different



great circles.) Then we put C; = Ay (_1)(n—1) and project the polygon
A1As ... Agy—q onto P. This is our self-dual polygon (see Figure 4).

Figure 4: Self-dual polygon on the unit sphere

It is natural to ask, which n-self-dual n-gons correspond to definite forms.
A partial answer to this question is provided by the following proposition.

Proposition 9 If a real n-self-dual n-gon is projectively equivalent to an
affine convex n-gon, then the corresponding symmetric bilinear form is def-
inite.

Proof. Let A1As...As,_1 be our convex polygon. We will use only the
convexity of the heptagon A1 AsA, 24, Apni0Ant4A2,—1. We will assume
that the points A,_2, An, Apto, Aptq have projective coordinates (0 : 1 :
1),(0:1:0),(1:0:0),(1:0:1). Then the lines B,—1 = An—24,, Bpt1 =
ApAnto, Bnis = ApyoAni4 are, respectively, the y-axis, the line at in-
finity, and the z-axis (see Figure 5). Therefore B; | = (1,0,0),B} | =
(0,0,1), By, 5 = (0,1,0). The matrix of the isomorphism G = Fl.pr—>Pp
which takes B into Aj4n is symmetric by Proposition 2. Let it be

G:

o o R

b ¢

d e

e f
Then Agn_l = G(B*

n—l) = (aa b, C)7A1 = G(B;;-H) = (C, €, f)vA3 = G(B;H-?;) -
(b,d, e), and the affine coordinates of the points Ay,_1, A1, Az are

a b c e b d
Lan—1= HYn—-1= -, T1 = &, Y1 = &, T3 = —, Y3 = —.
c c f f



ATL—2 \\
Al \\\
A‘?‘X\ Anta S Ania
— o
A2n—1

Figure 5: Convex septagon: proof of Proposition 9

The conditions of convexity of our heptagon are 0 < 3 < 1 < Tgp_1 <
1,1>y3 >y > yap—1 >0 and

det [ T —T2n—-1 Y1 — Yon-1 ] > 0;
1 — X3 Yi — Y3

the latter means

T1Yon—1 + T3Y1 + Tan—1Y3 — T1Y3 — T3Y2n—1 — T2p—1Yy1 > 0,

d<0d+bbc+ae>>0
e e e c f

After multiplication by the positive number ¢ f2z9,_1y1 = acef, this in-
equality becomes

or

b
2. — +
f

ole

2ache + a*df — (ac’d + ab®f + a*e?) > 0,

that is, a - det G > 0. Also it follows from the convexity inequalities that
ad —b* = f2r1y1 (20193 — T3Y2n—1) > 0. These two inequalities show that
the form F' is definite. O

It should be noted that, as it is seen from the construction above (with
a sequence of points on the sphere), a self-dual polygon with a definite form
does not need to be convex. Still, it is true that a pentagon has a definite
form if and only if it is projectively equivalent to a convex pentagon (we
leave a proof to the reader).

11



4 The case m <n

Let L = A1As... Ay, 1 be an m-self-dual polygon with m < n. By Propo-
sition 2, the form F' in this case is not symmetric. If B is a point or a line in
P, then B* is defined as {y € P | F(y,x) = 0 for all x € B}. There arises
a projective transformation G: P — P, G(B) = (B*)%, and obviously, in
term of matrices, G = F~1F*.

Lemma 10 If L is m-self-dual then G(A;) = Aitom.

Proof. One has Aﬁ' = Aitm-14itm+1, and hence G(4;) = (AZ-L)J- =
Aﬁm,l N Aiﬁmﬂ = (Aiyom—24itom) N (AitomAiroms2) = Aiyom. O

Thus, G makes a non-trivial cyclic permutation of vertices of L, and, in

particular, G" = id where r = . The following result is an elementary

(m,n)
fact from linear algebra.

Lemma 11 Let F' be a non-degenerate non-symmetic bilinear form in V.
Then there exists a basis in 'V with respect to which F' has one of the following
matrices:

cosp sing 0 110 110
H,=| —sinp cosp 0|, JJ=|-1 00|, K=|-1 01
0 0 1 0 01 010

Proof. There is a unique decomposition F' = F + F_ where F. is symmet-
ric and F_ is skew-symmetric. Let W = Ker F_; since F_ # 0, dimW = 1.

Case 1: Fy|lw # O,rank F, = 3. Let e3 € W, Fi(e3,e3) = 1. Let Z be
the orthogonal complement to W with respect to Fy. Choose €},¢e5 € Z
with F. (e}, ej) = d;;. Then choose a rescaling e; = aej,ea = ey such
that Fy(e1,e1)? + F_(e1,e2)? = 1. (Notice that F, (e}, e})? + F_(e},e,)? =
det F' # 0.) Then the matrix of F' with respect to the basis e1, e, e3 is H,,

k
with some (complex) ¢ # g

Case 2: Fy|w # 0,rank F'y = 2. Let e3, Z denote the same as in Case 1, let
0+# e, e KerFyi,and let e; € Z —Ker F, Fy(e1,e;) = 1. Choose a such
that, for ea = ae), F_(e1,e2) = 1. Then the matrix of F' with respect to
the basis e, e, €3 is J.

Case 3: Fy|w # 0,rank F, = 1. Let es denote the same as in Cases 1 and
2, and let eq, ey be a basis in Ker F)y such that F_(e,e3) = 1. Then the

12



matrix of F' with respect to the basis ej,eq,e3 is | — which is

S = O

1
0
0

_ o O

Hr.

2

Case 4: Fi|w = 0,rank F, = 3. Choose a non-zero vector e5 € W. Let Z
be the orthogonal complement to W, and let C' be the “light cone” {z € V|
Fy(z,2) = 0}. Since C' ¢ Z, we can choose an e}, € V such that F (e}, e}) =
0, Fy(eh,e) =1. Let U € V be the subspace spanned by €}, and Y be the
orthogonal complement of U. The intersection Y N Z is not contained in
W +U: if a linear combination of €}, and e} is orthogonal to both €} and e,
then it must be 0. Take e; € YNZ with Fly(e1,e1) = 1. Then F_(eq,eb) #0
(otherwise F_ would have been zero). Put ez = aeh, e3 = a~le} in such
a way that F_(e1,ez) = 1. Then the matrix of F' with respect to the basis
€1,€2,€3 is K.

Case 5: Fy|w = 0,rank Fy < 3. Take a 1-dimensional space U C Ker F;.
If U = W, then Ker F' D W is non-zero, so F' is degenerate. If U # W, then
both F, F_ are zero on U & W, which also means that F' is degenerate. O

Return now to the bilinear form F' related to our m-self-dual n-gon L.

Proposition 12 In an appropriate coordinate system, the matriz of F is
H, with ro € nZ. Moreover, if the n-gon L is simple, then sp ¢ wZ for any
positive s < 1.

Proof. According to Lemma 11, the matrix of F', in an appropriate basis,
is Hy, J, or K. But

-1 00 1 -2 0
JJt = 2 -1 0|, K'Kt=]0 1 0
0 01 2 -2 1

and neither of these two matrices has finite order (for both, the Jordan form
contains a non-trivial Jordan block). On the other hand, the matrix of G
is (Hcp)*lep = HEGD = H_y,, that is (again, in an appropriate coordinate
system), H_g,A; = Aj1om. First, this shows that Hngo = 1, that is, 2ry is
a multiple of 2. Second, if 2s¢ is a multiple of 27 for a positive s < r, then
A; = Ajyasm where sm is not a multiple of n, so our polygon is not simple.
Od

Thus, L contains (m,n) regular r-gons, A;Aiiom - Aip(r—1ym> @ = 1,2,
..., (m,n). [By a regular n-gon we understand a (maybe, self-intersecting)
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n-gon in the Euclidean plane with all lengths of the sides equal and all
angles equal; thus, there are two projectively different types of regular pen-
tagons, three projectively different types of regular heptagons, and so on.]
If (m,n) = 1, then L itself is regular (so, in this case, an m-self-dual n-gon
is projectively unique). If (m,n) > 1, then this uniqueness, in general, does
not hold. Below, we give an explicit construction of all m-self-dual n-gons
which will demonstrate this non-uniqueness.

First, notice that, in our case, the projective duality has a simple geo-
metric description: we consider a Euclidean plane (with a fixed origin) and,
for a point A (# 0), the dual line A* is obtained from the polar dual A+ by

(n—m)

m
a clockwise rotation about the origin by the angle of

n
Now, let us construct an arbitrary m-self-dual n-gon. In addition to

r = ( n 5 put k = ( and also d = (m,n); thus, mr = kn. In the
m,n 7
Euclidean plane with a fixed origin O, choose an arbitrary point A;. Then

2mm

successive counter-clockwise rotations by the angle give the points

A2m+1, A4m+1, . )AQ(rfl)erla and also the lines A* :TfélmAm—‘,-Q) A§m+1 =
AzmAzmr2, A = AsmAsma2, - Ay 1)y = Aer—mA@r-1)mi2-
Of the numbers m, 3m, 5m, ..., 2(r—1)m one is d modulo 2n (d = um+v-2n
for a unique u, 0 < uw < 2r, and this u must be odd). So, one of our lines
should be AzA412; choose a point A4 on this line. This choice gives also the
points A2m+d, Agmrd, - -, Ag(rfl)erd and the lines Ad+m—1Ad+m+17 Agizm_1
Ad+3m+1s Adtsm—14d+5m+15 - - - Adg 2r—1)ym—14d+(2r—1)m+1- By the way, one
of these lines will be Ag,,—1A1. Our next choice will be a point A2, again on
the line AjA412. This will give us r additional points (including Ay, 2) and r
lines, dual to these points. One of these lines will be A1 A3, and we choose a
point A3 on it. One of the lines coming with this point will be Agy9A4444, and
we choose a point A;14, and so on. Proceeding in these way, we choose the
points in the following order: Ay, Ag, Agi2, A3, Agia, As, Agr6Ar, . .., Aog_s,
A,_o. Here we stop: the next choice should be Asy_1, but this point will
appear as the intersection of the line Asy 1 A2441 coming with the point Ay
and the line Agg 3As4 1 coming with the point Ay 5. After that, we have
the points Ay, As, As, ..., Asg_1, and hence we have all the vertices of our
polygon.

The projective symmetry G, G(A;) = Ajtom, shows that every m-self-
dual n-gon is also m/-self-dual for every m’ = em mod n where e is odd.
In particular, if (e,r) = 1, then m-self-dual n-gons and m/-self-dual n-gons
are the same n-gons (although their self-dualities involve different projective
isomorphisms P — P*). On the other hand, if n is odd, then we see that
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every m-self-dual n-gon is also n-self-dual, that is, it belongs to the class of
polygons considered in Section 3.

&

Figure 6: Two 3-self-dual nonagons

Figure 6 shows two 3-self-dual 9-gons. As was remarked above, they
are also 9-self-dual (with respect to the polar duality). Note that no n-gon
with n even is n-self-dual (the definition of m-self-duality requires that m
is odd); but they must be centrally symmetric (with respect to the affine
chart considered in this section), and the 12-gons of Figure 7 are centrally
symmetric indeed.

P

Figure 7: Two 3-self-dual dodecagons

Proposition 13 Let m < n and (m,n) > 1. Then the moduli space of m-
self-dual n-gons has the dimension (m,n) — 1, for n # 2m, and (m,n) — 3,
for n = 2m.
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Proof. 1f the basis, in which the bilinear form F' has the canonical form H,,
is chosen then, to specify our m-self dual n-gon (with m < n), we need to
choose a point A; in the plane (minus one point), which depends on two pa-
rameters, and then d—2, d = (m,n), points Ay, Agi2, A3, Agra, Asy ..., Ag—2
which provide (m,n) — 2 more parameters, with the total of (m,n). From
this number, we need to subtract the number of parameters on which the
basis for a given form F' depends (in other words, the dimension of the Lie
group of linear transformations of V' that preserve the form H,). If 2¢ is
not a multiple of 7, which corresponds to the case n # 2m, this dimension
is 1. This is seen from Case 1 of the proof of Lemma 11: the choice of eg
provides no parameters (it is two-valued), then we choose €] and €/, on the
conic Fy(z,z) = 0 with the condition F,(e},e) = 0, which provides one
parameter, and then we multiply both €} and €/, by the same complex num-
ber which we determine from a quadratic equation. So the total number of
free parameters in this case is 1, and the dimension of the moduli space is
(m,n) — 1. If n = 2m, then cosp = 0, and this is Case 3 of the proof of
Lemma 11. In this case, the choice of ez does not provide any parameters
while e; and ey are chosen up to the action of the group of transformations
of Z preserving the form F_; it is SL(2;C), the dimension is 3. Thus, if
n = 2m, then the dimension of the moduli space is (m,n) —3=m — 3. O

Notice in conclusion that our results show that the space of moduli of
m-self-dual hexagons has dimension 0, whatever m is. Actually, the only
self-dual hexagon (for any m) is the regular hexagon; again, we leave the
details to the reader.

5 Polygonal curves

A polygonal curve is a real polygon AjAs...As,—1 with the following two
(independent) additional structures. (1) For every even i, one of the two
segments into which the points A; 1, A; 11 cut the real projective line B; is
chosen; we will refer to this segment as an edge of the polygonal curve. (2)
For every odd i, one of the two pairs of vertical angles formed by the real
projective lines B;_1, B;y1 is fixed; we will refer to these angles as exterior
angles of the polygonal curve. Thus, every real n-gon gives rise to 22"
polygonal curves.

For a polygonal curve A1As...As,—1 (with its additional structures),
there arises a dual polygonal curve in dual real projective plane P*. This is
the polygon B3 Bj ... B3, with the following edges and exterior angles. The
edge B3; B3, 5 is formed by points of P* dual to the lines through Ag; 41 in
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P contained in the exterior angles at Ag;y1 of the given polygonal curve.
The exterior angles at Bj,; is formed by lines in P* dual to the points of the
edge Ao;_1As;11 of the given polygonal curve.

Let m < n be a positive odd number. A polygonal curve A1 As... Asp_1
is called m-self-dual if there exists a projective isomorphism P — P* which
takes A; into B}, and also takes edges and exterior angles of the polygonal
curve A1 As ... As,—1 into edges and exterior angles of the polygonal curve
B;Bj...B;5,.

Proposition 14 Let L = A1As... Aoy 1 be an m-self-dual n-gon. Then, of
the 22 polygonal curves arising from the polygon L, 20™™) are m-self-dual.

Proof. Choose edges A1As, AsAs, ... Asg_1A42411 in an arbitrary way. If

n
m < n, then apply to these edges r = g consecutive rotations by the

m; we will get a full set of edges. Then apply the duality to these

angle
edges, and this gives a choice of exterior angles for the dual polygon L*.
The projective isomorphism between L and L* makes these angles exterior
angles for L, and L becomes an m-self-dual polygonal curve. Obviously, this
construction gives all m-self-dual n-gonal curves. O

Polygonal curves are natural polygonal counterparts to smooth curves.
Let us describe a unifying point of view.

The space of contact elements and projective duality. A contact
element of the real projective plane is a pair (A, B) where A € P is a
point, B C P is a line, and A € B. Denote the space of contact elements
by F (it is naturally identified with the space of full flags in R3). One
has two projections 71: F' — P and me: F' — P* defined by the formulas:
m (A, B) = A, m(A, B) = B. The space F' has a contact structure (a non-
integrable two-dimensional distribution) defined by the condition that the
velocity of point A lies in the line B. The fibers of the projections 7y o are
Legendrian curves (curves tangent to the contact distribution). The space
of contact elements of the dual plane P* is canonically identified with F'.
Projective duality is easily described in terms of the space of contact
elements. Let v C P be a smooth curve. Assigning the tangent line to each
point of v gives a lift I' C F'; this lifted curve is Legendrian. The curve
mo(T) is the dual curve v* C P*, and the lift of v* to F' is again I'. A wave
front in P is defined as the mi-projection of a smooth Legendrian curve I'
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in F' to P; it has singularities (generically, semi-cubical cusps) at the points
where I' is tangent to the fibers of 7. The dual wave front is 7o (I").

Likewise for polygonal curves. The set of edges of a polygonal curve
provides a closed curve in P, but its lift to F' consists of disjoint arcs of the
fibers of my; to connect these arcs by segments of the fibers of 71, we need
to choose exterior angles. Thus, for an n-gonal curve L in P, its lift to F is
a 2n-gonal curve, whose sides are segments of the fibers of the alternating
projections 7 and 7y, and whose projection to P* is the dual polygonal
curve L*.

6 Self-dual curves

Many a result from the preceding sections extends to self-dual wave fronts
in RP2. Here we do not attempt to give a complete classification of such
fronts; instead we describe several classes of examples, including explicit
formulas for self-dual curves and fronts. Self-dual curves will be described as
Legendrian curves in certain three-dimensional contact manifolds satisfying
certain monodromy conditions.

In this section, P = RP? and V = R3. Let v(t) C P be a self-dual param-
eterized closed curve (possibly, with cusps); we assume that the parameter ¢
takes values in S* = R/27Z. The projectively dual curve also has a parame-
terization, v*(t): the covector v*(t), defined up to a non-zero multiplier, van-
ishes on the vectors v(t) and +/(¢). As in Section 2, we have a linear isomor-
phism f: V — V* that takes the line v(t) C V to the line y*(p~1(¢)) C V*
where ¢ is a diffeomorphism of S!. This diffeomorphism plays the role of the
cyclic shift through m in the definition of m-self-dual polygons. As in Section
2, we consider the corresponding projective isomorphism f : P — P* and
the bilinear form F on V, F(v,w) = (f(v), w). As in Section 4, we consider
the projective transformation G = (f)~'f*: P — P, G(B) = (B+)*.

The next lemma is an analog of Lemma 10.

Lemma 15 One has: G(v(t)) = v(¢*(t)) for all t.

Proof. The proof is essentially the same as that of Lemma 10. First note

that the line {y € P | (y,7(t)) = 0} is the tangent line T’.)7* to 7v* at
point v*(t). It follows that v(t)* = (f)_l(Ty*(t)’y*) = Ty(pt))7- Likewise,
the point {y € P | (y, Ty(p1))7) = 0} is v*(¢(t)), and therefore (vt)yHt =

(@2 (t). O
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Analogs of the polygons considered in Section 3 are the curves for which
the diffeomorphism ¢ is an involution. Just like a polygon, a curve may be a
multiple of another curve. The next proposition is an analog of Proposition
2.

Proposition 16 Assume that a self-dual curve v is not a multiple of an-
other curve. Then ©? =1id if and only if the bilinear form F is symmetric.

Proof. F is symmetric if and only if G is the identity. If ¢? = id then, by
Lemma 15, G(y(t)) = «(t) for all ¢t. Since v contains four points in general
position, G = id. Conversely, if G = id then ~(t) = v(?(t)) for all t. Since
7 is not a multiple of another curve, p? = id. O

An analog of Proposition 9 holds as well.

Proposition 17 If v is a convex self-dual curve such that p*> = id then the
symmetric bilinear form F' is definite.

Proof. Assume not. Then, in an appropriate coordinate system, the re-
spective quadratic form is 2 4+ y? — 22. The light cone x> +y? = 22 projects
to a circle C C RP?. If p € C then the line p is the tangent line to C at
point p, and if a point p is inside C' then the line pt lies in the exterior of
C.

Due to the convexity, v(t) ¢ ~v(t)* for all ¢, hence v does not intersect
C'. Therefore v lies either inside C' or outside of it. In the former case, the
envelope 7* of the lines (¢)* lies outside of C' and cannot coincide with .
In the later case, one can find a tangent line ¢ to v, disjoint from C; then
the point £+ € v* lies inside C, and again ~ fails to coincide with ~*. O

Spherical curves. Let us consider the case when the symmetric bilinear
form F'is (positive) definite. Then the correspondence between points and
the dual lines is that between pairs of antipodal poles and the corresponding
equators on the unit sphere (that doubly covers R]P’Q). Thus the projective

b
duality moves every point of a curve v C S? distance 5 in the normal
direction to 7.
T
An example of a self-dual curve on S? is a circle of radius 1 This circle

is included into the family of curves of constant width g that are all self-dual
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(of course, all distances are in the spherical metric). We interpret curves of
constant width as Legendrian curves.

Let M be the space of oriented geodesic segments of length g on S2.

Then M is diffeomorphic to SO(3) =2 RP?. Define a two-dimensional distri-
bution E on M by the condition that the velocities of the end points of a
segment are perpendicular to the segment. Assign an oriented contact ele-
ment to a geodesic segment AB: the foot point is the midpoint of AB and
the direction is the oriented normal to AB. This provides an identification
of M with the space of oriented contact elements F' of S2.

Lemma 18 Under the diffeomorphism F =2 M, the standard contact struc-
ture in F is identified with the distribution E.

Proof. The space F is generated by two vector fields corresponding to the
following motions of a geodesic segment AB: the rotation of AB about its
midpoint, and the rotation of AB about the axis AB (so that the end points
are fixed). The velocities of the corresponding motions of the midpoint of
AB are orthogonal to AB which proves the lemma. O

Thus a curve of constant width can be constructed as a smooth Leg-
endrian curve A(t)B(t) C M, t € R satisfying the monodromy condition
A(m) = B(0), B(m) = A(0). Clearly, there is an abundance of such curves,
in particular, analytic ones. This construction gives curves with cusps and
inflections as well. (A similar approach is used in [2] to construct billiard
tables that possess one-parameter families of periodic trajectories, the case
of two-periodic trajectories being that of curves of constant width.)

To construct such a curve, take a closed wave front on the sphere with
an odd number of cusps (say, an odd-cusped hypocycloid), place a geodesic

segment of length il orthogonally to the front, so that its midpoint is on the
front, and use the front as a guide to move the geodesic segment all the way
around until its end points swap their positions.

Curves of constant width g in S? project to RP? as contractible curves.

Similarly one can construct self-dual non-contractible curves in RP2. For
this, one needs to modify the above monodromy condition: A(w) = B(0), B(w) =
—A(0). A non-contractible curve necessarily has an odd number of inflec-
tions, and therefore, by self-similarity, an odd number of cusps. An example

is a cubic curve y = z3; after a projective transformation, this curve looks
like shown on Figure 8.
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Figure 8: Self-dual cubic curve with one inflection and one cusp

Rotationally symmetric curves. Let us consider analogs of the poly-
gons studied in Section 4. Assume that v is a self-dual curve that lies in the
affine plane (i.e., is disjoint from the line at infinity) and is star-shaped with
respect to the origin O (i.e., the tangent lines to v do not pass through O).
We assume that ~ is not a multiple of another curve. We allow ~ to have
inflections and cusps. Assume that the bilinear form F' is not symmetric,
so, by Proposition 16, ¢? # id.

Arguing as in Section 4, we choose a coordinate system in which the
mapping G is a rotation through some angle a (the cases of Jordan blocks
and complex angles in Lemma 11 are excluded because in these cases or-
bits of G would have accumulation points at infinity, in contradiction with
Lemma 15). If « is 7-irrational then the orbits of G are dense in a circle and,
by Lemma 15, 7 is a circle. Otherwise, a = Zmp where p and ¢ are co-prime.

q
Thus ¢ is the least period of G, and hence of the circle diffeomorphism ¢? as

2
well. Choose a parameterization (t) so that ¢?(t) =t + T Where r and

q are also co-prime. To summarize, we have the following analog of Lemma
10.

Lemma 19 One has: G(y(t)) =~ (t + W)
q

Note that the rotation number of v about the origin O equals the least
positive k£ such that kr = p mod q.

Let us describe an explicit construction of such self-dual curves. Let H
be the rotation about the origin through angle % (so that H? = G) and

r
set ¢ = —. As in Section 4, the projective duality has a simple geometric
q
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description in terms of the Euclidean metric: for point A, the dual line A*
passes through the point H(A)/|A|? and is orthogonal to the vector H(A).

Self-dual curves again can be described as Legendrian curves. Let M
consists of pairs of vectors (u,v) such that H(u) - v = 1. Define a contact
structure on M by the condition H(u)-v" = 0 (or, equivalently, H(u')-v = 0);
we leave it to the reader to check that this is indeed a contact structure.
Let (u(t),v(t)) be a Legendrian curve in M satisfying the monodromy con-
dition u(t + ¢) = v(t),v(t + ¢) = G(u(t)). Then we can set: y(t) = u(t).
The condition H(u)-v = 1 implies that v belongs to the line u*, and the
Legendrian condition H(u) - v' = 0 that this line is tangent to the curve ~
at point v(t 4+ ¢). Thus = is self-dual.

Now we give explicit formulas.

Proposition 20 Let 5(t) be a smooth function such that |3(t)] < % and
B(t+c) = —pB(t). Let p1(t) and pa2(t) satisfy the differential equations

o= (8 + 1)tan28, ph= (5 —1)tan20. (1)

Then the curve y(t) whose polar coordinates are

(t -8t -2, em“))
q
1s self-dual.

Proof.  Using the above notation, the polar coordinates of the points H (u(t))
and v(t) are (t— 3, ef') and (t+ 3, e”?). The differential equations (1) are the
Legendrian conditions H(u) -v' = 0 and H(u') - v = 0 which together imply
that H(u) - v is constant. One needs to satisfy the monodromy conditions
p1(t +¢) = pa(t), p2(t + ¢) = p1(t). Due to (1), these equalities hold once
one has

0:/0 P (1) dt—l—/o ph(t) dt:2/0 tan 203 dﬁz—/o d(Incos2(3).

The latter is zero because 3(c) = —3(0), and we are done. O

Radon curves. Let U be a Minkowski plane (two dimensional normed
space) and let 7 be its unit circle, a closed smooth strictly convex centrally
symmetric curve centered at the origin. For a vector u € +, one defines
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its orthogonal complement as the tangent line to v at w. This orthogonal-
ity relation is not symmetric, in general. A Minkowski plane is called a
Radon plane, and the curve v a Radon curve, if the orthogonality relation is
symmetric. A Radon curve admits a one-parameter family of circumscribed
parallelograms whose sides are orthogonal to each other. Introduced by
J. Radon about 90 years ago, Radon curves abound (they have functional
parameters), see [8] for a survey.

The relevance of Radon curves to our subject is the following statement.

Proposition 21 Radon curves are projectively self-dual.

Proof. Let [, | be an area element (linear symplectic structure) in U.
Identify U* with U using this area form: u* = [+, u]. With this identification,
ut is a line ¢, parallel to u, and such that [v,u] = 1 for every v € .
Similarly to the preceding discussion, a Radon curve can be realized as a
curve (u(t),v(t)) in the space of pairs of non-zero vectors (u,v), tangent to
the distribution given by the conditions [u, v'] = 0 = [«/, v] (these conditions
mean that u is orthogonal to v and v is orthogonal to u), and satisfying
i s 7r
the monodromy conditions: (t—i— 5) = v(t),v (t+ 5) = —u(t). The
equalities [u,v'] = 0 = [v/,v] imply that [u, v] is constant or, after rescaling
7, that [u,v] = 1. Therefore ut is the tangent line to v at point v, that is,
v is self-dual. O

Let us conclude with two remarks. First, Radon planes can be also
characterized as the Minkowski planes for which the unit circle is the solution
to the isoperimetric problem (Busemann’s theorem). Secondly, the outer
billiard around a Radon curve possesses a one-parameter family of 4-periodic
trajectories, see [4] for a study of such outer billiards in the context of sub-
Riemannian geometry.
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