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UNCONDITIONAL CONVERGENCE OF SPECTRAL
DECOMPOSITIONS OF 1D DIRAC OPERATORS WITH

REGULAR BOUNDARY CONDITIONS

PLAMEN DJAKOV AND BORIS MITYAGIN

Abstract. One dimensional Dirac operators

Lbc(v) y = i

(
1 0
0 −1

)
dy

dx
+ v(x)y, y =

(
y1
y2

)
, x ∈ [0, π],

considered with L2-potentials v(x) =
(

0 P (x)
Q(x) 0

)
and subject

to regular boundary conditions (bc), have discrete spectrum.
For strictly regular bc, it is shown that every eigenvalue of the

free operator L0
bc is simple and has the form λ0

k,α = k + τα where
α ∈ {1, 2}, k ∈ 2Z and τα = τα(bc); if |k| > N(v, bc) each of the
discs Dα

k = {z : |z − λ0
k,α| < ρ = ρ(bc)}, α ∈ {1, 2}, contains

exactly one simple eigenvalue λk,α of Lbc(v) and (λk,α− λ0
k,α)k∈2Z

is an `2-sequence. Moreover, it is proven that the root projections
Pn,α = 1

2πi

∫
∂Dαn

(z−Lbc(v))−1dz satisfy the Bari–Markus condition∑
|n|>N

‖Pn,α − P 0
n,α‖2 <∞, n ∈ 2Z,

where P 0
n are the root projections of the free operator L0

bc. Hence,
for strictly regular bc, there is a Riesz basis consisting of root func-
tions (all but finitely many being eigenfunctions). Similar results
are obtained for regular but not strictly regular bc – then in general
there is no Riesz basis consisting of root functions but we prove
that the corresponding system of two-dimensional root projections
is a Riesz basis of projections.

Keywords: Dirac operators, Riesz bases, regular boundary conditions
MSC: 47E05, 34L40, 34L10.
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1. Introduction

Spectral theory of non-selfadjoint boundary value problems (BV P )
for ordinary differential equations on a finite interval I goes back to
the classical works of Birkhoff [2, 3] and Tamarkin [26, 27, 28]. They
introduced a concept of regular (R) boundary conditions (bc) and inves-
tigated asymptotic behavior of eigenvalues and eigenfunctions of such
problems. Moreover, they proved that the system of eigenfunctions
and associated functions (SEAF ) of a regular BV P is complete.

More subtle is the question whether SEAF is a basis or an uncondi-
tional basis in the Hilbert space H0 = L2(I). N. Dunford [11] (see also
[12]), V. P. Mikhailov [18], G. M. Keselman [15] independently proved
that the SEAF is an unconditional, or Riesz, basis if bc are strictly
regular (SR). This property is lost if bc are R\SR, i.e., regular but not
strictly regular; unfortunately, this is just the case of periodic (Per+)
and anti-periodic (Per−) bc. But A. A. Shkalikov [22, 23, 24] proved
that in R \ SR cases a proper chosen finite-dimensional projections
form a Riesz basis of projections.

Dirac operators
(1.1)

Ly = i

(
1 0
0 −1

)
dY

dx
+ v(x)Y, Y =

(
y1

y2

)
, v(x) =

(
0 P (x)

Q(x) 0

)
with P,Q ∈ L2(I), and more general operators

(1.2) My = iB
dY

dx
+ v(x)Y, Y = (yj(x))d1,

where B is a d × d-matrix and v(x) is a d × d matrix-valued L2(I)
function bring new difficulties. One of them comes from the fact that
the values of the resolvent (λ− Lbc)−1 are not trace class operators.

For general system (1.2) M. M. Malamud and L. L. Oridoroga [16]
gave sufficient conditions for the completeness and minimality of the
SEAF in the case of regular BV P.

The Riesz basis property for 2× 2 Dirac operators (1.1) was proved
by I. Trooshin and M. Yamamoto [29, 30] in the case of separated bc
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and v ∈ L2. S. Hassi and L. L. Oridoroga [14] proved the Riesz basis

property for (1.2) when B =

(
a 0
0 −b

)
, with a, b > 0, for separated bc

and v ∈ C1(I).
B. Mityagin [19], [20, Theorem 8.8] proved that periodic (or anti-

periodic) bc give a rise of a Riesz system of 2D projections (or 2D
invariant subspaces) under the smoothness restriction P,Q ∈ Hα, α >
1/2, on the potentials v in (1.1). The authors removed that restriction
in [9], where the same result is obtained for any L2 potential v. This
became possible in the framework of the general approach to analysis
of invariant (Riesz) subspaces and their closeness to 2D subspaces of
the free operator developed and used by the authors in [4, 5, 6, 7, 8].

Now we extend these results to Dirac operators with any regular bc,
which requires a careful analysis of regular and strictly regular (a la
Birkhoff-Tamarkin) bc themselves – Section 3 describes these bc and
give explicit form of the SEAF (Lemmas 5, 6, 7) for SR and R \
SR bc in the case of the free Dirac operator. Section 2 reminds the
elementary geometry of Riesz bases or Riesz systems of projections in
a Hilbert space (see [1, 17, 13]). In Section 4 and 5 we study the analytic
properties of the resolvent Rbc(λ) = (λ − Lbc)−1 with v ∈ L2. SR and
R \ SR cases differ in some technical details, and Theorems 12 and 14
accordingly take care about localization of Lbc’s spectra. Now (Sections
6, 7) the representation of projections as Cauchy–Riesz integrals of the
resolvent is used to get Bari–Markus property of the Riesz system for
Lbc. In the SR case this leads (Theorem 15) to Riesz basis property
of the SEAF ; in the R \ SR case the system of 2D projections of root
subspaces is a Riesz system (Theorem 20).

2. Technical preliminaries about Riesz systems of
projections

Here we recall some basic facts about Hilbert–Schmidt operators,
Riesz bases, etc. All Hilbert spaces that we consider are supposed to
be separable.

1. Hilbert–Schmidt operators.
Let H be a Hilbert space. A linear operator T : H → H is Hilbert–

Schmidt operator if its Hilbert–Schmidt norm ‖T‖HS is finite, where

(2.1) ‖T‖2
HS :=

∑
γ∈Γ

‖Teγ‖2 =
∑
γ,β∈Γ

|〈Teγ, eβ〉|2
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with (eγ, γ ∈ Γ) being any orthonormal basis (o.n.b.) in H. The fol-
lowing lemma summarizes some of the properties of Hilbert–Schmidt
operators and Hilbert–Schmidt norm.

Lemma 1. Let T : H → H and S : H → H be linear operators.
(a) ‖T‖HS in (2.1) does not depend on the choice of o.n.b. (eγ).
(b) ‖T‖HS is a norm such that ‖T ∗‖HS = ‖T‖HS.
(c) ‖T‖ ≤ ‖T‖HS
(d) If T is Hilbert–Schmidt and S is bounded, then ST and TS are

Hilbert–Schmidt operators, and

‖ST‖HS, ‖TS‖HS ≤ ‖T‖HS · ‖S‖
(e) Every Hilbert–Schmidt operator is compact.

We refer to [13, 21] for proofs of these properties and more details
about Hilbert–Schmidt operators.

2. Riesz bases.
Let H be a Hilbert space, and let (eγ, γ ∈ Γ) be an o.n.b. in H. If

A : H → H is an automorphism, then the system

(2.2) fγ = Aeγ, γ ∈ Γ,

is an unconditional basis in H. Indeed, for each x ∈ H we have

x = A(A−1x) = A

(∑
γ

〈A−1x, eγ〉eγ

)

=
∑
γ

〈x, (A−1)∗eγ〉fγ =
∑
γ

〈x, f̃γ〉fγ,

so (fγ) is a basis, and its biorthogonal system is

(2.3) f̃γ = (A−1)∗eγ, γ ∈ Γ.

Moreover, it follows that

(2.4) 0 < c ≤ ‖fγ‖ ≤ C, m2‖x‖2 ≤
∑
γ

|〈x, f̃γ〉|2‖fγ‖2 ≤M2‖x‖2,

with c = 1/‖A−1‖, C = ‖A‖, M = ‖A‖ · ‖A−1‖ and m = 1/M.
A basis of the form (2.2) is called Riesz basis. One can easily see

that the property (2.4) characterizes Riesz bases, i.e., a basis (fγ) is a
Riesz bases if and only if (2.4) holds with some constants C ≥ c > 0
and M ≥ m > 0. Another characterization of Riesz bases gives the
following assertion (see [13, Chapter 6, Section 5.3, Theorem 5.2]): If
(fγ) is a normalized basis (i.e., ‖fγ‖ = 1 ∀γ), then it is a Riesz basis
if and only if it is unconditional.
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Let (fγ) be a fixed Riesz basis in H of the form (2.2). For each
Hilbert–Schmidt operator T we consider

(2.5) ‖T‖∗HS =

(∑
γ,β

|〈Tfγ, f̃β〉|2
)1/2

.

Then ‖T‖∗HS is a norm which is equivalent to ‖T‖HS. Indeed, in view
of (2.1)–(2.3),

(‖T‖∗HS)2 =
∑
γ,β

|〈TAeγ, (A−1)∗eβ〉|2

=
∑
γ,β

|〈A−1TAeγ, eβ〉|2 = ‖A−1TA‖2
HS.

Therefore, in view of Lemma 1,

‖T‖∗HS = ‖A−1TA‖HS ≤M‖T‖HS
with M = ‖A‖ · ‖A−1‖. On the other hand, by the same argument,

‖T‖HS = ‖A(A−1TA)A−1‖HS ≤M‖A−1TA‖HS = M‖T‖∗HS.

3. Riesz bases of projections and Bari–Markus Theorem
Let H be a Hilbert space. A family of bounded finite–dimensional

projections {Pγ : H → H, γ ∈ Γ} is called unconditional basis of
projections if the following conditions hold:

PαPβ = 0 if α 6= β, P 2
α = Pα;(2.6)

x =
∑
γ∈Γ

Pγ(x) ∀x ∈ H,(2.7)

where the series converge unconditionally.
Obviously, if (fγ) is an unconditionsl basis in H then the system of

one–dimensional projections Pγ(x) = f̃γ(x)fγ is a basis of projections
in H, and vice versa, every basis of one dimensional projections can be
obtained in that way from some basis.

If (Qγ) is a basis of orthogonal projections (i.e., Q∗γ = Qγ), the

Pythagorian theorem implies
∑

γ ‖Qγx‖2 = ‖x‖2.

We say that the family of projections (P 0
γ , γ ∈ Γ) is a Riesz basis of

projections if

(2.8) P 0
γ = AQγA

−1, γ ∈ Γ,

where A : H → H is an isomorphism and (Qγ, γ ∈ Γ) is a basis of
orthogonal projections.
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If (2.8) holds, then

(2.9)
∑
γ

‖P 0
γ x‖2 ≤ ‖A‖2

∑
γ

‖QγA
−1x‖2 = ‖A‖2‖A−1x‖2 ≤M2‖x‖2

with M = ‖A‖‖A−1‖.
The following statement is a version of the Bari-Markus theorem (see

[13], Ch.6, Sect. 5.3, Theorem 5.2).

Theorem 2. Suppose that (Pγ, γ ∈ Γ) is a family of bounded finite
dimensional projections in a Hilbert space H such that

(2.10) PαPβ = 0 if α 6= β.

If there is a Riesz basis of projections (P 0
γ , γ ∈ Γ) such that

(2.11) dimPγ = dimP 0
γ , γ ∈ Γ,

and

(2.12)
∑
γ∈Γ

‖Pγ − P 0
γ ‖2 <∞,

then (Pγ) is a Riesz basis of projections in H.

Proof. Let the projections P 0
γ be given by (2.8). In view of (2.12), there

is a finite subset Γ1 ⊂ Γ such that

(2.13)
∑
Γ\Γ1

‖Pγ − P 0
γ ‖2M2 <

1

4
,

where the constant M = ‖A−1‖‖A‖ comes from (2.9). Consider the
operators

Tx =
∑
Γ\Γ1

(Pγ − P 0
γ )P 0

γ x, Bx =
∑
Γ1

P 0
γ x+

∑
Γ\Γ1

PγP
0
γ x = x+ Tx.

In view of (2.9) and (2.13), the Cauchy inequality yields

‖Tx‖2 ≤

∑
Γ\Γ1

‖Pγ − P 0
γ ‖‖P 0

γ x‖

2

≤
∑
Γ\Γ1

‖Pγ−P 0
γ ‖2

∑
Γ\Γ1

‖P 0
γ x‖2 ≤ 1

2
‖x‖2.

Therefore ‖T‖ < 1/2, which implies that B : H → H is an isomor-
phism.

By the construction of the operator B, if α ∈ Γ \ Γ1 then B coincides
on the subspace P 0

α(H) with the projection Pα, i.e.,

BP 0
αx = PαP

0
αx for α ∈ Γ \ Γ1, x ∈ H.
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Since dimP 0
α(H) = dimPα(H) < ∞, it follows that B maps P 0

α(H)
onto Pα(H), which yields Pα = BP 0

αB
−1 for α ∈ Γ \ Γ1.

Let H0
1 , H

0
2 , H1, H2 be, respectively, the closed linear spans of⋃

Γ1

P 0
γ (H),

⋃
Γ\Γ1

P 0
γ (H),

⋃
Γ1

Pγ(H),
⋃

Γ\Γ1

Pγ(H);

then H = H0
1 ⊕H0

2 = H1 ⊕H2, and B(H0
2 ) = H2. Since dimP 0

γ (H) =

dimPγ(H), there exists an isomorphism B̃ : H → H such that B̃ = B

on H0
2 and B̃ maps P 0

γ (H) onto Pγ(H) for every γ. Thus, by (2.8) we
obtain

Pγ = B̃P 0
γ B̃
−1 = B̃AQγA

−1B̃−1 = (B̃A)Qγ(B̃A)−1, γ ∈ Γ,

which proves that (Pγ) is a Riesz basis of projections. �

3. General regular and strictly regular boundary
conditions

We consider the Dirac operators L = L(v) given by (1.1) on the
interval I = [0, π] and set L0 = L(0). In the following, the Hilbert
space L2(I,C2) is regarded equipped with the scalar product

(3.1)

〈(
f1

f2

)
,

(
g1

g2

)〉
=

1

π

∫ π

0

(
f1(x)g1(x) + f2(x)g2(x)

)
dx.

1. A general boundary condition for the operator L0 (or L) is given
by a system of two linear equations

a1y1(0) + b1y1(π) + a2y2(0) + b2y2(π) = 0(3.2)

c1y1(0) + d1y1(π) + c2y2(0) + d2y2(π) = 0

Let Aij denote the 2 × 2 matrix formed by the i-th and j-th columns
of the matrix

(3.3)

[
a1 b1 a2 b2

c1 d1 c2 d2

]
,

and let |Aij| denote the determinant of the matrix Aij. Each solution
of the equation

(3.4) L0y = λy, y =

(
y1

y2

)
has the form

(3.5) y =

(
ξe−iλx

ηeiλx

)
.
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It satisfies the boundary condition (3.2) if and only if (ξ, η) is a solution
of the system of two linear equations

ξ(a1 + b1z
−1) + η(a2 + b2z) = 0(3.6)

ξ(c1 + d1z
−1) + η(c2 + d2z) = 0

where z = exp(iπλ). Therefore, we have a non-zero solution y if and
only if the determinant of (3.6) is zero, which is equivalent to the
quadratic equation

(3.7) |A14|z2 + (|A13|+ |A24|)z + |A23| = 0.

Definition 3. The boundary condition (3.2) is called: regular if

(3.8) |A14| 6= 0, |A23| 6= 0,

and strictly regular if additionally

(3.9) (|A13|+ |A24|)2 6= 4|A14||A23|

holds.

Of course, (3.9) is equivalent to saying that the quadratic equation
(3.7) has two distinct roots.

From now on we consider only regular boundary conditions. We
multiply from the left the system (3.2) and the 2 × 4 matrix (3.3) by
the matrix A−1

14 . This gives us an equivalent to (3.2) system

y1(0) + by1(π) + ay2(0) = 0(3.10)

dy1(π) + cy2(0) + y2(π) = 0

which matrix has the form

(3.11)

[
1 b a 0
0 d c 1

]
,

and

[
b a
d c

]
= A−1

14 A23.

In the following we consider only boundary conditions in the form
(3.10) with matrices (3.11). Then

(3.12) |A14| = 1, |A13| = c, |A24| = b, |A23| = bc− ad.

Condition (3.8) means that

(3.13) |A23| = bc− ad 6= 0,

and (3.9) takes the form

(3.14) (b− c)2 + 4ad 6= 0.
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Now the system (3.6) becomes

ξ(1 + bz−1) + ηa = 0(3.15)

ξdz−1 + η(c+ z) = 0

and the equation (3.7) becomes

(3.16) z2 + (b+ c)z + bc− ad = 0.

Notice that (3.15) means

(3.17)

[
1 + b/z a
d/z c+ z

](
ξ
η

)
=

[
z + b a
d c+ z

](
ξ/z
η

)
= 0.

From here (or, since the change of variable z → −w transforms (3.16)
into the characteristic equation of the matrix A23) we get the following.

Lemma 4. The number z is a root of (3.16) if and only if −z is an

eigenvalue of the matrix A23 =

[
b a
d c

]
. Moreover,

(
ξ
η

)
is a non-zero

solution of (3.15) if and only if −z is an eigenvalue of the matrix A23

and

(
ξ/z
η

)
is an eigenvector of A23 corresponding to −z.

2. Strictly Regular boundary conditions. In this case the conditions
(3.13) and (3.14) guarantee that quadratic equation (3.16) has two
distinct nonzero roots z1 and z2, so the matrix A23 has two distinct
eigenvalues −z1,−z2. Let us fix a pair of corresponding eigenvectors(
α1

α2

)
and

(
β1

β2

)
. Then

(3.18)

(
α1

α2

)
and

(
β1

β2

)
are linearly independent

because z1 6= z2. Therefore, the matrix

(
α1 β1

α2 β2

)
is invertible; we set

(3.19)

(
α′1 α′2
β′1 β′2

)
:=

(
α1 β1

α2 β2

)−1

.

Moreover, in view of Lemma 4, the vectors

(
α1z1

α2

)
and

(
β1z2

β2

)
are

solutions of the system (3.15).
Let τ1 and τ2 be chosen so that

(3.20) z1 = eiπτ1 , z2 = eiπτ2

and

(3.21) |Re τ1 −Re τ2| ≤ 1, |Re τ1| ≤ 1.
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Then we have

(3.22) z1 = eiπλ ⇔ λ = τ1 + k, k ∈ 2Z

and

(3.23) z2 = eiπλ ⇔ λ = τ2 +m, m ∈ 2Z.

The right–hand sides of (3.22) and (3.23) give all eigenvalues of L0. For
each λ in the two infinite series given by (3.22) and (3.23) we have an
eigenvector of L0 of the form (3.5) with(

ξ
η

)
=

(
α1z1

α2

)
if λ = τ1 +m,

(
ξ
η

)
=

(
β1z2

β2

)
if λ = τ2 +m.

Thus, the operator L0 subject to the boundary conditions (3.4) with
matrix (3.11), has the following two series of eigenvectors:
(3.24)

Φ1 = {ϕ1
k, k ∈ 2Z}, ϕ1

k :=

(
z1α1e

−i(τ1+k)x

α2e
i(τ1+k)x

)
=

(
α1e

iτ1(π−x)e−ikx

α2e
iτ1xeikx

)
and
(3.25)

Φ2 = {ϕ2
m, m ∈ 2Z}, ϕ2

m :=

(
z2β1e

−i(τ2+m)x

β2e
i(τ2+m)x

)
=

(
β1e

iτ2(π−x)e−imx

β2e
iτ2xeimx

)
Lemma 5. The system Φ = Φ1 ∪ Φ2 is a Riesz basis in the space
L2(I,C2), I = [0, π]. Its biorthogonal system is Φ̃ = Φ̃1 ∪ Φ̃2, where

(3.26) Φ̃1 = {ϕ̃1
k, k ∈ 2Z}, ϕ̃1

k :=

(
α′1e

iτ1(π−x)e−ikx

α′2e
iτ1xeikx

)
,

and

(3.27) Φ̃2 = {ϕ̃2
m, m ∈ 2Z}, ϕ̃2

m :=

(
β′1e

iτ2(π−x)e−imx

β′2e
iτ2xeimx

)
,

with α′1, α
′
2, β

′
1, β

′
2 coming from (3.19).

Proof. The system E = E1 ∪ E2, where
(3.28)

Eν = {eνk, k ∈ 2Z}; ν = 1, 2; e1
k :=

(
eikx

0

)
, e2

m :=

(
0
eimx

)
,

is an orthonormal basis in L2(I,C2).
Consider the operator A : L2(I,C2)→ L2(I,C2) defined by

(3.29) A

(
f
g

)
=

(
α1e

iτ1(π−x)f(π − x)
α2e

iτ1xf(x)

)
+

(
β1e

iτ2(π−x)g(π − x)
β2e

iτ2xg(x)

)
.
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Since we have Φ = A(E), the lemma will be proved if we show that A
is an isomorphism. Since the functions eiτνx and eiτν(π−x), ν = 1, 2, are
bounded, it follows that A is bounded operator. Let us find its inverse.
By (3.29), the equation

A

(
f
g

)
=

(
F
G

)
is equivalent to the following system of two linear equations in two
unknowns f, g :

α1e
iτ1xf(x) + β1e

iτ2xg(x) = F (π − x),(3.30)

α2e
iτ1xf(x) + β2e

iτ2xg(x) = G(x).

By (3.18) and (3.19), we get(
eiτ1xf(x)
eiτ2xg(x)

)
=

(
α′1F (π − x) + α′2G(x)
β′1F (π − x) + β′2G(x)

)
,

which leads to

(3.31) A−1

(
F
G

)
=

(
e−iτ1x[α′1F (π − x) + α′2G(x)]
e−iτ2x[β′1F (π − x) + β′2G(x)]

)
,

Now it is easy to see that A−1 is bounded.
Let us find the adjoint operator of A−1. Since〈
A−1

(
F
G

)
,

(
f
0

)〉
=

1

π

∫ π

0

{[α′1F (π − x) + α′2G(x)]e−iτ1xf(x)dx

=
1

π

∫ π

0

(
F (x)α′1f(π − x)eiτ1(π−x) +G(x)α′2f(x)eiτ1x

)
dx,

we get

(A−1)∗
(
f
0

)
=

(
α′1f(π − x)eiτ1(π−x)

α′2f(x)eiτ1x

)
.

In an analogous way it follows that

(A−1)∗
(

0
g

)
=

(
β′1g(π − x)eiτ2(π−x)

β′2g(x)eiτ2x

)
.

Thus,
(3.32)

(A−1)∗
(
f
g

)
=

(
α′1f(π − x)eiτ1(π−x)

α′2f(x)eiτ1x

)
+

(
β′1g(π − x)eiτ2(π−x)

β′2g(x)eiτ2x

)
.

By (2.3), the system Φ is a Riesz basis, and its biorthogonal system is
given by (3.26) and (3.27). This completes the proof. �
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The system Φ̃ has the same form as Φ, so it is a system of eigenvectors
of L0 subject to appropriate boundary conditions. Indeed, let S denote

the matrix

(
b a
d c

)
, and let

(3.33) (S−1)∗ =

(
b̃ ã

d̃ c̃

)
.

If

(
α1

α2

)
and

(
β1

β2

)
are eigenvectors of S corresponding to −z1 and −z2

as in (3.18) and Lemma 4, then

(3.34) S

(
α1 β1

α2 β2

)
=

(
−z1α1 −z2β1

−z1α2 −z2β2

)
.

Let us mention that the relation (3.34) determines the matrix S if
numbers z1 6= z2 and α1, α2, β1, β2 satisfying (3.18) are given.

In view of (3.24), taking the inverse matrices of both sides of (3.34),
and then passing to adjoint matrices, we get

(S−1)∗

(
α′1 β′1

α′2 β′2

)
=

(
− 1
z1
α′1 − 1

z2
β′1

− 1
z1
α′2 − 1

z2
β′2

)
.

This means that −1/z1,−1/z2 are the eigenvalues of the matrix (S−1)∗,

and

(
α′1

α′2

)
,

(
β′1

β′2

)
is a pair of corresponding (linearly independent)

eigenvectors.
Consider the boundary conditions that correspond to the matrix

(3.35)

(
1 b̃ ã 0

0 d̃ c̃ 1

)
with b̃, ã, d̃, c̃ coming from (3.33). In view of Lemma 4, 1/z1 and 1/z2

are the roots of the characteristic equation (3.15). But if z = eiτπ then

1/z = e−iτπ = eiτπ. Now, by (3.24) – (3.27), it follows that Φ̃ is a
system of eigenvectors of L0 subject to the boundary conditions (3.35).

Next we show that, as usual, the biorthogonal system Φ̃ is the system
of eigenvectors of the adjoint operator (L0

bc)
∗ (or, which is the same, of

L0 subject to adjoint boundary conditions bc∗).

Lemma 6. Let L0
bc be a closed operator with boundary conditions bc

defined by (3.10) and (3.11). Then its adjoint operator (Lbc)
∗ is L0

bc∗ ,
where the boundary conditions bc∗ are given by the matrix (3.35).
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Proof. With f =

(
f1

f2

)
and g =

(
g1

g2

)
such that f, g ∈ H1(I,C2) we

have

〈L0f, g〉 − 〈f, L0g〉 =
i

π

∫ π

0

d

dx

(
f1(x)g1(x)− f2(x)g2(x)

)
dx

=
i

π

(
f1(π)g1(π)− f1(0)g1(0)− f2(π)g2(π) + f2(0)g2(0)

)
=
i

π

(
f1(π)g1(π) + (bf1(π) + af2(0))g1(0) + (df1(π) + cf2(0))g2(π) + f2(0)g2(0)

)
=
i

π

(
f1(π)[bg1(0) + g1(π) + dg2(π)] + f2(0)[ag1(0) + g2(0) + cg2(π)]

)
.

In view of (3.10), one can easily see that f1(π) and f2(0) could be any
numbers.

Therefore, the boundary conditions of the adjoint operator are de-
termined by the matrix

(3.36)

(
b 1 0 d
a 0 1 c

)
.

In view of (3.33), if we bring it to the equivalent form (3.11) multiplying

from the left by

(
b d
a c

)−1

, the result will be just (3.35). �

3. Dirichlet–type boundary conditions. In general, for strictly reg-
ular bc, the spectrum of the operator L0

bc consists of two arithmetic
progressions (3.22) and (3.23), with difference = 2. If

(3.37) b+ c = 0,

then the equation (3.16) has the following two roots

(3.38) z1 =
√
ad− bc, z2 = −z1.

In view of (3.20), in this case we have z1 = eiτ1π and z2 = eiτ2π with
τ2 = τ1 ± 1. Therefore, the union of the corresponding two arithmetic
progressions (3.22) and (3.23) gives the spectrum of L0

bc in the form of
one arithmetic progression with difference 1:

(3.39) λ = τ1 +m, m ∈ Z.
We call boundary conditions with the property (3.37) Dirichlet-type
boundary conditions.

For Dirichlet-type bc, the adjoint boundary conditions bc∗ are also
Dirichlet-type. Indeed, in view of (3.16), bc given by a matrix (3.11)
are Dirichlet-type if and only if we have z1 + z2 = 0, where z1 and z2

are the roots of (3.16). By Lemma 6 and the discussion after (3.35),
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the roots of the equation (3.16) that corresponds to bc∗ are 1/z1, 1/z2,
so we have

1

z1

+
1

z2

=
z1 + z2

z1z2

= 0.

Therefore, bc∗ are Dirichlet-type also.

4. Regular but not strictly regular boundary conditions.
Now we assume that (3.13) holds, but (3.14) fails, i.e.,

(3.40) (b+ c)2 − 4(bc− ad) = (b− c)2 + 4ad = 0.

In this case the characteristic equation (3.16) has one double root:

(3.41) z∗ = −(b+ c)/2.

Notice, that z∗ 6= 0 because otherwise (3.40) would imply bc− ad = 0
which contradicts to the regularity condition (3.13).

Let τ∗ be chosen so that

(3.42) z∗ = −(b+ c)/2 = eiπτ∗ , |Re τ∗| ≤ 1.

Then all eigenvalues of L0
bc are given by

(3.43) Sp (L0
bc) = {τ∗ + k, k ∈ 2Z}.

In view of Lemma 4, the corresponding eigenvectors have the form (3.5)

with

(
ξ
η

)
=

(
α1z∗
α2

)
, where

(
α1

α2

)
is an eigenvector of the matrix

A23 =

[
b a
d c

]
corresponding to its double eigenvalue −z∗, i.e.,

(3.44)

(A23+z∗I)

(
α1

α2

)
=

[
b+ z∗ a
d c+ z∗

](
α1

α2

)
=

[
b−c

2
a

d c−b
2

](
α1

α2

)
= 0.

The matrixA23 will have two linearly independent eigenvectors

(
α1

α2

)
and

(
β1

β2

)
if and only if A23 + z∗I is the zero matrix, i.e.,

(3.45) b = c, a = 0, d = 0.

Then the matrix (3.11) has the form

(3.46)

[
1 b 0 0
0 0 b 1

]
, b 6= 0.

We call the boundary conditions given by the matrix (3.11) periodic–
type if (3.45) holds, i.e., bc is defined by (3.46). Using the same argu-
ment as in the strictly regular case we get the following lemma.
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Lemma 7. For periodic-type bc, (3.22) with τ1 = τ∗ gives all eigenval-
ues of L0

bc, and each eigenvalue is of geometric multiplicity 2. There

are linearly independent vectors

(
α1

α2

)
and

(
β1

β2

)
such that the sys-

tem Φ = Φ1 ∪ Φ2, given by (3.24) and (3.25) with τ2 = τ1 = τ∗, is a
Riesz basis in the space L2(I,C2), I = [0, π]. Its biorthogonal system
Φ̃ = Φ̃1 ∪ Φ̃2 is defined by (3.26) and (3.27).

Next we consider the case when (3.40) holds but (3.45) fails, i.e.,

(3.47) |b− c|+ |a|+ |d| > 0.

As we will see below, in this case each eigenvalue of L0
bc is of algebraic

multiplicity 2 but of geometric multiplicity 1, i.e., associated eigenvec-
tors appear. Here we have the following subcases:

(i) If a = 0, then (3.40) implies b = c, and by (3.47) we have d 6= 0.
By the regularity condition (3.13) we have bc − ad 6= 0, which yields
b 6= 0. In other words, the matrix (3.11) has the form

(3.48)

[
1 b 0 0
0 d b 1

]
, d, b 6= 0.

Here we choose the following solution of (3.44)

(3.49) α1 = 0, α2 = d.

(ii) If d = 0, then (3.40) implies b = c, and by (3.47) we have a 6= 0.
Now the matrix (3.11) has the form

(3.50)

[
1 b a 0
0 0 b 1

]
, d, b 6= 0.

Here we choose the following solution of (3.44):

(3.51) α1 = a, α2 = 0.

(iii) If a, d 6= 0, then (3.40) implies b 6= c. Here we choose the follow-
ing solution of (3.44):

(3.52) α1 = a, α2 = (c− b)/2.
Of course, (3.43) gives all eigenvalues. A corresponding system of

eigenvectors is

(3.53) ϕ1
k =

(
α1e

iτ∗(π−x)e−ikx

α2e
iτ∗xeikx

)
, k ∈ 2Z,

where α1, α2 are given, respectively, by (3.49), (3.51) and (3.52).
We look for a system of associated eigenvectors of the form

(3.54) ϕ2
k =

(
(β1 − α1x)eiτ∗(π−x)e−ikx

(β2 + α2x)eiτ∗xeikx

)
, k ∈ 2Z.
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Then L0ϕ2
k = λkϕ

2
k − iϕ1

k, so ϕ2
k is an associated eigenvector if and

only if it satisfies the boundary conditions. This leads to the following
system of two linear equations in two unknowns β1 and β2 :

β1z∗ + b(β1 − πα1) + aβ2 = 0
d(β1 − πα1) + cβ2 + (β2 + πα2)z∗ = 0,

or, equivalently,

(z∗ + b)β1 + aβ2 = πbα1

dβ1 + (c+ z∗)β2 = πdα1 − πα2z∗

By (3.41), b + z∗ = (b − c)/2, c + z∗ = (c − b)/2. Moreover, by (3.41)
and (3.44), dα1 = α2(b− c)/2, and therefore, πdα1−πα2z∗ = πα2

b−c
2

+

πα2
b+c

2
= πbα2.

Thus, (3.54) is a system of associated vectors if and only if β1 and
β2 satisfy

(3.55)

[
b+ z∗ a
d c+ z∗

](
β1

β2

)
=

[
b−c

2
a

d c−b
2

](
β1

β2

)
=

(
πbα1

πbα2

)
.

Notice, that (3.44) and (3.55) mean that

(
α1

α2

)
is an eigenvalue of the

matrix A23 =

[
b a
d c

]
corresponding to its double eigenvalue −z∗, and(

β1

β2

)
is an associated vector.

With α1 and α2 fixed, respectively, in (3.49), (3.51) and (3.52), we
choose corresponding solutions of (3.55):

(3.56) β1 = πb, β2 = 0 in the case (i);

and

(3.57) β1 = 0, β2 = πb in the cases (ii) and (iii).

Lemma 8. The system Φ of eigenfunctions ϕ1
k, k ∈ 2Z, and associated

functions ϕ2
k, k ∈ 2Z, given in (3.53) and (3.54), is a Riesz basis in the

space L2(I,C2), I = [0, π]. Its biorthogonal system is Φ̃ = {ϕ̃1
k, ϕ̃

2
k, k ∈

2Z}, where
(3.58)

ϕ̃1
k =

(
∆̄−1α2e

iτ∗(π−x)e−ikx

∆̄−1α1e
iτ∗xeikx

)
, ϕ̃2

k =

(
∆̄−1[β2 + α2(π − x)]eiτ∗(π−x)e−ikx

∆̄−1[β1 − α1(π − x)]eiτ∗xeikx

)
with ∆ = α1β2 − α2β1 + πα1α2.
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Proof. Consider the operator A : L2(I,C2)→ L2(I,C2) defined by
(3.59)

A

(
f
g

)
=

(
α1e

iτ∗(π−x)f(π − x)
α2e

iτ∗xf(x)

)
+

(
(β1 − α1x)eiτ∗(π−x)g(π − x)

(β2 + α2x)eiτ∗xg(x)

)
.

Since we have Φ = A(E), where E is the orthonormal basis (3.28),
the lemma will be proved if we show that A is an isomorphism. One
can easily see that A is bounded operator. Let us find its inverse. By
(3.59), the equation

A

(
f
g

)
=

(
F
G

)
is equivalent to the following system of two linear equations in two
unknowns f, g :

α1f(x) + (β1 − α1[π − x])g(x) = F (π − x)e−iτ∗x,(3.60)

α2f(x) + (β2 + α2x)g(x) = G(x)e−iτ∗x.

The determinant of this system is

∆ = det

[
α1 β1 − πα1 + α1x
α2 β2 + α2x

]
=


−πbd in case (i)

πab in case (ii)

πa(b+ c)/2 in case (iii)

due to our choices of α1, α2 in (3.49),(3.51),(3.52) and β1, β2 in (3.56)
and (3.57). Thus we get

∆

(
f(x)
g(x)

)
=

(
[(β2 + α2x)F (π − x)− (β1 − πα1 + α1x)G(x)] e−iτ∗x

[−α2F (π − x) + α1G(x)] e−iτ∗x

)
,

which implies (since ∆ 6= 0)
(3.61)

A−1

(
F
G

)
=

1

∆

(
[(β2 + α2x)F (π − x)− (β1 − πα1 + α1x)G(x)] e−iτ∗x

[−α2F (π − x) + α1G(x)] e−iτ∗x

)
.

Now it is easy to see that the operator A−1 is bounded.
A simple calculation (similar to the one used in Lemma 6) shows

that the adjoint operator of A−1 is
(3.62)

(A−1)∗
(
f
g

)
= ∆̄−1

(
[(β2 + α2π − α2x)f(π − x) + α2g(π − x)]eiτ∗(π−x)

[−(β1 − α1π + α1x)f(x) + α1g(x)]eiτ∗x

)
.

Since we have Φ̃ = (A−1)∗(E), where E is the orthonormal basis defined
in (3.28), the family Φ̃ is the biorthogonal system to Φ. �
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4. Matrix representation of Lbc and its resolvent Rbc(λ)

Next we consider, for arbitrary regular bc, the Fourier representa-
tion of Lbc and its resolvent Lbc(λ) with respect to a corresponding
Riesz basis consisting of eigenfunctions and associated functions of the
operator L0

bc (constructed in Lemmas 5, 7, 8).

1. Let V : L2(I,C2) → L2(I,C2) be the operator of multiplication

by the matrix v(x) =

[
0 P (x)

Q(x) 0

]
, i.e.,

V

(
y1

y2

)
=

[
0 P (x)

Q(x) 0

](
y1

y2

)
=

(
Py2

Qy1

)
.

For a regular boundary condition bc, let Φ = {ϕ1
k, ϕ

2
k, k ∈ Z} and

Φ̃ = {ϕ̃1
k, ϕ̃

2
k, k ∈ Z} be the corresponding Riesz basis (consisting

of eigenfunctions and associated functions of the operator L0
bc) and

its biorthogonal system constructed, respectively, in Lemma 5 if bc is
strictly regular, in Lemma 7 if bc is periodic type, and in Lemma 8
otherwise. In this section and thereafter, we consider matrix represen-
tation with respect to that basis only.

Lemma 9. The matrix representation of V with respect to the basis Φ
has the form

(4.1) V ∼
[
V 11 V 12

V 21 V 22

]
, V µν =

(
V µν
jk

)
j,k∈2Z , µ, ν ∈ {1, 2},

(4.2) V µν
jk = 〈V ϕνk, ϕ̃

µ
j 〉 = wµν(j + k),

where

(4.3) wµν = (wµν(m)) ∈ `2(2Z), ‖wµν‖`2 ≤ C(‖P‖L2 + ‖Q‖L2),

with C = C(Φ, Φ̃).

Proof. We consider only the case where µ = 1, ν = 2 because the proof
is similar in the other three cases.

If bc is strictly regular, then we get, by (3.24)–(3.27),

V 12
jk = 〈V ϕ2

k, ϕ̃
1
j〉 =

〈(
P (x)β2e

iτ2xeikx

Q(x)β1e
iτ2(π−x)e−ikx

)
,

(
α′1e

iτ1(π−x)e−ijx

α′2e
iτ1xeijx

)〉
=

1

π

∫ π

0

[
α′1β2e

i(τ2x+τ1(x−π))P (x)ei(j+k)xdx+ α′2β1e
i(τ2(π−x)−τ1x)Q(x)e−i(j+k)x

]
dx.

Therefore, (4.2) holds for µ = 1, ν = 2 with

(4.4) w12(m) := p12(−m) + q12(m), m ∈ 2Z,
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where p12(m) and q12(m), m ∈ 2Z, are the Fourier coefficients of the
functions g12(x)P (x) and h12(x)Q(x), with

g12(x) := α′1β2e
i(τ2x+τ1(x−π)), h12(x) := α′2β1e

i(τ2(π−x)−τ1x).

By the Parseval identity,∑
m

|p12(m)|2 = ‖g12(x)P (x)‖2
L2(I) ≤ sup

[0,π]

|g12(x)|2 · ‖P‖2
L2(I)

and ∑
m

|q12(m)|2 = ‖h12(x)Q(x)‖2
L2(I) ≤ sup

[0,π]

|h12(x)|2 · ‖Q‖2
L2(I).

Thus, (4.3) holds with a constant C depending on the parameters
α′1, α

′
2, β1, β2, τ1, τ2.

The proof is exactly the same if bc is periodic type (the same formulas
work but with τ2 = τ1 = τ∗).

If bc is not strictly regular and not of periodic type, then by (3.54)
and (3.58) we have

〈V ϕ2
k, ϕ̃

1
k〉 =

〈(
P (x)(β2 + α2x)eiτ∗xeikx

Q(x)(β1 − α1x)eiτ∗(π−x)e−ikx

)
,

(
∆̄−1α2e

iτ∗(π−x)e−ijx

∆̄−1α1e
iτ∗xeijx

)〉

=
1

π

∫ π

0

[
P (x)

α2

∆
(β2 + α2x)eiτ∗(2x−π)ei(j+k)x

]
dx

+
1

π

∫ π

0

[
Q(x)

α1

∆
(β1 − α1x)eiτ∗(π−2x)e−i(j+k)x

]
dx.

Therefore, (4.2) holds for µ = 1, ν = 2 with

(4.5) w12(m) := p12
1 (−m) + q12

1 (m), m ∈ 2Z,

where p12
1 (m) and q12

1 (m), m ∈ 2Z, are the Fourier coefficients of the
functions g12

1 (x)P (x) and h12
1 (x)Q(x), with

g12
1 (x) :=

α2

∆
(β2 + α2x)eiτ∗(2x−π), h12

1 (x) :=
α1

∆
(β1 − α1x)eiτ∗(π−2x).

Since these functions are bounded, again the Parseval identity implies
(4.3) with a constant C depending on parameters α1, α2, β1, β2, τ∗.

�

2. If bc is strictly regular boundary condition, then by (3.22) and
(3.23) the spectrum of L0

bc consists of two disjoint sequences

Sp(L0
bc) = {τ1 + k, k ∈ 2Z} ∪ {τ2 + k, k ∈ 2Z}.
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The resolvent operator R0
bc(λ) = (λ − L0

bc)
−1 is well defined for λ 6∈

Sp(L0
bc), and we have

(4.6) R0
bc(λ)ϕµk =

1

λ− τµ − k
ϕµk , k ∈ 2Z, µ = 1, 2.

By (3.43), for regular but not strictly regular bc the spectrum of L0
bc

is given by

Sp (L0
bc) = {τ∗ + k, k ∈ 2Z},

where each eigenvalue is of algebraic multiplicity 2. The resolvent op-
erator R0

bc(λ) = (λ− L0
bc)
−1 is well defined for λ 6∈ Sp(L0

bc) by

(4.7) R0
bc(λ)ϕµk =

1

λ− τ∗ − k
ϕµk , k ∈ 2Z, µ = 1, 2.

The standard perturbation formula for the resolvent

Rbc(λ) = R0
bc(λ) +R0

bc(λ)V R0
bc(λ) +R0

bc(λ)V R0
bc(λ)V R0

bc(λ) + · · ·

can be written as

(4.8) Rbc(λ) = (Kλ)
2 +

∞∑
s=1

Kλ(KλV Kλ)
sKλ

provided

(4.9) (Kλ)
2 = R0

bc(λ).

Then the operator Rbc(λ) is well-defined by (4.8) if

(4.10) ‖KλV Kλ‖ < 1.

In the next section we will give conditions under which (4.10) holds.
In view of (4.6) and (4.7), we define an operator K = Kλ with the

property (4.9), respectively, for strictly regular bc by

(4.11) Kλϕ
µ
k =

1√
λ− τµ − k

ϕµk , k ∈ 2Z, µ = 1, 2,

and for regular but not strictly regular bc by

(4.12) Kλϕ
µ
k =

1√
λ− τ∗ − k

ϕµk , k ∈ 2Z, µ = 1, 2,

where √
z =
√
reiϕ/2 if z = reiϕ, −π ≤ ϕ < π.

By (4.1), (4.2), (4.11) and (4.12), we have

(4.13) 〈KλV Kλϕ
ν
k, ϕ̃

µ
j 〉 =

wµν(j + k)√
λ− τµ − j

√
λ− τν − k

, j, k ∈ 2Z
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for strictly regular bc, and

(4.14) 〈KλV Kλϕ
ν
k, ϕ̃

µ
j 〉 =

wµν(j + k)√
λ− τ∗ − j

√
λ− τ∗ − k

, j, k ∈ 2Z

for regular but not strictly regular bc.
Therefore, for s ≥ 1, it follows that

(4.15) 〈Kλ(KλV Kλ)
sKλϕ

ν
k, ϕ̃

µ
m〉

=
2∑

γ1,..,γs=1

∑
j1,...js

wµγ1(m+ i1)wγ1γ2(i1 + i2) · · ·wγs−1γs(is−1 + is)w
γsν(is + k)

(λ− τµ −m)(λ− τγ1 − i1) · · · (λ− τγs − is)(λ− τν − k)

for strictly regular bc, and

(4.16) 〈Kλ(KλV Kλ)
sKλϕ

ν
k, ϕ̃

µ
j 〉

=
2∑

γ1,..,γs=1

∑
j1,...js

wµγ1(m+ i1)wγ1γ2(i1 + i2) · · ·wγs−1γs(is−1 + is)w
γsν(is + k)

(λ− τ∗ −m)(λ− τ∗ − i1) · · · (λ− τ∗ − is)(λ− τ∗ − k)
.

for regular but not strictly regular bc. In view of (4.8), the formulas
(4.15) and (4.16) determine the matrix representation of the resolvent
Rbc(λ).

5. Localization of spectra

In this section we consider the spectra localization of the operators
Lbc = L0

bc + V, where V denotes the operator of multiplication by the

matrix v(x) =

(
0 P (x)

Q(x) 0

)
.

1. In view of (4.13) and (4.14), the Hilbert–Schmidt norm of the
operator KλV Kλ with respect to the Riesz basis Φ (see (2.5)) is given
by

(5.1) (‖KλV Kλ‖∗HS)2 =
2∑

ν,µ=1

∑
j,k∈2Z

|wµν(j + k)|2

|λ− τµ − j||λ− τν − k|

for regular bc, and

(5.2) (‖KλV Kλ‖∗HS)2 =
2∑

ν,µ=1

∑
j,k∈2Z

|wµν(j + k)|2

|λ− τ∗ − j||λ− τ∗ − k|

for regular but not strictly regular bc.
For convenience, we set

(5.3) r(m) = max{|wµν(m)|, µ, ν = 1, 2}, m ∈ 2Z;
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then

(5.4) r = (r(k)) ∈ `2(2Z), ‖r‖ ≤ C(‖P‖L2 + ‖Q‖L2),

where C = C(bc).
Now we define operators V̄ and K̄λ which matrix representations

dominate, respectively, the matrix representations of V and Kλ, as
follows:

(5.5) V̄ ϕµn =
∑
k∈2Z

r(k + n)(ϕ1
k + ϕ2

k), µ = 1, 2; n ∈ 2Z,

(5.6) K̄λϕ
µ
n =

1√
|λ− τµ − n|

ϕµn, µ = 1, 2; n ∈ 2Z

for strictly regular bc, and

(5.7) K̄λϕ
µ
n =

1√
|λ− τ∗ − n|

ϕµn, µ = 1, 2; n ∈ 2Z

for regular but not strictly regular bc.
The matrix elements of the operator KλV Kλ do not exceed, by abso-

lute value, the matrix elements of K̄λV̄ K̄λ. Therefore, in view of (5.1)
– (5.3) and Lemma 9, it follows that
(5.8)

(‖KλV Kλ‖∗HS)2 ≤ (‖K̄λV̄ K̄λ‖∗HS)2 =
2∑

µ,ν=1

∑
j,k∈2Z

|r(j + k)|2

|λ− τµ − j||λ− τν − k|
,

for regular bc, and
(5.9)

(‖KλV Kλ‖∗HS)2 ≤ (‖K̄λV̄ K̄λ‖∗HS)2 = 4
∑
j,k∈2Z

|r(j + k)|2

|λ− τ∗ − j||λ− τ∗ − k|
,

for regular but not strictly regular bc.
For each `2–sequence x = (x(j))j∈Z and m ∈ N we set

(5.10) Em(x) =

∑
|j|≥m

|x(j)|2
1/2

.

Next we consider separately the case of strictly regular bc and the case
of regular but not strictly regular bc.

2. Strictly regular bc. We subdivide the complex plane C into strips
(5.11)

Hm =

{
z ∈ C : −1 ≤ Re

(
z −m− τ1 + τ2

2

)
≤ 1

}
, m ∈ 2Z,
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and set

(5.12) HN =
⋃
|m|≤N

Hm

(5.13) RNT =

{
z = x+ it :

∣∣∣∣x−Re τ1 + τ2

2

∣∣∣∣ < N + 1, |t| < T

}
,

where N ∈ 2N and

(5.14) T = 2 max
(
|Im τ1|, |Im τ2|, 384‖A‖‖A−1‖‖r‖2

)
with A being the isomorphism defined by (3.29).

Let

(5.15) ρ := min(1− |Re(τ1 − τ2)|/2, |τ1 − τ2|/2),

and

(5.16) Dµ
m = {z ∈ C : |z − τµ −m| < ρ}, m ∈ 2Z.

Lemma 10. (a) In the above notations, the following estimates hold:
(a) if λ ∈ Hm \ (D1

m ∪D2
m), m 6= 0, then

(5.17)
2∑

µ,ν=1

∑
j,k∈2Z

|r(j + k)|2

|λ− τµ − j||λ− τν − k|
≤
(

30

ρ

)2
(
‖r‖2√
|m|

+ (E|m|(r))2

)
;

(b) if λ ∈ HN \RNT , then

(5.18)
2∑

µ,ν=1

∑
j,k∈2Z

|r(j + k)|2

|λ− τµ − j||λ− τν − k|
≤ 384

T
‖r‖2.

Proof. (a) If λ ∈ Hm then

(5.19) |λ− τµ − j| ≥ |m− j|/4, j ∈ 2Z \ {m}, µ = 1, 2.

Indeed, |m− j| ≥ 2, so (5.11) and (3.21) imply

|Re (λ−τµ−j)| ≥ |m−j|−1− 1

2
|Re (τ1−τ2)| ≥ |m−j|− 3

2
≥ 1

4
|m−j|.

In view of (5.19), the sum in (5.17) does not exceed

43
∑
j,k 6=m

|r(j + k|2

|m− j||m− k|
+42

∑
k 6=m

|r(m+ k|2

ρ|m− k|
+42

∑
j 6=m

|r(j +m|2

|m− j|ρ
+4
|r(2m)|2

ρ2
.

Now the estimate (5.17) follows from the inequalities (5.20) and
(5.21) below.
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Lemma 11. If r = (r(k)) ∈ `2(2Z), then

(5.20)
∑
k 6=n

|r(n+ k)|2

|n− k|
≤ ‖r‖

2

|n|
+ (E|n|(r))2, |n| ≥ 1;

(5.21)
∑
i,k 6=n

|r(i+ k)|2

|n− i||n− k|
≤ 12

(
‖r‖2√
|n|

+ (E|n|(r))2

)
, |n| ≥ 1,

Lemma 11 is identical to Lemma 7 in [9]; a proof is provided there.
Next we prove (5.18). If λ ∈ HN \RNT , then λ ∈ Hm for some even

integer m ∈ [−N,N ], and we have

(5.22) |λ− τµ − j| ≥
1

4
√

2
(|j −m|+ T ), µ = 1, 2; j ∈ 2Z.

Indeed, λ ∈ Hm \RNT means that

λ = m+Re
τ1 + τ2

2
+ ξ + iη with ξ, η ∈ R, |ξ| ≤ 1, |η| ≥ T.

Therefore, if j = m, then by (5.14) we obtain

|λ− τµ − j| ≥ |Im (λ− τµ − j)| ≥ T − |Im τµ| ≥ T/2,

so (5.22) holds. Otherwise, |j−m| ≥ 2 (so |j−m| − 3/2 ≥ |j−m|/4);
then by the inequality |x+ iy| ≥ 1√

2
|x|+ 1√

2
|y| and (3.21) we obtain

|λ− τµ − j| ≥
1√
2

(
|j −m| −

∣∣∣∣Re τ1 − τ2

2

∣∣∣∣− 1

)
+

1√
2

(T − |Im τµ|)

≥ 1√
2

(|j −m| − 3/2) +
1

2
√

2
T ≥ 1

4
√

2
(|j −m|+ T ).

In view of (5.22), the sum in (5.18) does not exceed

σ := 128
∑
j,k∈2Z

|r(j + k)|2

(|j −m|+ T )(|k −m|+ T )
.

By the Cauchy inequality,

σ ≤ 128

( ∑
j,k∈2Z

|r(j + k)|2

(|j −m|+ T )2

)1/2( ∑
j,k∈2Z

|r(j + k)|2

(|k −m|+ T )2

)1/2

.

Since∑
j∈2Z

1

(|j −m|+ T )2
≤ 1

T 2
+ 2

∫ ∞
0

1

(x+ T )2
dx =

1

T 2
+

2

T
≤ 3

T
,

it follows that σ ≤ 384
T
‖r‖2, which completes the proof. �
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Theorem 12. In the above notations, for each strictly regular bc there
is an N = N(v, bc) ∈ 2N such that

(5.23) Sp (Lbc(vζ) ⊂ RNT ∪
⋃
|m|>N

(
D1
m ∪D2

m

)
for vζ = ζv, |ζ| ≤ 1.

Proof. Let G be the set in the right-hand side of (5.23). In order
to prove (5.23) for ζ = 1, it is enough to explain that the resolvent
Rλ(v) = (λ− L(v))−1 is well-defined for λ ∈ C \G.

In view of (4.8) – (4.10), Rλ(v) is well-defined if ‖KλV Kλ‖ < 1.
From Lemma 1, formula (5.8), Lemma 10 and the choice (5.14) of the
constant T it follows that
(5.24)
‖KλV Kλ‖ ≤ ‖KλV Kλ‖HS ≤ ‖A‖‖A−1‖‖KλV Kλ‖∗HS < 1 for λ ∈ C\G

if N is chosen so large that the right-hand sides of (5.17) (for |m| > N)
and (5.18) are strictly less than 1. In view of Lemma 9 and (5.3), (5.24)
holds for ζv, |ζ| ≤ 1 as well. Therefore, (5.23) holds with N = N(v, bc).

�

3. Regular but not strictly regular boundary conditions. Now we
subdivide the complex plane C into strips

(5.25) Hm = {z ∈ C : −1 ≤ Re (z −m− τ∗) ≤ 1} , m ∈ 2Z,

and set

(5.26) HN =
⋃
|m|≤N

Hm,

(5.27) RNT = {z = x+ it : |x−Re τ∗| < N + 1, |t| < T} ,

where N ∈ 2N and

(5.28) T = 2 max
(
|Im τ∗|, 96‖A‖‖A−1‖‖r‖2

)
with A being the isomorphism defined by (3.29) (for periodic type
boundary conditions) and (3.59) otherwise.

Let

(5.29) Dm = {z ∈ C : |z − τ∗ −m| < 1/4}, m ∈ 2Z.

Lemma 13. (a) In the above notations, if λ ∈ Hm \Dm), m 6= 0, then

(5.30)
∑
j,k∈2Z

|r(j + k)|2

|λ− τ∗ − j||λ− τ∗ − k|
≤ C

(
‖r‖2√
|m|

+ (E|m|(r))2

)
,

where C is an absolute constant;
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(b) if λ ∈ HN \RNT , then

(5.31)
∑
j,k∈2Z

|r(j + k)|2

|λ− τ∗ − j||λ− τ∗ − k|
≤ 24

T
‖r‖2.

Proof. If λ ∈ Hm then (compare with (5.19))

(5.32) |λ− τ∗ − j| ≥ |m− j|/4 j 6= m, j ∈ Z.

Therefore, the sum in (5.30) does not exceed

42
∑
j,k 6=m

|r(j + k|2

|m− j||m− k|
+42

∑
k 6=m

|r(j + k|2

|m− k|
+42

∑
j 6=m

|r(j + k|2

|m− j|
+42|r(2m)|2.

Now the estimate (5.30) follows from the inequalities (5.20) and
(5.21) in Lemma 11.

Next we prove (5.31). If λ ∈ HN \ RNT , then λ ∈ Hm for some
integer m ∈ [−N,N ]; then (compare with (5.22)) we have

(5.33) |λ− τ∗ − j| ≥
1

2
√

2
(|j −m|+ T ), µ = 1, 2; j ∈ 2Z.

The proof of (5.33) is similar to the proof of (5.22), and therefore, it
is omitted. Moreover, using (5.33) one can complete the proof of part
(b) exactly as it is done in the proof of Lemma 10.

�

Theorem 14. In the above notations, for each regular but not strictly
regular bc there is N = N(v, bc) ∈ 2N such that

(5.34) Sp (Lbc(vζ) ⊂ RNT ∪
⋃
|m|>N

Dm for vζ = ζv, |ζ| ≤ 1.

Proof. We follow the proof of Theorem 12 but use instead of (5.8),
Lemma 10 and (5.14) their counterparts (5.9), Lemma 13 and (5.28).
We omit further details. �

6. Bari–Markus property in the case of strictly regular
boundary conditions

We use the notations of the previous section. For strictly regular
bc Theorem 12 gives the following localization of the spectrum of the
Dirac operator Lbc :

Sp (Lbc) ⊂ RNT ∪
⋃
|n|>N

(
D1
n ∪D2

n

)
.
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Let us consider the Riesz projections associated with Lbc
(6.1)

SN =
1

2πi

∫
∂RNT

(λ−L)−1dλ, Pn,α =
1

2πi

∫
∂Dαn

(λ−L)−1dλ, α = 1, 2,

and let S0
N and P 0

n,α be the Riesz projections associated with the free

operator L0
bc.

Theorem 15. Suppose Lbc and L0
bc are, respectively, the Dirac operator

with an L2 potential v and the corresponding free Dirac operator, subject
to the same strictly regular boundary conditions bc. Then, there is an
N ∈ 2N such that the Riesz projections SN , Pn,α and S0

N , P
0
n,α, n ∈

2Z, |n| > N,α = 1, 2, associated with L and L0 are well defined by
(6.1), and we have

(6.2) dimPn,α = dimP 0
n,α = 1, dimSN = dimS0

N = 2N ;

(6.3)
∑
|n|>N

‖Pn,α − P 0
n,α‖2 <∞, α = 1, 2.

Moreover, the system {SN , Pn,α, n ∈ 2Z, |n| > N, α = 1, 2} is a Riesz
basis of projections in L2([0, π],C2), i.e.,

(6.4) f = SN(f) +
2∑

α=1

∑
|n|>N

Pn,α(f) ∀f ∈ L2([0, π],C2),

where the series converge unconditionally.

Proof. In view of Theorem 12, there is an N = N(v, bc) such that the
projections

SN(ζ) =
1

2πi

∫
∂RNT

(λ−L(ζv))−1dλ, Pn,α(ζ) =
1

2πi

∫
∂Dαn

(λ−L(ζv))−1dλ,

|n| > N, α = 1, 2, are well-defined for |ζ| ≤ 1 and depend continuously
(even analytically) on ζ. Therefore, their dimensions

dimSN(ζ) = trace SN(ζ), dimPn,α(ζ) = trace Pn,α(ζ)

are constants as continuous integer-valued functions. This proves (6.2).
Next we prove (6.3). For periodic, antiperiodic and Dirichlet bound-

ary conditions (6.3) was proved in [9, Theorem 3]; here we follow the
same approach.

For large enough N the series in (4.8) converges (see formula (5.24)
the proof of Theorem 12); therefore,

(6.5) Pn,α − P 0
n,α =

1

2πi

∫
∂Dαn

∞∑
s=0

Kλ(KλV Kλ)
s+1Kλdλ.
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Let Φ = {ϕ1
k, ϕ

2
k, k ∈ Z} and Φ̃ = {ϕ̃1

k, ϕ̃
2
k, k ∈ Z} be the Riesz basis

(consisting of eigenfunctions of the operator L0
bc) and its biorthogonal

system that are constructed in Lemma 5. We are going to prove (6.3)
by estimating the Hilbert–Schmidt norms ‖Pn,α−P 0

n,α‖∗HS with respect
to the basis Φ.

Recall that

(‖Pn,α − P 0
n,α‖∗HS)2 =

2∑
µ,ν=1

∑
m,k∈2Z

|〈(Pn,α − P 0
n,α)ϕµm, ϕ̃

ν
k〉|2.

By (6.5), we obtain

〈(Pn,α − P 0
n,α)ϕµm, ϕ̃

ν
k〉 =

∞∑
s=0

Iν,µn,α(s, k,m),

where

(6.6) Iν,µn,α(s, k,m) =
1

2πi

∫
∂Dαn

〈Kλ(KλV Kλ)
s+1Kλϕ

µ
m, ϕ̃

ν
k〉dλ.

Therefore,∑
|n|>N

(‖Pn,α−P 0
n,α‖∗HS)2 ≤

∞∑
s,t=0

∑
|n|>N

2∑
µ,ν=1

∑
m,k∈Z

|Iν,µn,α(s, k,m)|·|Iν,µn,α(t, k,m)|.

Now, the Cauchy inequality implies

(6.7)
∑
|n|>N

(‖Pn − P 0
n‖∗HS)2 ≤

∞∑
s,t=0

(A(s))1/2(A(t))1/2,

where

(6.8) A(s) =
∑
|n|>N

2∑
µ,ν=1

∑
m,k∈Z

|Iν,µn,α(s, k,m)|2.

Of course, A(s) depends on α and N but that dependence is sup-
pressed in the notation.

In view of (4.15) and (6.6), it follows that

(6.9) Iν,µn,α(s, k,m) =
1

2πi

∫
∂Dαn

2∑
γ1,..,γs=1

∑
j1,...js

wνγ1(k + j1)

(λ− τν − k)
×

×w
γ1γ2(j1 + j2) · · ·wγs−1γs(js−1 + js)w

γsµ(js +m)

(λ− τγ1 − j1) · · · (λ− τγs − js)(λ− τµ −m)
dλ.
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By the Cauchy formula, if n 6∈ {k, j1, . . . , js,m} then
(6.10)∫
∂Dαn

wνγ1(k + j1)wγ1γ2(j1 + j2) · · ·wγsµ(js +m)

(λ− τν − k)(λ− τγ1 − j1) · · · (λ− τγs − js)(λ− τµ −m)
dλ = 0.

This observation is crucial for the proof. We remove from the sum in
(6.9) the terms which integrals are zeros and after that estimate the
remaining terms by absolute value as follows.

Let r be the `2(2Z)–sequence defined in (5.3). We set
(6.11)

B(z, k, j1, . . . , js,m) =
r(k + j1)r(j1 + j2) · · · r(js−1 + js)r(js +m)

|z − k||z − j1| · · · |z − js||z −m|
for s > 0, and

(6.12) B(z, k,m) =
r(m+ k)

|z − k||z −m|
in the case when s = 0 and there are no j-indices.

Lemma 16. In the above notations, we have

(6.13) A(s) ≤ 4ρ(2C)s (B1(s) +B2(s) +B3(s) +B4(s)) ,

with C = C(ρ) and

(6.14) B1(s) =
∑
|n|>N

sup
|z−n|=ρ

( ∑
j1,...,js

B(z, n, j1, . . . , js, n)

)2

;

(6.15) B2(s) =
∑
|n|>N

∑
k 6=n

sup
|z−n|=ρ

( ∑
j1,...,js

B(z, k, j1, . . . , js, n)

)2

;

(6.16) B3(s) =
∑
|n|>N

∑
m6=n

sup
|z−n|=ρ

( ∑
j1,...,js

B(z, n, j1, . . . , js,m)

)2

;

(6.17)

B4(s) =
∑
|n|>N

∑
m,k 6=n

sup
|z−n|=ρ

(
∗∑

j1,...,js

B(z, k, j1, . . . , js,m)

)2

, s ≥ 1,

where the symbol ∗ over the sum in the parentheses means that at least
one of the indices j1, . . . , js is equal to n.

Proof. In view of (6.8), we have

A(s) ≤ A1(s) + A2(s) + A3(s) + A4(s),
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where

A1(s) =
∑
|n|>N

2∑
ν,µ=1

∣∣Iν,µn,α(s, n, n)
∣∣2 , A2(s) =

∑
|n|>N

2∑
ν,µ=1

∑
k 6=n

∣∣Iν,µn,α(s, k, n)
∣∣2 ,

A3(s) =
∑
|n|>N

2∑
ν,µ=1

∑
m 6=n

∣∣Iν,µn,α(s, n,m)
∣∣2 , A4(s) =

∑
|n|>N

2∑
ν,µ=1

∑
k,m6=n

∣∣Iν,µn,α(s, k,m)
∣∣2 .

So, the lemma will be proved if we show that Ai(s) ≤ 4ρ(2C)sBi(s),
i = 1, 2, 3, 4.

If λ ∈ ∂Dα
n and z = λ− τα, then we have

(6.18)

∣∣∣∣wνγ1(k + j1)wγ1γ2(j1 + j2) · · ·wγs−1γs(js−1 + js)w
γsµ(js +m)

(λ− τν − k)(λ− τγ1 − j1) · · · (λ− τγs − js)(λ− τµ −m)

∣∣∣∣
≤ CsB(z, k, j1, . . . , js,m), where C = C(ρ) > 1.

In order to prove (6.18) it is enough to show that

(6.19) |z + τα − τβ − j| ≥
1

C
|z − j|, if |z − n| = ρ, β 6= α.

If j = n, then by the choice of ρ in (5.15) we have

|z + τα − τβ − n| ≥ |τ1 − τ2| − |z − n| = |τ1 − τ2| − ρ ≥ ρ = |z − n|.
Otherwise, |n− j| ≥ 2, so taking into account that |Re (τα− τβ)| ≤ 1

due to (3.21), we obtain

|z + τα − τβ − j| ≥ |n− j| − ρ− |Re (τα − τβ)| ≥ |n− j| − ρ− 1.

Since |z − j| ≤ |n− j|+ ρ, it is enough to find a constant C such that

|n− j| − ρ− 1 ≥ 1

C
(|n− j|+ ρ),

or equivalently, (C − 1)|n − j| ≥ (C + 1)ρ + C. For |n − j| = 2 the
latter inequality is equivalent to C(1 − ρ) ≥ 2 + ρ. Therefore, (6.19)
holds with C = C(ρ) = (2 + ρ)/(1− ρ).

Now, (6.9) and (6.18) imply that

(6.20)
∣∣Iν,µn,α(s, k,m)

∣∣ ≤ ρ(2C)s sup
|z−n|=ρ

∑
j1,...,js

B(z, k, j1, . . . , js,m),

where C = C(ρ) is the constant from (6.18). Therefore, in view of
(6.14) – (6.16), we obtain

Ai(s) ≤ 4ρ(2C)sBi(s), i = 1, 2, 3.

Finally, taking into account (6.10) we remove from the sum in the
right-hand side of (6.20) the terms associated with sets indices k, j1, . . . , js,m
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such that n 6∈ {k, j1, . . . , js,m}. This leads to the following improve-
ment of (6.20):

∣∣Iν,µn,α(s, k,m)
∣∣ ≤ ρ(2C)s sup

|z−n|=ρ

∗∑
j1,...,js

B(z, k, j1, . . . , js,m), k,m 6= n.

In view of (6.17), this yields A4(s) ≤ 4ρ(2C)sB4(s), which completes
the proof.

�

Proposition 17. In the above notations,
(6.21)

Bν(s) ≤ C1‖r‖2a2s
N , ν = 1, 2, 3, B4(s) ≤ C1s‖r‖4a

2(s−1)
N , s ≥ 1,

where

(6.22) aN =
30

ρ

(
‖r‖2

√
N

+ (EN(r))2

)1/2

.

and C1 is an absolute constant.

If ρ = 1/2, then Proposition 17 is identical with Proposition 6 in [9].
Moreover, the proof is one and the same for any ρ > 0 but ρ appears
in the formula (6.22). Therefore, we omit the proof of Proposition 17.

Now we complete the proof of (6.3). Lemma 16 together with the
inequalities (6.21) and (6.22) in Proposition 17 imply that

(6.23) A(s) ≤ 16C1(2C)s‖r‖2(1 + ‖r‖2/a2
N)(1 + s)a2s

N ,

(6.24) (A(s)A(t))1/2 ≤ 16C1‖r‖2(1+‖r‖2/a2
N)(1+s)(1+t)(2CaN)s+t.

By (6.22), aN → 0 as N →∞, so 2CaN < 1 if N is chosen sufficiently
large. Then, the inequality (6.24) guarantees that the series on the
right-hand side of (6.7) converges, which implies that (6.3) holds.

Finally, we apply Theorem 2 to the systems of projections

{SN , Pn,α, |n| > N, α = 1, 2}, {S0
N , P

0
n,α, |n| > N, α = 1, 2}.

The existence of the Riesz basis Φ constructed in Lemma 5 implies that
the system {S0

N , P
0
n,α, |n| > N, α = 1, 2} is a Riesz basis of projections

in L2([0, π],C2), and by (6.2) and (6.3) the conditions (2.10) and (2.11)
are satisfied. Hence, by Theorem 2, {SN , Pn,α, |n| > N, α = 1, 2} is a
Riesz basis of projections in L2([0, π],C2). �

Theorem 15 immediately implies the following.
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Corollary 18. The spectrum of Lbc is discrete. Each of the discs
Dα
n , α = 1, 2, n ∈ 2Z, |n| > N, contains exactly one simple eigenvalue

of Lbc, and the numbers of eigenvalues of L0
bc and Lbc (counted with their

algebraic multiplicity) in RNT are equal, namely

(6.25) # (Sp (Lbc) ∩RNT ) = #
(
Sp (L0

bc) ∩RNT

)
= 2N.

In view of Corollary 18, the spectrum of the operator Lbc could be
described by saying that with exception of finitely many points it con-
sists of simple eigenvalues λn,α that are ”close” to the corresponding
points in the spectrum of the free operator L0

bc

Sp(L0
bc) = {λ0

n,α = n+ τα, α = 1, 2; n ∈ 2Z}.
The distance |λn,α − λ0

n,α| could be estimate by the norms

(6.26) κn,α = ‖Pn,α − P 0
n,α‖, n ∈ 2Z, |n| > N, α = 1, 2,

and the terms wαα(2n) from the matrix representation of the opera-
tor of multiplication V (see Lemma 9). This leads to the following
statement.

Theorem 19. In the above notations,

(6.27)
∑
|n|>N

|λn,α − n− τα|2 <∞, α = 1, 2.

Proof. Let Φ = {ϕ1
n, ϕ

2
n, n ∈ 2Z} be the basis of eigenvectors of L0

bc

constructed in Lemma 5, and let Φ̃ = ϕ̃1
n, ϕ̃

2
n, n ∈ 2Z} be its biorthog-

onal system. We have

L0
bcϕ

α
n = λ0

n,αϕ
α
n, P 0

n,αϕ
α
n = ϕαn, α = 1, 2.

and (since ϕ̃αn are eigenvectors of the adjoint operator (L0
bc)
∗ corre-

sponding to eigenvalues λ0
n,α)

(6.28) (L0
bc)
∗ϕ̃αn = λ0

n,αϕ̃
α
n, α = 1, 2.

We set
ψαn = Pn,αϕ

α
n, α = 1, 2; n ∈ 2Z, |n| > N.

Then we have

(6.29) Lbcψ
α
n = λn,αψ

α
n

and

(6.30) ‖ψαn − ϕαn‖ = ‖(Pn,α − P 0
n,α)ϕαn‖ ≤ κn,α‖ϕαn‖ ≤ Cκn,α,

where C is the norm of the isomorphism A from Lemma 5, so C =
C(bc). By (6.29),

λn,α〈ψαn , ϕ̃αn〉 = 〈Lbcψαn , ϕ̃αn〉 = 〈L0
bcψ

α
n , ϕ̃

α
n〉+ 〈V ψαn , ϕ̃αn〉
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In view of (6.28),

〈L0
bcψ

α
n , ϕ̃

α
n〉 = 〈ψαn , (L0

bc)
∗ϕ̃αn〉 = 〈ψαn , λ0

n,αϕ̃
α
n〉 = λ0

n,α〈ψαn , ϕ̃αn〉.
Therefore, we obtain,

(λn,α − λ0
n,α)〈ψαn , ϕ̃αn〉 = 〈V ψαn , ϕ̃αn〉,

which leads to the formula

(6.31) λn,α − λ0
n,α =

〈V ψαn , ϕ̃αn〉
〈ψαn , ϕ̃αn〉

.

By (6.30), it follows that

〈ψαn , ϕ̃αn〉 = 〈ϕαn, ϕ̃αn〉+ 〈(ψαn − ϕαn), ϕ̃αn〉 = 1 +O(κn,α).

On the other hand,

〈V ψαn , ϕ̃αn〉 = 〈V ϕαn, ϕ̃αn〉+ 〈V (ψαn − ϕαn), ϕ̃αn〉.
By Lemma 9 and (4.3), we have

〈V ϕαn, ϕ̃αn〉 = wαα(2n), where
∑
n

wαα(2n)|2 <∞.

In view of (6.30),

〈V (ψαn − ϕαn), ϕ̃αn〉 = 〈(ψαn − ϕαn, V ∗ϕ̃αn〉 = O(‖ψαn − ϕαn‖) = O(κn)

because the functions ϕ̃αn are uniformly bounded due to Lemma 5,
Formulas (3.26) and (3.27).

Therefore, by (6.31), we obtain

λn,α − λ0
n,α =

wαα(2n) +O(κn)

1 +O(κn)
,

From here (6.27) follows because
∑

n |wαα(2n)|2 < ∞ by (4.3) and∑
n κ

2
n <∞ by (6.3). �

7. Bari–Markus property in the case of regular but not
strictly regular boundary conditions

We use the notations of Section 5. For regular but not strictly regular
bc Theorem 14 gives the following localization of the spectrum of the
Dirac operator Lbc :

Sp (Lbc) ⊂ RNT ∪
⋃
|n|>N

Dn.

Let us consider the Riesz projections associated with Lbc

(7.1) SN =
1

2πi

∫
∂RNT

(λ− L)−1dλ, Pn =
1

2πi

∫
∂Dn

(λ− L)−1dλ,
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and let S0
N and P 0

n be the Riesz projections associated with the free
operator L0

bc.

Theorem 20. Suppose Lbc and L0
bc are, respectively, the Dirac operator

with an L2 potential v and the corresponding free Dirac operator, subject
to regular but not strictly regular boundary conditions bc. Then, there
is an N ∈ 2N such that the Riesz projections SN , Pn and S0

N , P
0
n , n ∈

2Z, |n| > N, associated with L and L0 are well defined by (6.1), and
we have

(7.2) dimPn = dimP 0
n = 2, dimSN = dimS0

N = 2N ;

(7.3)
∑
|n|>N

‖Pn − P 0
n‖2 <∞.

Moreover, the system {SN ; Pn, n ∈ 2Z, |n| > N } is a Riesz basis of
projections in L2([0, π],C2), i.e.,

(7.4) f = SN(f) +
∑
|n|>N

Pn(f) ∀f ∈ L2([0, π],C2),

where the series converge unconditionally.

Proof. One may prove the theorem by repeating (with a few obvious
adjustments) the proof of Theorem 15. Therefore, the proof is omitted.

�

Theorem 20 immediately implies the following.

Corollary 21. The spectrum of Lbc is discrete. Each of the discs
Dn, n ∈ 2Z, |n| > N, contains exactly two eigenvalues (counted with
algebraic multiplicity) of Lbc, and the numbers of eigenvalues of L0

bc and
Lbc (counted with algebraic multiplicity) in RNT are equal, namely

(7.5) # (Sp (Lbc) ∩RNT ) = #
(
Sp (L0

bc) ∩RNT

)
= 2N.

8. Miscellaneous; pointwise convergence and
equiconvergence

1. Suppose that L0
bc is the free Dirac operator considered with reg-

ular boundary conditions (bc) given by the matrix

[
1 b a 0
0 d c 1

]
in

(3.11). Let Φ = {ϕ1
k, ϕ

2
k, k ∈ Z} be the corresponding Riesz basis in

L2([0, π],C2) consisting of eigenfunctions and associated functions of
L0
bc, which is constructed, respectively, in Lemma 5 if bc is strictly reg-

ular, in Lemma 7 if bc is periodic type, and in Lemma 8 otherwise.
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Then we have

(8.1)
∑
m∈2Z

2∑
µ=1

〈(
f
g

)
, ϕ̃µm

〉
ϕµm =

(
f
g

)
, ∀f, g ∈ L2([0, π],C),

where the series converges unconditionally in L2([0, π],C2). The follow-
ing statement gives sufficient conditions for point-wise convergence of
the series in (8.1) and explains what is its sum for each x ∈ [0, π].

Pointwise Convergence Theorem. If f, g : [0, π] → C are func-
tions of bounded variation which are continuous at 0 and π, then
(8.2)

lim
M→∞

M∑
m=−M

[〈(
f
g

)
, ϕ̃1

m

〉
ϕ1
m(x) +

〈(
f
g

)
, ϕ̃2

m

〉
ϕ2
m(x)

]
=

(
f̃(x)
g̃(x)

)
where

(8.3)

(
f̃(x)
g̃(x)

)
=

1

2

(
f(x− 0) + f(x+ 0)
g(x− 0) + g(x+ 0)

)
for x ∈ (0, π)

and

(8.4)

(
f̃(x)
g̃(x)

)
=


1
2

(
f(0)− bf(π)− ag(0)

d
bc−adf(0) + g(0)− b

bc−adg(π)

)
if x = 0,

1
2

(
− c
bc−adf(0) + f(π) + a

bc−adg(π)

−df(π)− cg(0) + g(π)

)
if x = π.

Moreover, if both f and g are continuous on some closed subinterval of
(0, π) then the convergence (8.2) is uniform on that interval.

2. Next, suppose that v is an L2([0, π]) Dirac potential and consider
the operator Lbc(v).

For strictly regular bc, Theorem 15 shows that there is a Riesz basis
of projections; Formula (6.4) is an analog of (8.1). Moreover, since the
projections Pα

n that appear in (6.4) are one-dimensional while dimSN =
2N, in fact Theorem 15 proves the existence of a Riesz basis ϕµm, m ∈
2Z, µ ∈ {1, 2}, consisting of eigenfunctions and at most finitely many
associated functions of the operator Lbc(v).

For regular but not strictly regular bc, the existence of Riesz basis
of projections is proven in Theorem 20, see Formula (7.4). The Riesz
projections Pm that appear in (7.4) are two-dimensional, and in general
it is impossible to ”split” the corresponding two-dimensional subspaces
into one-dimensional so that to get a Riesz basis of functions (see in
[10] results about existence and nonexistence of Riesz basis of functions
in the case of periodic or antiperiodic bc).
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However, in both cases the spectral decompositions (8.1)) of L0
bc and

the spectral decompositions of Lbc(v) given, respectively, by (6.4) for
strictly regular bc and by (7.4) for regular but not strictly regular bc,
converge pointwise to the same limit, or diverge simultaneously, due to
the following.

Equiconvergence Theorem. Let SN = SN(v, bc) and S0
N(bc) be

the projections defined by (6.1), and let F : [0, π] → C be a function
of bounded variation. Then, for every regular bc and every L2([0, π])-
potential v,

(8.5)
∥∥(SN − S0

N

)
F
∥∥
∞ → 0 as N →∞

Proofs and generalizations of these results will be presented else-
where. We are thankful to R. Szmytkowski for bringing our attention
to the point-wise convergence problem of spectral decompositions of
1D Dirac operators. In the case of separated boundary conditions,
our point-wise convergence results confirm the formula suggested by
R. Szmytkowski ([25, Formula 3.14]).
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