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Stochastic Mean Payoff Games:

Smoothed Analysis and Approximation Schemes ∗

Endre Boros† Khaled Elbassioni‡ Mahmoud Fouz§ Vladimir Gurvich∗

Kazuhisa Makino¶ Bodo Manthey‖

Abstract. We consider two-person zero-sum stochastic mean payoff games with perfect information
modeled by a digraph with black, white, and random vertices. These BWR-games games are polynomially
equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic
games, simple stochastic games, stochastic parity games, and Markov decision processes. They can also
be used to model parlor games such as Chess or Backgammon.

It is a long-standing open question whether a polynomial algorithm exists that solves BWR-games.
In fact, a pseudo-polynomial algorithm for these games with an arbitrary number of random nodes
would already imply their polynomial solvability. Currently, only two classes are known to have such
a pseudo-polynomial algorithm: BW-games (the case with no random nodes) and ergodic BWR-games
(i.e., in which the game’s value does not depend on the initial position) with constant number of random
nodes. In this paper, we show that the existence of a pseudo-polynomial algorithm for BWR-games with
constant number of random vertices implies smoothed polynomial time complexity and the existence
of absolute and relative polynomial-time approximation schemes. In particular, we obtain smoothed
polynomial time complexity and derive absolute and relative approximation schemes for the above two
classes.

1 Introduction

Stochastic games with perfect information and mean payoff were introduced in 1957 by Gillette
[18]. In an equivalent formulation [20, 10, 7], which is called mean stochastic payoff games
or BWR-games, we are given a directed graph G = (V,E) whose vertex set V is partitioned
into three subsets V = VB ∪ VW ∪ VR that correspond to black, white, and random positions,
respectively. The black and white vertices are owned by two players: Black – the minimizer
– owns the black vertices in VB, and White – the maximizer – owns the white vertices in VW .
The vertices in VR are owned by nature. Furthermore, we have a local reward re ∈ R for each
arc e ∈ E. Finally, there are given probabilities pvu for all arcs (v, u) going out of v ∈ VR.
Vertices v ∈ V are also called positions and arcs e ∈ E are also called moves. Starting from
some vertex v0 ∈ V , a token is moved along one arc e in every round of the game. If the token
is on a black vertex, Black selects an outgoing arc e and moves the token along e. If the token
is on a white vertex, then White selects an outgoing arc e. In a random position v ∈ VR, a
move e = (v, u) is chosen according to the probabilities pvu of the outgoing arcs of v. In all
cases, Black pays White the reward re on the selected arc e.

From a given initial position v0 ∈ V the game produces an infinite walk {v0, v1, v2, . . .} (called
a play). Let bi denote the reward rvivi+1 received by White in step i ∈ {0, 1, . . .}. The undis-

counted limit average effective payoff is defined as the Cesàro average c = lim infn→∞
∑n
i=0 E[bi]
n+1 .
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White’s objective is to maximize c, while the objective of Black is the opposite, i.e., to

minimize lim supn→∞

∑n
i=0 E[bi]
n+1 .

The important special case of BWR-games without random vertices, i.e., VR = ∅, is known
as cyclic or mean payoff games [31, 17, 20]; for convenience, we will call these BW-games. A
more special case was considered extensively in the literature under the name of parity games
[11, 21, 22, 24], and later generalized also to include random vertices [10]. A BWR-game is
reduced to a minimum mean cycle problem in case VW = VR = ∅ or VB = VR = ∅, which can
be solved in polynomial time [25]. If one of the sets VB or VW is empty, we obtain a Markov
decision process for which polynomial-time algorithms are also known [30]. Finally, if both sets
are empty VB = VW = ∅, we get a weighted Markov chain.

In the special case of BWR-games when all rewards are zero except for m terminal loops
we obtain the so-called Backgammon-like games [9]. In case of m = 1, we obtain simple
stochastic games (SSGs), introduced by Condon [14, 15] and considered in several papers (e.g.
[19, 21]). In these games, the objective of White is to maximize the probability of reaching the
terminal, while Black wants to minimize this probability. Recently, it was shown that Gillette
games (and hence BWR-games [7]) are equivalent to SSGs under polynomial-time reductions
[1]. Thus, by recent results of Halman [21], all these games can be solved in randomized
strongly subexponential time 2O(

√
nd lognd) poly(|V |), where nd = |VB| + |VW | is the number

of deterministic vertices (see also [4, 29]). Let us note that several pseudo-polynomial and
subexponential algorithms exists for BW-games [20, 26, 41, 33, 5, 21, 40]; see also Dhingra and
Gaubert [16] for a policy iteration method, and Jurdzinski et al. [24] for parity games.

Besides their many applications (see, e.g., [28, 23]), all these games are of interest to com-
plexity theory: Karzanov and Lebedev [26] (see also [41]) proved that the decision problem
“whether the value of a BW-game is positive” is in the intersection of NP and co-NP. Yet, no
polynomial algorithm is known even in this special case, see e.g., the recent survey by Vorobyov
[40]. A similar complexity claim can be shown to hold for SSGs and BWR-games [1, 7]. On the
other hand, there exists algorithms (see, e.g., [20]) that solve BW-games in practice very fast.
The situation for these games is thus comparable to linear programming before the seminal
discovery of the ellipsoid method, where the problem was also known to lie in the intersection
of NP and co-NP and where the simplex algorithm proved to be a fast algorithm in practice. In
[37], Spielman and Teng introduced smoothed analysis to explain the practical performance of
the simplex method. We further enforce this analogy by showing a smoothed polynomial com-
plexity for BWR-games. Recently, it was also shown that, in the unit cost model, a polynomial
algorithm for linear programming would imply a polynomial algorithm for BW-games [36].

While there are numerous pseudo-polynomial algorithms known for the BW-case [20, 41, 33],
pseudo-polynomiality for BWR-games (with no restriction on the number of random nodes) is
in fact equivalent to polynomiality [1]. It was shown by Gimbert and Horn [19] that simple
stochastic games on k random vertices can be solved in time O(k!(|V ||E|+L)), where L is the
maximum bit length of a transition probability. (Even though BWR-games are polynomially
reducible to simple stochastic games, under this reduction the number of random vertices k be-
comes a polynomial in n, even if the original BWR-game has constantly many random vertices.)
Recently, a pseudo-polynomial algorithm was given for BWR-games with a constant number
of random vertices and polynomial common denominator of transition probabilities, but under
the assumption that the game is ergodic, i.e., the game value does not depend on the initial
position [8]. However, the existence of a similar algorithm for the non-ergodic or non-constant
number of random vertices remains open, as the approach in [8] does not seem to generalize to
these cases.
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1.1 Our Results and Some Related Work

Approximation schemes for BWR-games. As for approximation schemes, the only result
we are aware of is the observation made by Roth et al. [35] that the values of BW-games can be
approximated within an absolute error of ε in polynomial-time, if all rewards are in the range
[−1, 1]. This follows immediately from truncating the rewards and using any of the known
pseudo-polynomial algorithms [20, 33, 41].

In this paper, we generalize this result in two directions. Let us say that a digraph G =
(VB ∪ VW ∪ VR, E) admits a pseudo-polynomial algorithm, if there is an algorithm that solves
any BWR-game G on G, with integral rewards and rational transition probabilities, in time
polynomial in n, D, and R. Here, n = n(G) is the total number of vertices, R = R(G) is the
size of the range of the rewards, and D = D(G) is the common denominator of the transition
probabilities. For instance, G admits a pseudo-polynomial algorithm if it has no random vertex
(i.e., BW-games), or when it has a constant number of random nodes and is structurally ergodic,
e.g., when G is a complete tripartite digraph; see [8] for more general sufficient conditions for
structural ergodicity.

Let pmin = pmin(G) be the minimum positive transition probability in the game G. Through-
out the paper, we will assume that the number of random vertices k is bounded by a constant.

Theorem 1.1. Let G be a digraph that admits a pseudo-polynomial algorithm. For any ε > 0,
there is an algorithm that returns, for any given BWR-game on G with rewards in [−1, 1], a pair
of strategies that approximates the value, within an absolute error of ε, in time poly(n, 1

pmin
, 1ε ).

We also obtain an approximation scheme with a relative error.

Theorem 1.2. Let G be a digraph that admits a pseudo-polynomial algorithm. For any ε > 0,
there is an algorithm that returns, for any given BWR-game on G with non-negative integral
rewards and rational transition probabilities, a pair of strategies that approximates the value,
within a relative error of ε, in time poly(n, logR, 1ε ).

Note that our reduction in Theorem 1.1, unlike Theorem 1.2, has the property that if the
pseudo-polynomial algorithm returns optimal strategies that are independent of the starting
vertex, the so-called uniformly optimal strategies, then so does the approximation scheme. For
BW-games, i.e., the special case without random vertices, we can also strengthen the result of
Theorem 1.2 to return a pair of strategies that is uniformly ε-optimal.

In deriving these approximation schemes from a pseudo-polynomial algorithm, we face two
main technical challenges which distinguish the computation of ε-equilibria of BWR-games
from similar standard techniques used in optimization: (i) the running time of the pseudo-
polynomial algorithm depends polynomially both on the maximum reward and the common
denominator D of the transition probabilities; thus to obtain an FPTAS with an absolute
guarantee whose running time is independent of D, we need to truncate the probabilities and
bound the change in the game value, which is a non-linear function ofD, (ii) to obtain an FPTAS
with a relative guarantee, one needs (as standard in optimization) a (trivial) lower/upper bound
on the optimum value; this is not possible in the case of BWR-games, since the game value can
be arbitrarily small; the situation becomes even more complicated, if we look for uniformly ε-
optimal strategies, since we have to output one pair of strategies which guarantees ε-optimality
from any starting position.

In order to resolve the first issue, we analyze the change in the game values and optimal
strategies if the rewards or transition probabilities are changed. Roughly speaking, we use
results from Markov chain perturbation theory to show that if the probabilities are perturbed
by a small error δ, then the change in the game value isO( δ

2n3

p2kmin

); see Section 3.2. The second issue

is resolved through repeated applications of the pseudo-polynomial algorithm on a truncated
game; after each such application either the value of the game has already been approximated
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within the required accuracy, or it is guaranteed that the range of the rewards can be shrunk
by a constant factor without changing the value of the game; see Sections 3.4 and 3.5.

Since BW-games and structurally ergodic BWR-games with constant number of random
vertices admit pseudo-polynomial algorithms, we obtain the following results.

Corollary 1.3. (i) There is an FPTAS that solves, within a relative error guarantee, in uni-
formly ε-optimal strategies, any BW-games with non-negative (rational) rewards.

(ii) There is an FPTAS that solves, within an absolute error guarantee, in uniformly ε-
optimal strategies, any structurally ergodic BWR-game with 1/pmin = poly(n) and rewards in
[−1, 1].

(iii) There is an FPTAS that solves, within a relative error guarantee, in uniformly ε-optimal
strategies, any structurally ergodic BWR-game with 1/pmin = poly(n) and non-negative rational
rewards.

Note that (i) strengthens the absolute FPTAS for BW-games [35], and (ii) and (iii) enlarge
the class of games for which an FPTAS exists.

Smoothed Analysis for BWR-games. We further show that typical instances of digraphs
that admit a pseudo-polynomial algorithm can be solved in polynomial time. Towards this
end, we do a smoothed analysis using the one-step model introduced by Beier and Vöcking [3]:
Given an upper bound φ for the densities, an adversary specifies a BWR game G together with
density functions, one for each arc. Then the rewards for all arcs are drawn independently
according to their respective density functions. We prove that in this setting, independent of
the actual choices of the adversary, the resulting game can be solved in polynomial time with
high probability, which shows that such BWR-games with a constant number of random vertices
have smoothed polynomial complexity. This means that there exists a polynomial P (n, φ, 1/ε)
such that the probability that the algorithm exceeds a running-time of P (n, φ, 1/ε) is at most ε.

Theorem 1.4. Let G be a digraph that admits a pseudo-polynomial algorithm. There is an
algorithm that solves any BWR-game on G with rational transition probabilities and D = poly(n)
in smoothed polynomial time.

Our proof of Theorem 1.4 follows the general paradigm introduced by Beier and Vöcking [3]
for using a pseudo-polynomial algorithm to analyze the smoothed complexity of integer pro-
grams. However, in the case of BWR-games, the situation becomes more complicated by the
following two facts. First, we have to deal with two different objectives (of the two players),
and, second, the coefficients of the objectives are not given explicitly, but correspond to the
limiting distributions in the Markov chains corresponding to the different strategies. To prove
that BWR-games can be solved in smoothed polynomial time, we first need a new isolation
lemma. In contrast to the existing isolation lemmas used in smoothed analysis of optimization
problems, our isolation lemma has to deal with two players who optimize the same objective
function in two different directions. Second, our procedure for certifying that the solution found
is indeed the optimal solution is considerably more involved. The reason is again that we have
two competing players, which requires careful rounding of the coefficients in order to certify
optimality.

Chen et al. [12] have analyzed the smoothed complexity of the Lemke-Howson algorithm for
computing equilibria in bimatrix games. They have shown that the Lemke-Howson algorithm
– and also any other algorithm – has smoothed polynomial complexity only if all problems in
PPAD can be solved in randomized polynomial time. In contrast to their negative result, our
smoothed analysis shows that equilibria of BWR-games can typically be computed efficiently.
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As a corollary, we obtain the following results.

Corollary 1.5. (i) BW-games can be solved in smoothed polynomial time.

(ii) Structurally ergodic BWR-games with D = poly(n) can be solved in smoothed polynomial
time.

Let us remark finally that removing the assumption that k is constant in the above results
remains a challenging open problem that seems to require totally new ideas.

2 Preliminaries, Notation and Basic Properties

2.1 BWR-games and Markov Chains

A BWR-game is defined by a triple G = (G,P, r), where G = (V = VW ∪ VB ∪ VR, E) is a
digraph that may have loops and multiple arcs, but no terminal vertices, i.e., vertices of out-
degree 0; P ∈ [0, 1]E is the vector of probability distributions for all v ∈ VR specifying the
probability pvu of a move from v to u; and r ∈ RE is a local reward function. It is assumed
that

∑
u:(v,u)∈E pvu = 1 for all v ∈ VR and pv,u > 0 whenever (v, u) ∈ E and v ∈ VR.

Standardly, we define a strategy sW ∈ SW for White as a mapping that assigns a move
(v, u) ∈ E to each position v ∈ VW . For simplicity, we may write sW (v) = u for sW (v) = (v, u).
Strategies sB ∈ SB for Black are analogously defined. A pair of strategies s = (sW , sB) is
called a situation. Given a BWR-game G = (G,P, r) and a situation s = (sB, sW ), we obtain a
weighted Markov chain G(s) = (G(s) = (V,E(s)), P (s), r) with transition matrix P (s) defined
in the obvious way:

pvu(s) =


1 if (v ∈ VW and u = sW (v)) or (v ∈ VB and u = sB(v));

0 if (v ∈ VW and u 6= sW (v)) or (v ∈ VB and u 6= sB(v));

pvu if v ∈ VR.

Here, E(s) = {e ∈ E | pe(s) > 0} is the set of arcs with positive probability. Given an initial
position v0 ∈ V from which the play starts, we define the limiting (mean) effective payoff cv0(s)
in G(s) as cv0(s) = ρ(s)T r =

∑
e∈E ρe(s)re, where ρ(s) = ρ(s, v0) ∈ [0, 1]E is the arc-limiting

distribution for G(s) starting from v0. This means that for (v, u) ∈ E, ρvu(s) = πv(s)pvu(s),
where π ∈ [0, 1]V is the limiting distribution in the Markov chain G(s) starting from v0. In
what follows, we will use (G, v0) to denote the game starting from v0. We will simply write ρ(s)
for ρ(s, v0), when v0 is clear from the context. For rewards r : E → R, let r− = mine re and
r+ = maxe re. Let [r] = [r−, r+] be the range of r. Let R = R(G) = r+ − r−.

2.2 Strategies and Saddle Points

If we consider cv0(s) for all possible situations, we obtain a matrix game Cv0 : SW × SB → R,
with entries Cv0(sW , sB) = cv0(sW , sB). It is known that every such game has a saddle point in
pure strategies [18, 27]. Such a saddle point defines an equilibrium state in which no player has
an incentive to change her strategy, and as shown in [18, 27], the value at that state coincides
with the limiting payoff in the corresponding BWR-game. We call a pair of strategies optimal if
they correspond to a saddle point. It is well-known that there exists optimal strategies (s∗W , s

∗
B)

that do not depend on the starting position v0. Such strategies are called uniformly optimal.
Although there might be several optimal strategies, it is easy to see that they all lead to the
same value. We define this to be the value of the game and write µv0(G) := Cv0(s∗W , s

∗
B) where

(s∗W , s
∗
B) is any pair of optimal strategies. Note that µv0(G) may depend on the starting node

v0. Note also that for a situation s, µu(G(s)) denotes the effective payoff cu(s) in the Markov
chain G(s).
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3 Approximation Schemes

3.1 Approximation and Approximate Equilibria

Given a BWR-game G = (G = (V,E), P, r), a constant ε > 0, and a starting position v ∈ V ,
an ε-relative approximation of the value of the game is determined by a situation (s∗W , s

∗
B) such

that

max
sW

µv(G(sW , s
∗
B)) ≤ (1 + ε)µv(G) and min

sB
µv(G(s∗W , sB)) ≥ (1− ε)µv(G). (1)

We may also consider ε-relative equilibrium. This is determined by a situation (s∗W , s
∗
B) such

that

max
sW

µv(G(sW , s
∗
B)) ≤ (1 + ε)µv(G(s∗W , s

∗
B)) and min

sB
µv(G(s∗W , sB)) ≥ (1− ε)µv(G(s∗W , s

∗
B)).

(2)
Note that, for sufficiently small ε, an ε-relative approximation implies a Θ(ε)-relative equilibrium,
and vice versa. So, in what follows, we shall use these notions interchangeably.

An alternative to relative approximations is to look for an approximation with absolute error
of ε. This is achieved by a situation (s∗W , s

∗
B) such that

max
sW

µv(G(sW , s
∗
B)) ≤ µv(G) + ε and min

sB
µv(G(s∗W , sB)) ≥ µv(G)− ε, (3)

or, equivalently, for an ε-absolute equilibrium:

max
sW

µv(G(sW , s
∗
B)) ≤ µv(G(s∗W , s

∗
B)) + ε and min

sB
µv(G(s∗W , sB)) ≥ µv(G(s∗W , s

∗
B))− ε. (4)

Again, an ε-absolute approximation implies a 2ε-absolute equilibrium, and vice versa.
A situation (s∗W , s

∗
B) satisfying (1) is called relative ε-optimal. If a situation satisfies (3),

it is called absolute ε-optimal. In the following, we will drop the specification of absolute and
relative, when it is clear from the context. If the pair (s∗W , s

∗
B) is ε-optimal for any starting

position, it is called uniformly ε-optimal.
When considering relative errors, we assume that the rewards are non-negative. If we

consider absolute errors, then we assume that the rewards lie in a certain range, say, [−1, 1].
Under such assumptions, the notion of relative approximation becomes stronger. Indeed, an
ε-relative approximation of the game Ĝ with local rewards given by r̂ = r + 1 ≥ 0, where 1 is
the vector of all ones, implies strategies (s∗W , s

∗
B) satisfying

max
sW

µv(G(sW , s
∗
B)) = max

sW
µv(Ĝ(sW , s

∗
B))− 1 ≤ (1 + ε)µv(Ĝ)− 1

= µv(G) + εµv(G) + ε ≤ µv(G) + 2ε and

min
sB

µv(G(s∗W , sB)) = min
sB

µv(Ĝ(s∗W , sB))− 1 ≥ (1− ε)µv(Ĝ)− 1

= µv(G)− εµv(G)− ε ≥ µv(G)− 2ε,

since µv(Ĝ(s)) = µv(G(s))+1 for any situation s, and µv(G) ≤ 1. Thus, we obtain a 2ε-absolute
approximation for the value of the original game.

An algorithm for approximating the values of the game is said to be a fully polynomial-time
approximation scheme (FPTAS), if the running time depends polynomially on the input size
and 1/ε. In what follows, we will assume without loss of generality that that 1

ε is an integer.

3.2 The Effect of Perturbation

Our approximation schemes are based on the following three propositions. The first one (which
is well-known) says that a linear change in the rewards will correspond to a linear change in
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the game value. In our approximation schemes, we truncate and scale the rewards to be able
to run the pseudo-polynomial algorithm in polynomial-time. We will then need the proposition
to bound the error in the game value resulting from the truncation.

Proposition 3.1. Let G = (G = (V,E), P, r) be a BWR-game. Let θ1, γ1, θ2, γ2 be constants
such that θ1, θ2 > 0. Let Ĝ be a game (G = (V,E), P, r̂) with θ1r + γ11 ≤ r̂ ≤ θ2r + γ21. Then
for any v ∈ V , we have θ1µv(G) + γ1 ≤ µv(Ĝ) ≤ θ2µv(G) + γ2. Moreover, if (ŝW , ŝB) is an
absolute ε-optimal situation in (Ĝ, v), then

max
sW

µv(G(sW , ŝB)) ≤ θ2µv(G) + γ2 − γ1 + ε

θ1
and min

sB
µv(G(ŝW , sB)) ≥ θ1µv(G) + γ1 − γ2 − ε

θ2
. (5)

Proof. This is somewhat standard. We give a proof for completeness. Let (s∗W , s
∗
B) and (ŝW , ŝB)

be pairs of optimal strategies for (G, v) and (Ĝ, v), respectively. Denote by ρ∗, ρ̂, ρ′, and ρ′′ the
(arc) limiting distributions, for the Markov chains starting from v, corresponding to pairs of
strategies (s∗W , s

∗
B), (ŝW , ŝB), (s∗W , ŝB), and (ŝW , s

∗
B), respectively. By definitions of optimal

strategies and the facts that 1Tρ′ = 1Tρ′′ = 1, we have the following series of inequalities:

µv(Ĝ) = (ρ̂)T r̂ ≥ (ρ′)T r̂ ≥ θ1(ρ′)T r + γ1 ≥ θ1(ρ∗)T r + γ1 = θ1µv(G) + γ1,

µv(Ĝ) = (ρ̂)T r̂ ≤ (ρ′′)T r̂ ≤ θ2(ρ′′)T r + γ2 ≤ θ2(ρ∗)T r + γ2 = θ2µv(G) + γ2.

To see the first bound in (5), note that for any sW , µv(G(sW , ŝB)) ≤ 1
θ1

(µv(Ĝ(sW , ŝB)) − γ1).
Also, by the ε-optimality of ŝW in (Ĝ, v), we have µv(Ĝ(sW , ŝB)) ≤ µv(Ĝ)+ε ≤ θ2µv(G)+γ2+ε.
Thus the first bound in (5) follows. The second bound can be shown similarly.

The second proposition, which is to the best of our knowledge new, states that if we truncate
the transition probabilities within a small error ε, then the change in the game value is O( ε

2n3

p2kmin

).

More precisely, for a BWR-game G and a constant ε > 0, define

δ(G, ε) :=

(
ε

2
n2(

1

2
pmin)−k[εnk(k + 1)(

1

2
pmin)−k + 3k + 1] + εn

)
r∗, (6)

where n = n(G), pmin = pmin(G), k = k(G), and r∗ = r∗(G) := max{|r+(G)|, |r−(G)|}.

Proposition 3.2. Let G = (G = (V,E), P, r) be a BWR-game, with r ∈ [−1, 1]E, and ε ≤
1
2pmin = 1

2pmin(G) be a positive constant. Let Ĝ be a game (G = (V,E), P̂ , r) with ‖P−P̂‖∞ ≤ ε.
Then for any v ∈ V , we have |µv(G)−µv(Ĝ)| ≤ δ(G, ε). Moreover, if the pair (s̃W , s̃B) is absolute
ε′-optimal in (Ĝ, v), then it is absolute (ε′ + 2δ(G, ε))-optimal in (G, v).

Proof. We make use of technical lemma A.3. Let (s∗W , s
∗
B) and (ŝW , ŝB) be pairs of optimal

strategies for (G, v) and (Ĝ, v), respectively. Write δ = δ(G, ε). Then optimality and Lemma
A.3 imply the following series of inequalities:

µv(Ĝ) = µv(Ĝ(ŝW , ŝB)) ≥ µv(Ĝ(s∗W , ŝB)) ≥ µv(G(s∗W , ŝB))− δ ≥ µv(G(s∗W , s∗B))− δ = µv(G)− δ
µv(Ĝ) = µv(Ĝ(ŝW , ŝB)) ≤ µv(Ĝ(ŝW , s∗B)) ≤ µv(G(ŝW , s∗B)) + δ ≤ µv(G(s∗W , s∗B)) + δ = µv(G) + δ.

To see the second claim, note that for any sW ∈ SW ,

µv(G(sW , s̃B)) ≤ µv(Ĝ(sW , s̃B)) + δ ≤ µv(Ĝ(ŝW , ŝB)) + ε′ + δ ≤ µv(G) + ε′ + 2δ.

Similarly, we can show that µv(G(s̃W , sB)) ≥ µv(G)− ε′ − 2δ for all sB ∈ SB.

Since we assume that the running time of the pseudo-polynomial algorithm depends on the
common denominator D of the transition probabilities, we need to truncate the probabilities to
remove this dependence on D. By Proposition 3.2, the value of the game does not change too
much after such truncation.

7



The third result we need concerns relative approximation. The main idea is to use the
pseudo-polynomial algorithm to test whether the value of the game is larger than a certain
threshold. If it is, we get already a good relative approximation. Otherwise, the next proposition
says that we can somehow reduce all large rewards without changing the value of the game.

Proposition 3.3. Let G = (G = (V,E), P, r) be a BWR-game with r ≥ 0, and v be any

vertex such that µv(G) < t. Suppose that for some e ∈ E, re ≥ t′ = ntp
−(2k+1)
min . Let Ĝ =

(G = (V,E), P, r̂), where r̂e ≥ (1 + ε)t′, for some ε ≥ 0, and r̂e′ = re′ for all e′ 6= e. Then
µv(Ĝ) = µv(G), and any relative ε-optimal situation in (Ĝ, v) is also ε-optimal in (G, v).

Proof. Let s∗ = (s∗W , s
∗
B) be an optimal strategy for (G, v), that is, µv(G) = µv(G(s∗)) =

ρ(s∗)T r < t. By Lemma A.1, if ρe(s
∗) > 0 then ρe(s

∗) ≥ p2k+1
min /n, and hence reρe(s

∗) ≤
ρ(s∗)T r = µv(G) < t implies that re < t′. We conclude that ρe(s

∗) = 0, and hence µv(Ĝ(s∗)) =
µv(G).

Since r̂ ≤ r, µv(Ĝ(s)) ≤ µv(G(s)) for all situations s. In particular, for any sW ∈ SW ,

µv(Ĝ(sW , s
∗
B)) ≤ µv(G(sW , s

∗
B)) ≤ µv(G(s∗W , s

∗
B)) = µv(Ĝ(s∗W , s

∗
B)).

We claim also that µv(Ĝ(s∗W , sB)) ≥ µv(Ĝ(s∗W , s
∗
B)) for all sB ∈ SB. Indeed, if there is an

sB such that µv(Ĝ(s∗W , sB)) < µv(Ĝ(s∗W , s
∗
B)) = µv(G) < t, then by the same argument

above, since ρe(s
∗
W , sB)(1 + ε)t′ ≤ ρe(s

∗
W , sB)r̂e ≤ ρ(s∗W , sB)T r̂ = µv(Ĝ(s∗W , sB)) < t, we

must have ρe(s
∗
W , sB) = 0, implying that µv(G(s∗W , sB)) = µv(Ĝ(s∗W , sB)) < µv(Ĝ(s∗W , s

∗
B)) =

µv(G(s∗W , s
∗
B)), in contradiction to the optimality of s∗ in G. We conclude that (s∗W , s

∗
B) is also

optimal in Ĝ and hence µv(Ĝ) = µv(G).
Suppose that (ŝW , ŝB) is a relative ε-optimal situation in (Ĝ, v). Then for any sW ∈ SW ,

ρe(sW , ŝB) = 0. Indeed,

ρe(sW , ŝB)(1 + ε)t′ = ρe(sW , ŝB)r̂e ≤ ρ(sW , ŝB)T r̂ = µv(Ĝ(sW , ŝB))

≤ (1 + ε)µv(Ĝ) = (1 + ε)µv(G) < (1 + ε)t,

gives a contradiction with Lemma A.1 if ρe(sW , ŝB) > 0. It follows that, for any sW ∈ SW ,
µv(G(sW , ŝB)) = µv(Ĝ(sW , ŝB)) ≤ (1 + ε)µv(G). Furthermore, for any sB ∈ SB,

µv(G(ŝW , sB)) ≥ µv(Ĝ(ŝW , sB)) ≥ (1− ε)µv(Ĝ) = (1− ε)µv(G).

3.3 Absolute Approximation

Let G = (V,E) be a graph that admits a pseudo-polynomial algorithm A and G = (G,P, r) be
a BWR-game on G. In this section, we assume that r− = −1 and r+ = 1, i.e., all rewards are
from the interval [−1, 1]. We apply the pseudo-polynomial algorithm A on a truncated game
G̃ = (G = (V,E), P̃ , r̃) defined by rounding the rewards to the nearest integer multiple of ε/4
(denoted r̃ := bre ε

4
) and truncating the vector of probabilities (pvu : u ∈ V ) for each random

node v ∈ VR, as described in the following lemma.

Lemma 3.4. Let α ∈ [0, 1]n with ‖α‖1 = 1. Let B ∈ Z+ be an integer such that mini:αi>0{αi} >
2−B. Then there exists α′ ∈ [0, 1]n such that (i) ‖α′‖1 = 1; (ii) for all i = 1, . . . , n, α′i = ci/2

B

where ci ∈ Z+ is an integer; (iii) for all i = 1, . . . , n, α′i > 0 if and only αi > 0, and (iv)
‖α− α′‖∞ ≤ 2−B.

Proof. This is standard and easy. We include the proof for completeness. Without loss of
generality αi > 0 for all i. Initialize ε0 = 0 and iterate, for i = 1, . . . , n: α′i := bαi + εi−1e2−B ;
εi := αi + εi−1 − α′i. Then |εi| ≤ 2−(B+1) for all i, and εn =

∑
i αi −

∑
i α
′
i, implying (i).

Furthermore, |αi − α′i| = |εi − εi−1| ≤ 2−B. Note finally that (iii) follows from (iv) since
mini:αi>0{αi} > 2−B.
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Lemma 3.5. Let G = (V,E) be a graph admitting a pseudo-polynomial algorithm A that solves,
in (uniformly) optimal strategies, any BWR-game on G in time τ(n,D,R). Then for any ε > 0,
there is an algorithm that solves, in (uniformly) absolute ε-optimal strategies, any given BWR-

game G = (G,P, r) in time bounded by τ(n, 2
2k+5n3k2

εp2kmin

, 4ε ), where pmin = pmin(G).

Proof. We apply A to the game G̃ = (G, P̃ , r̃), where r̃ := 2
εbre ε2 , and P̃ is obtained from

P by applying Lemma 3.4 with B = dlog 1
ε′ e, where we select ε′ such that δ(G, ε′) ≤ ε

4 (as

defined by (6)). Note that all rewards in G̃ are integer in the range [−4
ε ,

4
ε ]. Note also that

δ(G, ε′) ≤ 4k+1ε′n3k2p−2kmin , and hence δ(G, ε′) ≤ ε
4 for ε′ =

εp2kmin

4k+2n3k2
. Since D(G̃) = 2B and

R(G̃) = 4
ε , the statement on the running time follows.

Let s̃ be the pair of (uniformly) optimal strategies returned by A (on G̃). Let Ĝ be the
game (G, P̃ , r). Since ‖r̃ − 2

εr‖∞ ≤ 1, we can apply Proposition 3.1 (with θ1 = θ2 = 2
ε and

γ1 = −γ2 = −1
2) to conclude that s̃ is a (uniformly) ε

2 -optimal pair for Ĝ. Now applying
Proposition 3.2, we conclude further that s̃ is (uniformly) ( ε2 + 2δ(G, ε′))-optimal for G.

Note that the above technique works (i.e., runs in polynomial time) only for the case k =
O(1), even if the given pseudo-algorithm A works for any k.

3.4 Relative approximation

Let G = (V,E) be a graph that admits a pseudo-polynomial algorithm A and G = (G,P, r) be a
BWR-game on G, with non-negative rational rewards (i.e., r− = 0). Without loss of generality,
we may assume that the rewards are integral with mine:re>0 re = 1. The algorithm is given as
Algorithm 1. The main idea is to truncate the rewards, scaled by a certain factor 1/K, and
use the pseudo-polynomial algorithm on the truncated game Ĝ. If the value in the truncated
game µw(Ĝ), from the starting node w, is large enough (step 7) then we get a good relative
approximation of the original value and we are done. Otherwise, the information that µw(Ĝ) is
small allows us to reduce the maximum reward by a factor of 2 in the original game (step 10);
we invoke Proposition 3.3 for this. Thus the algorithm terminates in polynomial time (in the bit
length of R(G)). To remove the dependence on D in the running time, we need also to truncate
the transition probabilities. In the algorithm, we denote by P̃ the transition probabilities

obtained from P by applying Lemma 3.4 with B = dlog 1
ε′ e, where we select ε′ =

p2kmin

22k+3n3k2θ
,

where θ = θ(G) := 2(1+ε)(3+2ε)n

εp2k+1
min

, so that 2δ(G, ε′) ≤ r+(G)
θ(G) := K(G).

Lemma 3.6. Let G = (V,E) be a graph admitting a pseudo-polynomial algorithm A that solves
any BWR-game on G in time τ(n,D,R). Then for any ε ∈ (0, 1), there is an algorithm
that solves, in relative ε-optimal strategies, any BWR-game (G = (G,P, r), w), form any given

starting position w, in time (τ(n, 4
k+2n4k2(1+ε)(3+2ε)

εp2kmin

, 2(1+ε)(3+2ε)n

εp2k+1
min

) + poly(n))(blogRc+ 1).

Proof. The algorithm FPTAS-BWR(G, w, ε) is given as Algorithm 1. The bound on the running
time is obvious since, by (7), each time we recurse on a game G̃ with r+(G̃) reduced by a factor
of at least half. Moreover, the reward in the truncated game Ĝ is integral with maximum value
r+(Ĝ) ≤ θ, and common denominator of transition probabilities at most . Thus the time taken

by algorithm A for each recursive call is at most τ(n,D, 2(1+ε)n
εp2k+1

min

).

So it remains to argue by induction that the algorithm returns a pair of ε-optimal strategies
s̃ = (s̃W , s̃B). For the base case, note that since ‖P − P̃‖∞ ≤ ε′ and r+(G) = 1, Proposition 3.2
implies that the pair (s̃W , s̃B) returned in step 3 is absolute ε′′-optimal, where ε′′ = 2δ(G, ε′) <
εp2k+1

min
n . Lemma A.1 and the integrality of the non-negative rewards imply that, for any situation

s, µw(G(s)) ≥ p2k+1
min
n if µw(G(s)) > 0. Thus, if µw(G) > 0, then ε′′ ≤ εµw(G), and it follows that
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Algorithm 1 FPTAS-BWR(G, w, ε)
Input: a BWR-game G = (G =

(V,E), P, r), a starting vertex w ∈ V ,
and an accuracy ε.

Output: an ε-optimal pair (s̃W , s̃B) for
the game (G, w).

1: if r+(G) = 1 then
2: Ĝ := (G, P̃ , r)
3: return A(Ĝ, v)

4: K := r+(G)
θ(G)

5: r̂e = b reK c for e ∈ E; Ĝ = (G, P̃ , r̂)

6: (s̃W , s̃B) := A(Ĝ, w)
7: if µw(Ĝ) ≥ 3

ε then
8: return (s̃W , s̃B)
9: else

10: for all e ∈ E, let

r̃e =

{
d r+2 e if re >

r+

2(1+ε)

re otherwise
(7)

11: G̃ := (G,P, r̃)
12: return FPTAS-BWR(G̃, w, ε)

Algorithm 2 FPTAS-BW(G, ε)
Input: a BW-game G = (G = (V = VB ∪

VW , E), r), and an accuracy ε.
Output: a uniformly ε-optimal pair

(s̃W , s̃B) for G.
1: if r+(G) = 1 then
2: return A(G)

3: K := ε′r+

2(1+ε′)2n

4: r̂e = b reK c for e ∈ E; Ĝ = (G, r̂)

5: (ŝW , ŝB) := A(Ĝ)
6: U := {u ∈ V | µu(Ĝ) ≥ 1

ε′ }
7: if U = V then
8: return (s̃W , s̃B) = (ŝW , ŝB)
9: else

10: G̃ := G[V \ U ]
11: for all e ∈ E(G̃), let

r̃e =

{
d r+2 e if re >

r+

2(1+ε′)

re otherwise
(8)

12: G̃ := (G̃, r̃)
13: (s̃W , s̃B) :=FPTAS-BW(G̃, ε)
14: s̃(w) := ŝ(w) for all w ∈ U
15: return s̃ = (s̃W , s̃B)

(s̃W , s̃B) is relative ε-optimal. On the other hand, if µw(G) = 0, then µw(G(s̃)) ≤ µw(G) + ε′′ <
p2k+1
min
n , implying that µw(G(s̃)) = 0. Thus, we get an ε-approximation in both cases.

Now let us consider the general case. Note that 1
K r−1 ≤ r̂ ≤ 1

K r, and ‖P − P̃‖∞ ≤ ε′, and
hence by Propositions 3.1 and 3.2, we have

Kµw(Ĝ)− 2δ(G, ε′) ≤ µw(G) ≤ Kµw(Ĝ) +K + 2δ(G, ε′), (9)

and the pair (s̃W , s̃B) returned in step 8 is absolute K+ 2δ(G, ε′) ≤ 2K-optimal for G. Suppose
that A determines that µw(Ĝ) ≥ 3

ε in step 7, and hence the algorithm returns (s̃W , s̃B). Then
(9) implies that

K ≤ µw(G)

µw(Ĝ)− 1
≤ µw(G)

3/ε− 1
≤ ε

2
µ(G),

and we are done. On the other hand, if µw(Ĝ) < 3
ε then, by (9), µw(G) < K(3+2ε)

ε =
p2k+1
min r+

2(1+ε)n . By

Proposition 3.3, applied with t = K(3+2ε)
ε , we have that the game G̃ defined in step 11 satisfies

µv(G) = µv(G̃), and any (relative) ε-optimal strategy in (G̃, w) (in particular the one returned
in step 12) is also ε-optimal for (G, w).

Remark 3.7. It is easy to see that, for structurally ergodic BWR-games, one can easily modify
the above procedure to return uniformly ε-optimal strategies.

3.5 Uniformly relative ε-approximation for BW-games

Note that FPTAS in Theorem 3.6 does not necessarily return a uniformly ε-optimal situation,
even if the given pseudo-polynomial algorithm A provides a uniformly optimal situation. In
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case of BW-games, we can modify this FPTAS to return a situation which is ε-optimal for all
v ∈ V . The algorithm is given as Algorithm 2. The main difference is that when we recurse
on a game with reduced rewards (step 13), we have also to delete all nodes that have large
values µ(G̃, v) in the truncated game. This is similar to the approach used to decompose a BW-
game into ergodic classes [20]. However, the main technical difficulty is that, with approximate
equilibria, White (respectively, Black) might still have some incentive to move from a higher-
value (respectively, lower-value) class to a lower-value (respectively, higher-value) class, since the
values are just estimated approximately. We show that such a move will not be very profitable
for White (respectively, Black). As before, we assume that the rewards are integral with
mine:re>0 re = 1.

Lemma 3.8. Let A be a pseudo-polynomial algorithm that solves, in uniformly optimal strate-
gies, any BW-game G in time τ(n,R). Then for any ε > 0, there is an algorithm that solves,

in uniformly relative ε-optimal strategies, any BW-game G, in time (τ(n, 2(1+ε
′)2n

ε′ )+poly(n))h,

where h = blogRc+ 1, and ε′ = ln(1+ε)
4h−2 .

Proof. The algorithm FPTAS-BW(G, ε) is given as Algorithm 2. The bound on the running
time is obvious since, by (8), each time we recurse on a game G̃ with r+(G̃) reduced by a factor
of at least half. Moreover, the reward in the truncated game Ĝ is integral with maximum value

r+(Ĝ) ≤ r+

K ≤
2(1+ε′)2n

ε′ . Thus the time taken by algorithm A for each recursive call is at most

τ(n, 2(1+ε
′)n

ε′ ).
So it remains to argue (by induction) that the algorithm returns ε-optimal strategies (s̃W , s̃B).

Let us index the different recursive calls of the algorithm by i = 1, 2, . . . , h′ ≤ h and denote
by G(i) = (G(i) = (V,E(i)), r(i)) the game input to the ith recursive call of the algorithm (so

G(1) = G) and by ŝ(i) = (ŝ
(i)
W , ŝ

(i)
B ), s̃(i) = (s̃

(i)
W , s̃

(i)
B ) the pair of strategies returned either in steps

2, 5, 8, or 15. Similarly, we denote respectively by V (i) = B
(i)
W ∪ V

(i)
B , U (i), r(i), K(i) r̂(i), Ĝ(i),

G̃(i) the instantiations of V , U , r, r̂, K, Ĝ, G̃ in the ith call of the algorithm. We denote by S
(i)
W

and S
(i)
B the set of strategies in G(i) for White and Black, respectively. For a set U , game

G and situation s, denote respectively by G[U ] = (G[U ], r) and s[U ] the game and situation
induced on U .

Observation 3.9. (i) 6 ∃(v, u) ∈ E : v ∈ V (i)
B ∩ U (i), u ∈ V (i) \ U (i);

(ii) ∀v ∈ V (i)
W ∩ U (i) ∃u ∈ U (i) : (v, u) ∈ E;

(i′) 6 ∃(v, u) ∈ E : v ∈ V (i)
W \ U (i), u ∈ U (i);

(ii′) ∀v ∈ V (i)
B \ U (i) ∃u ∈ V (i) \ U (i) : (v, u) ∈ E;

(iii) Let ŝ(i) = (ŝ
(i)
W , ŝ

(i)
B ) be the situation returned in step 5. Then ∀v ∈ U (i) : ŝ(i)(v) ∈ U (i)

and ∀v ∈ V (i) \ U (i) : ŝ(i)(v) ∈ V (i) \ U (i).

Proof. By the optimality conditions in Ĝ(i) (see e.g. [20]), we have

(I) µv(Ĝ(i)) = min{µu(Ĝ(i)) | u ∈ V (i) such that (v, u) ∈ E}, for v ∈ V (i)
B , and

(II) µv(Ĝ(i)) = max{µu(Ĝ(i)) | u ∈ V (i) such that (v, u) ∈ E}, for any v ∈ V (i)
W .

(I) and (II), together with the definition of U (i), imply (i) and (ii), respectively,. Similarly
(i′) and (ii′) can be shown. The optimality conditions also imply that µv(Ĝ(i)) = µŝ(i)(v)(Ĝ(i)),
which in turn implies (iii).
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Note that Observation 3.9 implies that the game G(i)[V (i) \ U (i)] is well-defined, since the
graph G[V (i) \ U (i)] has no sinks.

For a strategy sW (similarly for a strategy SB) and a subset V ′ ⊆ V , we write SW (V ′) =
{sW (u) : u ∈ V ′}.

Observation 3.10. Let ŝ(i) be the situation returned in step 5. Then for all i = 1, . . . , h′ and
any w ∈ U (i), we have

max
sW : sW (U(i)∩VW )⊆U(i)

µw(G(i)(sW , ŝ(i)B )) ≤ (1 + ε′)µw(G(i)),

min
sB : sB(U(i)∩VB)⊆U(i)

µw(G(i)(ŝ(i)W , sB)) ≥ (1− ε′)µw(G(i)).

Proof. This follows from Proposition 3.1 by the uniformly optimality of ŝ(i) in Ĝ(i) and the fact
that µw(Ĝ(i)) ≥ 1

ε′ , for every w ∈ U (i).

Observation 3.11. ∀u ∈ U (i), v ∈ V (i) \ U (i) : (1 + ε′)µu(G(i)) > µv(G(i)).

Proof. For u ∈ U (i), v(i) ∈ V (i) \ U (i), we have µu(Ĝ(i)) ≥ 1
ε′ and µv(Ĝ(i)) < 1

ε′ . Thus,

µv(G(i)) ≤ K(i)µv(Ĝ(i)) +K(i) <
K(i)

ε′
(1 + ε′) ≤ K(i)µu(Ĝ(i))(1 + ε′) ≤ µu(G(i))(1 + ε′).

Observe that the strategy s̃(i), returned by the ith call to the algorithm, is determined as
follows (c.f. steps 13 and 14): for w ∈ U (i), s̃(i)(w) = ŝ(i)(w) is chosen by the solution of the
game Ĝ(i), and for w 6∈ U (i), s̃(i)(w) is determined by the (recursive) solution on the residual
game G̃(i) = G(i+1). The following claim states that the value of any vertex u ∈ V (i) \ U (i) in
the residual game is a good approximation of the value in the original game G(i).

Claim 3.12. For all i = 1, . . . , h′ and any u ∈ V (i) \ U (i), we have

µu(G(i)) ≤ µu(G(i)[V (i) \ U (i)]) ≤ (1 + 2ε′)µu(G(i)). (10)

Proof. Fix u ∈ V (i) \U (i). Let s∗ = (s∗W , s
∗
B) and (s̄W , s̄B) be optimal situations in (G(i), u) and

(Ḡ(i), u) := (G(i)[V (i) \ U (i)], u), respectively. Let us extend s̄ to a situation in G(i) by setting
s̄(v) = ŝ(i)(v) for all v ∈ U (i), where ŝ is the situation returned in step 5. Then, by Observation
3.9-(i′), White has no way to escape to U (i), or in other words, s∗W (u′) ∈ V (i) \ U (i) for all

u′ ∈ V (i)
W \ U (i). Hence

µu(G(i)) = µu(G(i)(s∗W , s∗B)) ≤ µu(G(i)(s∗W , s̄B))

= µu(Ḡ(i)(s∗W , s̄B)) ≤ µu(Ḡ(i)(s̄W , s̄B)) = µu(Ḡ(i)).

For similar reasons, µu(G(i)) ≥ µu(Ḡ(i)), if s∗B(v) ∈ V (i) \ U (i) for all v ∈ V (i)
B \ U (i) such that

v is reachable from u in the graph G(s∗W , s
∗
B). Suppose, on the other hand, that there is a

v ∈ V (i)
B \ U (i) such that u′ = s∗B(v) ∈ U (i), and v is reachable from u in the graph G(s∗W , s

∗
B).

Then µu(G(i)) = µu′(G(i)) ≥ K(i)µu′(Ĝ(i)) ≥ K(i)

ε′ . Moreover, the optimality of (ŝW , ŝB) in Ĝ(i),
and the fact that 1

K(i) r
(i) − 1 ≤ r̂(i) ≤ 1

K(i) r
(i), imply that

∀sW ∈ S(i)
W : µu(G(i)(ŝW , ŝB)) ≥ K(i)µu(Ĝ(i)(ŝW , ŝB)) ≥ K(i)µu(Ĝ(i)(sW , ŝB))

≥ µu(G(i)(sW , ŝB))−K(i) ≥ µu(G(i)(sW , ŝB))− ε′µu(G(i))
∀sB ∈ S(i)

B : µu(G(i)(ŝW , ŝB)) ≤ K(i)µu(Ĝ(i)(ŝW , ŝB)) +K(i) ≤ K(i)µu(Ĝ(i)(ŝW , sB)) +K(i)

≤ µu(G(i)(ŝW , sB)) +K(i) ≤ µu(G(i)(ŝW , sB)) + ε′µu(G(i)).
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In particular,

µu(G(i)) = µu(G(i)(s∗W , s∗B)) ≥ µu(G(i)(ŝW , s∗B)) ≥ µu(G(i)(ŝW , ŝB))− ε′µu(G(i))
≥ µu(G(i)(s̄W , ŝB))− 2ε′µu(G(i)) = µu(Ḡ(i)(s̄W , ŝB))− 2ε′µu(G(i))
≥ µu(Ḡ(i)(s̄W , s̄B))− 2ε′µu(G(i)) = µu(Ḡ(i))− 2ε′µu(G(i)),

where µu(G(i)(s̄W , ŝB)) = µu(Ḡ(i)(s̄W , ŝB)) follows by Observation 3.9 (since (s̄W , ŝB)(v) ∈
V (i) \ U (i)). It follows that µu(G(i)) ≥ 1

1+2ε′µu(Ḡ(i)).

Let us fix εh′ = ε′, and for i = 1, 2, . . . , h′− 1, let us choose εi such that 1 + εi ≥ (1 + ε′)(1 +

2ε′)(1 + εi+1). We next claim that the strategies (s̃
(i)
W , s̃

(i)
B ) returned by the ith call are relative

εi-optimal in G(i).

Claim 3.13. For all i = 1, . . . , h′ and any w ∈ V (i), we have

max
sW∈S

(i)
W

µw(G(i)(sW , s̃(i)B )) ≤ (1 + εi)µw(G(i)) (11)

min
sB∈S

(i)
B

µw(G(i)(s̃(i)W , sB)) ≥ (1− εi)µw(G(i)). (12)

Proof. By induction on i = h′, h′ − 1, . . . , 1. For i = h′, the statement follows directly from
Proposition 3.1 since µw(Ĝ(i)) ≥ 1

ε′ for all w ∈ V (i). So suppose that i < h′.

(I) Consider an arbitrary strategy sW ∈ S(i)
W for White. Suppose first that w ∈ U (i). Note

that, by Observation 3.9-(iii), s̃
(i)
B (v) ∈ U (i) for all v ∈ VB ∩ U (i). If also sW (v) ∈ U (i) for all

v ∈ VW ∩U (i), such that v is reachable from w in the graph G(sW , s̃
(i)
B ), then µw(G(i)(sW , s̃(i)B )) ≤

(1 + ε′)µw(G(i)) ≤ (1 + εi)µw(G(i)) follows from Observation 3.10.
Suppose that u = sW (v) 6∈ U (i) for some v ∈ VW ∩ U (i) such that v is reachable from w in

the graph G(sW , s̃
(i)
B ).

By induction, s̄(i) = (s̄
(i)
W , s̄

(i)
B ) := (s̃

(i)
W , s̃

(i)
B )[V (i)\U (i)] is εi+1-optimal in G(i+1) = G̃(i). Recall

that the game G̃(i) is obtained from Ḡ(i) := G(i)[V (i) \ U (i)] by reducing the rewards according
to (8). Thus, we get by Proposition 3.3 that µu(Ḡ(i)) = µu(G̃(i)), and

max
s′W∈S

(i+1)
W

µu(G(i)(s′W , s̄
(i)
B )) ≤ (1 + εi+1)µu(Ḡ(i)) (13)

min
s′B∈S

(i+1)
B

µu(G(i)(s̄(i)W , s
′
B)) ≥ (1− εi+1)µu(Ḡ(i)). (14)

Note that s̃
(i)
B (u′) ∈ V (i) \ U (i) for all u′ ∈ V (i)

B \ U (i), and by Observation 3.9-(i′), S
(i+1)
W is

the restriction of S
(i)
W to V (i) \ U (i). Thus, we get the following series of inequalities

µw(G(i)(sW , s̃(i)B )) = µu(G(i)(sW , s̃(i)B ))

≤ (1 + εi+1)µu(G(i)[V (i) \ U (i)]) (by (13))

≤ (1 + εi+1)(1 + 2ε′)µu(G(i)) (by (10))

< (1 + εi+1)(1 + 2ε′)(1 + ε′)µw(G(i)) (by Observation 3.11)

≤ (1 + εi)µw(G(i)) (since (1 + εi+1)(1 + 2ε′)(1 + ε′) ≤ (1 + εi)).

If w ∈ V (i) \ U (i), then the above argument also shows that µw(G(i)(sW , s̃(i)B )) ≤ (1 + εi+1)(1 +
2ε′)µw(G(i)) ≤ (1 + εi)µw(G(i)). Thus (11) follows.

(II) Consider an arbitrary strategy sB ∈ S(i)
B for Black. If w ∈ U (i), then µw(G(i)(s̃(i)W , sB)) ≥

(1− ε′)µw(G(i)) ≥ (1− εi)µw(G(i)w) follows from Observations 3.9-(i), 3.9-(iii), and 3.10.
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Suppose now that w ∈ V (i) \ U (i). If sB ∈ S
(i+1)
B , then we get by (14) and (10) that

µw(G(i)(s̃(i)W , sB)) ≥ (1 − εi+1)µw(G(i)) ≥ (1 − εi)µw(G(i)). A similar situation holds if sB(v) ∈
V (i) \ U (i) for all v ∈ V (i)

B \ U (i), such that v is reachable from w in the graph G(s̃
(i)
W , sB). So

it remains to consider the case when there is a v ∈ V (i)
B \ U (i) such that u = sB(v) ∈ U (i), and

v is reachable from w in the graph G(s̃
(i)
W , sB). Since, in this case, Black has no escape from

U (i) (by Observation 3.9-(i)), we get from Observations 3.10 and 3.11 that

µw(G(i)(s̃(i)W , sB)) = µu(G(i)(s̃(i)W , sB)) ≥ (1− ε′)µu(G(i)) > (1− ε′)2µw(G(i)) ≥ (1− εi)µw(G(i)).

Finally, we set the ε′s such that ε1 = [(1 + 2ε′)(1 + ε′)]h
′−1(1 + ε′)− 1 ≤ ε.

4 Smoothed Analysis

4.1 The notion of smoothed complexity

For many applications, the classic worst-case analysis is far too pessimistic. Worst-case analysis
is often dominated by artificially constructed worst-case instances, that do not reflect typical
instances. On the other hand, one drawback of average-case analysis is that random instances
usually have very special properties with high probability, and these properties are often not
shared with typical instances.

To overcome the drawbacks of worst-case and average-case complexity, Spielman and Teng
introduced smoothed analysis [37]. Smoothed analysis is a hybrid of worst-case and average-
case analysis: An adversary specifies an instance, which is then subject to a small amount
of random noise. The smoothed complexity is the maximum expected running-time that the
adversary can achieve by his choice of an instance. Smoothed analysis rules out the drawbacks of
both average-case and worst-case analysis and often allows more realistic conclusions about the
performance of an algorithm or the complexity of a problem. It takes into account that realistic
data is often subject to a small amount of random noise, be it from measurement or rounding
errors or from some arbitrary unknown circumstances. Smoothed analysis has originally been
invented to explain the practical performance of the simplex method [37]. Since then, smoothed
analysis has been applied successfully to a variety of algorithms and problems [2, 39, 34]. We
refer to Spielman and Teng for a survey [38].

A generalization of smoothed analysis has been introduced by Beier and Vöcking [3]: They
went from the two-step model (an adversary chooses the instance, which is then perturbed) to a
one-step model. In the one-step model, the adversary specifies the density functions according
to which the numbers of the instance are drawn. In this case, the perturbation parameter φ
restricts the adversary to density functions that are bounded by φ: The larger φ, the more
powerful the adversary. For instance, in case of Gaussian perturbation, φ is proportional to the
inverse of the standard deviation.

To characterize integer programs that can typically be solved in polynomial time, Beier and
Vöcking introduced the notion of polynomial smoothed complexity [3]. Their notion is inspired
by the notion of average polynomial time [6]. A problem is said to have smoothed polynomial
complexity if and only if there exists an algorithm A with running-time T and a constant α
such that

∀φ ≥ 1, ∀n ∈ N : max
~f∈DN (φ)

E
X∼~f (T (X)α) = O(Nφ) . (15)

Here, DN (φ) denotes all possible vectors of density functions bounded by φ for instances of size
N , and X is an instance drawn according to ~f . Another way to phrase smoothed polynomial
running-time is that there exists a polynomial P (N,φ, 1/ε) such that the probability that A
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exceeds a running-time of P (N,φ, 1/ε) is at most ε. Note that smoothed polynomial running-
time does not always give polynomial expected running-time. To get the latter, the α must be
placed outside the expectation. The reason for defining smoothed polynomial running-time in
this way is that it makes the notion robust against, e.g., simulation on a slower machine.

4.2 Smoothed complexity of BWR-games

Let G = (V,E) be a graph that admits a pseudo-polynomial algorithm A and G = (G,P, r) be
a BWR-game on G. In this section, we show that any such game can be solved in smoothed
polynomial time. For this, we assume that an adversary specifies a game together with density
functions for the rewards (one for each arc), and these density functions are bounded by φ, and
show a bound as in (15). One (technical) issue is that the perturbed rewards are of course real,
non-rational numbers with probability 1. Thus, we cannot really use existing algorithms as sub-
routine, and we cannot even compute anything with these numbers on an ordinary RAM. To
cope with this problem, we use Beier and Vöcking’s [3] approach and assume that the rewards
are in [−1, 1] and that we can access the bits of the rewards one-by-one.

To state our results in a bit more general setting, we will assume that A solves any BWR-
game on G in uniformly optimal strategies. If this was not the case, then it is easy to modify
the procedure and analysis in this section to solve the game starting from a given vertex.

Before describing the procedure (Algorithm 3), we need to introduce some notation. Let us
write bxcb for the largest integer smaller than or equal to x that has b bits (i.e., we basically
cut off all bits after the b-th bit). Let γ = γ(G) := (kn)−2(2D)−2(k+2) and ε > 0. Given the
game G = (G = (V,E), P, r), define, for each e ∈ E, the game Ge,ε = (G,P, r(e)), where

re′(e) =

{
re + 2γ−1ε if e′ = e,

re′ otherwise.
(16)

The basic idea behind our smoothed analysis is as follows: We use a certain number of bits
for each reward. Then we run the pseudo-polynomial algorithm to solve the resulting game
with the rewards rounded down (and scaled to integers) because we do not have more bits at
that point (Step 5). This can be done in polynomial-time as long as we have at most roughly
O(log n) bits. Then we try to certify that the solution obtained is also a solution for the true
rewards (Step 7). If this succeeds, then we are done. If this fails, then we use one more bit and
repeat the process.

To prove a smoothed polynomial running time, we need to show that with high probability
a logarithmic number of bits suffices to compute an equilibrium for the original (untruncated)
game. Furthermore, we have to devise a certificate proving that the computed equilibrium is
indeed an equilibrium for the original game (we will show that such a certificate is given in Step
7). Both results are based on a sensitivity analysis of the game: we show that by changing the
rewards slightly, an optimal strategy remains optimal for the changed game.

A key ingredient for our smoothed analysis is an adaption of the isolation lemma [32] to our
setting. An adaption of the isolation lemma has already been used successfully in smoothed
analysis of integer programs [3, 34]. It basically says the following: Of course there are ex-
ponentially many alternative strategies for each player. But if we consider the optimal pair
of strategies, then choosing an alternative strategy makes the payoff for the respective player
significantly worse (with high probability, at least).

As usual, we assume that the maximum (respectively, the minimum) over an empty set is
−∞ (respectively, +∞).

Lemma 4.1 (Isolation Lemma). Let E be a finite set, and F ⊂ RE+ be a family of (distinct)
vectors, such that for any distinct ρ, ρ′ ∈ F , there exists an e ∈ E with |ρe−ρ′e| ≥ γ. Let {we}e∈E
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Algorithm 3 Solve(G)

Input: a BWR-game G = (G = (V,E), P, r).
Output: an optimal pair (s̃W , s̃B) for the game G.
1: `0 ← log((nD)c0φ) {c0 is a constant to be specified later}
2: i← 0
3: repeat
4: ` := `0 + i; ε← 2−`; i := i+ 1
5: r̃ := brc`; G̃ := (G,P, r̃); G̃′ := (G,P, 2`r̃)
6: (s̃W , s̃B) := A(G̃′)
7: until s̃ is optimal in G̃e,ε for all e ∈ E

be independent continuous random variables with maximum density φ. Define gap(w) := wTρ∗−
wTρ∗∗, where ρ∗ = argmaxρ∈F w

Tρ and ρ∗∗ = argmaxρ∈F , ρ6=ρ∗ w
Tρ. Then Pr(gap(w) ≤ ε) ≤

|E|εφκ2γ , where κ = maxe∈E |Fe|, and Fe = {x | ρe = x for some ρ ∈ F}.

Proof. For e ∈ E and x, y ∈ R+, define

∆e,x,y = max
ρ∈F , ρe=x

(wTρ− wex)− max
ρ∈F , ρe=y

(wTρ− wey).

It is crucial to note that ∆e,x,y is independent of we. With probability 1, there exist unique
ρ∗ and ρ∗∗, as defined in the lemma above. Since ρ∗ 6= ρ∗∗, there exists an e ∈ E such that
|ρ∗e−ρ∗∗e | ≥ γ. Suppose that ρ∗e = x and ρ∗∗e = y. Then wTρ∗−wex = maxρ∈F , ρe=x(wTρ−wex)
and wTρ∗∗ − wey = maxρ∈F , ρe=y(w

Tρ− wey) imply that wTρ∗ − wTρ∗∗ = ∆e,x,y + we(x− y).
Thus

Pr(gap(w) < ε) ≤ Pr(∃e ∈ E, x, y : 0 ≤ wTρ∗ − wTρ∗∗ ≤ ε, ρ∗e = x, ρ∗∗e = y, |x− y| ≥ γ)

=
∑
e∈E

∑
x,y∈Fe: |x−y|≥γ

Pr( 0 ≤ wTρ∗ − wTρ∗∗ ≤ ε, ρ∗∗e = x, ρ∗e = y)

≤
∑
e∈E

∑
x,y∈Fe: |x−y|≥γ

Pr( 0 ≤ ∆e,x,y + we(x− y) ≤ ε)

=
∑
e∈E

∑
x,y∈Fe: x−y≥γ

Pr

(
−∆e,x,y

x− y
≤ we ≤

ε−∆e,x,y

x− y

)
+

∑
e∈E

∑
x,y∈Fe: y−x≥γ

Pr

(
−ε+ ∆e,x,y

y − x
≤ we ≤

∆e,x,y

y − x

)
≤

∑
e∈E

∑
x,y∈Fe: |x−y|≥γ

φε

|x− y|

≤ |E|κ2φε
γ
.

We will use the above lemma with the set F representing a set of arc-limiting distributions,
corresponding to a set of situations in the game starting from a certain vertex. For that we
need bounds for κ and γ, given by the following lemma.

Lemma 4.2. Let G = (G = (V,E), P, r) be a BWR-game, u ∈ V be any vertex, and s be an
arbitrary any situation. Then

(i) every entry of the arc-limiting distribution ρ(s) for the Markov chain (G(s), u) can be
written as rational numbers of the form a

b , where a, b ∈ Z+ and a, b ≤ kn(2D)k+2. Hence,
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(ii) the number of possible entries in ρ(s) is bounded by κ = (kn)2(2D)2(k+2), and

(iii) for any situation s′ such that ρ(s′) 6= ρ(s), there is an arc e such that ρe(s)−ρe(s′) ≥ γ =
γ(G).

Proof. The first claim was proved in [8], and the second claim is immediate from it. It is also
immediate that if ρ(s) 6= ρ(s′), then there is an arc e such that |ρe(s)− ρe(s′)| ≥ γ. To see the
stronger claim in (iii), we assume without loss of generality that there is no arc e such that
ρe(s) > 0 and ρe(s

′) = 0. Then for all e, ρe(s) > 0 if and only if ρe(s
′) > 0 and hence, P (s)

and P (s′) have the same absorbing classes. (Indeed, if the absorbing classes of P (s) and P (s′)
are respectively C1, . . . , C` and C ′1, . . . , C

′
`′ , then for all i ∈ [`], there is a j ∈ [`′] such that

Ci ⊆ C ′j . Suppose that for some i and j, Ci ⊂ C ′j . Then there should be vertices v ∈ VW ∪ VB
and u ∈ C ′j \ Ci, such that ρ(v,u)(s) = 0 while ρ(v,u)(s

′) > 0. But then there should also exist a
u′ ∈ Ci (corresponding to the strategy s(v)) such that ρ(v,u′)(s) > 0 and ρ(v,u′)(s

′) = 0, which
contradicts our assumption. Hence, ` = `′ and Ci = C ′i for all i.) Let πCi(s) and πCi(s

′) be the
absorption probabilities into class Ci in P (s) and P (s′), respectively. Since ρ(s) 6= ρ(s′) and∑

i πCi(s) =
∑

i πCi(s
′) = 1, there must exist an i ∈ [`] such πCi(s) > πCi(s

′). Hence any arc
e = (v, u) with u, v ∈ Ci satisfies ρe(s) > ρe(s

′) and hence the claim.

To use the given pseudo-polynomial algorithm, we have to truncate the (perturbed) rewards
after a certain number of bits. The following lemma assures that this is possible (with high
probability) without changing the optimal strategies, as long as the rounded rewards and the
true rewards are close enough. Before we state the lemma, it is useful to observe that, if the
rewards are continuous, independently distributed random variables, then, for any two distinct
situations s and s′, we have Pr(µu(G(s)) = µu(G(s′))) = 0 if and only if ρ(s) 6= ρ(s′). Thus for
the structurally ergodic case, with probability one, two distinct situations result in two distinct
values. On the other hand, in the general case, there might be many optimal situations, but all
of them must lead to the same limiting distribution.

Given a strategy sW ∈ SW of White we call a uniform best response (UBR) of Black
any strategy s∗B ∈ SB, such that µu(G(sW , s

∗
B)) ≤ µu(G(sW , sB)) for all sB ∈ SB. Similarly, a

UBR of White is defined. (Note that the existence of such a UBR is an immediate corollary
of the existence of uniformly optimal situations in BWR-games.) We denote by UBRG(sW )
and UBRG(sB) the sets of uniform best responses in G, corresponding to strategies sW and sB,
respectively.

Lemma 4.3. Let G = (G = (V,E), P, r), G′ = (G = (V,E), P, r′) be two BWR-games such that
r = (re)e∈E is a vector of independent continuous random variables with maximum density φ,

and ‖r′ − r‖∞ ≤ ε, for some given ε > 0. Let θ := 2n3εφ
γ(G)3 . Then, the following holds for any

situation s:

(i) Pr(s is not uniformly optimal in G′ | s is uniformly optimal in G) ≤ 2θ;

(ii) Pr(s is not uniformly optimal in G | s is uniformly optimal in G′) ≤ 2θ.

Proof. It will be enough to prove the following claim for any sB ∈ SB (and the analogous claim
for any sW ∈ SW ).

Claim 4.4. Let sB ∈ SB be an arbitrary strategy of Black, and s∗W ∈ UBRG(sB). Then

Pr(∃u ∈ V, sW ∈ SW : µu(G′(sW , sB)) ≥ µu(G′(s∗W , sB)) and

ρ((sW , sB), u) 6= ρ((s∗W , sB), u)) ≤ θ.

Proof. For a starting vertex u, let A(u) be the event that there exists a strategy sW ∈ SW of
White such that µu(G′(sW , sB)) ≥ µu(G′(s∗W , sB)) and ρ((sW , sB), u) 6= ρ((s∗W , sB), u)). The
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probability we want to bound is Pr(
⋃
u∈V A(u)). Thus it is enough to bound Pr(A(u)) for a

fixed vertex u and then apply a union bound.
Suppose that there exists a strategy sW that causes the event A(u) to occur (this means that

µu(G′(sW , sB)) ≥ µu(G′(s∗W , sB))). By the optimality of s∗W (in G), we have µu(G(s∗W , sB)) ≥
µu(G(sW , sB)) with a probability of 1, with equality holding if an only if ρ((s∗W , sB), u) =
ρ((sW , sB), u)). Since ‖r′ − r‖∞ ≤ ε, Proposition 3.1 implies that

µu(G(sW , sB)) ≥ µu(G′(sW , sB))− ε ≥ µu(G′(s∗W , sB))− ε.

Furthermore, µu(G′(s∗W , sB)) ≥ µu(G(s∗W , sB))− ε. This yields

µu(G(s∗W , sB)) ≥ µu(G(sW , sB)) ≥ µu(G(s∗W , sB))− 2ε. (17)

Now we show that the existence of such an sW is unlikely using Lemma 4.1.
Let F = {ρ((sW , sB), u) | sW ∈ SW }. Then the elements of F satisfy the conditions of

Lemma 4.1, with γ and κ as defined in Lemma 4.2, and

gap(r) = µu(G(s∗W , sB))− max
s′W :ρ((s′W ,sB),u)6=ρ((s∗W ,sB),u)

µu(G(s′W , sB)).

Note that (17) implies that gap(r) ≤ 2ε, and by Lemmas 4.1 and 4.2, the probability of this

happening is at most 2n2εφ
γ(G)3 . The claim follows.

Now we proceed to prove the lemma.
(i). Suppose that s = (sW , sB) is uniformly optimal in G. Then, sW ∈ UBRG(sB) and sB ∈
UBRG(sW ), and the claim implies immediately that Pr(s is not uniformly optimal in G′) ≤ 2θ.

(ii). Suppose that s = (sW , sB) is uniformly optimal in G′. Pick s∗W ∈ UBRG(sB) and
s∗B ∈ UBRG(sW ). Then, by the claim, with probability at least 1 − θ, for all u ∈ V , either
µu(G′(sW , sB)) < µu(G′(s∗W , sB)) or ρ((sW , sB), u) = ρ((s∗W , sB), u). The former condition con-
tradicts the optimality of sW in G′, so we must have the latter condition, which in turn implies
that µu(G(sW , sB)) = µu(G(s∗W , sB)), i.e., sW ∈ UBRG(sB). Similarly, we can show that with
probability at least 1− θ, sB ∈ UBRG(sW ), and the result follows.

Still, it can happen that rounding results in different optimal strategies. How can we be
sure that the solution obtained from the rounded rewards is also optimal for the game with
the true rewards? Step 7 in Algorithm 3 is one way to do this. The basic idea is as follows:
Let s̃ be a uniformly optimal situation in the rounded game. Lemma 4.3 says that with high
probability s̃ is a uniformly optimal situation in G, and hence it is also uniformly optimal in
any game on the same graph and transition matrix, but with rewards lying in a small interval
around the rounded rewards. Thus, we create |E| copies of the truncated game; in each copy
the reward on a single arc is perturbed by a certain amount within this small interval. If s̃ is
uniformly optimal in all these games, then it is also uniformly optimal for all rewards from that
small interval. The following lemma justifies the correctness of this certificate.

Lemma 4.5. Let G̃ = (G = (V,E), P, r̃) be a BWR-game and u be an arbitrary vertex. Consider
a situation s̃ = (s̃W , s̃B) such that, for all e ∈ E, s̃ is optimal in the game (G̃e,ε, u) (defined in
(16)). Then s̃ is also optimal in (G = (G,P, r), u), for any r such that ‖r − r̃‖∞ ≤ ε.

Proof. Fix an r such that ‖r − r̃‖∞ ≤ ε. Let sW ∈ SW be any strategy of White. If
µu(G(sW , s̃B)) 6= µu(G(s̃W , s̃B)), then according to Lemma 4.2, there exists an arc e with
ρe(sW , s̃B) − ρe(s̃W , s̃B) ≥ γ. Note that for any situation s, µu(G̃e,ε(s)) = µu(G̃(s)) + 2ε

γ ρe(s).
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Thus, we have

µu(G(sW , s̃B)) ≤ µu(G̃(sW , s̃B)) + ε by Proposition 3.1

= µu(G̃e,ε(sW , s̃B))− 2ε

γ
ρe(sW , s̃B) + ε

≤ µu(G̃e,ε(s̃W , s̃B))− 2ε

γ
ρe(sW , s̃B) + ε since s̃ is optimal in G̃e,ε

= µu(G̃(s̃W , s̃B))− 2ε

γ
(ρe(sW , s̃B)− ρe(s̃W , s̃B)) + ε

≤ µu(G̃(s̃W , s̃B))− ε
≤ µu(G(s̃W , s̃B)). by Proposition 3.1

This shows that White cannot improve by switching to a different strategy. By a similar
argument, µu(G(s̃W , sB)) ≥ µu(G(s̃W , s̃B)) for all sB ∈ SB, which completes the proof.

Now, we have all ingredients to prove that BWR-games, on graphs which admit a pseudo-
polynomial algorithm and have a constant number of random vertices, can be solved in smoothed
polynomial time.

Theorem 4.6. Algorithm 3 solves (in uniformly optimal strategies) any BWR-game G =
(G,P, r) in smoothed polynomial time, given that G admits a pseudo-polynomial algorithm A
(that solves any such G in uniformly optimal strategies), the number k of random vertices is
constant, and D = poly(n).

Proof. For the correctness of Algorithm 3, it suffices to show the correctness of the certificate
step (Step 7). Note that, in the iteration corresponding to i = `, ‖r̃ − r‖∞ ≤ ε = 2−`. Thus,
by Lemma 4.5, since the situation s̃, found in Step 6, is uniformly optimal in (G̃e,ε, u) for all
e ∈ E, then it is also uniformly optimal in G.

It remains to argue about the running time of the algorithm. For this, we bound from above
the probability that we fail to certify that s̃ is uniformly optimal in G̃e,ε for some e ∈ E. Note
that, for any e ∈ E,

‖r̃(e)− r‖∞ ≤ 2−` + 2γ−1 · 2−` ≤ 3 · 2−`γ−1. (18)

Now conditioned on the event that s̃ is uniformly optimal in G̃, let A be the event that s̃ is
uniformly optimal in G, and let, for e ∈ E, Ae be the event that s̃ is not uniformly optimal
for G̃e,ε. By Lemma 4.3(i), applied to G and G′ = G̃e,ε, where the difference in rewards satisfies

(18), we have Pr(Ae | A) ≤ 12n3φ2−`

γ(G)4 . By Lemma 4.3(i), applied to G and G′ = G̃, we have

Pr(A) ≤ 4n3φ2−`

γ(G)3 . Thus, the probability that s̃ is not uniformly optimal in G̃e,ε, for some e ∈ E
is

Pr(∃e ∈ E : Ae) ≤
∑
e∈E

Pr(Ae) ≤
∑
e∈E

(Pr(Ae | A) + Pr(A))

≤ |E|(12n3φ2−`

γ(G)4
+

4n3φ2−`

γ(G)3
) ≤ 16n5φ2−`

γ(G)4
≤ (nD)c02−`φ,

for some constant c0 > 1.
Note that Step 7 of the procedure can be implemented in polynomial-time (in n and logD)

since it amounts to solving a number of Markov decision processes (which can be solved by linear
programming [30]) with polynomially many bits. Let c4n

c12`c2Dc3 be an upper bound on the
running time of each iteration of the Algorithm 3 which is dominated by the time required by
the pseudo-polynomial algorithm on an instance of size n where the maximum weight is 2`, and
such that all probabilities are integer multiples of 1

D , where c1, c2, c3 and c4 are non-negative
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constants. By our assumption, there exists a non-negative constant c5, such that D ≤ nc5 .
Define α = min{ 1

c1+c3c5+c0c2+c0c2c5
, 1
2c2
}. Then,

E(running-timeα) ≤
∑
`≥`0

(nD)c02−`φ
(
c4n

c12`c2Dc3
)α

= cα4n
α(c1+c3c5+c0c2+c0c2c5)φαc2 ·

∞∑
i=0

2−i(1−αc2) = O(nφ).

This shows that Algorithm 3 runs in smoothed polynomial time.
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A Some Technical lemmas

For a situation s, we denote by dG(s)(u, v) the stochastic distance from u to v in G(s), which
is the shortest (directed) distance between vertices u and v in the graph obtained from G(s)
by setting the length of every deterministic arc to 0 and of every stochastic arc to 1. Let
λ = λ(G) = maxs max{dG(s)(v, u) | v, u ∈ V, dG(s)(v, u) is finite} be the stochastic diameter of
G. Clearly, λ(G) ≤ k(G). Some of our bounds will be given in terms of λ, implying stronger
bounds on the running times of some of the approximation schemes.

A set of vertices U ⊆ V is called an absorbing class of the Markov chain M if there is no
arc with positive probability from U to V \ U , i.e., U can never be left once it is entered, and
U is strongly connected, i.e., any vertex of U is reachable from any other vertex of U .

Lemma A.1. LetM = (G = (V,E), P ) be a Markov chain on n vertices with starting vertex u.
Then the limiting probability of any vertex v ∈ V is either 0 or at least p2λmin/n and the limiting
probability of any arc (u, v) ∈ E is either 0 or p2λ+1

min /n.

Proof. Let π and ρ denote the limiting vertex- and arc-distributions, respectively. Let C1, . . . , C`
denote the absorbing classes of M reachable from u. We deal with π first. Clearly, for any
v that does not lie in any of these absorbing classes, we have πv = 0. It remains to show
that for all i and every v′ ∈ Ci we have πv′ ≥ p2λmin/n. Denote by πCi =

∑
v∈Ci πv the total

limiting probability of Ci. Note that πCi is equal to the probability that we reach some vertex
v ∈ Ci starting from u. Since there is a simple path in G from u to Ci with at most λ
stochastic vertices, this probability is at least pλmin. Furthermore, there exists a vertex v ∈ Ci
with πv ≥ πCi/|Ci| ≥ pλmin/n. Now for any v′ ∈ Ci, there exists again a simple path in G from
v to v′ with at most λ stochastic nodes, so the probability that we reach v′ starting from v is
at least pλmin. It follows that πv′ ≥ p2λmin/n.

Now for ρ, note that ρuv ≥ πupmin, if (u, v) ∈ E. Since πu is either 0 or at least p2λmin/n, the
claim follows.

A Markov chain is said to be irreducible if its state space is a single absorbing class. For an
irreducible Markov chain, let muv denote the mean first passage time from vertex u to vertex
v, and mvv denotes the mean return time to vertex v: muv is the expected number of steps
to reach vertex v for the first time, starting from vertex u, and mvv is the expected number
of steps to return to vertex v for the first time, starting from vertex v. The following lemma
by Cho any Meyer [13] relates these values to the sensitivity of the limiting probabilities of a
Markov chain.

Lemma A.2 ([13]). Let ε > 0. Let M = (G = (V,E), P ) be an irreducible Markov chain. For
any transition probabilities P̃ with ‖P̃ − P‖∞ ≤ ε such that the corresponding Markov chain
M̃ is also irreducible, we have ‖π̃−π‖∞ ≤ 1

2εmaxv
maxu6=vmuv

mvv
, where mvu are the mean values

defined w.r.t M.

Let M = (G = (V,E), P, r) be a weighted Markov chain. We denote by µu(M) :=∑
(v,u)∈E πvpvurvu the limiting average weight, where π is the limiting distribution when u

is the starting position. We will write µu when M is understood from the context.

Lemma A.3. Let M = (G = (V,E), P, r) be a weighted Markov chain with arc weights in
[r−, r+], and ε ≤ 1

2pmin = 1
2pmin(M) be a positive constant. Let M̃ = (G = (V,E), P̃ , r) be the

weighted Markov chain with transition probabilities P̃ such that ‖P̃ − P‖∞ ≤ ε. Then, for any
u ∈ V , |µu(M̃)− µu(M)| ≤ δ(M, ε) (defined as in (6)).

Proof. Fix the starting vertex u0 ∈ V . Let π and π̃ denote the limiting distributions cor-
responding to M and M̃, respectively. We first bound |π − π̃|∞. Since ε < pmin, we have
p̃uv = 0 if and only if puv = 0. It follows that M and M̃ have the same absorbing classes.
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Let C1, . . . , C` denote these classes. Denote by πCi =
∑

v∈Ci πv and π̃Ci =
∑

v∈Ci π̃v the total

limiting probability of Ci with respect to π and π̃, respectively. Furthermore, let π|i and π̃|i be
the limiting distributions, corresponding respectively to M and M̃, conditioned on the event
that the Markov process is started in Ci (i.e., u0 ∈ Ci). Note that these conditional limiting
distributions describe the limiting distributions for the irreducible Markov chains restricted to
Ci. By Lemma A.2, we have |π|i − π̃|i|∞ ≤ 1

2εmaxv∈Ci maxu∈Ci
u6=v

muv
mvv

.

Claim A.4. For any u, v ∈ Ci, muv ≤ (λ+1)|Ci|
pλmin

.

Proof. Fix v ∈ Ci. Note that, for any u ∈ Ci, we have

muv =
∑
w 6=v

puw(1 +mwv) + puv. (19)

Let h = max{dG(u, v) : u ∈ Ci}. For l = 0, 1, . . . , h, let Xl = max{muv : u ∈ Ci, dG(u, v) = l}.
Let ` = argmax{Xl : l = 1 . . . , h}. Then X0 ≤ |Ci| and, for l = 1, . . . , h, (19) implies that

Xl ≤ |Ci|+ pminXl−1 + (1− pmin)X`. (20)

(Indeed, for a vertex for u ∈ V such that dG(u, v) = l, there is a path Q from u to v with l stochastic
arcs. Let u′ be the vertex closest to u on Q such that dG(u′, v) = l − 1, and let u′′ be the vertex on Q
preceding u′. Then u′′ is stochastic, and hence by (19)

mu′′v ≤ pu′′u′(1 +Xl−1) +
∑
w 6=u′

pu′′w(1 +X`)

= pu′′u′(1 +Xl−1) + (1− pu′′u′)(1 +X`)

≤ pmin(1 +Xl−1) + (1− pmin)(1 +X`),

using the fact that Xl ≤ X` for all l and pu′′u′ ≥ pmin. Finally, muv ≤ |Ci| − 1 +mu′′v implies (20).)
Iterating (20), for l = 1, . . . , `, we get

X` ≤ |Ci|
1− p`+1

min

1− pmin
+X`(1− p`min),

implying that X` ≤ |Ci|
1−p`+1

min
1−pmin

p−`min ≤ |Ci|(λ+ 1)p−λmin.

It follows that ‖π|i − π̃|i‖∞ ≤ ε(λ+1)|Ci|
2pλmin

.

Claim A.5. |πCi − π̃Ci | ≤ εnλp
−λ
min.

Proof. Without loss of generality we assume that u0 6∈ Ci. For a transient vertex v, let yv (resp.,
ỹv) be the absorption probability into class Ci, inM, (resp., M̃). In particular yu0 = πCi . Note
that

yv =
∑
u6∈Ci

pvuyu + pvCi , where pvCi =
∑
u∈Ci

pvu. (21)

Similarly,

ỹv =
∑
u6∈Ci

p̃vuỹu + p̃vCi =
∑
u6∈Ci

pvuỹu +
∑
u6∈Ci

(p̃vu − pvu)ỹu + p̃vCi . (22)

Write ∆v := |ỹv − yv|. Subtracting (21) from (22) and bounding, we get:

∆v ≤
∑
u6∈Ci

pvu∆u +
∑
u6∈Ci

|p̃vu − pvu|ỹu + |p̃vCi − pvCi |

≤
∑
u6∈Ci

pvu∆u + (n− |Ci|)ε+ |Ci|ε =
∑
u6∈Ci

pvu∆u + εn. (23)

23



Let h = max{dG(u,Ci) : u 6∈ Ci, dG(u,Ci) < ∞}, where dG(u,Ci) = min{dG(u, v) : v ∈ Ci}
is the stochastic distance in G from u to Ci. For l = 0, 1, . . . , h, let Xl = max{∆u : u /∈
Ci, d(u,Ci) = l}, and let ` = argmax{Xl : l = 1 . . . , h}. Then X0 = 0 (since deterministic
vertices in M remain deterministic in M̃) and, for l = 1, . . . , h, (23) implies that

Xl ≤ εn+ pminXl−1 + (1− pmin)X`. (24)

Iterating we get that X` ≤ εn
1−p`min
1−pmin

p−`min ≤ εnλp
−λ
min.

Let v ∈ V be an arbitrary vertex. If v does not lie in any absorbing class, then πv = π̃v = 0.
Otherwise, let v ∈ Ci. By the above claims, we have

πv = πCiπ
|i
v ≤ (π̃Ci + εnλp−λmin)(π̃|iv +

ε

2
(λ+ 1)|Ci|p−λmin)

≤ π̃v +
ε

2
np−λmin[εnλ(λ+ 1)p−λmin + 3λ+ 1] := π̃v + δ′(M, ε).

Similarly, we can conclude that π̃v ≤ πv + δ′(M̃, ε). Note that pmin(M̃) ≥ pmin(M)/2, since
ε ≤ pmin(M)/2. It follows that

|µu0(M)− µu0(M̃)| ≤
∑

(u,v)∈E

|πupuv − π̃up̃uv||ruv|

≤
∑

(u,v)∈E

(|πu − π̃u|puv + π̃u|p̃uv − puv|)r∗

≤
∑

(u,v)∈M

(δ′(M̃, ε)puv + π̃uε)r∗

≤ (δ′(M̃, ε) + ε)n ≤ δ(M, ε)r∗,

and the result follows.
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