Oberwolfach Preprints

OWP 2011-03

J. Matthew Douglass, Götz Pfeiffer, and Gerhard RöHRLE

Coxeter Arrangements and Solomon's Descent Algebra

Mathematisches Forschungsinstitut Oberwolfach gGmbH Oberwolfach Preprints (OWP) ISSN 1864-7596

Oberwolfach Preprints (OWP)

Starting in 2007, the MFO publishes a preprint series which mainly contains research results related to a longer stay in Oberwolfach. In particular, this concerns the Research in PairsProgramme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an Oberwolfach Lecture, for example.

A preprint can have a size from 1-200 pages, and the MFO will publish it on its website as well as by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard copies (DIN A4, black and white copy) by surface mail.

Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its website www.mfo.de as a documentation of the research work done at the MFO, which you are accepting by sending us your file.

In case of interest, please send a pdf file of your preprint by email to rip@mfo.de or owlf@mfo.de, respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at the MFO.

There are no requirements for the format of the preprint, except that the introduction should contain a short appreciation and that the paper size (respectively format) should be DIN A4, "letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we shall add a running number (20XX - XX).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer and would like to thank you in advance for your cooperation.

I mprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany
Tel $\quad+49783497950$
Fax +49783497955
Email admin@mfo.de
URL www.mfo.de
The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.

COXETER ARRANGEMENTS AND SOLOMON'S DESCENT ALGEBRA

J. MATTHEW DOUGLASS, GÖTZ PFEIFFER, AND GERHARD RÖHRLE

1. Introduction

Suppose V is a finite-dimensional, complex vector space. A linear transformation t in GL(V) is called a reflection if the fixed point set of t is a hyperplane in V, or equivalently, the 1eigenspace of t has codimension 1. Suppose that $W \subset \mathrm{GL}(V)$ is a finite Coxeter group with Coxeter generating set S. Then each s in S acts on V as a reflection with order two and W is generated by S subject to the relations $(s t)^{m_{s, t}}=1$, where $m_{s, s}=1$ and $m_{s, t}=m_{t, s}>1$ for $s \neq t$ in S. Let T denote the set of all reflections in W. For each t in T, let $H_{t}=\operatorname{Fix}(t)$ denote the fixed point set of t and set $\mathcal{A}=\left\{H_{t} \mid t \in T\right\}$. Then (V, \mathcal{A}) is a hyperplane arrangement and W acts on the complement $M=V \backslash \cup_{t \in T} H_{t}$.
The action of W on M determines a representation of W on the singular cohomology of M. For $p \geq 0$ let $H^{p}(M)$ denote the $p^{\text {th }}$ singular cohomology space of M with complex coefficients and let $H^{\bullet}(M)=\oplus_{p \geq 0} H^{p}(M)$ denote the total cohomology of M. It follows from a result of Brieskorn [3] that $\operatorname{dim} H^{\bullet}(M)=|W|$ and so a naive guess would be that the representation of W on $H^{\bullet}(M)$ is the regular representation of W. A simple computation for the symmetric group S_{3} shows that this is not the case.
In 1986, Lehrer [12] computed the character of the representation of W on $H^{\bullet}(M)$ when W is a symmetric group. Subsequently, the character of W on $H^{\bullet}(M)$ was computed case-bycase for other types of Coxeter groups by various authors. In 2001, Blair and Lehrer [2] gave a case-free computation of the character of $H^{\bullet}(M)$. Recently, Felder and Veselov [6] have found an elegant description of this character that describes precisely how it differs from the regular character of W. Specifically Felder and Veselov show that the character of $H^{\bullet}(M)$ is given as

$$
\sum_{\sigma}\left(2 \operatorname{Ind}_{\langle\sigma\rangle}^{G}(1)-\rho\right),
$$

where the sum runs over a set of special involutions in W and ρ is the regular character of W.

In contrast, while the representation of W on $H^{\bullet}(M)$ is well-understood, very little is known about the representations of W on the individual graded pieces $H^{p}(M)$. Lehrer and Solomon [13] have described these representations as sums of induced representations from linear characters of centralizers of elements in W when W is the symmetric group. They conjecture that a similar decomposition exists in general. The first author [4] extended Lehrer and Solomon's construction to hyperoctahedral groups and expressed each $H^{p}(M)$ as a sum

2010 Mathematics Subject Classification. Primary 20F55; Secondary 05E10, 52C35.
The authors would like to thank their charming wives for unwavering support during the preparation of this paper.
of representations induced from linear characters of subgroups. However, the subgroups appearing are not always centralizers of elements of W.

In this paper we state a conjecture that refines the conjecture of Lehrer and Solomon [13, Conjecture 1.6] and directly relates the representation of W on $H^{p}(M)$ and a subrepresentation of the right regular representation of W. We prove the conjecture when W is a symmetric group. The conjecture is true for all rank two Coxeter groups [5] and has been checked using the computer algebra system GAP [18] and package CHEVIE [7] for some low rank Coxeter groups.

The subrepresentations of the right regular representation we consider arise from the decomposition of a subalgebra of the group algebra of W, known as "Solomon's descent algebra," into projective, indecomposable modules. Projective, indecomposable modules in an artinian \mathbb{C}-algebra are generated by idempotents. These idempotents were first described explicitly by Bergeron, Bergeron, Howlett, and Taylor [1]. The second author [17] has subsequently used these idempotents to give quiver presentations for Coxeter groups. In $\S 5.2$ we show that when W is a symmetric group the subrepresentations of the right regular representation generated by these idempotents are induced representations. Schocker [19] has proved a similar result using different methods.

In section $\S 2$ of this paper we state our conjecture, in section $\S 3$ we prove some preliminary general results, and in $\S 4$ and $\S 5$ we prove the conjecture when W is a symmetric group.

2. The Orlik-Solomon algebra and Solomon's descent algebra

We assume that W is a subgroup of the unitary group of V with respect to a fixed positive, definite, Hermitian form $\langle\cdot, \cdot\rangle$. It is known that V has a basis $\Pi=\left\{\alpha_{s} \mid s \in S\right\}$ indexed by S so that $\left\langle\alpha_{s}, \alpha_{t}\right\rangle=-\cos \left(\pi / m_{s, t}\right)$ for s and t in S. Then s acts on V as the reflection through the hyperplane orthogonal to α_{s} and $\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}$ is a root system in V.
2.1. Shapes and conjugacy classes. We begin by recalling a parameterization of the conjugacy classes in W due to Geck and Pfeiffer (see [8, §3.2]) in a form compatible with the arrangement (V, \mathcal{A}) of W.

The lattice of \mathcal{A}, denoted by $L(\mathcal{A})$, is the set of subspaces of V that arise as intersections of hyperplanes in \mathcal{A} :

$$
L(\mathcal{A})=\left\{H_{t_{1}} \cap H_{t_{2}} \cap \cdots \cap H_{t_{p}} \mid t_{1}, t_{2}, \ldots, t_{p} \in T\right\} .
$$

For X in $L(\mathcal{A})$ define

$$
W_{X}=\{w \in W \mid X \subseteq \operatorname{Fix}(w)\}
$$

to be the pointwise stabilizer of X in W. It follows from Steinberg's Theorem [23] that W_{X} is generated by $\left\{t \in T \mid X \subseteq H_{t}\right\}$. It then follows that $X=\operatorname{Fix}\left(W_{X}\right)$, and so the rule $X \mapsto W_{X}$ defines an injection from $L(\mathcal{A})$ to the set of subgroups of W. Notice that W_{X} is again a Coxeter group.

The action of W on \mathcal{A} induces an action of W on $L(\mathcal{A})$. Obviously $w W_{X} w^{-1}=W_{w(X)}$ and so for X and Y in $L(\mathcal{A})$, the subgroups W_{X} and W_{Y} are conjugate if and only if X and Y lie
in the same W-orbit. Thus, the rule $X \mapsto W_{X}$ induces a bijection between the set of orbits of W on $L(\mathcal{A})$ and the set of conjugacy classes of subgroups W_{X}.

By a shape of W we mean a W-orbit in $L(\mathcal{A})$. We denote the set of shapes of W by Λ. For example, if W is the symmetric group S_{n}, then Λ is in bijection with the set of partitions of n and with the set of Young diagrams with n boxes.

It is shown in $[16, \S 6.2]$ that the rule $w \mapsto \operatorname{Fix}(w)$ defines a surjection from W to $L(\mathcal{A})$. Composing with the map that sends an element X in $L(\mathcal{A})$ to its W-orbit, we get a map

$$
\operatorname{sh}: W \rightarrow \Lambda .
$$

We say $\operatorname{sh}(w)$ is the shape of w. Thus, $\operatorname{sh}(w)$ is the W-orbit of $\operatorname{Fix}(w)$ in $L(\mathcal{A})$. Clearly, sh is constant on conjugacy classes and so we can define the shape of a conjugacy class to be the shape of any of its elements.
An element w in W, or its conjugacy class, is called cuspidal if $\operatorname{Fix}(w)=\operatorname{Fix}(W)$. For example, if W is the symmetric group S_{n}, then the conjugacy class consisting of n-cycles is the only cuspidal class. In general, there is more than one cuspidal conjugacy class. Cuspidal elements and conjugacy classes are called elliptic by some authors.

Suppose that λ is a shape, X in $L(\mathcal{A})$ has shape λ, and C is a conjugacy class in W with shape λ. If w is in C, then $\operatorname{Fix}(w)$ is in the W-orbit of X and so $C \cap W_{X}$ is a non-empty union of cuspidal W_{X}-conjugacy classes. Geck and Pfeiffer [8, §3.2] have shown that in fact $C \cap W_{X}$ is a single W_{X}-conjugacy class. It follows that $C \mapsto C \cap W_{X}$ defines a bijection between the set of conjugacy classes in W with shape λ and the set of cuspidal conjugacy classes in W_{X}.

Fix a set $\left\{X_{\lambda} \mid \lambda \in \Lambda\right\}$ of W-orbit representatives in $L(\mathcal{A})$. Summarizing the preceding discussion we see that conjugacy classes in W are parametrized by pairs (λ, C_{λ}) where λ is a shape and C_{λ} is a cuspidal conjugacy class in $W_{X_{\lambda}}$.
2.2. The Orlik-Solomon algebra. Next we consider the cohomology ring $H^{\bullet}(M)$. Arnold and Brieskorn (see [16, §1.1]) have computed $H^{\bullet}(M)$. In the following we use the presentation of this algebra given by Orlik and Solomon [14].

Recall that the set T of reflections in W parametrizes the hyperplanes in \mathcal{A}. The OrlikSolomon algebra of W is the \mathbb{C}-algebra, $A=A(\mathcal{A})$, with generators $\left\{a_{t} \mid t \in T\right\}$ and relations

- $a_{t_{1}} a_{t_{2}}=-a_{t_{2}} a_{t_{1}}$ for t_{1} and t_{2} in T and
- $\sum_{\mathcal{A}}^{p}(-1)^{i} a_{t_{1}} \cdots \widehat{a_{t_{i}}} \cdots a_{t_{p}}=0$ for every linearly dependent subset $\left\{H_{t_{1}}, \ldots, H_{t_{p}}\right\}$ of

The algebra A is a skew-commutative, graded, connected \mathbb{C}-algebra that is isomorphic as a graded algebra to $H^{\bullet}(M)$. Let A^{p} denote the degree p subspace of A. Then

- $A^{0} \cong \mathbb{C}$,
- for $1 \leq p \leq|S|$ the subspace A^{p} is spanned by the set of all $a_{t_{1}} \cdots a_{t_{p}}$ where $\operatorname{codim} H_{t_{1}} \cap \cdots \cap H_{t_{p}}=p$, and
- $A^{p}=0$ for $p>|S|$.

See $[16, \S 3.1]$ for details.
The action of W on \mathcal{A} extends to an action of W on A as algebra automorphisms. An element w in W acts on a generator a_{t} of A by $w a_{t}=a_{w t w^{-1}}$. With this W-action A is isomorphic to $H^{\bullet}(M)$ as graded W-algebras.

Orlik and Solomon [15] have shown that the normalizer of W_{X} in W is the setwise stabilizer of X in W, that is

$$
N_{W}\left(W_{X}\right)=\{w \in W \mid w(X)=X\}
$$

For X in $L(\mathcal{A})$, define A_{X} to be the span of $\left\{a_{t_{1}} \cdots a_{t_{r}} \mid H_{t_{1}} \cap \cdots \cap H_{t_{r}}=X\right\}$. Proofs of the following statements may be found in [16, Chapter 6].

- If codim $X=p$, then $A_{X} \subseteq A^{p}$.
- There are vector space decompositions $A^{p} \cong \bigoplus_{\text {codim } X=p} A_{X}$ and $A \cong \bigoplus_{X \in L(\mathcal{A})} A_{X}$.
- For w in $W, w A_{X}=A_{w(X)}$. Thus, A_{X} is an $N_{W}\left(W_{X}\right)$-stable subspace of A.

For a shape λ in Λ, set $A_{\lambda}=\bigoplus_{X \in \lambda} A_{X}$. Suppose X is a fixed subspace in λ and that $\operatorname{codim} X=p$. Then A_{λ} is a W-stable subspace of A^{p} and as representations of W we have

$$
A_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{X}\right)}^{W}\left(A_{X}\right) \quad \text { and } \quad A \cong \bigoplus_{\lambda \in \Lambda} A_{\lambda}
$$

(see [13]).
2.3. Solomon's descent algebra. In contrast with the Orlik-Solomon algebra A, which is constructed from the set T of reflections in W, Solomon's descent algebra is constructed from the Coxeter generating set S of W.

Suppose that I is a subset of S. Define

$$
X_{I}=\bigcap_{s \in I} H_{s} \quad \text { and } \quad W_{I}=\langle I\rangle .
$$

Then X_{I} is in $L(\mathcal{A})$ and codim $X_{I}=|I|$. It follows from Steinberg's Theorem [23] that $W_{I}=W_{X_{I}}$. Recall that $\Pi=\left\{\alpha_{s} \mid s \in S\right\}$ is a basis of V. For $I \subseteq S$ define

$$
\Pi_{I}=\left\{\alpha_{s} \mid s \in I\right\} .
$$

Then X_{I} is the orthogonal complement of the span of Π_{I}.
Orlik and Solomon (see $[16, \S 6.2]$) have shown that each orbit of W on $L(\mathcal{A})$ contains a subspace X_{I} for some subset I of S. For subsets I and J of S define $I \sim J$ if there is a w in W with $w\left(\Pi_{I}\right)=\Pi_{J}$. Then \sim is an equivalence relation. It is well-known that W_{I} and W_{J} are conjugate if and only if $I \sim J$ (see [21]). It follows that the rule $I \mapsto X_{I}$ induces a bijection between S / \sim, the set of \sim-equivalence classes, and Λ, the set of shapes of W.

Next, let ℓ denote the length function of W determined by the generating set S and define

$$
W^{I}=\{w \in W \underset{4}{\mid \ell(w s)}>\ell(w) \forall s \in I\} .
$$

Then W^{I} is a set of left coset representatives of W_{I} in W. Also, define

$$
x_{I}=\sum_{w \in W^{I}} w
$$

in the group algebra $\mathbb{C} W$. Solomon [20] has shown that the span of $\left\{x_{I} \mid I \subseteq S\right\}$ is in fact a subalgebra of $\mathbb{C} W$. We denote this subalgebra by $\Sigma(W)$ and call it the descent algebra of W. It is not hard to see that $\left\{x_{I} \mid I \subseteq S\right\}$ is linearly independent and so $\operatorname{dim} \Sigma(W)=2^{|S|}$. Notice that $x_{S}=1$ is the identity in both $\mathbb{C} W$ and its subalgebra $\Sigma(W)$.

Bergeron, Bergeron, Howlett, and Taylor [1] have defined a basis $\left\{e_{I} \mid I \subseteq S\right\}$ of $\Sigma(W)$ that consists of quasi-idempotents and is compatible with the set of shapes of W. For λ in Λ define

$$
S_{\lambda}=\left\{I \subseteq S \mid X_{I} \in \lambda\right\} \quad \text { and } \quad e_{\lambda}=\sum_{I \in S_{\lambda}} e_{I}
$$

Then each e_{λ} is idempotent and $\left\{e_{\lambda} \mid \lambda \in \Lambda\right\}$ is a complete set of primitive, orthogonal idempotents in $\Sigma(W)$. (See $\S 3$ for more details.) In particular, $\sum_{\lambda \in \Lambda} e_{\lambda}=1$ in $\mathbb{C} W$.

Define $E_{\lambda}=e_{\lambda} \mathbb{C} W$. In $\S 3$ we show that $e_{I} \mathbb{C} W_{I}$ affords an action of $N_{W}\left(W_{I}\right)$ and that E_{λ} is induced from $e_{I} \mathbb{C} W_{I}$ when I is in S_{λ}. Thus, in analogy with the decomposition in $\S 2.2$ of the Orlik-Solomon algebra A, as representations of W we have

$$
E_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{I}\right)}^{W}\left(e_{I} \mathbb{C} W_{I}\right) \quad \text { and } \quad \mathbb{C} W=\bigoplus_{\lambda \in \Lambda} E_{\lambda}
$$

2.4. Centralizers and complements. The last ingredient we need in order to state the conjecture is a certain set of characters of centralizers of elements of W. These characters, together with the sign character, should quantify the difference between the representation of W on $H^{p}(M)$ and a subrepresentation of the regular representation. They naturally arise in work of Howlett and Lehrer [10] and in recent results of the second author [11] that describe the structure of the centralizer of an element in W.

Suppose that I is a subset of S and C is a conjugacy class in W such that $C \cap W_{I}$ is a cuspidal conjugacy class in W_{I}. Howlett [9] has shown that W_{I} has a complement, N_{I}, in $N_{W}\left(W_{I}\right)$. Moreover, it is shown in [11] that if c is in $C \cap W_{I}$, then $Z_{W}(c) \subseteq N_{W}\left(W_{I}\right)$ and $Z_{W_{I}}(c) W_{I}=N_{W}\left(W_{I}\right)$. It follows that
(1) for any X in $L(\mathcal{A}), W_{X}$ has a complement, say N_{X}, in $N_{W}\left(W_{X}\right)$ such that

$$
N_{W}\left(W_{X}\right) \cong W_{X} \rtimes N_{X}
$$

and
(2) for a cuspidal element c in $W_{X}, Z_{W}(c) \subseteq N_{W}\left(W_{X}\right)$ and $Z_{W}(c) / Z_{W_{X}}(c) \cong N_{X}$.

Recall that $N_{W}\left(W_{X}\right)$ is the setwise stabilizer of X in W. We may define a linear character $\alpha_{X}: N_{W}\left(W_{X}\right) \rightarrow \mathbb{C}$ by $\alpha_{X}(n)=\left.\operatorname{det} n\right|_{X}$ for n in $N_{W}\left(W_{X}\right)$. For c in W, we define α_{c} to be the restriction of α_{X} to $Z_{W}(c)$ when $X=\operatorname{Fix}(c)$.
2.5. Relating the Orlik-Solomon algebra and the descent algebra. We now have all the concepts we need in order to state the conjecture.

Let ϵ denote the sign character of W. For c in W, define $X_{c}=\operatorname{Fix}(c), \operatorname{rk}(c)=\operatorname{codim} X_{c}$, and $W_{c}=W_{X_{c}}$. Notice that c is a cuspidal element in W_{c}.

Associated with each λ in Λ we have the W-stable subspace A_{λ} of the Orlik-Solomon algebra A, a right ideal E_{λ} in $\mathbb{C} W$, and the set of conjugacy classes with shape λ. We conjecture that A_{λ} and E_{λ} are related to the set of conjugacy classes with shape λ as follows.

Conjecture 2.1. Choose a set \mathcal{C} of conjugacy class representatives in W. For λ in Λ set $\mathcal{C}_{\lambda}=\{c \in \mathcal{C} \mid \operatorname{sh}(c)=\lambda\}$. Then, for each conjugacy class representative c in \mathcal{C}, there is a linear character ϕ_{c} of $Z_{W}(c)$, such that for every λ in Λ,
(a) the character of E_{λ} is

$$
\bigoplus_{c \in \mathcal{C}_{\lambda}} \operatorname{Ind}_{Z_{W}(c)}^{W}\left(\phi_{c}\right)=\bigoplus_{c \in \mathcal{C}_{\lambda}} \operatorname{Ind}_{N_{W}\left(W_{c}\right)}^{W}\left(\operatorname{Ind}_{Z_{W}(c)}^{N_{W}\left(W_{c}\right)}\left(\phi_{c}\right)\right)
$$

and
(b) the character of A_{λ} is

$$
\bigoplus_{c \in \mathcal{C}_{\lambda}} \operatorname{Ind}_{Z_{W}(c)}^{W}\left(\epsilon_{c} \alpha_{c} \phi_{c}\right)=\epsilon \bigoplus_{c \in \mathcal{C}_{\lambda}} \operatorname{Ind}_{N_{W}\left(W_{c}\right)}^{W}\left(\alpha_{X_{c}} \operatorname{Ind}_{Z_{W}(c)}^{N_{W}\left(W_{c}\right)}\left(\phi_{c}\right)\right),
$$

where ϵ_{c} denotes the restriction of ϵ to $Z_{W}(c)$.
In particular,

$$
H^{p}(M) \cong A^{p} \cong \bigoplus_{\operatorname{rk}(c)=p} \operatorname{Ind}_{Z_{W}(c)}^{W}\left(\epsilon_{c} \alpha_{c} \phi_{c}\right)
$$

for $0 \leq p \leq|S|$, and

$$
\mathbb{C} W \cong \bigoplus_{c \in \mathcal{C}} \operatorname{Ind}_{Z_{W}(c)}^{W}\left(\phi_{c}\right) \quad \text { and } \quad H^{\bullet}(M) \cong \bigoplus_{c \in \mathcal{C}} \operatorname{Ind}_{Z_{W}(c)}^{W}\left(\epsilon_{c} \alpha_{c} \phi_{c}\right) .
$$

We show in Corollary 3.5 that $\operatorname{dim} A_{\lambda}$ is the number of elements in W with shape λ. Bergeron, Bergeron, Howlett, and Taylor [1] have shown that $\operatorname{dim} E_{\lambda}$ is also the number of elements in W with shape λ. Thus $\operatorname{dim} A_{\lambda}=\operatorname{dim} E_{\lambda}$.

As stated in the introduction, the main result in this paper is a proof of Conjecture 2.1 for symmetric groups. The conjecture is known to be true for all Coxeter groups with rank at most two [5].

We in fact prove a slightly stronger result than is stated in the conjecture. We show that the character ϕ_{c} of $Z_{W}(c)$ may be chosen to be a character of the normal subgroup $Z_{W_{c}}(c)$ of $Z_{W}(c)$ that is $N_{X_{c}}$-stable and extends to a character of $Z_{W}(c)$.

3. E_{λ} IS AN INDUCED REPRESENTATION

Suppose λ is in Λ. We have seen in $\S 2.2$ that $A_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{X}\right)}^{W}\left(A_{X}\right)$ for X in λ. In this section we show that E_{λ} has a similar description as an induced representation for I in S_{λ}. We begin by recalling some results of Bergeron, Bergeron, Howlett, and Taylor [1].

For subsets I, J, and K of S define

$$
W^{I J}=\left(W^{I}\right)^{-1} \cap W^{J} \quad \text { and } \quad W^{I J K}=\left\{w \in W^{I J} \mid w^{-1}\left(\Pi_{I}\right) \cap \Pi_{J}=\Pi_{K}\right\}
$$

Then $W^{I J}$ is the set of minimal length $\left(W_{I}, W_{J}\right)$-double coset representatives in W. Solomon [20] has shown that $x_{I} x_{J}=\sum_{K} a_{I J K} x_{K}$ where $a_{I J K}=\left|W^{I J K}\right|$.

The quasi-idempotents e_{I} in $\S 2.3$ are defined as follows. For subsets J and K of S set

$$
m_{J K}=\left|\coprod_{L \sim J}\left\{w \in W^{L K} \mid w^{-1}\left(\Pi_{L}\right) \cap \Pi_{K}=\Pi_{J}\right\}\right|
$$

Then $m_{J K}=0$ when $J \nsubseteq K$ and $m_{J K}=\left|\left\{w \in W^{K} \mid w\left(\Pi_{J}\right) \subseteq \Pi\right\}\right|$ when $J \subseteq K$. Moreover, $m_{J J} \neq 0$ for all J and so the system of equations

$$
x_{K}=\sum_{J \subseteq S} m_{J K} e_{J}, \quad K \subseteq S
$$

can be solved for $\left\{e_{J} \mid J \subseteq S\right\}$. Define $n_{J K}$ and e_{K} by

$$
e_{K}=\sum_{J \subseteq S} n_{J K} x_{J}
$$

Notice that $n_{J J}=m_{J J}^{-1}$ and $n_{J K}=0$ when $J \nsubseteq K$.
The next two lemmas give some translation properties for the quantities just defined.
Lemma 3.1. Suppose that $K \subseteq S$ and d is in W with $d^{-1}\left(\Pi_{K}\right) \subseteq \Pi$.
(a) $W^{K} d=W^{K^{d}}$.
(b) $x_{K} d=x_{K^{d}}$.
(c) $m_{I^{d} J^{d}}=m_{I J}$ for $I \subseteq J \subseteq K$.
(d) $e_{L} d=e_{L^{d}}$ for $L \subseteq K$.

Proof. Statement (a) is proved in [1, Lemma 2.4]. Statement (b) follows immediately from (a).

Suppose that $I \subseteq J \subseteq K$. Clearly, $\Pi_{L^{d}}=d^{-1}\left(\Pi_{L}\right)$ for all $L \subseteq K$ and so

$$
\begin{aligned}
m_{I^{d} J^{d}} & =\left|\left\{w \in W^{J^{d}} \mid w\left(\Pi_{I^{d}}\right) \subseteq \Pi\right\}\right| \\
& =\left|\left\{w \in W^{J} d \mid w d^{-1}\left(\Pi_{I}\right) \subseteq \Pi\right\}\right| \\
& =\left|\left\{w d^{-1} \in W^{J} \mid w d^{-1}\left(\Pi_{I}\right) \subseteq \Pi\right\}\right| \\
& =\left|\left\{w \in W^{J} \mid w\left(\Pi_{I}\right) \subseteq \Pi\right\}\right| \\
& =m_{I J}
\end{aligned}
$$

This proves (c).
Using (b) and (c) we see that for $J \subseteq K$,

$$
\sum_{I} m_{I J}\left(e_{I} d\right)=x_{J} d=x_{J^{d}}=\sum_{I} m_{I J^{d}} e_{I}=\sum_{I} m_{d_{I J}} e_{I}=\sum_{I} m_{I J} e_{I^{d}} .
$$

Thus, $\sum_{I} m_{I J}\left(e_{I} d\right)=\sum_{I} m_{I J} e_{I^{d}}$. Now, fix a subset L of K, multiply both sides by $n_{J L}$, and sum over J, to get $e_{L} d=e_{L^{d}}$. (Note that $n_{J L}=0$ unless $J \subseteq L$.) This proves (d).
Lemma 3.2. Suppose n is in $\mathrm{GL}(V)$ with $n(\Pi)=\Pi$. Then $n^{-1} e_{I} n=e_{I^{n}}$ for $I \subseteq S$. In particular, n centralizes e_{S} in $\mathbb{C} W$.

Proof. It follows from the assumption that $n(\Pi)=\Pi$ that $\ell\left(n w n^{-1}\right)=\ell(w)$ for all w in W. Therefore, $n^{-1} W^{I} n=W^{I^{n}}$ and hence $n^{-1} x_{I} n=x_{I^{n}}$ for all $I \subseteq S$.

Suppose $I \subseteq J \subseteq S$. Then

$$
\begin{aligned}
m_{I^{n} J^{n}} & =\left|\left\{w \in W^{J^{n}} \mid w\left(\Pi_{I^{n}}\right) \subseteq \Pi\right\}\right| \\
& =\left|\left\{w \in n^{-1} W^{J} n \mid w n^{-1}\left(\Pi_{I}\right) \subseteq \Pi\right\}\right| \\
& =\left|\left\{n w n^{-1} \in W^{J} \mid n w n^{-1}\left(\Pi_{I}\right) \subseteq n(\Pi)\right\}\right| \\
& =\left|\left\{w \in W^{J} \mid w\left(\Pi_{I}\right) \subseteq \Pi\right\}\right| \\
& =m_{I J} .
\end{aligned}
$$

Thus, we see that for $K \subseteq S$,

$$
\sum_{J} m_{J K}\left(n^{-1} e_{J} n\right)=n^{-1} x_{K} n=x_{K^{n}}=\sum_{J} m_{J K^{n}} e_{J}=\sum_{J} m_{n}{ }_{J K} e_{J}=\sum_{J} m_{J K} e_{J^{n}} .
$$

Therefore, $\sum_{J} m_{J K}\left(n^{-1} e_{J} n\right)=\sum_{J} m_{J K} e_{J^{n}}$. Now, fix a subset I of S, multiply both sides by $n_{K I}$, and sum over K, to get $n^{-1} e_{I} n=e_{I^{n}}$.

Suppose λ is in Λ. Recall that $e_{\lambda}=\sum_{I \in S_{\lambda}} e_{I}$ and $E_{\lambda}=e_{\lambda} \mathbb{C} W$. It is shown in $[1, \S 7]$ that if I and J are in S_{λ}, then

$$
e_{I} e_{J}=\frac{1}{\left|S_{\lambda}\right|} e_{J}
$$

It follows that e_{λ} is an idempotent. It is also shown in $[1, \S 7]$ that $1=\sum_{\lambda \in \Lambda} e_{\lambda}$ and that $\left\{e_{\lambda} \mid \lambda \in \Lambda\right\}$ is a complete set of pairwise orthogonal, primitive idempotents in $\Sigma(W)$. Since $\Sigma(W)$ is a subalgebra of $\mathbb{C} W$, it follows that $\left\{e_{\lambda} \mid \lambda \in \Lambda\right\}$ is a set of pairwise orthogonal idempotents in $\mathbb{C} W$.

Lemma 3.3. Suppose that λ is in Λ and I is in S_{λ}. Then, $E_{\lambda}=e_{I} \mathbb{C} W$.
Proof. Say $S_{\lambda}=\left\{J_{1}, \ldots, J_{r}\right\}$. For $1 \leq i \leq r$, choose d_{i} in W with $J_{i}=I^{d_{i}}$. Then $e_{J_{i}}=$ $e_{I^{d_{i}}}=e_{I} d_{i}$ by Lemma 3.1(d). Therefore, $e_{\lambda}=e_{I}\left(d_{1}+\cdots+d_{r}\right)$ and so $E_{\lambda} \subseteq e_{I} \mathbb{C} W$. On the other hand,

$$
e_{\lambda} e_{I}=\left(e_{J_{1}}+\cdots+e_{J_{r}}\right) e_{I}=e_{J_{1}} e_{I}+\cdots+e_{J_{r}} e_{I}=\frac{1}{r} e_{I}+\cdots+\frac{1}{r} e_{I}=e_{I},
$$

and so $e_{I} \mathbb{C} W=e_{\lambda} e_{I} \mathbb{C} W \subseteq e_{\lambda} \mathbb{C} W$.
We next compute the dimensions of the various spaces we are studying in terms of shapes.

Lemma 3.4. Suppose that λ is a shape in Λ, X is a subspace in λ, and C is a conjugacy class in W with shape λ. Then
(a) $|C|=\left|W: N_{W}\left(W_{X}\right)\right|\left|C \cap W_{X}\right|$ and
(b) $\left|\operatorname{sh}^{-1}(\lambda)\right|=\left|W: N_{W}\left(W_{X}\right)\right|\left|\operatorname{sh}^{-1}(\lambda) \cap W_{X}\right|$.

Proof. Notice that $C \cap W_{X}$ is a cuspidal conjugacy class in W_{X}. Thus, it follows from (1) and (2) in $\S 2.4$ that $\left|N_{W}\left(W_{X}\right): Z_{W}(c)\right|=\left|W_{X}: Z_{W_{X}}(c)\right|$ for c in C. Therefore

$$
|C|=\left|W: N_{W}\left(W_{X}\right)\right|\left|N_{W}\left(W_{X}\right): Z_{W}(c)\right|=\left|W: N_{W}\left(W_{X}\right)\right|\left|C \cap W_{X}\right| .
$$

This proves (a). Statement (b) follows from (a) and the observation that $\operatorname{sh}^{-1}(\lambda)$ is the union of those conjugacy classes in W whose intersection with W_{X} is a cuspidal conjugacy class in W_{X}.

The quasi-idempotents e_{I} are defined relative to the ambient set S. We use a superscript to indicate this ambient set when it is not equal S. Thus, for $I \subseteq J \subseteq S, e_{I}^{J}$ denotes the quasi-idempotent in $\mathbb{C} W_{J}$ defined using J as the ambient set instead of S.

Corollary 3.5. Suppose that λ is in Λ and I is in S_{λ}. Then
(a) $\operatorname{dim} A_{X_{I}}=\operatorname{dim} e_{I} \mathbb{C} W_{I}=\left|\operatorname{sh}^{-1}(\lambda) \cap W_{I}\right|$ and
(b) $\operatorname{dim} A_{\lambda}=\operatorname{dim} E_{\lambda}=\left|\operatorname{sh}^{-1}(\lambda)\right|$.

Proof. It is clear that $\left\{w \in W \mid \operatorname{Fix}(w)=X_{I}\right\}=\operatorname{sh}^{-1}(\lambda) \cap W_{I}$ is the set of all cuspidal elements in W_{I}. It is shown in [4, Proposition 2.4] that $\operatorname{dim} A_{X_{I}}=\left|\left\{w \in W \mid \operatorname{Fix}(w)=X_{I}\right\}\right|$. Therefore, $\operatorname{dim} A_{X_{I}}=\left|\operatorname{sh}^{-1}(\lambda) \cap W_{I}\right|$, and it follows from Lemma 3.4(b) that $\operatorname{dim} A_{\lambda}=$ $\left|\operatorname{sh}^{-1}(\lambda)\right|$. As remarked above, Bergeron, Bergeron, Howlett, and Taylor [1] have shown that $\operatorname{dim} E_{\lambda}=\left|\operatorname{sh}^{-1}(\lambda)\right|$. This proves (b).
To complete the proof of (a) it remains to show that $\operatorname{dim} e_{I} \mathbb{C} W_{I}=\left|\operatorname{sh}^{-1}(\lambda) \cap W_{I}\right|$. It is shown in [1, Proposition 7.3] that e_{I} factors as $e_{I}=x_{I} e_{I}^{I}$. Thus, $e_{I} \mathbb{C} W_{I}=x_{i} e_{I}^{I} \mathbb{C} W_{I}$. Also, it follows from [1, Theorem 7.15] that $\operatorname{dim} e_{I}^{I} \mathbb{C} W_{I}=\left|\operatorname{sh}^{-1}(\lambda) \cap W_{I}\right|$. Because W^{I} is a complete set of left coset representatives for W_{I} in W, it is clear that left multiplication by x_{I} defines an isomorphism of right $\mathbb{C} W_{I}$-modules $e_{I}^{I} \mathbb{C} W_{I} \cong e_{I} \mathbb{C} W_{I}$. Therefore, $\operatorname{dim} e_{I} \mathbb{C} W_{I}=$ $\left|\operatorname{sh}^{-1}(\lambda) \cap W_{I}\right|$ as desired.

We can now show that E_{λ} is an induced representation.
Proposition 3.6. Suppose that λ is in Λ and I is in S_{λ}.
(a) $N_{W}\left(W_{I}\right)$ acts on $e_{I} \mathbb{C} W_{I}$ by right multiplication and $E_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{I}\right)}^{W}\left(e_{I} \mathbb{C} W_{I}\right)$.
(b) $N_{W}\left(W_{X}\right)$ acts on A_{X} and $A_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{X}\right)}^{W}\left(A_{X}\right)$.

Proof. Statement (b) is proved in [13, $\S 2]$. We prove (a).

Recall that $N_{W}\left(W_{I}\right)=W_{I} N_{I}$. Obviously $e_{I} \mathbb{C} W_{I}$ is stable under right multiplication by W_{I}. We have seen in the proof of Corollary 3.5 that $e_{I} \mathbb{C} W_{I}=x_{i} e_{I}^{I} \mathbb{C} W_{I}$. If n is in N_{I}, then $n\left(\Pi_{I}\right)=\Pi_{I}$ and it follows from Lemmas 3.1 and 3.2 that

$$
e_{I} \mathbb{C} W_{I} n=e_{I} n \mathbb{C} W_{I}=\left(x_{I} n\right)\left(n^{-1} e_{I}^{I} n\right) \mathbb{C} W_{I}=x_{I} e_{I}^{I} \mathbb{C} W_{I}=e_{I} \mathbb{C} W_{I} .
$$

Therefore, $e_{I} \mathbb{C} W_{I}$ is stable under right multiplication by $N_{W}\left(W_{I}\right)$.
Since $E_{\lambda}=e_{I} \mathbb{C} W$, by Lemma 3.3, to prove that $E_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{I}\right)}^{W}\left(e_{I} \mathbb{C} W_{I}\right)$ it is enough to show that the multiplication map $e_{I} \mathbb{C} W_{I} \otimes_{\mathbb{C} N_{W}\left(W_{I}\right)} \mathbb{C} W \rightarrow E_{\lambda}$ is a bijection. The map is obviously a surjection. Moreover, using Lemma 3.4 and Corollary 3.5 , we have

$$
\begin{aligned}
\operatorname{dim} E_{\lambda} & =\left|\operatorname{sh}^{-1}(\lambda)\right| \\
& =\left|W: N_{W}\left(W_{I}\right)\right|\left|\operatorname{sh}^{-1}(\lambda) \cap W_{I}\right| \\
& =\left|W: N_{W}\left(W_{I}\right)\right| \operatorname{dim} e_{I} \mathbb{C} W_{I} \\
& =\operatorname{dim} e_{I} \mathbb{C} W_{I} \otimes_{\mathbb{C} N_{W}\left(W_{I}\right)} \mathbb{C} W
\end{aligned}
$$

and so the multiplication map is a bijection.

4. Symmetric groups: $\lambda=(n)$

The rest of this paper is devoted to the proof of Conjecture 2.1 for symmetric groups.
From now on, we take W to be the symmetric group on n letters with $n \geq 2$ and we identify W with the subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ that acts on the basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as permutations. Here, v_{i} is the column vector whose $j^{\text {th }}$ entry is 0 for $j \neq i$ and 1 for $j=i$. For $1 \leq i \leq n-1$ let s_{i} denote the matrix in W that interchanges v_{i} and v_{i+1} and fixes v_{j} for $j \neq i, i+1$. Then $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ is a Coxeter generating set for W.

By a partition of n we mean a non-increasing finite sequence of positive integers whose sum is n. Say $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is a partition of n. Then $\lambda_{1} \geq \cdots \geq \lambda_{p}>0$ and $\sum_{k=1}^{p} \lambda_{k}=n$. The integers λ_{i} are called the parts of λ.

It is well-known that for $W=S_{n}$ we may identify Λ with the set of partitions of n. We make this identification precise as follows. Suppose that λ is a partition of n with p parts. Define partial sums τ_{i} for $i=0,1, \ldots, p$ by $\tau_{0}=0$ and $\tau_{i}=\lambda_{1}+\cdots+\lambda_{i}$ for $1 \leq i \leq p$. Define

$$
I_{\lambda}=S \backslash\left\{s_{\tau_{1}}, s_{\tau_{2}}, \ldots, s_{\tau_{p-1}}\right\} \quad \text { and } \quad W_{\lambda}=\left\langle I_{\lambda}\right\rangle
$$

Then W_{λ} is isomorphic to the product of symmetric groups $S_{\lambda_{1}} \times \cdots \times S_{\lambda_{p}}$, where the factor $S_{\lambda_{i}}$ acts on the subset $\left\{v_{\tau_{i-1}+1}, v_{\tau_{i-1}+2}, \ldots, v_{\tau_{i}}\right\}$ of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Next, define

$$
X_{\lambda}=\operatorname{Fix}\left(W_{\lambda}\right)
$$

Then X_{λ} is in $L(\mathcal{A})$ and $W_{X_{\lambda}}=W_{\lambda}$. We have seen in Proposition 3.6 that

$$
E_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{\lambda}\right)}^{W}\left(e_{I_{\lambda}} \mathbb{C} W_{\lambda}\right) \quad \text { and } \quad A_{\lambda} \cong \operatorname{Ind}_{N_{W}\left(W_{\lambda}\right)}^{W}\left(A_{X_{\lambda}}\right)
$$

It is well-known and straightforward to check that $\left\{X_{\lambda} \mid \lambda\right.$ is a partition of $\left.n\right\}$ is a complete set of orbit representatives for the action of W on $L(\mathcal{A})$ and that $\left\{I_{\lambda} \mid \lambda\right.$ is a partition of $\left.n\right\}$ is a complete set of representatives for S / \sim.

Notice that in the extreme case when all parts of λ are equal 1 we have $I_{\lambda}=\emptyset$ and $W_{\lambda}=$ $W_{\emptyset}=\{1\}$. At the other extreme, when $\lambda=(n)$, we have $I_{\lambda}=S$ and $W_{\lambda}=W_{S}=W$. We first prove Conjecture 2.1 when $\lambda=(n)$.
For the rest of this section we take $\lambda=(n)$. Then $W_{\lambda}=N_{W}\left(W_{\lambda}\right)=W$ and so $E_{(n)}=$ $e_{I_{(n)}} \mathbb{C} W_{(n)}$ and $A_{(n)}=A_{X_{(n)}}$. Moreover, $A_{X_{(n)}}=A^{n-1}$ is the top, non-zero graded piece of A. To simplify the notation, we denote $A_{(n)}, E_{(n)}$, and $e_{I_{(n)}}$ by A_{n}, E_{n}, and e_{n} respectively.

Define $c_{1}=1$ in W and for $1 \leq i \leq n$ define $c_{i}=s_{i-1} \cdots s_{2} s_{1}$, so c_{i} acts on the basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as an i-cycle. Also, set $c=c_{n}$. Then,

- c is a cuspidal element in W,
- the set of cuspidal elements in W is precisely the conjugacy class of c, and
- $Z_{W}(c)=\langle c\rangle$ is the cyclic group of order n generated by c.

Set $\zeta=e^{2 \pi i / n}$ in \mathbb{C} and define $\phi: Z_{W}(c) \rightarrow \mathbb{C}$ by $\phi\left(c^{-1}\right)=\zeta$. The elements we have denoted by c_{i} are denoted by c_{i}^{-1} by Lehrer and Solomon [13]. However, the character ϕ of $Z_{W}(c)$ is the same as in [13].

Theorem 4.1. With the preceding notation we have that
(a) the character of W on E_{n} is $\operatorname{Ind}_{Z_{W}(c)}^{W}(\phi)$ and
(b) the character of W on A_{n} is $\epsilon \operatorname{Ind}_{Z_{W}(c)}^{W}(\phi)$.

Notice that with the notation of $\S 2.1$, we have $Z_{c}=Z_{W}(c)$ and so $\phi=\phi_{c}$.
Statement (b) has been proved by Stanley [22, Theorem 7.2] and by Lehrer and Solomon [13, Theorem 3.9]. Our proof below that the character of W on E_{n} is $\operatorname{Ind}_{Z_{W}(c)}^{W}(\phi)$ follows the Lehrer-Solomon argument. To emphasize and differentiate the parallel arguments, we use the convention that the superscript + denotes quantities associated with E_{n} and the superscript - denotes quantities associated with A_{n}.

Suppose t is an indeterminate. For $0 \leq k \leq n$, define elements $b^{+}(n, k)$ and $b^{-}(n, k)$ in $\mathbb{C} W$ by

$$
\left(1-c_{1} t\right)\left(1-c_{2} t\right) \cdots\left(1-c_{n} t\right)=\sum_{k=0}^{n} b^{+}(n, k) t^{k}
$$

and

$$
\left(1+c_{n} t\right)\left(1-c_{n-1} t\right) \cdots\left(1+(-1)^{n-1} c_{1} t\right)=\sum_{k=0}^{n} b^{-}(n, k) t^{k}
$$

respectively (the $k^{\text {th }}$ factor in the product on the left-hand side of the last equation is $\left(1+(-1)^{k-1} c_{n-k+1} t\right)$).
Set $W_{n-1}=\left\langle s_{1}, s_{2}, \ldots, s_{n-2}\right\rangle$. Then $W_{n-1} \cong S_{n-1}$. The analog of the idempotent e_{n} in E_{n} is the basis element $a_{n}=a_{s_{1}} a_{s_{2}} \cdots a_{s_{n-1}}$ in $A_{n}=A^{n-1}$. Lehrer and Solomon [13, §3] prove the following statements.
(i) $A_{n}=\mathbb{C} W a_{n}$.
(ii) $c^{-k} a_{n}=b^{-}(n-1, k) a_{n}$ for $0 \leq k \leq n-1$. In particular, $A_{n}=\mathbb{C} W_{n-1} a_{n}$.
(iii) Consider the homomorphism of left $\mathbb{C} W$-modules from $\mathbb{C} W$ to A_{n} given by right multiplication by a_{n}. The kernel of this mapping is the left $\mathbb{C} W_{n-1}$-module generated by $\left\{c^{-k}-b^{-}(n-1, k) \mid 0 \leq k \leq n-1\right\}$.
(iv) $\left\{w a_{n} \mid w \in W_{n-1}\right\}$ is a \mathbb{C}-basis of A_{n} and A_{n} is the left regular $\mathbb{C} W_{n-1}$-module.

Next we show that the analogous statements hold with A_{n} replaced by E_{n} and $b^{-}(n, k)$ replaced by $b^{+}(n, k)$.

For $k=1,2, \ldots, n-1$, define $x_{k}=x_{S \backslash\left\{s_{k}\right\}}$ and $w_{k}=c_{1} c_{2} \cdots c_{k}$. Then w_{k} is the longest element in $\left\langle s_{1}, s_{2}, \ldots, s_{k-1}\right\rangle$.

Lemma 4.2. Suppose $1 \leq k \leq n-1$. Then

$$
W^{S \backslash\left\{s_{k}\right\}} w_{k}=\left\{c_{i_{1}} \cdots c_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\} .
$$

Proof. It suffices to show that if $1 \leq i_{1}<\cdots<i_{k} \leq n$, then $c_{i_{1}} \cdots c_{i_{k}} w_{k}$ is in $W^{S \backslash\left\{s_{k}\right\}}$. For this, we consider elements in W as acting on $\{1, \ldots, n\}$. That is, we identify the vector v_{j} with j for $1 \leq j \leq n$. Then

$$
W^{S \backslash\left\{s_{k}\right\}}=\{w \in W \mid w(j)<w(j+1) \forall j \in\{1, \ldots, n-1\} \backslash\{k\}\}
$$

and

$$
w_{k}(j)= \begin{cases}k+1-j & 1 \leq j \leq k \\ j & k+1 \leq j \leq n\end{cases}
$$

Fix i_{1}, \ldots, i_{k} with $1 \leq i_{1}<\cdots<i_{k} \leq n$ and set $w=c_{i_{1}} \cdots c_{i_{k}} w_{k}$. If $1 \leq j \leq k$, then $w(j)=i_{j}<i_{j+1}=w(j+1)$. If $j \geq i_{k}$, then $w(j) \leq j<j+1=w(j+1)$. Suppose that $k<j<i_{k}$. Choose r minimal such that

$$
j+1 \leq i_{k}, j+1-1 \leq i_{k-1}, \ldots, j+1-r \leq i_{k-r}, \text { and } j+1-r-1>i_{k-r-1} .
$$

Then $w(j) \leq j-r-1<j-r=j+1-r-1=w(j+1)$.
Corollary 4.3. For $1 \leq k \leq n-1$, we have $b^{+}(n, k)=(-1)^{k} x_{k} w_{k}$.
Proof. Using the definition and Lemma 4.2 we have

$$
b^{+}(n, k)=(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} c_{i_{1}} \cdots c_{i_{k}}=(-1)^{k} x_{k} w_{k} .
$$

Proposition 4.4. The following analogs of (i)-(iv) above hold.
(a) $E_{n}=e_{n} \mathbb{C} W$.
(b) $e_{n} c^{k}=e_{n} b^{+}(n-1, k)$ for $0 \leq k \leq n-1$. In particular, $E_{n}=e_{n} \mathbb{C} W_{n-1}$.
(c) Consider the endomorphism of $\mathbb{C} W$ considered as a right $\mathbb{C} W$-module given by left multiplication by e_{n}. The kernel of this mapping is the free, right $\mathbb{C} W_{n-1}$-module with basis $\left\{c^{k}-b^{+}(n-1, k) \mid 0 \leq k \leq n-1\right\}$.
(d) $\left\{e_{n} w \mid w \in W_{n-1}\right\}$ is a \mathbb{C}-basis of E_{n} and E_{n} is the right regular $\mathbb{C} W_{n-1}$-module.

Proof. The first statement follows immediately from the definitions.
We prove (b) by recursion. It is clear that $e_{n} c^{k}=e_{n} b^{+}(n-1, k)$ for $k=0$, since $b(n-1,0)=$ $1=c^{0}$. Suppose $e_{n} c^{k-1}=e_{n} b^{+}(n-1, k-1)$. It follows from [1, Theorem 7.8] that $e_{n} x_{J}=0$ unless $J=S$. Thus, it follows from Corollary 4.3 that $e_{n} b^{+}(n, k)=(-1)^{k} e_{n} x_{k} w_{k}=0$ for $1 \leq k \leq n-1$. On the other hand, it follows from the definition that

$$
\sum_{k=0}^{n} b^{+}(n, k) t^{k}=\left(\sum_{k=0}^{n-1} b^{+}(n-1, k) t^{k}\right)\left(1-c_{n} t\right)
$$

and hence $b^{+}(n, k)=b^{+}(n-1, k)-b^{+}(n-1, k-1) c$ for $1 \leq k \leq n-1$. Therefore,

$$
e_{n} c^{k}=e_{n} c^{k-1} c=e_{n} b^{+}(n-1, k-1) c=e_{n} b^{+}(n-1, k) .
$$

Next, consider the endomorphism of $\mathbb{C} W$ given by $x \mapsto e_{n} x$. Let K denote the kernel of this mapping and let K_{1} denote the $\mathbb{C} W_{n-1}$-submodule of $\mathbb{C} W$ generated by $\left\{c^{k}-b^{+}(n-1, k) \mid 0 \leq\right.$ $k \leq n-1\}$. It follows from (b) that $K_{1} \subseteq K$. Moreover, $\left\{c^{k}-b^{+}(n-1, k) \mid 0 \leq k \leq n-1\right\}$ is a $\mathbb{C} W_{n-1}$ basis of K_{1} because the cyclic subgroup generated by c is a left transversal of W_{n-1} in W. Therefore, $\operatorname{dim}_{\mathbb{C}} K_{1}=(n-1)(n-1)$!. However,

$$
\operatorname{dim} K=\operatorname{dim} \mathbb{C} W-\operatorname{dim} E_{n}=n!-\left|W: Z_{W}(c)\right|=(n-1)(n-1)!=\operatorname{dim} K_{1} .
$$

Therefore $K_{1}=K$. This proves (c).
Because $b^{+}(n-1, k)$ is in $\mathbb{C} W_{n-1}$ for $1 \leq k \leq n-1$, it follows from (b) that the image of the mapping $x \mapsto e_{n} x$ is $e_{n} \mathbb{C} W_{n-1}$. Therefore, $E_{n}=e_{n} \mathbb{C} W_{n-1}$. Since $\operatorname{dim} E_{n}=(n-1)$!, it follows that $\left\{e_{n} w \mid w \in W_{n-1}\right\}$ is a \mathbb{C}-basis of E_{n}. This proves (d).

Finally, define idempotents f^{+}and f^{-}in $\mathbb{C} Z_{W}(c)$ by

$$
f^{+}=\frac{1}{n} \sum_{k=0}^{n-1} \phi\left(c^{k}\right) c^{-k}=\frac{1}{n} \sum_{k=0}^{n-1} \zeta^{-k} c^{-k}
$$

and

$$
f^{-}=\frac{1}{n} \sum_{k=0}^{n-1} \epsilon(c)^{k} \phi\left(c^{k}\right) c^{-k}=\frac{1}{n} \sum_{k=0}^{n-1} \epsilon(c)^{k} \zeta^{-k} c^{-k} .
$$

Obviously, the lines $\mathbb{C} f^{+}$and $\mathbb{C} f^{-}$in $\mathbb{C} W$ are stable under left and right multiplication by $Z_{W}(c)$ and afford the characters ϕ and $\epsilon \phi$ of $Z_{W}(c)$ respectively. Moreover, $\operatorname{Ind}_{Z_{W}(c)}^{W}(\phi)$ is afforded by the right $\mathbb{C} W$-module $f^{+} \mathbb{C} W$ and $\epsilon \operatorname{Ind}_{Z_{W}(c)}^{W}(\phi)=\operatorname{Ind}_{Z_{W}(c)}^{W}(\epsilon \phi)$ is afforded by the left $\mathbb{C} W$-module $\mathbb{C} W f^{-}$. Thus, to prove Theorem 4.1 it is enough to find $\mathbb{C} W$-isomorphisms $E_{n} \cong f^{+} \mathbb{C} W$ and $A_{n} \cong \mathbb{C} W f^{-}$.

Lemma 4.5. The idempotent f^{+}acts invertibly by right multiplication on e_{n} and the idempotent f^{-}acts invertibly by left multiplication on a_{n}.

Proof. Lehrer and Solomon $[13, \S 3]$ show that f^{-}acts invertibly on a_{n}. Their argument is easily modified to show that f^{+}acts invertibly by right multiplication on e_{n} as follows.

We have $\left(1-c_{1} \zeta\right) \cdots\left(1-c_{n-1} \zeta\right)=\sum_{k=0}^{n-1} b^{+}(n-1, k) \zeta^{k}$. Multiply both sides on the left by $\frac{1}{n} e_{n}$ and use Proposition 4.4(b) to get

$$
\frac{1}{n} e_{n}\left(1-\zeta c_{1}\right) \cdots\left(1-\zeta c_{n-1}\right)=\frac{1}{n} \sum_{k=0}^{n-1} \zeta^{k} e_{n} b^{+}(n-1, k)=\frac{1}{n} \sum_{k=0}^{n-1} \zeta^{k} e_{n} c^{k}=e_{n} f^{+}
$$

If $1 \leq k \leq n-1$, then

$$
1-\zeta^{k}=1-\zeta^{k} c_{k}^{k}=\left(1-\zeta c_{k}\right)\left(1+\zeta c_{k}+\cdots+\zeta^{k-1} c_{k}^{k-1}\right)
$$

Since ζ is a primitive $n^{\text {th }}$ root of unity, $1-\zeta^{k} \neq 0$ in \mathbb{C}. Thus, $1-\zeta c_{k}$ acts invertibly on e_{n} for $1 \leq k \leq n-1$ and so f^{+}acts invertibly on e_{n}.

Proof of Theorem 4.1. (See [13, §3].) Consider the mapping from $f^{+} \mathbb{C} W$ to E_{n} given by $x \mapsto e_{n} x$. It follows from Lemma 4.5 and the discussion preceding it that $e_{n} f^{+} \neq 0$, that $Z_{W}(c)$ acts on the line $\mathbb{C} e_{n} f^{+}$in E_{n} as the character ϕ, and that the mapping is a surjection. Since $\operatorname{dim} f^{+} \mathbb{C} W=\left|W: Z_{W}(c)\right|=(n-1)!=\operatorname{dim} E_{n}$, the mapping is also an injection. Thus, we have an isomorphism of right $\mathbb{C} W$-modules, $E_{n} \cong f^{+} \mathbb{C} W$.
As in [13, §3], similar reasoning applies to the mapping from $\mathbb{C} W f^{-}$to A_{n} given by $x \mapsto x a_{n}$ and shows that $A_{n} \cong \mathbb{C} W f^{-}$.

5. Symmetric groups: arbitrary λ

In this section we consider the case of an arbitrary partition of n and complete the proof of Conjecture 2.1 for symmetric groups.
Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ is a partition of n. Recall that $I_{\lambda}=S \backslash\left\{s_{\tau_{1}}, s_{\tau_{2}}, \ldots, s_{\tau_{p-1}}\right\}$ and that $W_{\lambda}=\left\langle I_{\lambda}\right\rangle$ is isomorphic to the product of symmetric groups $S_{\lambda_{1}} \times \cdots \times S_{\lambda_{p}}$, where the factor $S_{\lambda_{i}}$ acts on $\left\{v_{\tau_{i-1}+1}, v_{\tau_{i-1}+2}, \ldots, v_{\tau_{i}}\right\}$. For $1 \leq i \leq p$ define $g_{\lambda_{i}}=s_{\tau_{i}-1} \cdots s_{\tau_{i-1}+2} s_{\tau_{i-1}+1}$. Then $g_{\lambda_{i}}$ is the λ_{i}-cycle in $S_{\lambda_{i}}$ that corresponds to the n-cycle $c=c_{n}$ in $\S 4$. Next, define $c_{\lambda}=g_{\lambda_{1}} g_{\lambda_{2}} \cdots g_{\lambda_{p}}$ and $Z_{\lambda}=Z_{W_{\lambda}}\left(c_{\lambda}\right)$. Then

- c_{λ} is a cuspidal element in W_{λ},
- the set of cuspidal elements in W_{λ} is precisely the conjugacy class of c_{λ}, and
- $Z_{\lambda} \cong\left\langle g_{\lambda_{1}}\right\rangle \times\left\langle g_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle g_{\lambda_{p}}\right\rangle$.

Notice that $\left\{c_{\lambda} \mid \lambda\right.$ is a partition of $\left.n\right\}$ is a complete set of conjugacy class representatives in W.

With λ as above, for $1 \leq i \leq p$, define $\phi_{\lambda_{i}}$ to be the character of $\left\langle g_{\lambda_{i}}\right\rangle$ with $\phi_{\lambda_{i}}\left(g_{\lambda_{i}}^{-1}\right)=e^{2 \pi i / \lambda_{i}}$. Then $\phi_{\lambda_{i}}$ is the analog of the character ϕ in $\S 4$ for the factor $S_{\lambda_{i}}$ of W_{λ}. Next, define the character ϕ_{λ} of $Z_{\lambda} \cong\left\langle g_{\lambda_{1}}\right\rangle \times\left\langle g_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle g_{\lambda_{p}}\right\rangle$ to be

$$
\phi_{\lambda}=\phi_{\lambda_{1}} \otimes \cdots \otimes \phi_{\lambda_{p}} .
$$

Note that this notation is not consistent with that of Lehrer and Solomon; our character ϕ_{λ} corresponds to the character $\phi_{\lambda} \epsilon$ in [13]. Applying the special case $\lambda=(n)$ considered in $\S 4$
to each factor $S_{\lambda_{i}}$ of W_{λ}, for $1 \leq i \leq p$ define

$$
f_{\lambda_{i}}^{+}=\frac{1}{\lambda_{i}} \sum_{k=0}^{\lambda_{i}-1} \phi_{\lambda_{i}}\left(g_{\lambda_{i}}^{k}\right) g_{\lambda_{i}}^{-k} \quad \text { and } \quad f_{\lambda_{i}}^{-}=\frac{1}{\lambda_{i}} \sum_{k=0}^{\lambda_{i}-1} \epsilon\left(g_{\lambda_{i}}^{k}\right) \phi\left(g_{\lambda_{i}}^{k}\right) g_{\lambda_{i}}^{-k} .
$$

Finally, define idempotents f_{λ}^{+}and f_{λ}^{-}in $\mathbb{C} Z_{\lambda}$ by

$$
f_{\lambda}^{+}=f_{\lambda_{1}}^{+} f_{\lambda_{2}}^{+} \cdots f_{\lambda_{p}}^{+} \quad \text { and } \quad f_{\lambda}^{-}=f_{\lambda_{1}}^{-} f_{\lambda_{2}}^{-} \cdots f_{\lambda_{p}}^{-} .
$$

Obviously the lines $\mathbb{C} f_{\lambda}^{+}$and $\mathbb{C} f_{\lambda}^{-}$in $\mathbb{C} W$ are stable under left and right multiplication by Z_{λ} and afford the characters ϕ_{λ} and $\epsilon \phi_{\lambda}$ of Z_{λ} respectively.
Now consider the canonical complement $N_{X_{\lambda}}$ of W_{λ} in $N_{W}\left(W_{\lambda}\right)$. Set $N_{\lambda}=N_{X_{\lambda}}$. If λ has m_{j} parts equal j, then N_{λ} is isomorphic to the product of symmetric groups $\prod_{j} S_{m_{j}}$ (see [9] or [13]). In particular, N_{λ} has one Coxeter generator, say r_{i}, for each i such that $\lambda_{i}=\lambda_{i+1}$. The generator r_{i} acts on the set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by interchanging $v_{\tau_{i-1}+j}$ and $v_{\tau_{i}+j}$ for $1 \leq j \leq \lambda_{i}$, and fixing v_{k} for $k \leq \tau_{i-1}$ and $k>\tau_{i+1}$.
It is well-known and easy to check ([13], [11]) that $N_{\lambda} \subseteq Z_{W}\left(c_{\lambda}\right)$, and so $Z_{W}\left(c_{\lambda}\right) \cong Z_{\lambda} \rtimes N_{\lambda}$.
Lemma 5.1. The subgroup N_{λ} of $Z_{W}\left(c_{\lambda}\right)$ stabilizes the characters ϕ_{λ} and $\epsilon \phi_{\lambda}$ of Z_{λ}, and centralizes the idempotents f_{λ}^{+}and f_{λ}^{-}. In particular, ϕ_{λ} extends to a character, also denoted by ϕ_{λ}, of $Z_{W}\left(c_{\lambda}\right)$, with $\phi_{\lambda}(n z)=\phi_{\lambda}(z)$ for n in N_{λ} and z in Z_{λ}.

Proof. Suppose that i is such that $\lambda_{i}=\lambda_{i+1}$ and consider the generator r_{i} of N_{λ}. Then r_{i} is an involution and it follows from the description of the action of r_{i} on the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V that

$$
r_{i} g_{\lambda_{j}} r_{i}^{-1}=r_{i} g_{\lambda_{j}} r_{i}= \begin{cases}g_{\lambda_{i+1}} & j=i \\ g_{\lambda_{i}} & j=i+1 \\ g_{\lambda_{j}} & j \neq i, i+1\end{cases}
$$

Since $\phi_{\lambda}\left(g_{\lambda_{i}}\right)=\phi_{\lambda}\left(g_{\lambda_{i+1}}\right)$, it follows that r_{i} stabilizes ϕ_{λ} and $\epsilon \phi_{\lambda}$.
The group N_{λ} is generated by $\left\{r_{i} \mid \lambda_{i}=\lambda_{i+1},\right\}$ and so N_{λ} stabilizes the characters ϕ_{λ} and $\epsilon \phi_{\lambda}$ of Z_{λ}. Moreover, N_{λ} acts on $\left\{g_{\lambda_{1}}, \ldots, g_{\lambda_{p}}\right\}$ by conjugation as a group of permutations. Thus, it follows from the definition of $f_{\lambda_{i}}^{+}$and $f_{\lambda_{i}}^{-}$that conjugation by N_{λ} permutes $\left\{f_{\lambda_{1}}^{+}, \ldots, f_{\lambda_{p}}^{+}\right\}$ and $\left\{f_{\lambda_{1}}^{-}, \ldots, f_{\lambda_{p}}^{-}\right\}$. Since the $f_{\lambda_{i}}^{+}$'s pairwise commute and the $f_{\lambda_{i}}^{-}$'s pairwise commute, we see that N_{λ} centralizes $f_{\lambda_{1}}^{+} \cdots f_{\lambda_{p}}^{+}=f_{\lambda}^{+}$and $f_{\lambda_{1}}^{-} \cdots f_{\lambda_{p}}^{-}=f_{\lambda}^{-}$.

Set $\alpha_{\lambda}=\alpha_{X_{\lambda}}$. Then α_{λ} is a character of $N_{W}\left(W_{\lambda}\right)$ and $\alpha_{\lambda}\left(r_{i}\right)=-1$. Note that this notation is not consistent with that of Lehrer and Solomon; our character α_{λ} corresponds to the character $\alpha_{\lambda} \epsilon$ in [13] as $\epsilon\left(r_{i}\right)=(-1)^{\lambda_{i}}$.
Theorem 5.2. Suppose that λ is a partition of n. Then the $N_{W}\left(W_{\lambda}\right)$-modules $e_{I_{\lambda}} \mathbb{C} W_{\lambda}$ and $A_{X_{\lambda}}$, and the character ϕ_{λ} of $Z_{W}\left(C_{\lambda}\right)$, are related by
(a) the character of the right $N_{W}\left(W_{\lambda}\right)$-module $e_{I_{\lambda}} \mathbb{C} W_{\lambda}$ is $\operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{N_{W}\left(W_{\lambda}\right)}\left(\phi_{\lambda}\right)$ and
(b) the character of the left $N_{W}\left(W_{\lambda}\right)$-module $A_{X_{\lambda}}$ is $\epsilon \alpha_{\lambda} \operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{N_{W}\left(W_{\lambda}\right)}\left(\phi_{\lambda}\right)$.

Proof. Statement (b) has been proved by Lehrer and Solomon [13, Theorem 4.4]. Their argument may be rephrased as follows. Extending the definition of the element a_{n} in A_{n} when $\lambda=(n)$, Lehrer and Solomon define an element a_{λ} in $A_{X_{\lambda}}$ on which f_{λ}^{-}acts invertibly. Then:
(i) $Z_{W}\left(c_{\lambda}\right)$ acts on the line $\mathbb{C} f_{\lambda}^{-} a_{\lambda}$ in $A_{X_{\lambda}}$ via the character $\epsilon_{\lambda} \alpha_{\lambda} \phi_{\lambda}$.
(ii) $A_{X_{\lambda}}=\mathbb{C} N_{W}\left(W_{\lambda}\right) f_{\lambda}^{-} a_{\lambda}$.
(iii) The multiplication map $\mathbb{C} N_{W}\left(W_{\lambda}\right) \otimes_{\mathbb{C} Z_{W}\left(c_{\lambda}\right)} \mathbb{C} f_{\lambda}^{-} a_{\lambda} \rightarrow A_{X_{\lambda}}$ is an isomorphism.

Therefore, $A_{X_{\lambda}} \cong \operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{N_{W}\left(W_{\lambda}\right)}\left(\mathbb{C} f_{\lambda}^{-} a_{\lambda}\right)$ and the character of $A_{X_{\lambda}}$ is indeed $\operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{N_{W}\left(W_{\lambda}\right)}\left(\epsilon_{\lambda} \alpha_{\lambda} \phi_{\lambda}\right)$. Our proof of (a) follows a similar line of reasoning, with $e_{I_{\lambda}}$ in place of a_{λ}.

For the rest of this proof we fix a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of n. To simplify the notation, set $I=I_{\lambda}$. It suffices to show that the line $\mathbb{C} e_{I} f_{\lambda}^{+}$in the right $N_{W}\left(W_{\lambda}\right)$-module $e_{I} \mathbb{C} W_{\lambda}$ satisfies properties analogous to (i), (ii), and (iii) above.
(i') $Z_{W}\left(c_{\lambda}\right)$ acts on the line $\mathbb{C} e_{I} f_{\lambda}^{+}$via the character ϕ_{λ} : We have $e_{I}=x_{I} e_{I}^{I}=x_{I} e_{\lambda_{1}}^{\lambda_{1}} \cdots e_{\lambda_{p}}^{\lambda_{p}}$, where $e_{\lambda_{i}}^{\lambda_{i}}$ in $S_{\lambda_{i}}$ is defined using the partition $\left(\lambda_{i}\right)$ of λ_{i}. By Lemma 4.5, the idempotent $f_{\lambda_{i}}^{+}$acts invertibly by right multiplication on $e_{\lambda_{i}}^{\lambda_{i}}$ for $1 \leq i \leq p$. Since

$$
e_{I} f_{\lambda}^{+}=x_{I}\left(e_{\lambda_{1}}^{\lambda_{1}} \cdots e_{\lambda_{p}}^{\lambda_{p}}\right)\left(f_{\lambda_{1}}^{+} \cdots f_{\lambda_{p}}^{+}\right)=x_{I}\left(e_{\lambda_{1}}^{\lambda_{1}} f_{\lambda_{1}}^{+}\right) \cdots\left(e_{\lambda_{p}}^{\lambda_{p}} f_{\lambda_{p}}^{+}\right),
$$

it follows that f_{λ}^{+}acts invertibly on e_{I}. In particular, $e_{I} f_{\lambda}^{+} \neq 0$. Moreover, it is clear that Z_{λ} acts on $\mathbb{C} e_{I} f_{\lambda}^{+}$via the character ϕ_{λ}. We have seen in Lemma 3.1 that $e_{I} n=e_{I}$ for n in N_{λ}. Thus, to show that $Z_{W}\left(c_{\lambda}\right)$ acts on $\mathbb{C} e_{I} f_{\lambda}^{+}$via the character ϕ_{λ}, it is enough to show that N_{λ} centralizes f_{λ}^{+}in $\mathbb{C} W$, but this was shown in Lemma 5.1.
(ii') $e_{I} \mathbb{C} W_{\lambda}=e_{I} f_{\lambda}^{+} \mathbb{C} N_{W}\left(W_{\lambda}\right)$: Because $e_{I} N_{\lambda}=e_{I}$ and f_{λ}^{+}acts invertibly on e_{I}, we have

$$
e_{I} \mathbb{C} W_{\lambda}=e_{I} \mathbb{C} N_{W}\left(W_{\lambda}\right)=e_{I} f_{\lambda}^{+} \mathbb{C} N_{W}\left(W_{\lambda}\right)
$$

(iii') The multiplication map $\mathbb{C} e_{I} f_{\lambda}^{+} \otimes_{\mathbb{C} Z_{W}\left(c_{\lambda}\right)} \mathbb{C} N_{W}\left(W_{\lambda}\right) \rightarrow e_{I} \mathbb{C} W_{\lambda}$ is an isomorphism: It follows from (ii') that the mapping is surjective. Moreover,

$$
\begin{aligned}
\operatorname{dim} e_{I} f_{\lambda}^{+} \mathbb{C} N_{W}\left(W_{\lambda}\right) & =\operatorname{dim} e_{I} \mathbb{C} W_{\lambda} \\
& =\operatorname{dim} e_{I}^{I} \mathbb{C} W_{\lambda} \\
& =\left|W_{\lambda}: Z_{\lambda}\right| \\
& =\left|N_{W}\left(W_{\lambda}\right): Z_{W}\left(c_{\lambda}\right)\right| \\
& =\operatorname{dim} \mathbb{C} e_{I} f_{\lambda}^{+} \otimes_{\mathbb{C} Z_{W}\left(c_{\lambda}\right)} \mathbb{C} N_{W}\left(W_{\lambda}\right)
\end{aligned}
$$

and so the mapping is an isomorphism.
Therefore, $e_{I} \mathbb{C} W_{\lambda} \cong \operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{N_{W}\left(W_{\lambda}\right)}\left(\mathbb{C} e_{I} f_{\lambda}^{+}\right)$and the character of $e_{I} \mathbb{C} W_{\lambda}$ is $\operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{N_{W}\left(W_{\lambda}\right)}\left(\phi_{\lambda}\right)$ as claimed.

The proof of Conjecture 2.1 for symmetric groups now follows from Proposition 3.6, Theorem 5.2 , and transitivity of induction.

Theorem 5.3. For each partition λ of n there is a linear character ϕ_{λ} of $Z_{W}\left(c_{\lambda}\right)$ such that
(a) the character of E_{λ} is $\operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{W}\left(\phi_{\lambda}\right)$ and
(b) the character of A_{λ} is $\operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{W}\left(\epsilon_{\lambda} \alpha_{\lambda} \phi_{\lambda}\right)$, where ϵ_{λ} denotes the restriction of ϵ to $Z_{W}\left(c_{\lambda}\right)$.
In particular,

$$
H^{p}(M) \cong \bigoplus_{\lambda \vdash n, \operatorname{rk}\left(c_{\lambda}\right)=p} \operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{W}\left(\epsilon_{\lambda} \alpha_{\lambda} \phi_{\lambda}\right)
$$

for $0 \leq p \leq n-1$, and

$$
\mathbb{C} W \cong \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{W}\left(\phi_{\lambda}\right) \quad \text { and } \quad A \cong \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{Z_{W}\left(c_{\lambda}\right)}^{W}\left(\epsilon_{\lambda} \alpha_{\lambda} \phi_{\lambda}\right) .
$$

Acknowledgments: The authors acknowledge the financial support of the DFG-priority programme SPP1489 "Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory". Part of the research for this paper was carried out while the authors were staying at the Mathematical Research Institute Oberwolfach supported by the "Research in Pairs" programme. The second author wishes to acknowledge support from Science Foundation Ireland.

References

[1] F. Bergeron, N. Bergeron, R.B. Howlett, and D.E. Taylor. A decomposition of the descent algebra of a finite Coxeter group. J. Algebraic Combin., 1(1):23-44, 1992.
[2] J. Blair and G.I. Lehrer. Cohomology actions and centralisers in unitary reflection groups. Proc. London Math. Soc. (3), 83(3):582-604, 2001.
[3] E. Brieskorn. Sur les groupes de tresses [d'après V. I. Arnold]. In Séminaire Bourbaki, 2\&ème année (1971/1972), Exp. No. 401, pages 21-44. Lecture Notes in Math., Vol. 317. Springer, Berlin, 1973.
[4] J.M. Douglass. On the cohomology of an arrangement of type B_{l}. J. Algebra, 146:265-282, 1992.
[5] J.M. Douglass, G. Pfeiffer, and G. Röhrle. Coxeter arrangements and Solomon's descent algebra: dihedral groups. Preprint 2011.
[6] G. Felder and A. P. Veselov. Coxeter group actions on the complement of hyperplanes and special involutions. J. Eur. Math. Soc. (JEMS), 7(1):101-116, 2005.
[7] M. Geck, G. Hiß, F. Lübeck, G. Malle, and G. Pfeiffer. CHEVIE - A system for computing and processing generic character tables. Appl. Algebra Engrg. Comm. Comput., 7:175-210, 1996.
[8] M. Geck and G. Pfeiffer. Characters of finite Coxeter groups and Iwahori-Hecke algebras, volume 21 of London Mathematical Society Monographs. New Series. The Clarendon Press,' Oxford University Press, New York, 2000.
[9] R. B. Howlett. Normalizers of parabolic subgroups of reflection groups. J. London Math. Soc. (2), 21(1):62-80, 1980.
[10] R.B. Howlett and G.I. Lehrer. Duality in the normalizer of a parabolic subgroup of a finite Coxeter group. Bull. London Math. Soc., 14(2):133-136, 1982.
[11] M. Konvalinka, G. Pfeiffer, and C. Röver. A note on element centralizers in finite Coxeter groups. arXiv:1005.1186.
[12] G. I. Lehrer. On hyperoctahedral hyperplane complements. In The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), volume 47 of Proc. Sympos. Pure Math., pages 219-234. Amer. Math. Soc., Providence, RI, 1987.
[13] G.I. Lehrer and L. Solomon. On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes. J. Algebra, 104(2):410-424, 1986.
[14] P. Orlik and L. Solomon. Combinatorics and topology of complements of hyperplanes. Invent. Math., 56(2):167-189, 1980.
[15] P. Orlik and L. Solomon. Coxeter arrangements. In Singularities, volume 40 of Proc. Symp. Pure Math., pages 269-292. Amer. Math. Soc., 1983.
[16] P. Orlik and H. Terao. Arrangements of Hyperplanes. Springer-Verlag, 1992.
[17] G. Pfeiffer. A quiver presentation for Solomon's descent algebra. Adv. Math., 220(5):1428-1465, 2009.
[18] Martin Schönert et al. GAP - Groups, Algorithms, and Programming - version 3 release 4, RWTH Aachen, 1997.
[19] M. Schocker. Über die höheren Lie-Darstellungen der symmetrischen Gruppen. Bayreuth. Math. Schr., (63):103-263, 2001.
[20] L. Solomon. A decomposition of the group algebra of a finite Coxeter group. J. Algebra, 9:220-239, 1968.
[21] L. Solomon. A Mackey formula in the group ring of a Coxeter group. J. Algebra, 41(2):255-264, 1976.
[22] R.P. Stanley. Some aspects of groups acting on finite posets. J. Combin. Theory Ser. A, 32(2):132-161, 1982.
[23] R. Steinberg. Differential equations invariant under finite reflection groups. Trans. Amer. Math. Soc., 112:392-400, 1964.

Department of Mathematics, University of North Texas, Denton TX, USA 76203
E-mail address: douglass@unt.edu
URL: http://hilbert.math.unt.edu

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland

E-mail address: goetz.pfeiffer@nuigalway.ie
URL: http://schmidt.nuigalway.ie/~goetz

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
E-mail address: gerhard.roehrle@rub.de
URL: http://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/Lehrstuhl-VI

