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AN IDENTIFICATION THEOREM FOR PSU6(2) AND ITS
AUTOMORPHISM GROUPS

CHRIS PARKER AND GERNOT STROTH

Abstract. We identify the groups PSU6(2), PSU6(2):2, PSU6(2):3 and Aut(PSU6(2))
from the structure of the centralizer of an element of order 3.

1. Introduction

When classifying finite simple groups G one is sometimes confronted with the
following situation. For a prime p, some (but perhaps not all) of the p-local
subgroups of G containing a given Sylow p-subgroup S of G generate a subgroup
H which is known to be isomorphic to a Lie type group in characteristic p.
The expectation (or rather hope) is that G = H. In the case that H is a proper
subgroup of G, one usually tries to prove that H contains all the p-local subgroups
of G which contain S and then in a next step to prove that H is strongly p-
embedded in G. This then leads to the conclusion that G = H. The last two steps
are well understood, at least for groups with mild extra assumptions. However it
might be that the first step cannot be made. One example of this phenomenon
occurs with F ∗(H) ∼= Ω7(3) and H embedded in the way just described in both
the groups 2E6(2) and M(22). In this case the normalizer of some root subgroup
R of H is not contained in H. A similar example occurs with F ∗(H) ∼= Ω+

8 (3)
embedded in F2, the baby monster sporadic simple group. In a series of papers
[14, 15] we will establish 3-local characterisations for all these groups, where
we will forget the group H and just use information about NG(R) and thereby
obtain more general theorems. We will finally identify the target groups by the
centralizer of a certain involution or by the action on an appropriate building.
In this paper we focus on an identification theorem that is required in both the
identifications of M(22) and 2E6(2). That is a 3-local characterisation theorem
of U6(2) and its automorphism groups. Indeed the centralizers of involutions in
both M(22) and 2E6(2) feature these groups prominently.

In earlier work [12] the first author proved the following result: let G be a finite
group, S be a Sylow 3-subgroup ofG and Z = Z(S). Assume thatNG(Z) is similar
to a 3-normalizer in PSU6(2). Then either Z is weakly closed in S orG ∼= PSU6(2).
However, for our intended applications of such results as outlined above, we also
need to identify the groups PSU6(2):3, PSU6(2):2 and PSU6(2):Sym(3) from their
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2 Chris Parker and Gernot Stroth

3-local data (here and throughout this work we use the Atlas [3] notation for group
extensions). The addition of these automorphisms cause numerous difficulties.

Definition 1.1. We say that X is similar to a 3-normalizer in a group of type
PSU6(2) provided the following conditions hold.

(i) Q = F ∗(X) is extraspecial of order 35;
(ii) X/Q is isomorphic to a subgroup of index at most 6 in the subgroup

of GSp4(3) which preserves a decomposition of the natural 4-dimensional
symplectic space over GF(3) into a perpendicular sum of two non-degenerate
2-spaces; and

(iii) Q/Z(Q) is an X-chief factor.

A precise description of the possibilities for the group X/Q will be given in
Section 3. Our theorem is as follows.

Theorem 1.2. Suppose that G is a group, Z ≤ G has order 3 and set M =
NG(Z). If M is similar to a 3-normalizer in a group of type PSU6(2) and Z is
weakly closed in F ∗(M) but not in M , then G ∼= PSU6(2), PSU6(2):2, PSU6(2):3
or PSU6(2):Sym(3).

In the case that Z is weakly closed in M , then G could be a nilpotent group ex-
tended by a group similar to a 3-normalizer of type PSU6(2). Thus the hypothesis
that Z is not weakly closed in M is necessary to have an identification theorem.
On the other hand, the hypothesis that Z is weakly closed in F ∗(M) is there to
prevent further examples related to F4(2) arising. We expect that the methods
that we use here will also be applicable to this type of configuration, however the
investigation of such a possibility would take a rather different road at the very
outset of our proof and so the analysis of this possibility is not included here.

We now describe the layout of the paper and highlight a number of interest-
ing features of the article. We begin in Section 2 with preliminary lemmas and
background material. Noteworthy results in this section are Lemma 2.5 where
we embellish the statement of Hayden’s Theorem [9] to give the structure of the
normal subgroup of index 3 and Lemma 2.11 where we use transfer theorems to
show that a group with a certain specified 2-local subgroup has a subgroup of
index 2. The relevance of such results to our proof is apparent as a look at the
list of groups in the conclusion of our theorem shows. Let G, M and Z be as in
the statement of Theorem 1.2 and let S ∈ Syl3(M). In Section 3, we tease out
the structure of M and establish much of the notation that is used throughout
the proof of Theorem 1.2.

In Section 4, we determine the structure the normalizer of a further 3-subgroup
which we call J and turns out to be the Thompson subgroup of S. The fact that
NG(J) is not contained in M is a consequence of the hypothesis that Z is not
weakly closed in M . We find in Lemma 4.6 that NG(J)/J ∼= 2 × Sym(6) or
Sym(6). With this information, after using a transfer theorem, we are able to
apply [12] and do so in Theorem 4.7 to get that G ∼= PSU6(2) or PSU6(2):3
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if NM(S)/S ∼= Dih(8). Thus from this stage on we assume that NM(S)/S ∼=
2×Dih(8) and NM(J)/J ∼= 2×Sym(6). With this assumption, our target groups
all have a subgroup of index 2. Our plan is to determine the structure of a 2-central
involution r, apply Lemma 2.11 and then apply Theorem 4.7 to the subgroup of
index 2. The involution we focus on is contained in M and centralizes a subgroup
of F ∗(M) isomorphic to 31+2

+ . But before we can make this investigation we need
to determine the centralizers of another subgroup (for now we will call it X)
which has order either 3 or 9. It turns out we may apply the theorems of Hayden
[9] and Prince [16] to get E(CG(X)) ∼= SU4(2). At this juncture, given the 3-local
information that we have gathered, we can construct an extraspecial 2-subgroup Σ
of order 29 in K = CG(r). In Theorem 5.5 we show that NK(Σ)/Σ ∼= Aut(SU4(2)),
(SU4(2)×3):2 or Sp6(2). In our target groups the possibility Sp6(2) does not arise
and we will say more about this shortly.

In Section 6 we show that Σ is strongly closed in NK(Σ) with respect to K and
then we apply Goldschmidt’s Theorem to get that K = NK(Σ). At this stage
we know the centralizer of a 2-central involution and so we prove the theorem
in Section 6. We mention here that when K/Σ ∼= Sp6(2) we apply [17] to obtain
G ∼= Co2 and then eliminate this group as it does not satisfy our hypothesis on the
structure of M . One should wonder if the configuration involving Sp6(2) could be
eliminated at an earlier stage. However, as Co2 contains PSU6(2):2 as a subgroup
of index 2300, these groups are intimately related. A 3-local identification of Co2

can be found in [13].
Our notation follows that in [1], [6] and [7]. As mentioned earlier we use Atlas

[3] notation for group extensions. We also use [3] as a convenient source for
information about subgroups of almost simple groups. Often this information
can be easily gleaned from well-known properties of classical groups. For odd
p, the extraspecial groups of exponent p and order p2n+1 are denoted by p1+2n

+ .
The extraspecial 2-groups of order 22n+1 are denoted by 21+2n

+ if the maximal
elementary abelian subgroups have order 21+n and otherwise we write 21+2n

− . We
hope our notation for specific groups is self-explanatory. In addition, for a subset
X of a group G, XG denotes that set of G-conjugates of X. If x, y ∈ H ≤ G, we
often write x ∼H y to indicate that x and y are conjugate in H. All the groups
in this paper are finite groups.
Acknowledgement. The initial draft of this paper was prepared during a visit
to the Mathematisches Forschungsinstitut Oberwolfach as part of the Research in
Pairs Programme, 30th November–12 November, 2009. The authors are pleased
to thank the MFO and its staff for the pleasant and stimulating research environ-
ment that they provided. The first author is also grateful to the DFG for financial
support and the mathematics department in Halle for their hospitality.
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2. Preliminaries

In this section we gather preliminary results for our proof of Theorem 1.2. For
a group G with Sylow p-subgroup P and u ∈ P , a G-conjugate v of u is said to
be extremal in P if CP (v) is a Sylow p-subgroup of CG(v).

Lemma 2.1. Suppose that p is a prime and G is a group. Let P a Sylow p-
subgroup of G and Q be a proper normal subgroup of P such that P/Q is cyclic.
Assume there is u ∈ P \Q such that

(a) no conjugate of up is contained in P \Q; and
(b) any extremal conjugate of u in P is contained in Q ∪Qu.

Then either G has a normal subgroup N with G/N cyclic and u 6∈ N or there is
g ∈ G such that

(i) ug ∈ Q;
(ii) ug is extremal in P ; and

(iii) CP (u)g ≤ CP (ug).

Proof. See [7, Proposition 15.15] or [18, Corollary 5.3.1]. �

Lemma 2.2. Suppose that p is a prime, G is a group and P ∈ Sylp(G).

(i) Assume that there is a normal subgroup Q of P such that P/Q is cyclic
and that y ∈ P \Q has order p. If every extremal conjugate of y in P is
contained in Qy, then G has a normal subgroup N with y 6∈ N and G/N
cyclic.

(ii) Assume that P ≤M ≤ G, y ∈ P \M ′ has order p and that, if x ∈ G with
yx ∈ P extremal, then there is g ∈M such that yx = yg. Then y 6∈ G′.

(iii) Assume that J = J(P ) is the Thompson subgroup of P . If J is elementary
abelian and J 6≤ NG(J)′, then J 6≤ G′.

Proof. (i) This follows from 2.1.
(ii) As M/M ′ is abelian, there is N ≤M such that M ′ ≤ N , y 6∈ N , M = NP

and P/(P ∩N) is cyclic. Set Q = P ∩N . Now for g ∈M with yg ∈ P we have that
yg ∈ Qy. Hence by assumption yx ∈ Qy for all x ∈ G such that yx is extremal in
P . Now (ii) follows from (i).

(iii) Set M = NG(J) and pick y ∈ J \ M ′. Assume that g ∈ G and yg is
extremal in P . Then CP (yg) ∈ Sylp(CG(yg)). Since CG(y) contains J , we have
CP (yg) contains a G-conjugate of J . Since J is weakly closed in P , we have
J ≤ CP (yg). But then yg ∈ CP (J) ≤ J . Since M controls fusion in J , we now
have that yg = ym for some m ∈M . Now (iii) follows from (ii). �

Lemma 2.3. Suppose that F is a field, V is an n-dimensional vector space over
F and G = GL(V ). Assume that q is quadratic form of Witt index at least 1 and
S is the set of singular 1-dimensional subspaces of V with respect to q. Then the
stabiliser in G of S preserves q up to similarity.

Proof. See [13, Lemma 2.10]. �
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Lemma 2.4. Suppose that p is an odd prime, X = GL4(p) and V is the natural
GF(p)X-module. Let A = 〈a, b〉 ≤ X be elementary abelian of order p2 and
assume that [V, a] = CV (b) and [V, b] = CV (a) are distinct and of dimension
2. Let v ∈ V \ [V,A]. Then A leaves invariant a non-degenerate quadratic form
with respect to which v is a singular vector. In particular, X contains exactly two
conjugacy classes of subgroups such as A. One is conjugate to a Sylow p-subgroup
of GO+

4 (p) and the other to a Sylow p-subgroup of GO−4 (p).

Proof. See [13, Lemma 2.11]. �

Lemma 2.5. Suppose that X is isomorphic to the centralizer of a non-trivial
3-central element in PSp4(3) and that H is a group with an element d such that
CH(d) ∼= X. Let P ∈ Syl3(CH(d)) and E be the elementary abelian subgroup of P
of order 27. Assume that E does not normalize any non-trivial 3′-subgroup of H,
that d is not H-conjugate to its inverse and X has a normal subgroup of index 3.
Then X = CH(d).

Proof. Notice first of all that P ∈ Syl3(H). Let H1 be a normal subgroup of H of
index 3 and set E1 = E ∩H. So CH1(d) ∼= 31+2

+ :Q8 and E1 has order 9. Suppose
that x ∈ E1 \ 〈d〉. Then, as x is conjugate to its inverse and d is not, d is the
unique conjugate of d in E1. Furthermore, d is not conjugate to any element of
E \ H ′ and so d is the unique conjugate of d in E. Since x is not conjugate to
d, we have that E1 = 〈d, x〉 is a Sylow 3-subgroup of CH1(x). As E1/〈x〉 is self-
normalizing in CH1(x)/〈x〉, CH1(x) has a normal 3-complement T by Burnside’s
Theorem. However CH1(x) is normalized by E and so T = 1 by hypothesis. It
follows that CH(x) = E for all x ∈ E1 \ 〈d〉.

Let y ∈ E \H1. Then, as before, E1 is a Sylow 3-subgroup of CH1(y). Since d
is not conjugate to any non-trivial element of E1 \ {d}, we have NH(E1) ≤ X.
So NCH1

(y)(E1) = 〈E1, s〉 where s is an element of order at most two in X.
Since [E1, s] < E1, Grün’s Theorem [6, Theorem 4.4] implies that CH1(y) has a
subgroup L of index at least |E1 : [E1, s]| with Sylow 3-subgroup [E1, s]. Since L
is normalized by E, we also have O3′(L) = 1. Hence, if s = 1, then CH(y) ≤ X
which means that CH(y) = E. So suppose that [E1, s] has order 3. Then, as
CH([E1, s]) = E, we have [E1, s] is self-centralizing in L. Applying the other
Feit-Thompson Theorem [5] to L and using O3′(L) = 1, we now have that either
L ∼= Sym(3) with L = NX∩H1([E1, s]) or L ∼= PSL3(2) or Alt(5). The latter two
cases are eliminated as L is normalized by E1 and the centralizers of all of the
non-trivial elements of E1 are soluble. Therefore, CH(y) = CX(y) ≤ X for all
y ∈ E \ E1.

Now let R ∈ Syl2(X) and r ∈ R be an involution. Then CX(r) = R〈d, y〉 for
some y ∈ E \ E1. Furthermore, as d is the unique conjugate of d ∈ 〈d, y〉,

NCH(r)(〈d, y〉) = NX(〈d, y, r〉) = 〈d, y, r〉
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and so CH(r) has a normal 3-complement U by Burnside’s Theorem. Finally

U = 〈CU(w) | w ∈ 〈d, y〉#〉 ≤ X

as CH(w) ≤ X for each w ∈ 〈d, y〉#. It follows that U = R. But then R ∈ Syl2(H)
and r ∈ Z∗(H) by [2]. As [O3(X), r] = O3(X), we conclude O3(X) ≤ O2′(X) and
deduce H = X from the Frattini Argument. This completes the proof of the
lemma. �

Theorem 2.6 (Hayden). Suppose that X is isomorphic to the centralizer of a
non-trivial 3-central element in PSp4(3) and that H is a group with an element
d such that CH(d) ∼= X. Let P ∈ Syl3(CH(d)) and E be the elementary abelian
subgroup of P of order 27. If E does not normalize any non-trivial 3′-subgroup of
H and d is not H-conjugate to its inverse, then either H = X or H ∼= PSp4(3).

Proof. By [9] either H ∼= PSp4(3) or H has a normal subgroup of index 3. The
result now follows from Lemma 2.5. �

Theorem 2.7 (A. Prince). Suppose that Y is isomorphic to the centralizer of
3-central element of order 3 in PSp4(3) and that X is a finite group with a non-
trivial element d such that CX(d) ∼= Y . Let P ∈ Syl3(CX(d)) and E be the
elementary abelian subgroup of P of order 27. If E does not normalize any non-
trivial 3′-subgroup of X and d is X-conjugate to its inverse, then either

(i) |X : CX(d)| = 2;
(ii) X is isomorphic to Aut(SU4(2)); or
(iii) X is isomorphic to Sp6(2).

Proof. See [16, Theorem 2]. �

Lemma 2.8. Let G be a finite group and S be a Sylow 3-subgroup of G. Set
Z = Z(S) and M = NG(Z). Suppose that G∗ is a normal subgroup of G and set
M∗ = M ∩G∗. Assume that the following hold:

(i) |M∗| = 27.36;
(ii) M∗ ≥ QR = O3,2(M∗), where Q is extraspecial of order 35;
(iii) O2(M∗) = (S ∩M∗)R has index 2 in M∗; and
(iv) Q/Z is a M∗-chief factor.

If NG∗(J ∩G∗) 6≤M∗, then G∗ ∼= PSU6(2) and G is a subgroup of Aut(PSU6(2))
such that G/G∗ ∼= M/M∗.

Proof. Since NG∗(J ∩G∗) 6≤M∗, Z is not weakly closed in S∩G∗. The conditions
imposed on the structure of M∗ mean that M∗ is similar to a 3-normalizer in
PSU6(2) [12, Definition 1]. Hence [12, Theorem 1] gives the result. �

Lemma 2.9. Suppose that E is an extraspecial 2-group and x ∈ Aut(E) is an
involution. If CE(x) ≥ [E, x], then [E, x] is elementary abelian.
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Aut(SU4(2)) Sp6(2) dimCV (uj)
u1 21+4

+ .(Sym(3)× Sym(3)) 29.(Sym(3)× Sym(3)) 2
u2 26.3 27.3 4
u3 2× Sym(6) 25.Sym(6) 4
u4 2× (Sym(4)× 2) 29.3 4
Table 1. Involutions in Sp6(2) and Aut(SU4(2)). The involutions
in the first row are the unitary transvections. The involutions in
the last two rows are those which are in Aut(SU4(2)) \ SU4(2).

Proof. Let 〈e〉 = Z(E). We show that every element of [E, x] has order 2. Let
f ∈ [E, x]. Then fe has the same order as f . Thus we may suppose that f = [h, x]
for some h ∈ E. As x[h, x] = [h, x]x by hypothesis, we have

f 2 = [h, x][h, x] = h−1xhx[h, x] = h−1xh[h, x]x

= h−1xhh−1xhxx = 1

as required. This proves the lemma. �

For use in Lemma 2.11 and Section 6, we collect some facts about the action of
Sp6(2) and Aut(SU4(2)) on their irreducible 8-dimensional module V over GF(2).
Recall that Aut(SU4(2)) ∼= O−6 (2) is a subgroup of Sp6(2) [3, page 46]. We will
frequently use that fact that as SU4(2)-module, V is the natural 4-dimensional
GF(4)SU4(2)-module regarded as a module over GF(2). We will often refer to
this as the natural SU4(2)-module.

Proposition 2.10. Let X ∼= Sp6(2) and Y ∼= Aut(SU4(2)). Assume that V is
the 8-dimensional irreducible module for X (and hence Y ) over GF(2). Then the
following hold:

(i) X and Y both possess exactly four conjugacy classes of involutions. In
Table 1 we list the four classes of involutions and give structural infor-
mation about the centralizers in both groups as can be found in [3, page
46,page 26].

(ii) X and Y have orbits of length 135 and 120 on the non-zero elements
of V . We call elements of the orbits non-singular and singular vectors
respectively. Suppose that x is singular and y is non-singular. Then

|CY (x)| = 27 · 3, |CX(x)| = 29 · 3 · 7.
CY (y) ∼= 31+2

+ .SDih(16), CX(y) ∼= G2(2).

(iii) X and Y both have exactly three conjugacy classes of elements of order
3. They are distinguished by their action on V . They have centralizers of
dimension 0, 2 and 4. The elements with centralizer of dimension 2 are
3-central and centralize only non-singular vectors in V #.
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(iv) For u ∈ Y an involution, dimCV (u) is given in column 4 of Table 1.
(v) Let u be a unitary transvection. Then CY ′(u) acts on CV (u)/[V, u] with

orbits of length 1, 6 and 9.
(vi) If u is a unitary transvection, S2 ≤ CY (u) has order 3 and CCV (u)/[V,u](S2) 6=

0, then dimCV (S2) = 2.
(vii) For S ∈ Syl2(Y ), V has a unique subspace of each dimension which is

S-invariant.
(viii) Y does not contain a fours group all of whose non-trivial elements are

unitary transvections.
(ix) CV (u4) is generated by non-singular vectors.

Proof. (i) From [3, page 27, page 47], we see that Aut(SU4(2)) and Sp6(2) both
possess exactly four conjugacy classes of involutions.

(ii) By Witt’s lemma Y has exactly two orbits on the non-zero elements of V #

and they correspond to the singular and the non-singular vectors. Since 28 − 1
does not divide |X|, these orbits are also orbits under the action of X. Since the
lengths of the orbits are 135 and 120, using [3, page 26, page 46] we get the given
structure of the stabilizers.

(iii) As Y contains a Sylow 3-subgroup of X, we find representatives of all
X-conjugacy classes of elements of order 3 in Y . By [3, page 27] there are exactly
three conjugacy classes of elements of order 3 in Y , which we easily distinguish
by their action on V . We have elements, which are fixed point free, which have
centralizer of dimension 2 and those which have centralizer of dimension 4. In
particular, these elements are not fused in X.

Let d ∈ Y have 2-dimensional fixed space on V . Then as CV (d) is perpendicu-
lar to [V, d] we deduce that CV (d) is non-singular (a 1-dimensional non-singular
GF(4)-space).

(iv) For the unitary transvection u we have that dim[V, u] = 2. Suppose that u
is not a unitary transvection but u ∈ Y ′. Then, as V supports the structure of a
vector space over GF(4), we have that [V, u] is 2-dimensional and so dim[V, u] = 4.
If u is an involution in Y \ Y ′, then we see that it induces a field automorphism
on Y ′ and so again dim[V, u] = 4.

(v) Let u be a unitary transvection. Then CY ′(u) acts on CV (u)/[V, u] as the
group GU2(2) ∼= Sym(3) × 3 and has three orbits one of length 1, one of length
6 and one of length 9.

(vi) From (v), a Sylow 3-subgroup S1 of CY ′(u) contains two subgroups of order
3 whose centralizer in CV (u)/[V, u] is of order 4 and two which are fixed point
free. As the elements of order three in CY ′(u) act the same way on [V, u] as on
V/CV (u), the elements with fixed points on CV (u)/[V, u] have centralizer in V
of dimension 2, as by (iii) there are no elements of order three which centralize
a subspace of dimension 6. Now by coprime action we get that one subgroup of
order three in S1 centralizes in V a subspace of dimension 4 and acts fixed point
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freely on CV (u)/[V, u], one acts fixed point freely V and the other two centralize
a subspace of dimension 2 in V .

(vii) Let S ∈ Syl2(Y ) and S1 = S∩Y ′. Then, as V is the natural 4-dimensional
unitary module for Y ′, we have that S1 fixes unique subspace of GF(2)- dimension
2, 4 and 6. Since S contains a field automorphism, we now get the result.

(viii) Suppose that F = 〈x1, x2〉 is a fours group with all non-trivial elements
unitary transvections. Then, as x3 = x1x2, is also a unitary transvection, we get
that CV (x1) = CV (x2). But then CV (x1) is normalized by 〈CY (x1), CY (x2)〉 = Y ,
which is impossible.

(xi) Let y be a non-singular vector. By (ii), we have that CY (y) ∼= 31+2
+ .GL2(3).

This group contains an involution u in Y \Y . If u is conjugate to u3 (in Table 1),
then CY ′(u) ∼= Sym(6) acts transitively on CV (u)# and so CV (u)# contains only
non-singular vectors. Since dimCV (u) = 4, this is impossible. Therefore v is
conjugate to u4 and y ∈ CV (u) = [V, u]. Since CCY ′ (y)(u) has order 6, there
are eight conjugates of y in CV (u). Hence CV (u) is generated by non-singular
elements. �

In the next lemma the group denoted by (SU4(2)× 3):2 the subgroup of index
2 in Aut(SU4(2))× Sym(3) which is not expressible as a direct product.

Lemma 2.11. Assume that G is a group, t ∈ G is an involution, H = CG(t) and
Q = F ∗(H) is extraspecial of order 29. If H/Q ∼= Aut(SU4(2)) or (SU4(2)× 3):2
and Q/〈t〉 is the natural F ∗(H/Q)–module, then G has a subgroup of index 2.

Proof. We let S ∈ Syl2(H) and note that, as Z(S) = Z(Q) = 〈t〉, we have
S ∈ Syl2(G). Let H = H/〈t〉. We first show that

(2.11.1) tG ∩Q = {t}.

Assume that u ∼G t with u ∈ Q \ 〈t〉. Then u is singular in Q and so we may
suppose that 〈u〉 = Z(S). Now CQ(u) contains an extraspecial group of order 27.
As there is no such subgroup in H/Q, we have that t ∈ Qu = O2(CG(u)). Note
that Φ(Qu ∩ Q) ≤ 〈u〉 ∩ 〈t〉 = 1. Hence Qu ∩ Q is elementary abelian. As Q is
extraspecial of order 29, we deduce that |Q∩Qu| ≤ 25. Since the 2-rank of H/Q is
4 and |CQu(t)| = 28, we infer that |Q∩Qu| is either 24 or 25. Furthermore, because
CH(u)Q ≥ S, we have that Q∩Qu is a normal subgroup of S. We know that Q is
a GF(4)-module for F ∗(H/Q). Let U be the one-dimensional GF(4)-space in Q
containing u, U be its preimage in H and set R = CG(U). Since U , Qu ∩Q and
R are normalized by S, Proposition 2.10 (viii) implies U ≤ Qu ∩Q ≤ R. Assume
that |Qu ∩ Q| = 25. Then, as (Qu ∩ H)Q is a normal subgroup of CH(u)Q and
the subgroups of Q containing Q∩Qu are non-abelian, there exists an involution
w ∈ Qu such that 〈wQ〉 = Z(S/Q) is the unitary transvection group centralizing
R (again using Proposition 2.10 (viii)). Thus we have

[Qu ∩Q,w] ≤ [R,w] ∩ 〈u〉 = 〈t〉 ∩ 〈u〉 = 1,
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which is impossible as Qu ∩Q is a maximal abelian subgroup of Qu. Thus |Qu ∩
Q| = 24. Since |(Qu ∩ Q)/U | = 2, we now have a contradiction to the fact that
CR/U(CH(u)) = 1 by Proposition 2.10 (v). Thus (2.11.1) holds.

By Proposition 2.10 (i), H/Q has exactly two conjugacy classes of involutions
not in H ′/Q. We choose representatives x̃, ỹ ∈ S/Q for these conjugacy classes
and fix notation so that CF ∗(H/Q)(x̃) ∼= Sp4(2) and CF ∗(H/Q)(ỹ) ∼= 2 × Sym(4).

We have that |[Q, x̃]| = |[Q, ỹ]| = 24 by Proposition 2.10 (iv). Let z ∈ H with
z2 ∈ 〈t〉 be such that zQ is either x̃ or ỹ. Then CH(z)Q/Q = CH/Q(zQ). Let T ∈
Syl2(CH(z)). Then T ′∩Z(T ) ≤ T ∩H ′ and Z(T )∩H ′ ≤ Q as Z(T ) = 〈z, CQ(z)〉.
Thus, by (2.11.1), we have tG ∩ T ′ ∩Z(T ) = {t}. In particular, T ∈ Syl2(CG(z)).
It follows that z is not conjugate to t in G and that tG ∩ Z(T ) = {t}. We record
these observations as follows:

(2.11.2) Let z ∈ S \ (S ∩H ′) be such that z2 ∈ 〈t〉 and T ∈ Syl2(CH(z)). Then
T ∈ Syl2(CG(z)), tG ∩ Z(T ) = {t} and tG ∩H ⊂ H ′.

Now let z1 ∈ S be such that z1Q = x̃. Since CH/Q(z1Q) contains an element

fQ of order 5 with f of order 5 acting fixed point freely on Q, we see that
CQ〈z〉(f) has order 4. Let z ∈ CQ(f) have minimal order so that zQ = z1Q. Then
z2 ∈ 〈t〉. Suppose that g ∈ G and zg ∈ S ∩H ′ is extremal in S. Then CS(zg) ∈
Syl2(CG(zg)). Now let T ∈ Syl2(CH(z)). Then T ∈ Syl2(CG(z)) by (2.11.2). Hence
T g ∈ Syl2(CG(zg)) and there is a w ∈ CG(zg) such that T gw = CS(zg). Now, by
(2.11.2), tG∩Z(T gw) = {tgw} and of course tG∩CS(zg) = {t} as t ∈ Z(H). Thus
gw ∈ H, which is impossible as z ∈ H \H ′, zg ∈ H ′ and zgw = zg. Hence there
are no extremal conjugates of z in S ∩H ′. Since also z2 ∈ 〈t〉 and tG ∩H ⊂ H ′,
Theorem 2.1 implies that G has a subgroup of index 2 as claimed. �

3. The finer structure of M

Suppose that G is a group, Z ≤ G has order 3 and set M = NG(Z). Assume
that M is similar to a 3-normalizer in a group of type PSU6(2). Let S ∈ Syl3(M)
and Q = F ∗(M) = O3(M).

Lemma 3.1. The following hold.

(i) Z = Z(S) = Z(Q), NG(S) ≤M and S ∈ Syl3(G);
(ii) 3 ≤ |S/Q| ≤ 32;
(iii) Q has exponent 3; and
(iv) the commutator map from Q/Z × Q/Z to Z is an M/Z-invariant non-

degenerate symplectic form.

Proof. (i) Since CM(Q) ≤ Q, we have that Z = Z(Q) = Z(S). ThereforeNG(S) ≤
NG(Z) = M and, in particular, S ∈ Syl3(NG(S)) ⊆ Syl3(G).

(ii) This follows straight from the definition of a 3-normalizer in a group of
type PSU6(2).
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(iii) Since Q/Z is a chief factor, Q has exponent 3.
(iv) See [10, III(13.7)].

�

By definition M = M/Q is isomorphic to a subgroup of index at most 6
in the subgroup of GSp4(3) which preserves a decomposition of the natural 4-
dimensional symplectic space into a perpendicular sum of two non-degenerate
2-spaces. We first describe this subgroup of GSp4(3). We denote it by M the
boldface type is supposed to indicate that this is a subgroup of GSp4(3) which
contains (the image of) M but may be greater than it. Similarly S is a Sylow
3-subgroup of M which contains S.

We have M contains a subgroup of index 2 which is contained in Sp4(3) and
is isomorphic to the wreath product of Sp2(3) ∼= SL2(3) by a group of order 2.
For i = 1, 2, we let Mi

∼= SL2(3), Ri = O2(Mi) ∼= Q8 and Si = S ∩Mi. We
let t1 be an involution in M which negates the symplectic form and normalizes
S1 and S2. Note that, for i = 1, 2, Mi〈t1〉 ∼= GSp2(3) ∼= GL2(3). Next select an
involution t2 which commutes with t1, preserves the symplectic form, normalizes
S and conjugates M1 to M2. With this notation we have

M = M1M2〈t1, t2〉.

Now M is a subgroup of M which has index at most 6. In particular, S has
index at most 3 in S. Since R1R2 is contained in all subgroups of M of index 6,
M contains subgroups R1 and R2 isomorphic to Q8 such that [R1, R2] = 1 and
Ri = Ri for i = 1 and 2. Set R = R1R2. Let T ∈ Syl2(M) with T ≥ R. Since
M acts irreducibly on Q/Z, there is an involution t in T which maps to either
t2 or t1t2. We denote this involution by t2 or t1t2 as appropriate. If T > 〈t〉R,
then T contains an involution t1 which maps to t1M1M2. Finally, note that if
|T | = 27, NM(S) = Z(R)S〈t〉 and if |T | = 28, then NM(S) = Z(R)S〈t1, t2〉. This
discussion proves the following lemma.

Lemma 3.2. There are exactly three possibilities for a Sylow 2-subgroup T of M .
Moreover, the following hold. are as follows:

(i) T = R〈t2〉, NM(S) = SZ(R)〈t2〉 and NM(S)/S ∼= Dih(8);
(ii) T = R〈t1t2〉, NM(S) = SZ(R)〈t1t2〉 and NM(S)/S ∼= Dih(8); and

(iii) T = R〈t1, t2〉, NM(S) = SZ(R)〈t1, t2〉 and NM(S)/S ∼= 2×Dih(8). �

For i = 1, 2, let ri ∈ Z(Ri)
# and set Qi = [Q, ri] = [Q,Ri]. Note that, as

r1r2 ∈ Z(M) and Q/Z is irreducible as an M -module, r1r2 inverts Q/Z. Let A
be the preimage of CQ/Z(S). So A is the second centre of S.

Lemma 3.3. The following hold.

(i) Q1 = [Q,R1] = CQ(R2), Q2 = [Q,R2] = CQ(R1) and both are normal in
S;

(ii) Q1
∼= Q2

∼= 31+2
+ , [Q1, Q2] = 1 and Q = Q1Q2;
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(iii) A = [Q,S] = [Q1, S][Q2, S] is elementary abelian of order 33; and

Proof. (i) This follows directly from the action of M on Q as R1 and R2 are
normalized by S.

(ii) We have that CQ(r1) and [Q, r1] commute by the Three Subgroup Lemma.
Since, for i = 1, 2, [Q, ri] = [Q,Ri] has order 33 it follows that Q1

∼= 31+2
+ . As r1r2

inverts Q/Z, r2 inverts CQ/Z(r1) and so CQ(r1) = Q2. In particular, Q1 and Q2

commute and Q = Q1Q2.
(iii) From the description of M/Q, we have A = [Q1, S][Q2, S]. Since [Q1, S]

and [Q2, S] have order 9, they are elementary abelian. Hence A is elementary
abelian of order 33 by (ii). �

Because, for i = 1, 2, ri inverts Qi/Z, if M happens to contain the involution
t1, we may and do adjust t1 by multiplying by elements from Z(R) so that t1
inverts A/Z. Therefore

Lemma 3.4. If |M |2 = 28, then t1 inverts A and centralizes Q/A. �

We now define a subgroup which will play a prominent role in all the future
investigations. Set

J = CS(A).

It will turn out that J is the Thompson subgroup of S.

Lemma 3.5. The following hold:

(i) |S : J | = 32, J ∩Q = A and S = JQ;
(ii) if |M |2 = 28, NM(J)/J ∼= 2 × 32:Dih(8), t1 inverts J and J is abelian;

and
(iii) if |M |2 = 27, NM(J)/J ∼= 32:Dih(8).

Proof. By Lemma 3.3(iii), A is elementary abelian of order 33. Furthermore, by
the definition of J , J is a normal subgroup of NM(S). Since [S,A] = Z, the
3-structure of GL3(3) shows that |S/J | ≤ 32. As J ∩ Q = CQ(A) = A, we infer
that |S : J | = 32 and S = JQ. Thus (i) holds.

As NM(J) = NM(J ∩ Q) = NM(A) and [S,A] = Z, we see NM(S) = NM(J)
and so (iii) and the first assertion of (ii) follow from Lemma 3.2. Suppose that
|M |2 = 28. Then t1 ∈ M . Now t1 inverts S/Q, centralizes Q/A and inverts A by
Lemma 3.4. Thus t1 inverts J and so J is abelian. This concludes the proof of
(ii) and completes the verification of the lemma. �

Note that |J | = 34 if |S/Q| = 3 and |J | = 35 if |S/J | = 32.

Lemma 3.6. We have CG(J) = J .

Proof. As Z ≤ J , we have CG(J) = CM(J). Then, as JQ = S by Lemma 3.5(i),
we have CM(J)Q/Q ≤ CM/Q(S/Q) and the result follows from Lemma 3.5 (ii)
and (iii) and the definition of J .

�
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Lemma 3.7. Every element of Q is conjugate in M to an element of A.

Proof. It suffices to prove that every element of Q/Z is conjugate to an element
of A/Z. Let w ∈ Q/Z. Then w = x1x2 where xi ∈ Qi/Z by Lemma 3.3 (ii). Since,
by Lemma 3.3 (iii), for i = 1, 2, (A ∩Qi)/Z has order 3 and Ri acts transitively
on Qi/Z, there exists ui ∈ Ri such that wu1u2 = xu1

1 x
u2
2 ∈ A/Z. This proves the

claim. �

4. The structure of the normalizer in G of J

For the remainder of the paper assume the hypothesis of the Theorem 1.2.
Thus we have M,Q, S and Z as in Section 3 and additionally we have that Z
is weakly closed in Q and not in M . In this section we determine the possible
structures of NG(J).

Lemma 4.1. If Z is not weakly closed in J , then J is elementary abelian and
coincides with the Thompson subgroup of S. In particular, NG(J) controls fusion
in J .

Proof. Choose X ∈ ZG with X 6= Z and X ≤ J . Set K = AX. As Z is weakly
closed in Q and J = CS(A), we have that K is elementary abelian of order 34. In
particular, if |J | = 34, then K = J is elementary abelian.

Suppose that |J | = 35, then |J : K| = 3 and |S/Q| = 32. We claim that J
is abelian. Set QX = O3(NG(X)). As K has index 3 in J , K is normal in J
and, as [Q,X] ≤ A, K is normalized by Q. Therefore K is normal in S = JQ
by Lemma 3.5 (i). If CS(X) = K, then |XS| = 33 and, in particular, every el-
ement of K which is not conjugate to an element of Z is contained in A. Now
K ∩QX has order either 32 or 33 and, so, as X is weakly closed in QX , K ∩QX

is generated by elements which are not conjugate to elements of Z. It follows
that X ≤ K ∩ QX ≤ A and this contradicts X 6≤ Q. Therefore CS(X) 6= K. If
CS(X) 6≤ J , then Z = [A,CS(X)] ≤ CS(X)′ ≤ QX and this contradicts the fact
that X is weakly closed in QX . So CS(X) ≤ J . But then we have K ≤ Z(J) and
so J is abelian as claimed.

Suppose that B ≤ S is abelian and |B| ≥ |J |. Then, as |B ∩Q| ≤ 33, we have
BQ = S and then (B ∩ Q)/Z ≤ CQ/Z(S) = A/Z. Thus B ≤ CS(A) = J . Hence
J is the Thompson subgroup of S. It follows that NM(J) controls fusion in J . In
particular, X and Z are conjugate in NM(J). Since Φ(J) ≤ A, X 6≤ Φ(J) and
hence Z 6≤ Φ(J). Therefore Z(S) ∩ Φ(J) = 1. As Φ(J) is normal in S, we get
Φ(J) = 1 and J is elementary abelian. This completes the proof of the lemma. �

Lemma 4.2. Assume that Z is not weakly closed in J and set J0 = 〈ZNG(J)〉.
Then

(i) |ZNG(J)| = 10 and, if X ∈ ZNG(J) with X 6= Z, |XQ| = 32;
(ii) NG(J) acts two transitively on ZNG(J); and
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(iii) |J0Q/Q| = 3 and J0Q/Q is normalized by NM(S)/Q.

Proof. Let Y = ZNG(J) and X ∈ Y with X 6= Z. Of course X 6≤ Q as Z is weakly
closed in Q. If CQ(X) 6≤ J , then, as X centralizes A, CQ(X) has order 81 and
consequently is non-abelian and we have Z = CQ(X)′ ≤ O3(CG(X)). However
X is weakly closed in O3(CG(X)) with respect to G and so this is impossible.
Thus CQ(X) = A has order 33 and, in particular, XS = XJQ = XQ has order
32 and so |Y| ≡ 1 (mod 9). Since NG(J) controls fusion in J by Lemma 4.1,
NG(J) acts transitively on Y and |NG(J)/J | = |NM(J)/J ||Y| by Lemma 3.6. As
|J | = 34 or 35 and J is self-centralizing and elementary abelian by Lemmas 3.6
and 4.1, |NG(J)/J | divides |GL5(3)|. If |J | = 34, then, as no subgroup of order
three in A which is not Z is conjugate to Z, J contains at most 28 conjugates of
Z. This means that |Y| = 10, 19 or 28. On the other hand, |GL4(3)|3′ = 29 · 5 · 13
and so in this case |Y| = 10. So assume from now on that |J | = 35. Then J
contains 121 subgroups of order 3 and 12 of these are contained in A and are not
conjugate to Z as Z is weakly closed in Q. Since |GL5(3)|3′ = 210 · 5 · 112 · 13 and
|Y| ≡ 1 (mod 9), the only candidates for |Y| are 10, 55 and 64. We recall from
Lemma 3.5 that |NM(J)/J | = 2i · 32 where i = {3, 4} and, if |NM(J)/J | = 24 · 32,
then t1J ∈ Z(NG(J)/J) by 3.5(ii) and therefore t1 normalizes every member of
Y .

Suppose that |Y| = 55. Then |NG(J)/J | = 2i · 32 · 5 · 11 where i ∈ {3, 4}. Let
E ∈ Syl11(NG(J)/J). Then, as the normalizer of a cyclic subgroup of order 11 in
GL5(3) has order 2·5·112, the normalizer in NG(J)/J of E has order dividing 110.
In particular, E is not normal in NG(J)/J . If |NM(J)|2 = 24, then t1J normalizes
E. So in any case the number of conjugates of E in NG(J)/J divides 23 · 32 · 5
and is divisible by 22 · 32 and this is impossible as it must also be equivalent to
1 mod 11.

Suppose that |Y| = 64. Then |NG(J)/J | = 210 · 32 or 29 · 32. In particular,
NG(J) is soluble. Since |Y| = 64, we have that J = 〈Y〉. If 1 6= K ≤ J is normal
in NG(J), then K is normal in S and consequently Z ≤ K. But then Y ⊆ K and
so K = J . Thus NG(J) acts irreducibly on J . Since J = 35 and NG(J)/J is not
abelian, Schur’s Lemma implies that |Z(NG(J)/J)| divides 2 and, additionally,
O3(NG(J)/J) = 1. Let L = O3,2(NG(J)). By Clifford’s Theorem [6, Theorem
4.3.1], J is completely irreducible as an L-module and NG(J) acts transitively
on the homogeneous summands of J restricted to L. Since J has dimension 5
as a GF(3)NG(J)-module, and 5 does not divide |NG(J)|, we have that J is
homogeneous as an L-module. It follows that J is either a direct sum of five
1-dimensional L-modules or is irreducible as an L-module. It the first case, we
get that [L,NG(J)] ≤ J and this contradicts O3(NG(J)) = Q. Thus J is an
irreducible L-module. However, the degrees of irreducible L/Q-modules over the
algebraic closure of GF(3) are all powers of 2 [11, 15.13] and this again implies
that L is cyclic and O3(NG(J)) > Q. Since |Y| 6= 55 or 64, we must have |Y| = 10
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as claimed in the first part of (i). Since we have also shown that CQ(X) = A the
remaining parts of (i) also hold.

Part (ii) follows directly from (i).
Now with J0 = 〈ZNG(J)〉, we have 〈XQ〉Q = XQ is normalized by NM(S) and
|XQ/Q| = 3. This is (iii). �

Lemma 4.3. Suppose that X ∈ ZG \ {Z} and X ≤ S. Then, for i = 1, 2,
[X,Ri] 6≤ Q.

Proof. We suppose that [X,R1] ≤ Q and seek a contradiction. LetQX = O3(NG(X))
and W be the full preimage of CQ/Z(X). Then |W | = 34. Since R1 acts ir-
reducibly on Q1/Z and [Q1, QX] is R1-invariant, we have Q1 ≤ W . Hence
W = Q1A ∼= 3× 31+2

+ and Z(W ) = A ∩Q2.
If CW (X) is non-abelian, then, as CW (X)QX/QX is abelian, Z = CW (X)′ ≤

QX . Since X is weakly closed in QX by assumption and Z 6= X, we have a
contradiction.

Thus CW (X) is abelian. Since W is non-abelian and XZ is normalized by W ,
we get that |CW (X)| = 33. Because CW (X) is abelian and W is not, it follows that
A∩Q2 ≤ CW (X). Furthermore, we have |CW (X)∩Q1| = 32 and thus, as R1 acts
transitively on the subgroups of order 9 in Q1, we may adjust X by conjugating
by an element of R1 and arrange for W ∩ Q1 = A ∩ Q1. But then W = A and
X ≤ J . Put J0 = 〈XNG(J)〉. Then by Lemma 4.2 (ii) J0Q = XQ is normalized by
NM(S). Since NM(S) does not normalize R1, we have [X,R1R2] ≤ Q, and this
contradicts the structure of M . Therefore [X,Ri] 6≤ Q for both i = 1 and 2. �

Lemma 4.4. Assume that X ∈ ZG with X ≤ S. Then X ≤ J . In particular, Z
is not weakly closed in J .

Proof. Suppose that X ≤ S and X 6≤ J . Then [A,X] = Z and |CA(X)| =
32. By Lemma 4.3 , XQ acts non-trivially on both R1Q/Q and R2Q/Q and so
CA(X) = CQ(X). On the other hand AX is normalized by Q and so AX contains
at least, and hence exactly, 28 conjugates of Z. In particular, CA(X)X contains
10 conjugates of Z and three subgroups of order 3 which are not conjugate to Z.
Set QX = O3(NG(X)). Then the only conjugate of Z contained in CA(X)X ∩QX

is X. Since the subgroups of order 3 in CA(X) which are not conjugate to Z
generate CA(X), we get CA(X)X ∩ QX = X. So |CA(X)QX/QX | = 32. By
Lemma 4.3 two of the non-trivial cyclic subgroups CA(X)QX/QX do not have
representatives from ZG. Since CA(X)X contains only three subgroups of order
3 which are not conjugate to Z, we have a contradiction. Therefore, if X ∈ ZG

and X ≤ S, X ≤ J as claimed. �

Set
J0 = 〈ZNG(J)〉.

By Lemmas 4.2, 4.3 and 4.4, we have |J0Q/Q| = 3, J0 ∩Q = A and J0Q/Q does
not centralize either R1Q/Q or R2Q/Q. In particular, |J0| = 34. We record these
facts in the first part of the next lemma.
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Lemma 4.5. The following hold.

(i) |J0| = 34, |J0Q/Q| = 3, J0 ∩ Q = A and J0Q/Q acts non-trivially on
both R1Q/Q and R2Q/Q;

(ii) NG(J) = NG(J0); and
(iii) CG(J0) = CG(J) = J .

Proof. From the construction of J0 we have NG(J0) ≥ NG(J). Since NG(J)
is transitive on the subgroups of J which are G-conjugate to Z, we get that
NG(J0) = NG(J)NM(J0). Hence, as NM(J0Q) = NM(S) ≤ NG(J), (ii) holds.
Obviously CG(J0) ≤ CM(J0) ≤ CM(A) = J so (iii) also holds. �

Define F = O2(NG(J))〈r2〉. Then

Theorem 4.6. The following hold:

(i) The action of NG(J) on J0 preserves a non-degenerate quadratic form q
of −-type;

(ii) ZNG(J) is the set of singular one-dimensional subspaces with respect to q;
(iii) NG(J)/J ∼= 2× Sym(6) or Sym(6); and
(iv) F/J ∼= Sym(6) and |[J, r2]| = 3. Furthermore [r2, J ] ≤ J0 and [J, F ] ≤ J0.

Proof. Let X ≤ J be conjugate to Z but not equal Z. For i = 1, 2, using
Lemma 4.5 (i), we have that |[J0, Qi]| = 32 and [J0, Qi, Qi] = Z. Furthermore,
[J0, Qi] is centralized by Q3−i. Hence we have [J0, Qi] = CJ0(Q3−i). By Lemma 2.4,
there exists a non-degenerate quadratic form q on J0 which is preserved by Q and
such that the elements of X are singular vectors. It follows that with respect to q,
the elements of

⋃
XQ are singular. Furthermore, as Z = CJ0(Q), Z also consists

of singular vectors. Now with respect to the form bilinear for f associated with q,
none of the non-trivial elements of

⋃
XQ are perpendicular to the non-trivial el-

ements of Z. It follows that XZ contains exactly two singular subspace, namely
X and Z. Since NG(J) acts two transitively on ZNG(J) by Lemma 4.2 (ii), we
infer that if X, Y ∈ ZNG(J) with X 6= Y , then XY contains exactly two mem-
bers of ZNG(J). Now suppose that a ∈ Q \ J is such that aJ acts quadratically
on J0. Then, for X ∈ ZNG(J) \ Z, X centralizes [J0, a] and normalizes [J0, a]〈a〉
and so |[X, a]| = 3 as [X, a] 6= 1. It follows that X[X, a] contains three members

of ZNG(J) namely X, Xa and Xa2
. This contradiction shows that no non-trivial

element of S/J acts quadratically on J0. If q was of +-type, this would not be
the case. Hence q is of −-type. We now have that ZNG(J) is the set of singu-
lar one spaces in J0 with respect to q. Since NG(J) preserves this set, we have
that NG(J)/J is isomorphic to a subgroup of GO−4 (3) from Lemma 2.3. Because
NNG(J)(Z) has index 10 in NG(J), we deduce that |NG(J)| = 24.5.32 if either
Lemma 3.2 (i) or (ii) holds and |NG(J)| = 25.5.32 if Lemma 3.2 (iii) holds. In
particular, O2(NG(J)/J) ∼= Ω−4 (3) ∼= Alt(6). Now using the structure of NM(S)
given in Lemma 3.2 we infer that NG(J)/J ∼= Sym(6) or GO−4 (3) ∼= 2× Sym(6).
We have now established (i), (ii) and (iii).
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We know that S/Q = JQ/Q is centralized by r2 and that [Q, r2] = Q2. It
follows that [J, r2] ≤ Q2 ∩ J = A ∩ Q2 and, as [A ∩ Q2, r2] has order 3, we now
have that [J, r2] = [A, r2] is a non-central cyclic subgroup of Q. In particular,
[J, r2] ≤ A ≤ J0. Since |[J0, r2]| = 3 we get that r2 has determinant −1 on J0.
Hence we have r2 6∈ O2(NG(J)) and so we conclude that F/J ∼= Sym(6) and that
all the parts of (iv) hold. �

Theorem 4.7. If NM(S)/S ∼= Dih(8), then G ∼= PSU6(2) or PSU6(2):3.

Proof. Since NM(S)/S ∼= Dih(8), we have that NG(J)/J ∼= Sym(6) from The-
orem 4.6 (ii). Since [J, r2] ≤ J0, we infer that J/J0 is centralized by NM(J). If
J > J0, then, by Lemma 2.2, G has a normal subgroup G∗ at index 3. If J = J0,
then set G = G∗. Now M ∩ G∗ satisfies the hypothesis of Theorem 2.8. Hence
G∗ ∼= PSU6(2) and this proves the theorem. �

In light of Theorem 4.7 and Lemma 3.2, from here on we may assume that
NM(S) = SZ(R)〈t1, t2〉. In particular from Theorem 4.6, we have

NM(S)/S ∼= 2×Dih(8);

NG(J)/J ∼= 2× Sym(6); and

CF/J(r2J) ∼= 2× Sym(4).

Furthermore, as t1 inverts J , we have t1J ∈ Z(NG(J)/J).

Lemma 4.8. We have

CS(Q1) = CS(R1) = CS(Q1R1),

CJ(Q1) = CJ(R1) = CJ(Q1R1)

and |J : CJ(Q1)| = 32.

Proof. We have that [Q1, CS(R1)] is R1-invariant and is a proper subgroup of Q1.
Therefore [Q1, CS(R1)] ≤ Z. Hence [Q1, CS(R1), R1] = 1 and [CS(R1), R1, Q1] = 1
and thus the Three Subgroups Lemma implies that [Q1, R1, CS(R1)] = 1. Since
Q1 = [Q1, R1], we have CS(R1) ≤ CS(Q1). Now, as Q1 is normal in S and
extraspecial of order 33, |S : CS(Q1)Q1| = 3, and so |CS(Q1)| = 34 if |S| = 37

and |CS(Q1)| = 33 if |S| = 36. Since R1 centralizes Q2, we have CS(R1) =
CS(Q1) = Q2 if |S| = 36. If |S| = 37, then, as R1Q is normalized by R1S, we have
|S/CS(R1)Q| = 3 and hence the CS(Q1) = CS(R1) holds in this case as well. Of
course we now have CJ(Q1) = CJ(R1) = CJ(Q1R1).

Since J normalizes R1Q and does not centralize R1Q/Q by Lemma 4.3, Q1 is
normalized by J . Since J is abelian and J ∩ Q1 = A ∩ Q1, we now have that
|J : CJ(Q1)| = 32. �

Notice that r1J and r2J are conjugate in NG(J)/J (by t2J for example) and

〈r1, r2, Q1〉J/J ∼= 2× Sym(3).

In particular, we have r1 ∈ F .
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Let U ≤ F be chosen so that 〈r1, r2, Q1〉J ≤ U and U/J ∼= Sym(5). Sup-
pose that J 6= J0. Since O2(U) is generated by two conjugates of Q1J , and
|J : CJ(Q1)| = 32 by Lemma 4.8, we have that |CJ(O2(U))| = 3. Note, fur-
thermore, that the elements of order 5 act fixed-point-freely on J0 and therefore
CJ(O2(U)) 6≤ J0. Thus, as r2 centralizes J/J0 and normalizes CJ(O2(U)), we get
that CJ(O2(U)) = CJ(U). We have proven

Lemma 4.9. If J 6= J0, then |CJ(U)| = 3 and |CJ(U)F | = |CJ(U)NG(J)| = 6. �

Lemma 4.10. Suppose that B ≤ J0 with |B| = 33. Then B contains a conjugate
of Z.

Proof. Recall that J0 is a non-degenerate quadratic space by Theorem 4.6(i).
Hence this result follows because every subgroup of order 33 in the J0 contains a
singular vector and the singular one-spaces in J0 are G-conjugate to Z. �

We now fix some further notation. First let W = CF (r2). So WJ/J ∼= 2 ×
Sym(4) and J ∩W has index 3 in J by Theorem 4.6 (iv).

If J = J0, set τ = 1, whereas, if J > J0, select τ ∈ CJ(U)#.
Suppose that J > J0. Then τ 6= 1. Let

T = τF = {τ1 = τ, . . . , τ6}

be the six F -conjugates of τ . Then, as [J, r2] has order 3 by Theorem 4.6 (iv),
r2 acts as a transposition on T and r2 centralizes τ (as r2 ∈ U). Since W/J ∼=
2 × Sym(4) and W has orbits of length 2 and 4 on T . It follows that, after
adjusting notation if necessary, τW = {τ1, τ2, τ3, τ4} and τ r2

5 = τ6. We further fix
notation so that Q1 acts as 〈(τ2, τ3, τ4)〉 and, since r1 is conjugate to r2 in NG(J)
and inverts QJ/J , we may suppose that r1 induces the transposition (τ2, τ3) on
τW .

For 1 ≤ i ≤ 4, let

Ji = 〈τj | 1 ≤ j ≤ 4, i 6= j〉.
Then each Ji is centralized by r2 and is a hyperplane of CJ(r2). Further

Ji ∩ Jj = 〈τk | 1 ≤ k ≤ 4, k 6∈ {i, j}〉.

Let ρ ∈ [J, r2]#. Then ρ ∈ (A ∩ Q2) \ Z. Since [J, r1] ≤ A ∩ Q1, we know
[ρ, r1] = 1. From the choice of τ and ρ, we have that 〈Q1, r1〉 and 〈τ, ρ〉 commute.

For J0 = J we have to define the groups J1, J2, J3 and J4 differently. Set
J1 = CA(r2) = A ∩ Q1. So J1 is normalized by 〈r1, r2, Q1, J〉 which has index
4 in W . Since W is not contained in M and Z is the unique element of ZG

contained in J1, we have JW
1 = {J1, J2, J3, J4} and W acts two transitively on

JW
1 . As r1 ∼M r2, all the elements in J1 \ Z are conjugate to ρ. Therefore, as all

the subgroup Ji are centralized by r2, we have that |Ji ∩ Jj| = 3 for all i 6= j and
these intersections are conjugate to 〈ρ〉. We capture some of the salient properties
of these subgroups in the next lemma.
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Lemma 4.11. For 1 ≤ i ≤ 4, Ji ≤ CG(r2) and NNG(J)(Ji) contains a Sylow
3-subgroup of NG(J).

Proof. If J > J0, this is transparent from the construction of the subgroups. In
the case that J = J0, we have already mentioned that the subgroups commute
with r2. Also we have J1 = A ∩ Q1 is normalized by S and as Ji, 2 ≤ i ≤ 4 are
conjugates of J1 in NG(J), we have NNG(J)(Ji) contains a Sylow 3-subgroup of
NG(J). �

Note also that when |J | = 35, ρ ∈ 〈[τ5, r2]〉. It follows that 〈τ5, τ6〉 contains ρ
in this case. When J = J0, of course we have τi = 1. Thus to handle the two
possible cases simultaneously we will consider the group 〈τ5, ρ〉.

Lemma 4.12. 〈τ5, ρ〉 is centralized by JQ1R1. In particular, CG(〈τ5, ρ〉) 6≤M .

Proof. Set X = 〈τ5, ρ〉. If |J | = 34, then X = 〈ρ〉 ≤ A∩Q2 and the lemma holds.
So suppose that |J | = 35. Then X = 〈τ5, τ6〉 is centralized by J . Further, as
{τ5, τ6} is a W -orbit and Q1 ≤ CF (r2) ≤ W , Q1 centralizes X. Since CS(Q1) =
CS(R1) by Lemma 4.8 we now have [X,R1] = 1 and this completes the proof.

Notice that 〈τ5, ρ〉 is centralized by a subgroup of index 2 inW and so CG(〈τ5, ρ〉)
is not contained in M . �

Lemma 4.13. The following hold.

(i) CM(ρ) = JQ1R1〈r2t1〉
(ii) If J > J0, CM(〈τ5, ρ〉) = JQ1R1; and

Proof. We calculate that CM(ρ) contains JQ1R1〈r2t1〉. So (i) holds.
By Lemma 4.12, 〈τ5, ρ〉 is centralized by JQ1R1. Since r2t1 conjugates τ5 to τ6,

part (ii) follows from (i). �

Lemma 4.14. Z is the unique G-conjugate of Z in 〈τ5, ρ, Z〉.

Proof. Since Z is weakly closed in Q, Z is the unique conjugate of Z in 〈Z, ρ〉.
Also, as τ5 is not contained in J0 and all the G-conjugates of Z in J are contained
in J0, there are no G-conjugates of Z in 〈τ5, ρ, Z〉 \ 〈ρ, Z〉. This proves the claim.

�

Lemma 4.15. Assume that J > J0. Then NG(〈r1, r2〉)/CG(〈r1, r2〉) 6∼= Sym(3).

Proof. Let U = 〈r1, r2〉. As J > J0, using the structure of M , we have |CM(U)|3 =
33 and so D = CJ(U) is a Sylow 3-subgroup of CM(U). Since Z ≤ D, we have
CG(D) = CM(Z) = JU which is 3-closed. Therefore, NG(D) ≤ NG(J). Since
r1 and r2 act as transpositions on T , |NNF (J)(DU)/J | = 32 and so we deduce
that D ∈ Syl3(CG(U)). Let P = NNG(U)(D). Then by the Frattini Argument
PCG(U) = NG(U). Therefore, if NG(U)/CG(U) ∼= Sym(3), then r2 and r1r2

are conjugate in P . But P ≤ NG(J), r2 ∈ F \ F ′ and r1r2 ∈ F ′ which is a
contradiction. Hence NG(U)/CG(U) 6∼= Sym(3). �
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5. A further 3-local subgroup and a 2-local subgroup in the
centralizer of an involution

In this section we study the normalizer of 〈τ5, ρ〉 and construct a 2-local sub-
group of CG(r2).

Lemma 5.1. We have IG(J0, 3
′) = {1}.

Proof. Suppose that 1 6= Y ∈ IG(J0, 3
′). Then, as every hyperplane of J0 con-

tains a conjugate of Z by Lemma 4.10, we may assume that X = CY (Z) 6= 1.
So X ∈ IM(J0, 3

′). As X is normalized by A = J0 ∩ Q and X normalizes Q,
[A,X] ≤ Q ∩ X = 1 and hence, as X 6= 1, X ≤ CM(A) = J〈t1〉 and X is con-
jugate to 〈t1〉. Therefore, J centralizes X. Since CG(J0) = J by Lemma 4.5 (iii),
this is impossible. Hence IG(J0, 3

′) = {1}. �

Lemma 5.2. Assume J = J0. Then CG(ρ) 6∼= 〈ρ〉 × Sp6(2).

Proof. Suppose that CG(ρ) ∼= 〈ρ〉×Sp6(2). Set E = E(CG(ρ)). Then E ∼= Sp6(2).
We have that r2 inverts ρ and centralizes in J/〈r2〉, so as J ∩ E has order 33

and CE(J ∩ E) = J ∩ E, r2 induces the trivial automorphism on E. Hence
NG(〈ρ〉) ∼= Sym(3) × E and [E, r2] = 1. In E ∩ J there is an element ρ̃ with
NE(〈ρ̃〉) ∼= Sp2(2) × Sp4(2). Hence NNG(J)(〈ρ〉) ∩ NNG(J)(〈ρ̃〉) contains a Sylow
2-subgroup T of NG(J). Now 〈ρ, ρ̃〉 = CJ(i), where i ∈ T ′ ≤ F ′. But such
involutions centralize some conjugate of Z (as CJ(i) is a +-space with respect to
the quadratic form from Theorem 4.6 (i)), and so 〈ρ, ρ̃〉 contains a conjugate of
Z. This then contradicts the fact that M does not involve Alt(6). �

Lemma 5.3. Let B be a maximal subgroup of 〈τ5, ρ, Z〉 and assume that CG(B) 6≤
M . Then B ∈ 〈τ5, ρ〉Q2 and either

(i) J > J0 and CG(B) ∼= B × SU4(2); or
(ii) J = J0 and CG(ρ) ∼= 〈ρ〉 × Aut(SU4(2)).

Proof. Set U = 〈Z, τ5, ρ〉, let B be a maximal subgroup of U , X = CG(B) and

X̃ = X/B. Assume that X 6≤ M . By Lemma 4.14, Z is the unique conjugate of

Z in U and so, as CG(B) 6≤M , U = ZB and ÑX(Z) = NX̃(Z̃).
Assume that J > J0. Then, by Lemma 4.13, NX(Z) = X ∩M = JQ1R1 and so

ÑX(Z) = NX̃(Z̃) = J̃R1Q1
∼= 31+2

+ .SL2(3) which is isomorphic to the centralizer
of a 3-central element in SU4(2). As z ∈ Z# is not X-conjugate to its inverse by
Lemma 4.13, IG(J0, 3

′) = {1} by Lemma 5.1 and CG(B) 6≤ M , we may apply

Hayden’s Theorem 2.6 to get that X̃ ∼= SU4(2). Finally, as JQ1, splits over B,
X splits over B by Gaschütz’s Theorem [7, 9.26]. Hence X has the structure
described in (i).

Assume that J = J0. In this case B is Q2-conjugate to ρ. By Lemma 4.13,

CX(Z) = X ∩M = JQ1R1 and so C̃X(Z) is isomorphic to the centralizer of a
3-central element in SU4(2). Since r2t1 inverts z, we may use Prince’s Theorem



PSU6(2) and its automorphism groups 21

2.7 to obtain X̃ ∼= Aut(SU4(2)) or Sp6(2). Again Gaschütz’s Theorem implies
that X ∼= 〈ρ〉 × E where E ∼= Aut(SU4(2)) or Sp6(2). Therefore, by Lemma 5.2,
X has the structure claimed in (ii).

Now we consider the possibilities for B when J > J0. We have B ≤ U and
CG(B) 6≤ M . Thus, by (i), CG(B) ∼= B × E where E ∼= SU4(2). Consequently,
NCG(B)(J) ∼= 32× (33:Sym(4)). Since NCG(B)(J) ≥ Q1 and since there are exactly
3-subgroups isomorphic to Alt(4) which contain a given 3-cycle in Sym(6), we see
that B is Q2-conjugate to 〈τ5, ρ〉 as claimed. �

We now set r = r2 and aim to determine

K = CG(r).

We will frequently use the following observation.

Lemma 5.4. CJ(r)Q1 is a Sylow 3-subgroup of K.

Proof. Certainly CJ(r)Q1 ≤ K by Lemma 3.3 (i). Because [Q1, CJ(r), Q1] =
[A∩Q1, Q1] = Z, we have that Z is a characteristic subgroup of CJ(r)Q1 and so
it follows that NK(CJ(r)Q1) ≤ CM(r). As CJ(r)Q1 ∈ Syl3(CM(r)), the lemma
holds. �

Define E = E(CG(〈τ5, ρ〉)). Then E ∼= SU4(2) by Lemma 5.3.

Lemma 5.5. We have E〈t1, τ5τ6〉 ≤ K and E〈t1〉 ∼= Aut(SU4(2)).

Proof. We know that r inverts ρ and exchanges τ5 and τ6. Hence r normalizes
B = 〈τ5, ρ〉 and consequently r normalizes E. Furthermore, r centralizes J ∩ E
and since no non-trivial automorphism of E acts in this way, we have that r
centralizes E. Therefore E ≤ K.

Since t1 inverts J , t1 normalizes 〈τ5, ρ〉 and t1 therefore normalizes E. Since t1
inverts J ∩ E, we have E〈t1〉 ∼= Aut(SU4(2)). �

From Lemmas 4.13 and 5.3 we have Q1R1 ≤ E. Furthermore, as W (= CF (r))
normalizes [J, r] = 〈ρ〉, we also have that CW (ρ) ≤ E. In particular, we have

Lemma 5.6. 〈τ5τ6〉E = 〈CW (ρ), Q1R1CJ(r)〉.

Proof. We have that Y = Q1R1CJ(r) is a maximal subgroup of E〈τ5τ6〉 and
CW (ρ) 6≤ Y .

�

When J > J0, as NG(J) acts 2-transitively on T , 〈τ5, τ6〉 is G-conjugate to each
subgroup Ji ∩ Jj for 1 ≤ i < j ≤ 4. When J = J0 we have the same result from
the construction of J1, J2, J3 and J4 in Section 4. Hence we may apply Lemma 5.3
to obtain the following conclusion.

Lemma 5.7. Assume that 1 ≤ i < j ≤ 4.

(i) If J > J0, then CG(Ji ∩ Jj) ∼= (Ji ∩ Jj)× SU4(2); and
(ii) If J = J0, then CG(Ji ∩ Jj) ∼= (Ji ∩ Jj)× Aut(SU4(2)).
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�

For 1 ≤ i < j ≤ 4, define

Eij = E(CG(Ji ∩ Jj)).

Lemma 5.8. For 1 ≤ i < j ≤ 4 and k ∈ {i, j}, Eij ∩ Jk is conjugate to Z and
is 3-central in Eij. In particular, CG(Ji) ∼= (Ji ∩ Jj)× 31+2

+ :SL2(3) if J > J0 and
CG(Ji) ∼= (Ji ∩ Jj)× 31+2

+ :SL2(3).2 if J = J0.

Proof. Let 1 ≤ i ≤ 4. Then by Lemma 4.11, Ji is normalized by a Sylow 3-
subgroup Ti of NG(J) and CTi

(Ji) has index 3 in Ti. In particular, as |CG(Ji ∩
Jj)|3 = 3|J |, we see that CTi

(Ji) ∈ Syl3(CG(Ji ∩ Jj)). Therefore Ji ∩ Eij is nor-
malized by a Sylow 3-subgroup of Eij. As |Ji ∩Eij| = 3, we have that Ji ∩Eij is
3-central in Eij as Ji is normal in Ti, we see that this subgroup is also normal in
a Sylow 3-subgroup of G. �

Define

Σ = 〈O2(CK(Jk)) | 1 ≤ k ≤ 4〉.
In the next lemma we use the fact that if x ∈ SU4(2) is an involution which

centralizes a subgroup of order 9, then x is 2-central and

CX(x) ∼= 21+4
+ .(3× Sym(3)) ∼= (SL2(3) ◦ SL2(3)).2

where ◦ denotes a central product (see [3, page 26]).

Lemma 5.9. Assume that 1 ≤ i < j ≤ 4. Then

(i) O2(CK(Ji)) ∼= O2(CK(Jj)) ∼= Q8, [O2(CK(Ji)), O2(CK(Jj))] = 1 and
O2(CK(Ji ∩ Jj)) = O2(CK(Ji))O2(CK(Jj)) ∼= 21+4

+ ; and
(ii) Σ is extraspecial of +-type and order 29.

Proof. Suppose that 1 ≤ i < j ≤ 4. Then Ji ≤ CG(r) by Lemma 4.11. If J > J0,
we have r ∈ Eij by Lemma 5.3. If J = J0, then r ∈ Z(R2) ≤ CG(J1) and so
r ∈ E12 and consequently r ∈ Eij as W acts 2-transitively on {J1, J2, J3, J4}.

Since r ∈ Eij and |CJ(r)∩Eij|3 ≥ 9, r is a 2-central involution in Eij. It follows
that K ∩ Eij has shape 21+4

+ .(3× Sym(3)) and, in particular, O2(CK(Ji ∩ Jj)) ∼=
21+4

+ . Furthermore, as Ji∩Eij is 3-central by Lemma 5.8, we get O2(CK(Ji)) ∼= Q8

and O2(CK(Ji∩Jj)) = O2(CK(Ji))O2(CK(Jj)). Since O2(CK(Ji∩Jj)) contains ex-
actly two subgroups isomorphic to Q8, we have that [O2(CK(Ji)), O2(CK(Jj))] =
1. This completes the proof of (i).

Part (i) shows that Σ is isomorphic to a central product of 4 quaternion groups.
Hence Σ is extraspecial of +-type and order 29. So (ii) holds. �

Recall from Lemmas 3.2 and 4.7, t2 ∈ NG(S) ≤M ∩NG(J) and Rt2
1 = R2.

Lemma 5.10. We have J1 is centralized by R2, R2 ≤ Σ and R2 = CΣ(Z).
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Proof. Suppose first that J = J0. Then J1 = CA(r) ≤ Q1 = CQ(R2) by Lemma 3.3
(i). So [J1, R2] = 1. Hence R2 = O2(CK(J1)) ≤ Σ.

Assume that J > J0. We have that τ1 commutes with Q1 and [〈τ5, τ6〉, Q1] = 1
by Lemma 4.13. Hence CJ(Q1) = 〈τ1, τ5, τ6〉 = 〈τ5, A ∩ Q2〉. Thus CJ(Q2) =
CJ(Q1)t2 = 〈τ2, τ3, τ4〉 = 〈τ2, A ∩ Q1〉. By Lemma 4.13 CJ(Q1) is centralized by
R1, thus J1 = 〈τ2, τ3, τ4〉 is centralized by R2 = Rt2

1 . Hence R2 = O2(CK(J1)) ≤ Σ.
Since R2 commutes with Z, we have R2 ≤ CΣ(Z) and, as CΣ(Z) is extraspecial

we have that R2 = CΣ(Z) from the structure of M . �

Lemma 5.11. We have W 〈t1〉 ≤ NK(Σ).

Proof. Since W 〈t1〉 permutes {J1, J2, J3, J4} and is contained in K, W 〈t1〉 ≤
NK(Σ) by the definition of Σ. �

Lemma 5.12. We have NK(CJ(r)) = NNK(Σ)(CJ(r)). In particular NNK(Σ)(CJ(r))
controls K-fusion in CJ(r).

Proof. We have that CG(CJ(r)) = J〈r〉. Hence J is normal in NG(CJ(r)). Now
we have that W = NK(CJ(r)). By Lemma 5.11 we have W ≤ NK(Σ) and so
NK(CJ(r)) = NNK(Σ)(CJ(r)). Further by Lemma 4.1 we have that NG(J) con-
trols fusion in J and so NK(CJ(r)) controls fusion in CJ(r). As NK(CJ(r)) =
NNK(Σ)(CJ(r)) this fusion takes place in NK(Σ). �

Lemma 5.13. Every J1-signalizer in K is contained in Σ. In particular, NK(J1) ≤
NK(Σ).

Proof. Let Σ1 ≤ K be a J1-signalizer. Let X1 be a hyperplane in J1 such that
CG(X1) ≤ M . Then CΣ1(X1) ≤ M is normalized by J1 and so Σ1 ≤ R2 ≤ Σ by
Lemma 5.10. In particular [CΣ1(Z), J1] = 1.

Suppose next that X1 is a hyperplane such that CG(X1) 6≤M . Then, by Lemma
5.3, we may assume that X1 = J1∩J2. Since r is 2-central in E12, O2(CK(J1 ∩ J2))
is the unique maximal J1-signalizer in CG(X1). Hence by Lemma 5.9 (i) we have
that CΣ1(X1) ≤ Σ in this case as well. Because

Σ1 = 〈CΣ1(X1) | |J1 : X1| ≤ 3〉 ≤ Σ,

we have that every J1-signalizer is contained in Σ. Thus Σ is the unique maximal
member of IK(J1, 3

′) and so NK(J1) ≤ NK(Σ). �

Lemma 5.14. CK(Σ) = 〈r〉.
Proof. If CK(Σ) is a 3′-group, then CK(Σ) is normalized by J1 and so CK(Σ) ≤
Z(Σ) = 〈r〉 by Lemma 5.13. So suppose that CK(Σ) has order divisible by 3.
As CJ(r)Q1 ∈ Syl3(K) and CJ(r)Q1 ≤ W ≤ NK(Σ) by Lemma 5.11, we have
CJ(r)Q1 ∩ CG(Σ) is a Sylow 3-subgroup of CG(Σ). As Z does not centralize Σ,
we have CJ(r)Q1 ∩ CG(Σ) ≤ CJ(r). Now, for 1 ≤ i < j ≤ 4

CCJ (r)(O2(CK(Ji ∩ Jj))) = Ji ∩ Jj
and consequently CCJ (r)(Σ) ≤ J1 ∩ J2 ∩ J3 ∩ J4 = 1 which is a contradiction. �
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Lemma 5.15. Σ/〈r〉 is a minimal normal subgroup of NK(Σ)/〈r〉.

Proof. Suppose that U ≤ Σ and U/〈r〉 is a minimal normal subgroup ofNK(Σ)/〈r〉
of minimal order. Aiming for a contradiction, assume that U 6= Σ. Then either
|Σ : U | ≤ 24 or |U/〈r〉| ≤ 24. In particular, as Q1 normalizes Σ and GL4(2)
has elementary abelian Sylow 3-subgroups, Z centralizes one of U or Σ/U . By
Lemma 5.10, either U ≤ R2 or |Σ : U | ≤ 22 and U ≥ [Σ, Z].

Since CJ(r) acts non-trivially on R2, we get U = R2 or U = [Σ, Z]. In the latter
case, we have U1 = CΣ(U) is normalized by NK(Σ) and has order smaller than
U . Hence the minimal choice of U implies that U = R2. However W ≤ NG(Σ) by
Lemma 5.11 and W does not normalize R2 and so we have a contradiction. �

Theorem 5.16. One of the following holds.

(i) J = J0 and NG(Σ)/Σ ∼= Aut(SU4(2)) or Sp6(2); or
(ii) J > J0 and NG(Σ)/Σ ∼= (3× SU4(2)):2.

Furthermore, E〈τ5τ6, t1〉 ≤ NK(Σ) and Σ/〈r〉 is isomorphic to the natural EΣ/Σ-
module.

Proof. From Lemma 5.11 we have that W 〈t1〉 ≤ NG(Σ). Set L = J1Q1. Then
L ≤ W and so L ≤ NG(Σ). By Lemma 5.13 we have that Σ is a maximal signalizer
in K for L and for CJ(r). Hence NK(L) and NK(CJ1(r)) both normalize Σ.

Suppose that J = J0.Then J1Q1 = (A ∩ Q1)Q1 ≤ Q1 and so R1 ≤ NK(Q1) ≤
NK(Σ). Therefore Lemma 5.6 implies that 〈E, t1〉 ≤ NK(Σ). In particular, we
have CNK(Σ)/Σ(ZΣ/Σ) is isomorphic to the centralizer of a 3 element in SU4(2)
and is inverted by t1Σ. Hence Theorem 2.7 shows that (i) holds.

Suppose that J > J0. This time NK(J1Q1) does not contain R1. On the other
hand NK(Σ) ≥ NK(CJ(r))Σ = WΣ and WΣ/Σ has shape 34:(Sym(4)×2). By the
Frattini argument, NNK(Σ)/Σ(CJ(r)Σ/Σ) = NNK(Σ)(CJ(r)). Since NK(CJ(r)) =
W , we now have NNK(Σ)/Σ(CJ(r)Σ/Σ) = WΣ/Σ.

Since CG(Σ) = 〈r〉 by Lemma 5.14, we have that NK(Σ)/Σ is isomorphic to
a subgroup of O+

8 (2). Because NNK(Σ)/Σ(CJ(r)Σ/Σ) = WΣ/Σ, we infer from the
list of maximal subgroups of O+

8 (2) given in [3, page 85] that either NK(Σ) = WΣ
or NK(Σ)/Σ ∼= (3 × SU4(2)):2. In the latter case we have (ii) so suppose that
NK(Σ) = WΣ. Let T ∈ Syl2(NK(Σ)). We claim that T ∈ Syl2(K). Assume
that x ∈ NK(T ) \ NK(Σ). Then, as Σx 6= Σ, J(T/〈r〉) 6≤ Σ/〈r〉. Hence, setting
H = 〈J(T )NK(Σ)〉 and noting that |O3(NK(Σ)/Σ)| = 34, we may apply [1, (32.5)]
to get that H/Σ is a direct product of four subgroups isomorphic to SL2(2).
But then the 2-rank of W/Σ is at least 4 contrary to T/Σ ∼= Dih(8) × 2. Hence
NK(T ) ≤ NK(Σ) and, in particular, T ∈ Syl2(K).

From Lemma 5.5, we have E ≤ K. Since T ∈ Syl2(K), T/Σ ∼= Dih(8) × 2
and E contains an extraspecial subgroup of order 25 with centre 〈r1〉, we have
that r1 is K-conjugate to an element of Σ. Thus there is some x ∈ K such
that 〈r1, r〉 ≤ Σx. Since rt21 = r and since r1 and rr1 are Σx-conjugate, we have
NG(〈r1, r〉)/CG(〈r1, r〉) ∼= Sym(3). This contradicts Lemma 4.15. Hence (ii) holds.
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We have already seen that E ≤ NK(Σ) if J = J0. If J > J0, then we have
NNK(Σ)(Z) contains a subgroup (3 × 31+2

+ ).SL2(3).2. Since NK(Z) = CM(r) =
Q1R1R2CJ(r)〈t1〉, we have CM(r) ≤ NK(Σ). Now E〈τ5τr, t1〉 ≤ NK(Σ) by Lemma 5.6.
Finally, as E acts irreducibly on Σ/〈r〉 by Lemma 5.15, we have that Σ/〈r〉 is the
natural E-module. �

We need just two final details before we can move on to determine the structure
of K.

Lemma 5.17. The following hold.

(i) NK(Z) ≤ NK(Σ); and
(ii) NK(Ji ∩ Jj) ≤ NK(Σ), for 1 ≤ i < j ≤ 4.

Proof. For (i) we note that NK(Z) = CM(r) ≤ E〈τ5τ6, t1〉Σ ≤ NK(Σ) by Theo-
rem 5.16.

By Lemma 5.9 (i) we have that O2(CK(Ji ∩ Jj)) ≤ Σ and, as r is a 2-central
element in Eij, CJ(r) ∈ Syl3(CK(Ji ∩ Jj)). Hence

NK(Ji ∩ Jj) = NNK(Ji∩Jj)(CJ(r))O2(CK(Ji ∩ Jj)) ≤ NK(Σ)

by Lemma 5.13. �

6. The structure of K

In this section we prove Theorem 6.11 which asserts that K = NK(Σ). We
continue the notation introduced in the previous sections. We further set K1 =
NK(Σ) denote by ˜ the natural homomorphism from K onto K/〈r〉.

By Lemma 5.15, the subgroup Σ̃ can be regarded as the 8-dimensional irre-

ducible GF(2)-module for K̃1/Σ̃. Thus we may employ the results of Proposi-
tion 2.10 to obtain information about various centralizers of elements of order
2 and 3 in Σ̃. Using Proposition 2.10(ii), we have K̃1 has two orbits on Σ̃. We
pick representatives x̃ and ỹ of these orbits with x̃ singular and ỹ non-singular.
It follows that x is an involution and y has order 4.

Our aim is to show that Σ̃ is strongly closed in K̃ and then use Goldschmidt’s
Theorem [4] to show that K = K1. We now begin the proof of Theorem 6.11.

Lemma 6.1. We have K̃1 contains a Sylow 2-subgroup of CK̃(ỹ). In particular

|CK̃(ỹ)|2 = 212 if E(K̃1/Σ̃) ∼= SU4(2) and |CK̃(ỹ)|2 = 214 if K̃1/Σ̃ ∼= Sp6(2).

Proof. Let T be a Sylow 2-subgroup of CK̃1
(ỹ) and assume that T1 is a 2-group

with |T1 : T | = 2. Choose u ∈ T1 \ T . If |Σ̃uΣ̃/Σ̃| ≤ 2, then |Σ̃u ∩ Σ̃| ≥ 27.

But by Proposition 2.10 (iv), K̃1 has no 2-elements not in Σ̃ which centralize a

subgroup of index two in Σ̃. Therefore Σ̃ = Σ̃u and so u ∈ T1 ∩K1 = T which is

a contradiction. Hence |Σ̃uΣ̃/Σ̃| ≥ 4.
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If E(K̃1/Σ̃) ∼= SU4(2), then T/Σ̃ is a semidihedral group of order 16 by Propo-

sition 2.10(ii). Since Σ̃uΣ̃/Σ̃ is a normal elementary abelian subgroup of T/Σ̃ of

order at least 4, we have a contradiction. Hence K̃1/Σ̃ ∼= Sp6(2). Now Proposi-
tion 2.10(ii), gives

CK̃1
(ỹ)/Σ̃ ∼= G2(2).

Since, by [8, Table 3.3.1], G2(2) does not contain elementary abelian subgroups of

order 16, 26 ≥ |Σ̃u∩ Σ̃| ≥ 25. But then all involutions in Σ̃u centralize a subgroup

of order at least 25 in Σ̃, and so Proposition 2.10 (i) and (iv) shows that all the

involutions in Σ̃uΣ̃/Σ̃ are unitary transvections and are conjugate in K̃1/Σ̃. Since

the two classes of involutions in CK̃1
(ỹ)/Σ̃ ∼= G2(2) are not fused in K̃1/Σ̃, we

infer that

Σ̃uΣ̃/Σ̃ ≤ (CK̃1
(ỹ)/Σ̃)′ ∼= G2(2)′ ∼= SU3(3).

Since, by [8, Table 3.3.1], SU3(3) has no elementary abelian groups of order 8,

we have |Σ̃uΣ̃/Σ̃| = 4. This means that |Σ̃u ∩ Σ̃| = 26 and consequently all

the involutions in Σ̃uΣ̃/Σ̃ have the same centralizer. As centralizers of involu-

tions in G2(2)′ are maximal subgroups [3, page 14], we conclude that Σ̃u ∩ Σ̃

is normalized by (CK̃1
(ỹ)/Σ̃)′. Thus (CK̃1

(ỹ)/Σ̃)′ centralizes Σ̃ which is impos-
sible. This contradiction proves the lemma. The order of T is calculated from
Proposition 2.10(iii). �

Lemma 6.2. Let S1 be a Sylow 3-subgroup of CK̃1
(x̃) or CK̃1

(ỹ). Then NK̃(S1) ≤
K̃1. In particular, for z ∈ Σ̃#, CK̃1

(z) contains a Sylow 3-subgroup of CK̃(z).

Proof. We consider ỹ first. By Proposition 2.10(iii), S1 has centre of order 3
and, as faithful GF(2)-representations of extraspecial groups of type 31+2

+ have
dimension 6, we have |CΣ̃(Z(S1))| = 4. Hence we may assume that Z = Z(S1).
On the other hand by Lemma 5.17 (i) gives CM(r) ≤ K1, hence we have that

NK̃(S1) ≤ K̃1.
Now we consider x̃. By Lemma 5.9 (i), we have O2(CK(J1∩J2)) ≤ Σ. Hence we

may assume that S1 = J1 ∩ J2. But then by Lemma 5.17 (ii) NK̃(S1) ≤ K̃1. �

Let Ẽ ≤ K̃1 such that Ẽ/Σ̃ = E(K̃1/Σ̃). We have that Ẽ/Σ̃ ∼= SU4(2) or
Sp6(2). By Proposition 2.10(iii) there are exactly three classes of elements of or-
der three in Ẽ. As a Sylow 3-subgroup of Ẽ is isomorphic 3 o 3, there is a unique
elementary abelian subgroup of order 27, and this subgroup contains elements
from each of the conjugacy classes of elements of order 3. As CJ(r)∩ Ẽ is elemen-

tary abelian of order 27, there are representatives of these elements in C̃J(r)∩ Ẽ.

It follows that every element of order 3 in K̃ is conjugate to an element of C̃J(r).
So using Lemma 5.12 get the following lemma.
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Lemma 6.3. Two elements of order three in K̃ are conjugate in K̃ if and only if

they are conjugate in K̃1. If J > J0,then K̃1/Σ̃ ∼= (〈σ〉 × SU4(2)).2, σ is inverted
and σ is not conjugate to any element in Ẽ. �

Lemma 6.4. Suppose that ũ ∈ K̃1 \ Σ̃ is an involution which is K̃ -conjugate

to some involution in Σ̃. Assume that ν ∈ CK̃1
(ũ) is an element of order three.

Then we have

(i) CΣ̃(ν) 6= 1;

(ii) 〈ν〉 6∼ Z in K̃;

(iii) if J = J0, then ν 6∼ ρ in K̃; and
(iv) |CẼ(ũ)| is not divisible by 9.

Proof. Let ã ∈ Σ̃ with ã ∼K̃ ũ. By Lemma 6.2, K̃1 contains a Sylow 3-subgroup

of CK̃(ã). By Lemma 6.3, ν is conjugate to an element µ of CK̃1
(ã) inside of K̃1.

Now obviously CΣ̃(µ) 6= 1 and so the same holds for ν which is (i).

If 〈ν〉 is conjugate to Z in K̃ or to 〈ρ〉 in case of τ = 1, this happens also in

K̃1 by Lemma 6.3. Hence we may assume that ã is conjugate to ũ in M ∩K, or
NK(〈ρ〉), which both are contained in K1 by Lemma 5.17, a contradiction. Hence
also (ii) and (iii) hold.
Assume now that S1 ≤ CẼ(ũ), |S1| = 9. Then S1 is conjugate into a Sylow 3-
subgroup S2 of CẼ(ã). So by Lemma 6.2 and Proposition 2.10(ii) we may assume
that ã = ỹ and thus S2 is extraspecial of order 27. Hence S1 contains some element
which is conjugate into Z(S2). But Z(S2) is conjugate to Z, and this contradicts
(ii). This finishes the proof. �

Lemma 6.5. Suppose that ũ ∈ K̃1 \ Σ̃ is an involution which is K̃-conjugate to
some involution in Σ̃. Then either

(i) ũ ∈ Ẽ, |[Σ̃, ũ]| = 4 and CẼ(ũ) has order 213 if E(K̃1/Σ̃) ∼= SU4(2) and

order 215 if K̃1/Σ̃ ∼= Sp6(2); or
(ii) J > J0, σũ = σ−1 and CẼ/Σ̃(ũ) ∼= 2× Sym(4) ≤ Sym(6).

Proof. If |[ũ, Σ̃] = 16, then all involutions in Σ̃ũ are conjugate by elements of Σ̃.
Hence, by Proposition 2.10(i), ũ centralizes some 3-element ν ∈ Ẽ. By Lemma
6.4(i), CΣ̃(ν) 6= 1. If J = J0, then by Proposition 2.10(ii) 〈ν〉 is conjugate to Z or

〈ρ〉, which contradicts Lemma 6.4 (ii),(iii). So assume that J > J0. If ũ 6∈ Ẽ, we
have the assertion with Proposition 2.10(i) and Lemma 6.4(iv). So assume ũ ∈ Ẽ.

Then CẼ/Σ̃(ũ) is contained in a parabolic subgroup of Ẽ/Σ̃ of shape 24:Alt(5)

and so ν acts fixed point freely on Σ̃, contradicting Lemma 6.4 (i).

So assume that |[ũ, Σ̃]| = 4. Then, by Proposition 2.10 (v), CẼ/Σ̃(ũΣ̃) has orbits

of length 1,6 and 9 on CΣ̃(ũ)/[Σ̃, ũ]. Hence there are exactly three conjugacy

classes of involutions in Σ̃ũ two of them have representatives centralized by an
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element of order three. Assume that ũ is one of these. Let û be the involution,

which is centralized by S1, a Sylow 3-subgroup of CK̃1/Σ̃(ũΣ̃). Set S2 = CS1(ũ).

Then, using Lemmas 6.3, 6.2 and 6.4(iv), we see that |S2| = 3. Therefore ũ 6∼ û. In

particular we have ũ = ûs̃ where s̃ ∈ CΣ̃(ũ)\ [Σ̃, ũ]. Hence CC
Σ̃

(ũ)/[Σ̃,ũ](S2) 6= 1. By

Proposition 2.10 (vi), we get |CΣ̃(S2)| = 4. So S2 does not centralize involutions
in Σ. Thus we may assume that S2 = Z. But this contradicts Lemma 6.4 (iii)
and proves the lemma. �

Lemma 6.6. We have ỹK̃ ∩ Ẽ ⊆ Σ̃.

Proof. Assume ỹ ∼K̃ ũ for some involution ũ ∈ Ẽ \ Σ̃. By Lemma 6.1, we have

that |CK̃(ỹ)|2 = 212 if Ẽ/Σ̃ ∼= SU4(2) or 214 if Ẽ/Σ̃ ∼= Sp6(2). This conflicts with
that information given in Lemma 6.5. Hence no such elements exist. �

Lemma 6.7. Σ̃ is weakly closed in K̃1. In particular, K̃1 contains a Sylow 2-

subgroup of K̃.

Proof. Assume that T ∈ Syl2(K̃1), w ∈ K̃ and Σ̃w ≤ T with Σ̃ 6= Σ̃w. Then

Σ̃w ∩ Ẽ has order at least 27 and therefore is generated by conjugates of ỹ. Thus

Lemma 6.6 implies that Σ̃w ∩ Ẽ ≤ Σ̃. But then |Σ̃wΣ̃/Σ̃| = 2 and |Σ ∩ Σw| = 27.

Since K̃1 does not contain transvections, we have a contradiction. �

Lemma 6.8. No element of Σ̃ is K̃-conjugate to an involution ũ ∈ K̃1 with
|[Σ̃, ũ]| = 4.

Proof. Assume the statement is false. Then, by Lemma 6.6 ũ ∼K̃ x̃. Let T1 be a
Sylow 2-subgroup of CK̃1

(ũ) and T2 be a Sylow 2-subgroup of CK̃(u) with T1 ≤ T2.

By Lemma 6.5 and 6.7, |T2 : T1| = 4. Let Σ̃u be the group corresponding Σ̃ in

T2. Then |Σ̃u ∩ T1| ≥ 26. As any subgroup of Σ̃ of order at least 26 is generated

by conjugates of ỹ, we have that Σ̃u ∩ T1 6≤ Ẽ by Lemma 6.6. In particular, by

Lemma 6.5, J > J0. Therefore, we may suppose that there is a w̃ ∈ Σ̃u ∩ T1

such that w̃ inverts σ. Notice that (Σ̃u ∩ T1)Σ̃ is normal in T1Σ̃ ∈ Syl2(K̃1). In

particular, if |(Σ̃u∩T1)Σ̃/Σ̃| = 22, then w̃Σ̃ is centralized by a maximal subgroup

of T1Σ̃/Σ̃, which it impossible. Hence

|(Σ̃u ∩ T1)Σ̃/Σ̃| ≥ 23.

In particular, we have |(Σ̃u ∩ T1 ∩ Ẽ)Σ̃/Σ̃| ≥ 22 and all the non-trivial elements
are unitary transvections. This, however, contradicts Proposition 2.10 (vii) and
proves the lemma. �

Lemma 6.9. We have ỹK̃ ∩ K̃1 ⊆ Σ̃. In particular, Σ̃ is strongly closed in Ẽ.

Proof. Suppose that ũ ∈ ỹK̃ ∩ K̃1 \ Σ̃. Then by Lemmas 6.6 and 6.5, we get that

τ 6= 1 and ũ inverts σ. Furthermore, all involutions in Σ̃ũ are conjugate. Hence,



PSU6(2) and its automorphism groups 29

for T1 ∈ Syl2(CK̃1
(ũ)), we have |T1| = 29. Let T2 be a Sylow 2-subgroup of CK̃(ũ)

with T1 ≤ T2 and Σ̃u ≤ T2 be a K̃-conjugate of Σ̃ in T2. Then Σ̃u ∩ T1 ⊆ 〈ũ〉Σ̃
by Lemmas 6.5, 6.6 and 6.8. Since |Σ̃u ∩ T1| ≥ 25, we now have that Σ̃u ∩ T1 =

〈u〉CΣ̃(ũ) has order 25. Hence T2 = T1Σ̃u and T2/Σ̃u
∼= T1/〈u〉CΣ̃(ũ) ∼= 2×Dih(8).

But T2/Σu
∼= SDih(16) by Proposition 2.10 (ii) and we thus have a contradiction.

Hence ỹK̃ ∩ K̃1 ⊆ Σ̃. �

Lemma 6.10. We have that Σ̃ is strongly closed in K̃1.

Proof. Assume by way of contradiction that there is some involution ũ ∈ K̃1 \ Σ̃,
which is conjugate in K̃ to some element in Σ̃. By Lemma 6.9 we have ũ ∼K̃ x̃.
By Lemmas 6.8 and 6.5 we have that τ 6= 1 and we may assume that ũ inverts
σ. Furthermore we have

CẼ/Σ̃(ũ) ∼= 2× Sym(4).

Let T1 be a Sylow 2-subgroup of CK̃1
(ũ) and T2 be a Sylow 2-subgroup of CK̃(ũ),

which contains T1. Further let Σ̃u be the normal subgroup of T2 which is K̃-

conjugate to Σ̃. Since, by Proposition 2.10 (viii), CΣ̃(ũ) is generated by conjugates

of ỹ, we have CΣ̃(ũ) ≤ Σ̃u by Lemma 6.9. Since (Σ̃u ∩ T1)Σ̃/Σ̃ = 〈ũ〉Σ̃/Σ̃, we get

T3 = Σ̃u ∩ T1 = CΣ̃(ũ)〈ũ〉.

Therefore T3 is normalized by Σ̃ and is centralized by Σ̃u.This is impossible as Σ̃

and Σ̃u are conjugate in 〈Σ̃, Σ̃u〉 by Lemma 6.7. �

Theorem 6.11. We have K = K1.

Proof. Let T ∈ Syl2(K). By Lemmas 6.7 and 6.10 we have that Σ̃ is strongly

closed in T̃ with respect to K̃. Hence an application of [4] yields that L̃ = 〈Σ̃K̃〉
is an extension of a group of odd order by a product of a 2-group and a number of

Bender groups. Furthermore Σ̃ is the set of involutions in some Sylow 2-subgroup

of T ∩ L̃. By Lemma 5.13 we have that O(L̃) = 1. As K̃1 acts primitively on Σ̃,

either L = Σ̃ and we are done, or L̃ is a simple group. So suppose that L̃ is a

simple group. Then NL̃(Σ̃) acts transitively on Σ̃, which is not possible as Σ is
extraspecial. This proves that K = K1. �

7. Proof of the Theorem 1.2

We continue with all the notation established in previous sections. IfNM(S)/S ∼=
Dih(8), Theorem 1.2 follows with Theorem 4.7. So we may assume thatNM(S)/S ∼=
2×Dih(8). Using Theorem 6.11 and Lemma 5.17 we get thatK/Σ ∼= Aut(SU4(2)),
(3× SU4(2)):2 or Sp6(2).

Suppose that K/Σ ∼= Sp6(2). Then [17] implies that G ∼= Co2 and consequently
M = NG(Z) has order 28.36.5 and shape 31+4

+ .21+4
− .Sym(5), which is not similar to

a normalizer of type PSU6(2). This contradicts our initial hypothesis. So suppose
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K/Σ ∼= Aut(SU4(2)) or (3×SU4(2)):2. Then Lemma 2.11 shows that G possesses
a subgroupG0 of index two. In particular we get CG0(r)/Σ ∼= SU4(2) or 3×SU4(2).
Now we see that NG0∩M(S)/S ∼= Dih(8). Hence Theorem 4.7 gives G0

∼= PSU6(2)
or PSU6(2):3 and so Theorem 1.2 is proved.
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