Oberwolfach Preprints

OWP 2011-09
Chris Parker and Peter Rowley

2-Minimal Subgroups in Classical Groups: Linear and Unitary Groups

Mathematisches Forschungsinstitut Oberwolfach gGmbH
Oberwolfach Preprints (OWP) ISSN 1864-7596

Oberwolfach Preprints (OWP)

Starting in 2007, the MFO publishes a preprint series which mainly contains research results related to a longer stay in Oberwolfach. In particular, this concerns the Research in PairsProgramme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an Oberwolfach Lecture, for example.

A preprint can have a size from 1-200 pages, and the MFO will publish it on its website as well as by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard copies (DIN A4, black and white copy) by surface mail.

Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its website www.mfo.de as a documentation of the research work done at the MFO, which you are accepting by sending us your file.

In case of interest, please send a pdf file of your preprint by email to rip@mfo.de or owlf@mfo.de, respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at the MFO.

There are no requirements for the format of the preprint, except that the introduction should contain a short appreciation and that the paper size (respectively format) should be DIN A4, "letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we shall add a running number (20XX - XX).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer and would like to thank you in advance for your cooperation.

I mprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany
Tel $\quad+49783497950$
Fax +49783497955
Email admin@mfo.de
URL www.mfo.de
The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.

2-MINIMAL SUBGROUPS IN CLASSICAL GROUPS: LINEAR AND UNITARY GROUPS

CHRIS PARKER AND PETER ROWLEY

Acknowledgement

This paper is the outcome of two visits to the Mathematisches Forschungsinstitut Oberwolfach as part of the Research in Pairs Programme in May 2009 and again in May 2010. We thank the institute for its hospitality and generosity without which this project would not have come to fruition. We particularly thank all the staff for their smooth and effective management and care of the institute. We also thank the London Mathematical Society for a Scheme 4 grant enabling work on this project to continue between these two visits.

1. Introduction

In one fell swoop, with the inauguration of the theory of buildings, Tits [42] introduced a geometric perspective to the study of groups of Lie type. Previously, at the hands Chevalley [14], Steinberg [39] and Ree [30, 31], this class of groups had been given a unified treatment as certain groups of automorphisms of Lie algebras and fixed points of automorphisms of algebraic groups. The utility of buildings was amply demonstrated in [42] where groups with a spherical $B N$-pair of rank at least 3 are classified. Buildings are important in the study of other classes of groups such as the simple algebraic groups and, with the emergence of twin buildings, Kac-Moody type groups [44]. The various successes of the theory of buildings (see for example [35], [43], [27]) have led to attempts to widen the underlying ideas of buildings to obtain geometric information about other simple groups, with a particular eye upon the sporadic finite simple groups. Early contributions to this endeavor were made by Buekenhout [12], Ronan and Smith [32, 33] and Ronan and Stroth [34].

Here we shall be interested in finite groups. So suppose that G is a finite group, p is a prime number and S a Sylow p-subgroup of G. Set $B=N_{G}(S)$. A subgroup P of G which properly contains B is called a p-minimal subgroup of G (with respect to B) if B is contained in a unique maximal subgroup of P. Put

$$
\mathcal{M}(G, B)=\{P \mid B<P \leq G \text { and } P \text { is } p \text {-minimal }\}
$$

and

$$
\mathcal{L L}(G, B)=\{H \mid B<H \leq G\} .
$$

So $\mathcal{L} \mathcal{L}(G, B)$ is the set of proper overgroups of B in G, and clearly $\mathcal{M}(G, B) \subseteq$ $\mathcal{L} \mathcal{L}(G, B)$. Now suppose that G is a group of Lie type whose characteristic is p. Then the associated building of G is the simplicial complex obtained from the poset on $\left\{H^{g} \mid g \in G, H \in \mathcal{L} \mathcal{L}(G, B)\right\}$ given by reverse containment. The notion
of a building may be rephrased in terms of chambers (see [43]). With this reinterpretation $\mathcal{M}(G, B)$ is precisely the set of stabilizers of the panels of the chamber corresponding to B. The subgroups in $\mathcal{M}(G, B)$ in this context are called minimal parabolic subgroups and for each $P \in \mathcal{M}(G, B), B$ is actually a maximal subgroup of P. Indeed, for any $H \in \mathcal{L} \mathcal{L}(G, B) \backslash\{G\}$ we also have that $O_{p}(H) \neq 1$ (see [10]); that is H is a p-local subgroup of G which explains the choice of $\mathcal{L} \mathcal{L}$ for local lattice.

Now assume that G is an arbitrary finite group. Attempts to generalize buildings, mentioned above, have used various subsets of $\mathcal{L} \mathcal{L}(G, B)$ as a means of passing to a geometric object in the spirit of buildings. Much attention has been focussed upon subsets of $\mathcal{M}(G, B)$. An important notion is that of a minimal parabolic system - a subset $\left\{P_{1}, \ldots, P_{m}\right\}$ of $\mathcal{M}(G, B)$ is a minimal parabolic system for G (of rank m) if $G=\left\langle P_{1}, \ldots, P_{m}\right\rangle$ and no proper subset of $\left\{P_{1}, \ldots, P_{m}\right\}$ generates G. The minimal parabolic systems for the sporadic simple groups are collated in Ronan and $\operatorname{Stroth}[34]$ for all cases when S is non-cyclic (though they also require $O_{p}\left(P_{i}\right) \neq 1$ for $i=1, \ldots, m$). While Lempken, Parker and Rowley in [23] determined all the minimal parabolic systems when G is a symmetric group and $p=2$. For further work in this direction see Covello [15] and Rowley and Sanita[36]. Unlike the case of Lie type groups of characteristic p, in other groups, such as the sporadic simple groups and the symmetric groups, there is not usually a unique minimal parabolic system.

Lattices of subgroups have long been of interest. For some indication of earlier work see Suzuki [40] and Schmidt [38]. A recent topic of interest was suggested by a theorem of Pálfy and Pudlakand[28] raising the question as to whether each nonempty finite lattice is isomorphic to an overgroup lattice for some subgroup of some finite group. The answer is almost certainly negative - for investigations into this and related questions see Aschbacher [4, 5, 6], Aschbacher and Shareshian [7] and Feit [17]. The set $\mathcal{M}(G, B)$ has some relevance to this type of question as it is the case that for any $H \in \mathcal{L} \mathcal{L}(G . B)$ we have that $H=\langle P \mid P \in \mathcal{M}(G, B)\rangle$ (see Lemma 3.2) and therefore the subgroups in $\mathcal{M}(G, B)$ in a certain sense control the lattice of subgroups of G above B.

One of the main purposes of this paper, and its successors, is to describe all of the 2-minimal subgroups for the finite groups of Lie type. A secondary aim is to then probe the minimal parabolic systems. If the characteristic of the Lie type group is also 2, then we just have the panel stabilizers and these subgroups are well understood. Thus we focus our attention upon Lie type groups of odd characteristic. More specifically, here we examine the 2 -minimal subgroups of the linear, special linear, unitary and special unitary groups. We begin with the general linear and unitary groups, using the usual notation $\mathrm{GL}_{n}^{\epsilon}, \epsilon= \pm$, to denote these two classes simultaneously. However, before stating our first theorem, we briefly discuss some classes of subgroups, detailed definition being given in later sections. For $G=\operatorname{GL}_{n}^{\epsilon}(q)$ where $q=p^{a}$ is odd, a certain Sylow 2-subgroup S of G was described by Carter and Fong [13] (see also Theorem 5.1). Using this description when $q \equiv \epsilon(\bmod 4)$ we may view S within H, a subgroup of G which is identified as a wreath product $\mathrm{GL}_{1}^{\epsilon}(q)$ 亿 $\operatorname{Sym}(n)$ As a consequence the 2-minimal subgroups, called fusers and linkers, appearing in [23] metamorphoses into 2-minimal subgroups of G. Such subgroups we also refer to as fusers and linker, denoting the set of them respectively by \mathcal{F} and \mathcal{L}. The base group of H also contributes to our haul of 2 -minimal subgroups yielding the set \mathcal{T} of so-called toral 2 -minimal subgroups.

Similar 2-minimal subgroups are present when $q \equiv-\epsilon(\bmod 4)$. A further source of 2-minimal subgroups arises from the parabolic subgroups of G (parabolic being used in the traditional sense) when $\epsilon=+$. These subgroups have non-trivial p radicals and so are referred to as radical 2 -minimal subgroups. We let \mathcal{R} denote the set of all such 2-minimal subgroups of G. When n is odd and $\epsilon=-$ the radical subgroups are replaced by a family of 2-minimal unitary subgroups and these we denote by \mathcal{U}. Two additional classes of 2-minimal subgroups of G, denoted by \mathcal{Q} and \mathcal{S}, and called quaternion and special linear force their attention upon us. They owe their ancestry to small dimensional linear and unitary groups which in small dimensions can themselves be 2 -minimal. So now to our first main result.

Theorem 1.1. Suppose that $G=\operatorname{GL}_{n}^{\epsilon}(q)$ where $n \geq 2$ and $q=p^{a}$ is odd. Let $S \in \operatorname{Syl}_{2}(G)$ and set $B=N_{G}(S)$. Then

$$
\mathcal{M}(G, B)=\mathcal{T} \cup \mathcal{F} \cup \mathcal{L} \cup \mathcal{Q} \cup \mathcal{S} \cup \mathcal{R} \cup \mathcal{U}
$$

As to whether any of the above sets of 2-minimal subgroups are empty depends upon certain specified conditions on ϵ, n and q. For a comprehensive overview of the set $\mathcal{M}(G, B)$ in Theorem 1.1 see Tables 1 and 2 . Although there is a deal of complexity in their definition, particularly of the toral 2-minimal subgroups, the overall list of 2 -minimal subgroups is pleasingly short. Moreover, aside from the congruences of $q \bmod 8$, the 2 -minimal subgroups not in \mathcal{T} are defined without reference to the underlying field. A further noteworthy feature is that the groups in $\mathcal{M}(G, B)$ for $G=\mathrm{GL}_{n}^{\epsilon}(q)$ are for the most part soluble groups, and these soluble groups have a very restricted structure.

Next we describe the layout of this paper and the main features of the proof of Theorem 1.1. As already mentioned, the wreath product subgroups appearing in [13] demand our attention. Thus in Section 2 we set up notation enabling us to describe explicitly the 2 -minimal subgroups of the symmetric groups. In Section 4, for E cyclic of odd order and X a symmetric group we analyze the wreath product $H=E \imath X$ - we sometimes call such groups monomial groups. But also observe that, in another guise they are complex reflection groups (denoted $G(m, 1, n)$ in Shephard and Todd's list [37].) The S-module structure of the base group of H is the main focus here resulting in subgroups of the form $U\left(n_{i} ; s^{c} ; j\right)$. These subgroups in turn give birth to the toral 2-minimal subgroups. Also, but with less technicalities, the linker and fuser 2-minimal subgroups are introduced in this section.

Section 3 is a repository for general results on p-minimal subgroups (for p an arbitrary prime) which are needed in this paper. A number of these play a critical role in our proofs. For example Lemma 3.9 means that 2-minimal subgroups behave very well with respect to direct products, and hence facilitates certain induction arguments.

The proof of Theorem 1.1 begins in Section 5, where further notation relating to S, B, and the standard vector space of $\mathrm{GL}_{n}^{\epsilon}(q)$, and gathers pace in the ensuing sections.

2. Preliminaries

As intimated in Section 1, Section 4 sees us probing the 2-minimal subgroups of monomial groups, that is wreath products $E \imath \operatorname{Sym}(n)$ where E is cyclic of odd order and $\operatorname{Sym}(n)$ is the symmetric group of degree n. Accordingly, we need to assemble appropriate notation relating to $\operatorname{Sym}(n)$ and its 2-minimal subgroups. So let Ω be a
set of cardinality $n>2$ and fix the following notation for the 2-adic decomposition of n :

$$
n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{r}} \text { where } n_{1}>n_{2}>\cdots>n_{r} \geq 0
$$

Set $X=\operatorname{Sym}(\Omega)$, the symmetric group on Ω, and let T be a fixed Sylow 2-subgroup of X. Now T has r orbits on Ω, and we denote these orbits by $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{r}$ where $\left|\Omega_{i}\right|=2^{n_{i}}$. Putting $I=\{1, \ldots, r\}$, we have that

$$
T=T_{n_{1}} \times T_{n_{2}} \times \cdots \times T_{n_{r}}
$$

where, for $i \in I, T_{n_{i}} \in \operatorname{Syl}_{2}\left(\operatorname{Sym}\left(\Omega_{i}\right)\right)$. Observe that T_{0} is the trivial group. From [19, Satz 15.3, p. 378] we have that each $T_{n_{i}}$ is an iterated wreath product of i cyclic groups of order 2 and that $N_{X}(T)=T$. Thus, we note, for $j, k \geq 0, T_{n_{j}} \backslash T_{n_{k}}=T_{n_{j+k}}$.

We next introduce two types of subgroups of X. Let $i \in I$. Then, for $j \in$ $\left\{1, \ldots, n_{i}-1\right\}$, let $\Sigma_{n_{i} ; n_{j}}$ be the collection of T-invariant block systems of Ω_{i} consisting of sets of order 2^{k} where $k \in\left\{0, \ldots, n_{i}\right\} \backslash\{j\}$, and define

$$
X\left(n_{i} ; n_{j}\right)=\operatorname{Stab}_{\operatorname{Sym}\left(\Omega_{i}\right)} \Sigma_{n_{i} ; n_{j}} \times\left(\prod_{k \in I \backslash\{i\}} T_{n_{k}}\right)
$$

Put

$$
\mathcal{L}(X, T)=\left\{X\left(n_{i} ; n_{j}\right) \mid i \in I, j \in\left\{1, \ldots, n_{i}-1\right\}\right\} .
$$

For $i, j \in I$, with $i<j$ (so $\left.n_{j}<n_{i}\right)$ set $\Lambda_{n_{i}+n_{j}}=\Omega_{i} \cup \Omega_{j}$. Let Γ_{i} be the collection of all block systems for T on Ω_{i} and Γ_{j} the collection of all block systems of T on Ω_{j}. We define $\Sigma_{n_{i}+n_{j}}$ to be the collection of T-invariant systems of subsets of $\Lambda_{n_{i}+n_{j}}$ which are the union of one block system from Γ_{i} and one from Γ_{j} with the proviso that the blocks of the two chosen block systems have equal numbers of elements. Then

$$
X\left(n_{i}+n_{j}\right)=\operatorname{Stab}_{\operatorname{Sym}\left(\Lambda_{n_{i}+n_{j}}\right)}\left(\Sigma_{n_{i}+n_{j}}\right) \times\left(\prod_{k \in I \backslash\{i, j\}} T_{n_{k}}\right)
$$

and we set

$$
\mathcal{F}(X, T)=\left\{X\left(n_{i}+n_{j}\right) \mid i, j \in I, i<j\right\} .
$$

The subgroups in $\mathcal{L}(X, T)$ are called linkers and those in $\mathcal{F}(X, T)$ fusers and, as we see, comprise all the 2 -minimal subgroups of X.

Theorem 2.1. Assume that Ω is a set with $|\Omega|>2, X=\operatorname{Sym}(\Omega)$ and $T \in \operatorname{Syl}_{2}(X)$. Then $\mathcal{M}(X, T)=\mathcal{L}(X, T) \cup \mathcal{F}(X, T)$.

Proof. This is proved in [23, Theorem 1.1].
In our investigations of monomial groups, or subgroups of $\mathrm{GL}_{n}^{\epsilon}(q)$ where subgroups isomorphic to $\operatorname{Sym}(n)$ can be identified the above notational conventions will be employed. So the use of X as a subgroup alerts us to the fact that $X \cong$ $\operatorname{Sym}(n)$ and that (unless indicated otherwise) all the accompanying notation n_{i}, r, $I, X\left(n_{i} ; n_{j}\right), X\left(n_{i}+n_{j}\right), T$ and $T_{n_{i}}$ will be used.

At this point we also note that [3] will be our bible for standard group theoretic notation. We follow the Atlas [16] conventions in describing the shapes of groups, though, as we have seen, we use $\operatorname{Sym}(n)$ for the symmetric group of degree $n, \operatorname{Alt}(n)$ for the alternating group of degree n and $\operatorname{Mat}(10)$ for the "Mathieu group of degree 10 ".

For l a positive integer l_{2} denotes the largest 2 -power which divides l and $\Pi(l)$ the set of all odd prime powers greater than 1 which divide l. So, for example, if $l=180$, then $l_{2}=2^{2}$ and $\Pi(l)=\left\{3,3^{2}, 5\right\}$.

Our next theorem plays an invaluable role in determining the structure of 2minimal linker subgroups of monomial groups.
Theorem 2.2. Suppose G is a finite soluble group, Q is a nilpotent normal subgroup of G with K and L subgroups of G. Assume that
(i) no G-chief factor of G / Q is G-isomorphic to a G-chief factor of Q; and
(ii) K and L are supplements to Q in G with $K \cap Q=L \cap Q$.

Then K and L are G-conjugate.
Proof. See [29].
Lemma 2.3. Suppose that $X \cong \operatorname{Sym}(n)$ and E is a cyclic group of odd order. Let $H=E \backslash X$ and F be the base group of H. Considering F as a $\mathbb{Z} X$-module, we have $\mathrm{H}^{1}(X, F)=0$.

Proof. Let $X_{1} \leq X$ be a one-point stabilizer of X. So $X_{1} \cong \operatorname{Sym}(n-1)$. Then we can consider E as a trivial $\mathbb{Z} X_{1}$-module. With this interpretation we have $F=$ $\operatorname{Ind}_{X_{1}}^{X}(E)$. Since $|E|$ is odd, we have $\mathrm{H}^{1}\left(X_{1}, E\right)=0$. Now the result follows from Shapiro's Lemma [9, Proposition III.6.2].
Lemma 2.4. Let E be a cyclic group of odd order, n a natural number and $X=$ $\operatorname{Sym}(n)$. Let $H=E \imath X, F$ be the base group of H and $[F, X] C_{F}(X) \leq Y \leq F$. Then $Y X$ contains exactly $|F / Y|$ conjugacy classes of complements to Y.

Proof. We view Y and F as $\mathbb{Z} X$-modules. By Lemma $2.3 \mathrm{H}^{1}(X, F)=0$. We have a short exact sequence of X-modules $0 \rightarrow Y \rightarrow F \rightarrow F / Y \rightarrow 0$. Hence by [9, III.6.1 (ii)] we have a long exact sequence which starts

$$
\begin{aligned}
0 & \rightarrow \mathrm{H}^{0}(X, Y) \rightarrow \mathrm{H}^{0}(X, F) \rightarrow \mathrm{H}^{0}(X, F / Y) \rightarrow \mathrm{H}^{1}(X, Y) \\
& \rightarrow \mathrm{H}^{1}(X, F) \rightarrow \ldots
\end{aligned}
$$

By [9, III.1.8] $\mathrm{H}^{0}(X, F) \cong \mathrm{H}^{0}(X, Y) \cong C_{F}(X)=0$ and $\mathrm{H}^{0}(X, F / Y) \cong F / Y$. Hence the map $\mathrm{H}^{0}(X, F) \rightarrow \mathrm{H}^{0}(X, F / Y)$ is the zero map and as $\mathrm{H}^{1}(X, F)=0$, the map $\mathrm{H}^{0}(X, F / Y) \rightarrow \mathrm{H}^{1}(X, Y)$ is an isomorphism. Hence $\left|\mathrm{H}^{1}(X, Y)\right|=|Y / F|$ and the result now follows from [3, 17.7] or [9, Proposition III.2.3].

Finally in this section we have the following elementary lemma.
Lemma 2.5. Suppose that H is a normal subgroup of a group G. Let $S \in \operatorname{Syl}_{p}(G)$ and $R=S \cap H$. If $N_{G}(S)=N_{G}(R)$, then S is the unique Sylow p-subgroup of G which contains R.

Proof. Using the Frattini Argument we have $\left|G: N_{G}(S)\right|=\left|N_{G}(R) H: N_{G}(R)\right|=$ $\left|H: N_{H}(R)\right|$. Hence the map $T \mapsto T \cap H$ is a bijection between $\operatorname{Syl}_{p}(G)$ and $\operatorname{Syl}_{p}(H)$.

3. p-MINIMAL SUBGROUPS

In this section p is a prime, G is a group, S a Sylow p-subgroup of G and $B=N_{G}(S)$. We recall that a subgroup P of G containing B is called p-minimal so long as $P \neq B$ and B is contained in a unique maximal subgroup of P. We denote the set of p-minimal subgroups of G containing B by $\mathcal{M}(G, B)$.

Lemma 3.1. If H and K are G-conjugate subgroups of G which contain B, then $H=K$.

Proof. Let $g \in G$ be such that $H^{g}=K$. Then both S and $S^{g^{-1}}$ are Sylow p subgroups of H. By Sylow's Theorem there exist $h \in H$ such that $g^{-1} h=b \in B$. So $g=h b^{-1} \in H$ which means that $K=H^{g}=H$.
Lemma 3.2. Either G is p-closed or $G=\langle\mathcal{M}(G, B)\rangle=\left\langle O^{p^{\prime}}(Y) \mid Y \in \mathcal{M}(G, B)\right\rangle B$.
Proof. Assume that G is a minimal counterexample to the statement that $G=$ $\langle\mathcal{M}(G, B)\rangle$ and that G is not p-closed. Then $\mathcal{M}(G, B)$ is not empty and $G>$ $\langle\mathcal{M}(G, B)\rangle$. Suppose that U is a maximal subgroup of G containing B. If $U=B$, then $G \in \mathcal{M}(G, B)$, and we have a contradiction. So, by the minimality of G, $U=\langle\mathcal{M}(U, B)\rangle$. Since $\mathcal{M}(U, B) \subseteq \mathcal{M}(G, B)$, we have $U \leq\langle\mathcal{M}(G, B)\rangle<G$. Hence $U=\langle\mathcal{M}(G, B)\rangle$ is the unique maximal subgroup of G containing B. Thus $G \in \mathcal{M}(G, B)$ and again we have a contradiction. For the second equality, we just note that B normalizes $\left\langle O^{p^{\prime}}(Y) \mid Y \in \mathcal{M}(G, B)\right\rangle$ and therefore $\left\langle O^{p^{\prime}}(Y)\right| Y \in$ $\mathcal{M}(G, B)\rangle B=\left\langle O^{p^{\prime}}(Y) B \mid Y \in \mathcal{M}(G, B)\right\rangle=\langle\mathcal{M}(G, B)\rangle=G$.

Definition 3.3. For H a group and X a group which admits an action of H, we say that X is H-minimal provided X has a unique maximal H-invariant subgroup.

Lemma 3.4. Suppose that $P=B K \in \mathcal{M}(G, B)$ for some normal subgroup K of order coprime to p. Then $P=B[K, S]$ and $[K, S]$ is B-minimal. If additionally, $[K, S]$ is nilpotent, then it is an r-group for some prime r.
Proof. Set $L=[K, S]$. Then $K=C_{K}(S) L$ and so $P=B L$. Assume that L_{1} and L_{2} are maximal B-invariant subgroups of L. Then $B L_{1}$ and $B L_{2}$ are both subgroups of P. If, say, $P=B L_{1}$, then we have

$$
L \leq P \cap K=B L_{1} \cap K=L_{1}(B \cap K)
$$

which implies that

$$
L=[L, S]=\left[L_{1}(B \cap K), S\right]=\left[L_{1} C_{K}(S), S\right] \leq L_{1} .
$$

Therefore $B L_{1}$ and similarly $B L_{2}$ are both proper subgroups of P containing B. Hence $B L_{1}$ and $B L_{2}$ are both contained in the unique maximal subgroup of P containing B. Thus $B\left\langle L_{1}, L_{2}\right\rangle$ is a proper subgroup of P. Hence by maximality $L_{1}=L_{2}$ and so L is B-minimal.

Finally, assuming that L is nilpotent, as L is B-minimal, we conclude that it must be an r-group for some prime r.

Lemma 3.5. Suppose that K is a normal subgroup of G and $P \in \mathcal{M}(G, B)$. If $P K \neq B K$, then $P K / K \in \mathcal{M}(G / K, B K / K)$.
Proof. First observe that $P>B(P \cap K)$ and that $P K / K$ does not normalize $S K / K$ by the Fratinni Argument. Hence $B(P \cap K)$ is contained in the unique maximal subgroup U of P which contains B. Then $U /(P \cap K)$ is the unique maximal subgroup of $P /(P \cap K)$ which contains $B(P \cap K) /(P \cap K)$. Hence $B K / K$ is contained in a unique maximal subgroup of $P K / K$ and so $P K / K \in \mathcal{M}(G / K, B K / K)$.

Lemma 3.6. Suppose that K is a normal subgroup of G and G / K is p-minimal. Then there exists $P \in \mathcal{M}(G, B)$ such that $G=P K$.

Proof. By the Frattini Argument $B K / K=N_{G}(S K / K)$. Therefore Lemmas 3.2 and 3.6 give the result.

In the next lemmas, we note that $\mathcal{M}(B, B)$ is the empty set.

Lemma 3.7. Suppose that K is a normal subgroup of G and $P \in \mathcal{M}(G, B)$. Then either
(i) $P \in \mathcal{M}(B K, B)$; or
(ii) $P K / K \in \mathcal{M}(G / K, B K / K)$ and $P \in \mathcal{M}\left(N_{G}(S \cap K), B\right)$.

Proof. Assume that $P \notin \mathcal{M}(B K, B)$. Then $P K / K \in \mathcal{M}(G / K, B K / K)$ by Lemma 3.5. Since $S \cap K \in \operatorname{Syl}_{p}(P \cap K)$ and $P \cap K$ is a normal subgroup of P, we have $P=N_{P}(S \cap K)(P \cap K)$ by the Frattini Argument. Thus, because $N_{P}(S \cap K) \geq B$ and P is p-minimal, we now have $P=N_{P}(S \cap K)$. Hence $P \in \mathcal{M}\left(N_{G}(S \cap K), B\right)$.
Lemma 3.8. Suppose that K is a normal subgroup of G and $G=B K C_{G}(K)$. Assume that $N_{K}(S \cap K)=B \cap K$ and $P \in \mathcal{M}(G, B)$. Then $P \in \mathcal{M}(B K, B) \cup$ $\mathcal{M}\left(B C_{G}(K), B\right)$.

Proof. Since $B \cap K=N_{K}(S \cap K)$ and $G=B K C_{G}(K)$, we infer that $N_{G}(S \cap K) \leq$ $B C_{G}(K)$. From Lemma 3.7 we have $P \in \mathcal{M}(B K, B)$ or $P \in \mathcal{M}\left(N_{G}(S \cap K), B\right)$. Hence $P \in \mathcal{M}(B K, M) \cup \mathcal{M}\left(B C_{G}(K), B\right)$.
Lemma 3.9. Suppose $G=L K$ where L and K are normal subgroups of G with $L \cap K=1$ and let $P \in \mathcal{M}(G, B)$. Assume that neither K nor L are p-closed. Then either $P \cap K \in \mathcal{M}(K, B \cap K)$ or $P \cap L \in \mathcal{M}(L, B \cap L)$.
Proof. We have $G=K L=B K C_{G}(K)$ and, as $S=(S \cap K)(S \cap L), N_{K}(S \cap K) \leq B$ and so $B \cap K=N_{K}(S \cap L)$. Furthermore,since $C_{G}(K)=Z(K) L$ and $Z(K) \leq B$, we have $B C_{G}(K)=B L$. Hence, using Lemma 3.8, $P \in \mathcal{M}(B K, B) \cup \mathcal{M}(B L, B)$.

If, say, $P \in \mathcal{M}(B L, B)$ and U is the unique maximal subgroup of P containing B, then $U \cap L$ is the unique maximal subgroup of $P \cap L$ containing $B \cap L$. Thus $P \cap L \in \mathcal{M}(L, B \cap L)$. Similarly, if $P \in \mathcal{M}(B K, B)$, we get $P \cap K \in \mathcal{M}(K, B \cap K)$, so proving the lemma.

Lemma 3.10. Assume that $H \leq G$ and $G=H Z(G)$. The map $P \mapsto P \cap H$ is a bijection between $\mathcal{M}(G, B)$ and $\mathcal{M}\left(H, N_{H}(S \cap H)\right)$.

Proof. We have that $H / Z(H) \cong G / Z(G)$ and therefore, as $Z(G) \leq N_{G}(S)=B$, there is a one to one correspondence between the p-minimal subgroups of G and those of H.

Lemma 3.11. Suppose that K is a normal subgroup of G and $R=S \cap K$. Assume that $P \in \mathcal{M}\left(K, N_{K}(R)\right)$ and $P B$ is a group. If $B \cap K=N_{K}(R)$, then $P B \in$ $\mathcal{M}(G, B)$.
Proof. First we observe that

$$
B \cap P=B \cap P \cap K=P \cap N_{K}(R)=N_{K}(R)
$$

Also $P B \cap K=P(B \cap K)=P N_{K}(R)=P$ and so P is normal in $P B$. Now suppose that M is a subgroup of $P B$ containing B. Then $M=B(M \cap P)$ and $M \cap P<P$. Since $M \cap P \geq B \cap P=N_{K}(R)$, we have that $M \cap P \leq U$ where U is the unique maximal subgroup of P containing $N_{K}(R)$. Since B normalizes both $N_{K}(R)$ and P and U is the unique maximal subgroup of P containing $N_{K}(R)$, we get that B normalizes U and $M \leq U B<P B$. Thus $U B$ is the unique maximal subgroup of $P B$ containing B. Hence $P B \in \mathcal{M}(G, B)$

Lemma 3.12. Suppose that $P \in \mathcal{M}(G, B), K$ is a normal subgroup of P which contains $O_{p}(P)$ and $O_{p}(P / K) \neq 1$. Then $P=B K$.

Proof. Suppose that $B K \neq P$. Then K is contained in the unique maximal subgroup U of P containing B. Let W be a Sylow p-subgroup of the preimage of $O_{p}(P / K)>1$ which is contained in S. Then $P=N_{P}(W) W K=N_{P}(W) K$ by the Frattini Argument. Since $K \leq U$ and B normalizes W, we have $P=N_{P}(W)$. But then $W \leq O_{p}(P) \leq K$ and this is a contradiction as $W \not \leq K$.

Lemma 3.13. Suppose that $P \in \mathcal{M}(G, B), K$ is a normal subgroup of G. Then either
(i) $P K=B K$; or
(ii) $P K / K \in \mathcal{M}(G / K, B K / K)$ and one of the following holds:
(a) $P \cap K \leq B$; or
(b) $O_{p}(P) K / K=O_{p}(P K / K)$.

Proof. Assume that (i) does not hold. Then $P K / K \in \mathcal{M}(G / K, B K / K)$ by Lemma 3.5. Set $M=(P \cap K) O_{p}(P)$. Since $O_{p}(P) \leq B$, we may suppose that $M \not \leq B$, else (ii)(a) holds. Since $B M \neq P$ and $O_{p}(P) \leq M$ with M normal in P, Lemma 3.12 implies that $O_{p}(P / M)=1$. Since $P / M \cong P K / M K$ by the correspondence theorem, we have $O_{p}(P K / M K)=1$. Thus

$$
O_{p}(P K / K) \leq M K / K=O_{p}(P) K / K=O_{p}(P K / K)
$$

and we have option (ii)(b).
Definition 3.14. Let G be a group and $P \in \mathcal{M}(G, B)$. Then P is a tame p-minimal subgroup of G provided that for all automorphisms α of $G, P^{\alpha} \in \mathcal{M}(G, B)$ implies $P^{\alpha}=P$. We say that G is tame provided all the members of $\mathcal{M}(G, B)$ are tame.

The next lemma highlights our interest and is the key property of tame p-minimal subgroups of G.

Lemma 3.15. Suppose that K is a normal subgroup of $G, G=B K, R=S \cap K$ and $N_{K}(R)=B \cap K$. If K is tame, then the map $P \mapsto P \cap K$ is a bijection between $\mathcal{M}(G, B)$ and $\mathcal{M}\left(K, N_{K}(R)\right)$.

Proof. Let $P \in \mathcal{M}(G, B)$. Then $P \cap K \geq B \cap K=N_{K}(R)$. We claim that $P \cap K$ is not p-closed. For if it were, we get $P \cap K=B \cap K$, whence

$$
P=P \cap G=P \cap B K=B(P \cap K)=B,
$$

which is a contradiction. Hence, by Lemma 3.2, $P \cap K=\langle Q| Q \in \mathcal{M}(P \cap$ $\left.\left.K, N_{K}(R)\right)\right\rangle$. Since K is tame, B normalizes each $Q \in \mathcal{M}\left(P \cap K, N_{K}(R)\right)$ and hence $B Q \leq P$. Since $P \in \mathcal{M}(G, B)$ and $P=B(P \cap K)$, we get $P \cap K \in \mathcal{M}\left(K, N_{K}(R)\right)$. Thus the map $P \mapsto P \cap K$ is a well defined injective map from $\mathcal{M}(G, B)$ to $\mathcal{M}\left(K, N_{K}(R)\right)$. Similarly, for $Q \in \mathcal{M}\left(K, N_{K}(R)\right)$, we have $Q B \leq G$ is a group and so Lemma 3.11 implies that $Q B \in \mathcal{M}(G, B)$ and $Q=Q(B \cap K)$.

We now make some remarks concerning central products and projection maps. Suppose that K_{1}, \ldots, K_{n} are groups. Then a central product of K_{1}, \ldots, K_{n} is the image of $K_{1} \times \cdots \times K_{n}$ by a homomorphism with a central kernel. If $X=K_{1} \ldots K_{n}$ is a central product by a homomorphism θ, then the projection of X to K_{1} is the composition of the standard projection of $\bar{X}=K_{1} \times \cdots \times K_{n}$ to K_{1} considered as a homomorphism from \bar{X} to \bar{X} with θ.

Lemma 3.16. Suppose that G is a group and K is a normal subgroup of G such that $G=K S$. Assume that $K=K_{1} K_{2} \ldots K_{n}$ is a central product and S acts transitively on the set $\left\{K_{1}, \ldots, K_{n}\right\}$ by conjugation. Let π_{1} be the projection map from K to K_{1}. If $Y \in \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$ is tame, then $\pi_{1}\left(\left\langle Y^{B}\right\rangle\right)=Y$.

Proof. Let $g \in B=S(B \cap K)$. Then $Y^{g} \leq K_{1}^{g}=K_{j}$ for some j and $Y^{g} \geq$ $N_{K_{j}}\left(S \cap K_{j}\right)$. If $j \neq 1$, then $\pi_{1}\left(Y^{g}\right) \leq N_{K_{1}}\left(S \cap K_{1}\right) \leq Y$. If $Y^{g} \leq K_{1}$, then g normalizes K_{1} and, as Y is tame, $Y^{g}=Y$. Hence, as π_{1} is a homomorphism from K to $K_{1}, \pi_{1}\left(\left\langle Y^{B}\right\rangle\right)=Y$.

The next lemma is fundamentally important when we consider p-minimal subgroups of wreath products.

Lemma 3.17. Suppose that G is a group and K is a normal subgroup of G such that $G=K S$. Assume, additionally, that $K=K_{1} K_{2} \ldots K_{n}$ is a central product and S acts transitively on the set $\left\{K_{1}, \ldots, K_{n}\right\}$ by conjugation. Let π_{1} be the projection map from K to K_{1} and assume that
(a) $\pi_{1}\left(N_{K}(S)\right)=N_{K_{1}}\left(S \cap K_{1}\right)$; and
(b) K_{1} is tame.

Then we have the following.
(i) Let $P \in \mathcal{M}(G, B)$, and set $L=\pi_{1}(P \cap K)$. Then either $P \in \mathcal{M}\left(N_{G}(S \cap\right.$ $K), B)$ or $P=\left\langle O^{p^{\prime}}(L)^{B}\right\rangle B$ and $L \in \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$.
(ii) If $L \in \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$ and $P=\left\langle O^{p^{\prime}}(L)^{B}\right\rangle B$, then $P \in \mathcal{M}(G, B)$ and $\pi_{1}(P \cap K)=L$.
In particular, there is a bijection between the sets

$$
\mathcal{M}(G, B) \backslash \mathcal{M}\left(N_{G}(S \cap K), B\right) \text { and } \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)
$$

Proof. Suppose first that $P \in \mathcal{M}(G, B)$ and set $P_{0}=P \cap K$. Then $P_{0} \geq B \cap K=$ $N_{K}(S)$. Hence, by assumption (a), $\pi_{1}\left(P_{0}\right) \geq N_{K_{1}}\left(S \cap K_{1}\right)$. Set $R_{1}=\left\langle\left(S \cap K_{1}\right)^{\pi_{1}\left(P_{0}\right)}\right\rangle$ and $R=\left\langle R_{1}^{B}\right\rangle(S \cap K)$. Then, as K is a central product of $K_{1}, \ldots, K_{n}, R_{1}=$ $\left\langle\left(S \cap K_{1}\right)^{P_{0}}\right\rangle$ is normal in P_{0} and so $R \leq P_{0}$. Since R is normal in P_{0}, the Frattini Argument delivers $P_{0}=R N_{P_{0}}(S \cap K)$ and so $P=P_{0} S=R N_{P_{0}}(S \cap K) S$.

Since $R B$ and $N_{P_{0}}(S \cap K) B$ are both subgroups of P containing B and $P \in$ $\mathcal{M}(G, B)$, either $P=R B$ or $P=N_{P_{0}}(S \cap K) B \leq N_{G}(S \cap K)$. In the latter case we have $P \in \mathcal{M}\left(N_{G}(S \cap K), B\right)$, so we now show that in the former case we have $L=\pi_{1}\left(P_{0}\right) \in \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$. Note that $L \geq R_{1} N_{K_{1}}\left(S \cap K_{1}\right)$ and so, as R_{1} is normal in L, the Frattini Argument implies $L=R_{1} N_{K_{1}}\left(S \cap K_{1}\right)$. Let $Y \in \mathcal{M}\left(L, N_{L}\left(S \cap K_{1}\right)\right)$ with $Y \neq L$ and set $Q=\left\langle\left(S \cap K_{1}\right)^{Y}\right\rangle=O^{p^{\prime}}(Y)$. Note that, as $Y \leq L=\pi_{1}\left(P_{0}\right)$ and $S \cap K_{1} \leq P_{0}$, we have $Q \leq P_{0}$. Because $Y \in \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$ is tame, Lemma 3.16 implies that $\pi_{1}\left(\left\langle Y^{B}\right\rangle\right)=Y \leq$ L. It follows that $\left\langle Q^{B}\right\rangle N_{K}(S)<P_{0}$. In particular, $\left\langle Q^{B}\right\rangle B$ is contained in the unique maximal subgroup of P. Hence, if $L \notin \mathcal{M}\left(L, N_{L}\left(S \cap K_{1}\right)\right),\left\langle O^{p^{\prime}}(Y)\right| Y \in$ $\left.\mathcal{M}\left(L, N_{L}\left(S \cap K_{1}\right)\right)\right\rangle B<P$, but this contradicts $L=\left\langle O^{p^{\prime}}(Y)\right| Y \in \mathcal{M}\left(L, N_{L}(S \cap\right.$ $\left.\left.\left.K_{1}\right)\right)\right\rangle \pi_{1}\left(N_{K}(S)\right)$ and $\left\langle O^{p^{\prime}}(L), B\right\rangle=P$. Hence (i) holds.

Now assume that $P=R B$ where $R=\left\langle O^{p^{\prime}}(L)^{B}\right\rangle$ and $L \in \mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$. We have that $P_{0}=P \cap K=R N_{K}(S)$ and as K_{1} is tame Lemma 3.16 gives $\pi_{1}\left(P_{0}\right)=L$. Let U be the unique maximal subgroup of L which contains $N_{L}\left(S \cap K_{1}\right)$. Assume that $Y \in \mathcal{M}(P, B)$. Then by (i) either $Y=N_{Y}(S \cap K)$ or $Y=\left\langle O^{p^{\prime}}\left(\pi_{1}(Y \cap\right.\right.$ $\left.K))^{B}\right\rangle B$. In the former case $\pi_{1}(Y \cap K)=N_{K_{1}}(S \cap K) \leq U$. So suppose the
second possibility arises. Then $\pi_{1}(Y \cap K) \leq \pi_{1}\left(P_{0}\right)=L$. If we have equality, then $O^{p^{\prime}}\left(\pi_{1}(Y \cap K)\right)=O^{p^{\prime}}(L)$ and so $Y=P$ which means that $P \in \mathcal{M}(G, B)$. So we should assume, using (a), that $\pi_{1}(Y \cap K) \leq U$. Then, for all $Y \in \mathcal{M}(P, B)$, we have $\pi_{1}(Y \cap K) \leq U$. However, $P=\langle Y \mid Y \in \mathcal{M}(P, B)\rangle=\langle S(Y \cap K) \mid Y \in \mathcal{M}(P, B)\rangle$ and $P_{0}=(S \cap K)\langle Y \cap K \mid Y \in \mathcal{M}(P, B)\rangle=\langle Y \cap K \mid Y \in \mathcal{M}(P, B)\rangle$. Since π_{1} is a homomorphism we now have that $\pi_{1}\left(P_{0}\right) \leq U<L=\pi_{1}\left(P_{0}\right)$ which is absurd.

We finish this section with a technical lemma. Note that in its statement we are assuming $p=2$.
Lemma 3.18. Suppose that H is a normal subgroup of $G, R=S \cap H \in \operatorname{Syl}_{2}(H)$, $P \leq H$ and $P \geq N_{H}(R)$. Assume in addition that
(i) $J=J_{1} \times J_{2}$ is a normal subgroup of G and G permute $\left\{J_{1}, J_{2}\right\}$ transitively by conjugation;
(ii) $R \cap J=N_{J}(R \cap J)$;
(iii) $S=C_{S}\left(J_{1}\right) R$; and
(iv) $P=N_{H}(R)(P \cap J)$.

Then S normalizes P.
Proof. Set $Y=C_{S}\left(J_{1}\right)$ and $Q_{1}=\left\langle\left(R \cap J_{1}\right)^{P \cap J}\right\rangle$. Then $Q_{1} \leq P \cap J_{1}$ and is normalized by $\left\langle P \cap J, N_{N_{H}(R)}\left(J_{1}\right), Y\right\rangle$.

Since $N_{H}(R)$ normalizes $P \cap J$ and $P \cap J \leq N_{G}\left(Q_{1}\right)$, the subgroup $Q=\left\langle Q_{1}^{N_{H}(R)}\right\rangle$ is normalized by $N_{H}(R)(P \cap J)$ which by (v) is equal to P. Note that (v) together with (ii) also implies that

$$
\begin{aligned}
N_{P}(R \cap J) & =N_{P}(R \cap J) \cap N_{H}(R)(P \cap J)=N_{H}(R) N_{P \cap J}(R \cap J) \\
& =N_{H}(R)(R \cap J)=N_{H}(R) .
\end{aligned}
$$

Since $R \cap J_{1} \leq Q_{1}$ and, by (i), $R \cap J=\left(R \cap J_{1}\right)\left(R \cap J_{2}\right) \leq Q \leq J \cap P$, we have that $R \cap J \in \operatorname{Syl}_{2}(Q)$. Thus the Frattini Argument gives

$$
P=N_{P}(R \cap J) Q=N_{H}(R) Q
$$

Furthermore, we have Y normalizes Q_{1} and $N_{H}(R)$ (as S normalizes $N_{H}(R)$) and so Y normalizes Q. As $S=Y R$ by (iii), we now have S normalizes Q. Hence S normalizes $P=N_{H}(R) Q$.

4. 2-minimal subgroups in monomial groups

Recall that T_{m} is a Sylow 2-subgroup of $\operatorname{Sym}\left(2^{m}\right)$ as described in Section 2. Also the definition of H-minimal groups is given in Definition 3.3.

Lemma 4.1. Let s be an odd prime and b and m be positive integers. Suppose that $U=\left\langle u_{1}, \ldots, u_{2^{m}}\right\rangle$ is a homocyclic group of rank 2^{m} and exponent s^{b}. Let $T=$ $T_{m} \in \operatorname{Syl}_{2}\left(\operatorname{Sym}\left(2^{m}\right)\right)$ permute the set $\left\{u_{1}, \ldots, u_{2^{m}}\right\}$ of generators of U naturally and thereby realize T as a subgroup of $\operatorname{Aut}(U)$. For $0 \leq j \leq m$, define

$$
U_{j}=U_{j}\left(s^{b}\right)=\left\langle\left(\sum_{i=1}^{2^{m-j}} u_{i}-u_{2^{m-j}+i}\right)^{T}\right\rangle
$$

where, by convention, all elements u_{k} with $k>2^{m}$ are ignored. Then
(i) $U_{0}=C_{U}(T)$ is cyclic of order s^{b} and, for $1 \leq j \leq m, U_{j}$ is homocyclic of rank 2^{j-1} and exponent s^{b};
(ii) $U=\oplus_{j=0}^{m} U_{j}$;
(iii) the centralizer in T of U_{j} is the base group of T when T is viewed as the wreath product $T_{j} \imath T_{m-j}$; and
(iv) the set $\left\{U_{j}\left(s^{c}\right)=s^{b-c} U_{j} \mid 0 \leq j \leq m, 1 \leq c \leq b\right\}$ comprises all the T-minimal subgroups of U.

Proof. We prove the result by induction on m noting that it is easy to check for $m=1$. So we now assume that $m>1$. Let

$$
R=\left\langle(1,2),(3,4), \ldots,\left(2^{m}-1,2^{m}\right)\right\rangle
$$

be the base group of T. Then $[U, R]=\left\langle u_{1}-u_{2}, \ldots, u_{2^{m-1}}-u_{2^{m}}\right\rangle$ and $C_{U}(R)=$ $\left\langle u_{1}+u_{2}, \ldots, u_{2^{m-1}}+u_{2^{m}}\right\rangle$. Thus $U_{m}=[U, R]$ and $U=C_{U}(R) \oplus U_{m}$. Furthermore $C_{U}(R)$ is an abelian group of exponent s^{b} and rank 2^{m-1} which admits T / R as a group of automorphisms permuting its generating set exactly as a Sylow 2subgroup of $\operatorname{Sym}\left(2^{m-1}\right)$ does. By induction we obtain $C_{U}(R)=\oplus_{j=0}^{m-1} U_{j}$. Thus $U=\oplus_{j=0}^{m} U_{j}$. Since any minimal T-invariant subgroup of U is contained in either $C_{U}(R)$ or $[U, R]=U_{m}$, it remains, again by induction, to show that U_{m} is a minimal T-invariant subgroup of U of exponent s^{b}. Suppose that $0 \neq W<U_{m}$ and that W is T-invariant and of exponent s^{b}. Then W is homocyclic and $[W,(1,2)] \leq\left\langle u_{1}-u_{2}\right\rangle$. If $[W,(1,2)] \leq s\left\langle u_{1}-u_{2}\right\rangle$, then, as T acts transitively on the given generators of R, we have $[W, R] \leq s U_{m}$. But then $W / s W$ is centralized by R and consequently $W \leq C_{U}(R) \cap[U, R]=0$, which against our assumption. Therefore $[W,(1,2)]=\left\langle u_{1}-u_{2}\right\rangle$ and the action T delivers $W=U_{m}$. If W has exponent s^{c} with $c<b$, then $W \leq s U$ and the final statement now follows by an induction on b.

To clear the air, notationally speaking, we consider the following example.
Example 4.2. Suppose that $2^{m}=16$ and $s^{b}=9$. Then the non-zero T_{4}-minimal subgroups of U are as follows:
(i) $U_{0}=U_{0}\left(3^{2}\right)=\left\langle u_{1}+\cdots+u_{16}\right\rangle$ of rank 1 and order 9 and $3 U_{0}=U_{0}\left(3^{1}\right)$ of order 3;
(ii) $U_{1}=U_{1}\left(3^{2}\right)=\left\langle u_{1}+\cdots+u_{8}-\left(u_{9}+\cdots+u_{16}\right)\right\rangle$ of rank 1 and order 9 and $3 U_{1}=U_{1}\left(3^{1}\right)$ of order 3 ;
(iii) $U_{2}=U_{2}\left(3^{2}\right)=\left\langle u_{1}+\cdots+u_{4}-\left(u_{5}+\cdots+u_{8}\right), u_{9}+\cdots+u_{12}-\left(u_{13}+\cdots+u_{16}\right)\right\rangle$ of rank 2 and of order 9^{2} and $3 U_{2}=U_{2}\left(3^{1}\right)$ of order 3^{2};
(iv) $U_{3}=U_{3}\left(3^{2}\right)=\left\langle u_{1}+u_{2}-\left(u_{3}+u_{4}\right), \ldots, u_{13}+u_{14}-\left(u_{15}+u_{16}\right)\right\rangle$ of rank 4 and order 9^{4} and $3 U_{3}=U_{3}\left(3^{1}\right)$ order 3^{4}; and
(v) $U_{4}=U_{4}\left(3^{2}\right)=\left\langle u_{1}-u_{2}, \ldots, u_{15}-u_{16}\right\rangle$ of rank 8 and order 9^{8} and $3 U_{4}=$ $U_{4}\left(3^{1}\right)$ of order 3^{8}.

Our next lemma is similar to the preceding one.
Let $j \in\{1, \ldots, m-1\}$. The subgroup of $\operatorname{Sym}\left(2^{m}\right)$ denoted by $X_{2^{m}}(1 ; j)$ (note that $r=1$ and $n_{1}=m$ here) in Section 2 has shape T_{j-1} 〔 $\operatorname{Sym}(4) \imath T_{m-j-1}$. Set $Y_{m, j}=X_{2^{m}}(1 ; j)$. Let $F_{m, j}$ be the base group of $Y_{m, j}$ where we think of $Y_{m, j}$ as the wreath product

$$
X_{2^{j+1}}(1 ; j) \imath T_{m-j-1}=Y_{j+1, j} \imath T_{m-j-1}
$$

So $F_{m, j}$ is a direct product of 2^{m-j-1} copies of $Y_{j+1, j}\left(=T_{j-1} \imath \operatorname{Sym}(4)\right)$. The set-up just described will be assumed in Lemmas 4.3, 4.4 and 4.5.

Lemma 4.3. Let s be an odd prime and b and $m \geq 2$ be positive integers. Suppose that $U=\left\langle u_{1}, \ldots, u_{2^{m}}\right\rangle$ is a homocyclic group of rank 2^{m} and exponent s^{b}. Let group $Y_{m, j}$ permute the set $\left\{u_{1}, \ldots, u_{2^{m}}\right\}$ of generators of U naturally and thereby realizes $Y_{m, j}$ as a subgroup of $\operatorname{Aut}(U)$.

For $0 \leq j \leq m$, set

$$
U_{j}=U_{j}\left(s^{b}\right)=\left\langle\left(\sum_{i=1}^{2^{m-j}} u_{i}-u_{2^{m-j}+i}\right)^{T_{m}}\right\rangle
$$

Then the following hold.
(i) For $1 \leq j \leq m-1, U=C_{U}\left(F_{m, j}\right) \oplus\left[U, F_{m, j}\right]$ is a $Y_{m, j}$-invariant decomposition of U.
(ii) $C_{U}\left(F_{m, j}\right)=\bigoplus_{k=0}^{m-j-1} U_{k}$ and $\left[U, F_{m, j}\right]=W \oplus \bigoplus_{k=m-j+2}^{m} U_{k}$ where $W=$ $U_{m-j} \oplus U_{m-j+1}$ are decompositions of $C_{U}\left(F_{m, j}\right)$ and $\left[U, F_{m, j}\right]$ into $Y_{m, j^{-}}$ minimal subgroups of exponent s^{b}.
Proof. We prove the result by induction on j. Assume that $j=1$. So $F_{m, 1}$ is a direct product of groups isomorphic to $\operatorname{Sym}(4)$. Then $C_{U}\left(F_{m, 1}\right)=\left\langle\left(u_{1}+u_{2}+u_{3}+u_{4}\right)^{Y_{m, 1}}\right\rangle$ which has rank 2^{m-2} and $\left[U, F_{m, 1}\right]=\left\langle\left\{u_{1}-u_{2}, u_{2}-u_{3}, u_{1}-u_{4}\right\}^{Y_{m, 1}}\right\rangle$ which has rank $2^{m-2}+2^{m-1}$. Thus, as $2^{m-2}+2^{m-2}+2^{m-1}=2^{m}$ and $C_{U}\left(F_{m, 1}\right) \cap\left[U, F_{m, 1}\right]=0$, $U=C_{U}\left(F_{m, 1}\right) \oplus\left[U, F_{m, 1}\right]$ and this is a $Y_{m, 1}$-invariant decomposition. We may identify $C_{U}\left(F_{m, 1}\right)$ with the natural permutation module for $Y_{j, 1} / F_{j, 1} \cong T_{m-2}$ and thus by applying Lemma 4.1 and making the appropriate identifications we have $C_{U}\left(F_{m, 1}\right)=\bigoplus_{k=0}^{m-2} U_{k}$. Applying Lemma 4.1 again this time for T_{m}, we see that $\left[U, F_{m, 1}\right]=U_{m-1} \oplus U_{m}$ and as U_{m} is not $Y_{j, 1}$-invariant we deduce that $W=\left[U, F_{m, 1}\right]$ is a minimal $Y_{m, 1}$-invariant subgroup of exponent s^{b}. This proves the lemma for $j=1$.

Now assume that $j>1$ and let $S_{0}=\left\langle(1,2)^{Y_{m, j}}\right\rangle$. Then S_{0} is elementary abelian of order $2^{2^{m-1}}$ and $Y_{m, j} / S_{0} \cong Y_{m-1, j-1}$. Since U has odd order, we have $U=$ $C_{U}\left(S_{0}\right) \oplus\left[U, S_{0}\right]$ is a $Y_{m, j}$-invariant decomposition of U and we observe that $\left[U, S_{0}\right]=$ U_{m} is irreducible as a $Y_{m, j}$-module as its restriction to T_{m} is already irreducible by Lemma 4.1. So $U=C_{U}\left(S_{0}\right) \oplus U_{m}$. Since $C_{U}\left(S_{0}\right)=\left\langle\left(u_{1}-u_{2}\right)^{Y_{m, j}}\right\rangle$ we may identify $C_{U}\left(S_{0}\right)$ with the natural $Y_{m, j} / S_{0} \cong Y_{m-1, j-1}$-module. By induction we then have $C_{U}\left(S_{0}\right)=C_{C_{U}\left(S_{0}\right)}\left(F_{m-1, j-1}\right) \oplus\left[C_{U}\left(S_{0}\right), F_{m-1, j-1}\right]$ and we can write $C_{C_{U}\left(S_{0}\right)}\left(F_{m-1, j-1}\right)=\bigoplus_{k=0}^{m-j-1} U_{k}$ and $\left[C_{U}\left(S_{0}\right), F_{m-1, j-1}\right]=W \oplus \bigoplus_{k=m-j+2}^{m} U_{k}$. Thus we have decomposed U as a direct sum of irreducible modules as described in the lemma. We complete the lemma by noting that $C_{C_{U}\left(S_{0}\right)}\left(F_{m-1, j-1}\right)=C_{U}\left(F_{m, j}\right)$ and that $\left[U, F_{m, j}\right]=\left[C_{U}\left(S_{0}\right), F_{m-1, j-1}\right]+U_{m}$.

We further embellish Example 4.2 to illustrate the phenomena in Lemma 4.3.
Example 4.4. We again take $2^{m}=2^{4}$ and $s^{b}=9$. See Example 4.2 for an explicit description of $U_{0}, U_{1}, U_{2}, U_{3}$ and U_{4}. Then

$$
X_{2^{4}}(1 ; 1)=Y_{4,1}=\operatorname{Sym}(4) \imath T_{2}
$$

with $C_{U}\left(F_{4,1}\right)=U_{0} \oplus U_{1} \oplus U_{2}$ and $\left[U, F_{4,1}\right]=U_{3} \oplus U_{4}$. Further the $Y_{4,1}$-minimal subgroups of U are $U_{0}, 3 U_{0}, U_{1}, 3 U_{1}, U_{2}$ and $3 U_{2}$, which are (all centralized by the base group of $F_{4,1}$) together with $U_{3} \oplus U_{4}$ and $3\left(U_{3} \oplus U_{4}\right)$ which both admit $F_{4,1}$ faithfully. For $X_{2^{4}}(1 ; 2)=Y_{4,2}=T_{1} \imath \operatorname{Sym}(4) \imath T_{1}, C_{U}\left(F_{4,2}\right)=U_{0} \oplus U_{1}$ and
$\left[U, F_{4,2}\right]=W \oplus U_{4}$ with $W=U_{2} \oplus U_{3}$（so the $Y_{4,2}$－minimal subgroups of U are U_{0} ， $3 U_{0}, U_{1}, 3 U_{1}, U_{2} \oplus U_{3}$ and $3\left(U_{2} \oplus U_{3}\right)$ ，U_{4} and $\left.3 U_{4}\right)$ ．

Similarly for $X_{2^{4}}(1 ; 3)=Y_{4,3}=T_{2} \backslash \operatorname{Sym}(4)$ ，we get the $Y_{4,3}$ minimal subgroups are U_{0} and $3 U_{0},\left(U_{1} \oplus U_{2}\right), 3\left(U_{1} \oplus U_{2}\right), U_{3}, 3 U_{3}, U_{4}$ and $3 U_{4}$ ．

Lemma 4．5．Suppose that $P=Y_{m, j}$ ，and set $C=O_{2,2^{\prime}}(P) / O_{2}(P)$ ．Then $P / O_{2,2^{\prime}}(P) \cong$ T_{m-j}, C is a composition factor of P and as a $T_{m-j-m o d u l e ~ o v e r ~ G F(3), ~} C$ is iso－ morphic to $U_{m-j}\left(3^{1}\right)$ ．
Proof．We have $P / O_{2,2^{\prime}}(P) \cong T_{1}$ T_{m-j-1} and so $P / O_{2,2^{\prime}}(P) \cong T_{m-j}$ ．Since $P / O_{2}(P) \cong \operatorname{Sym}(3) 乙 T_{m-j-1}$ ，we see that the composition factor C is a faith－ ful T_{m-j}－module．Furthermore we may view T_{m-j} acting on the set of 3 －cycles in $\operatorname{Sym}(3)$ 乙 T_{m-j-1} which is a set of size 2^{m-j} and we see that the stabilizer of a point in this action has index 2^{m-j} and corresponds to the centralizer of a 3－ cycle．From the universal property of permutation modules it follows that the chief factor C is isomorphic to a quotient of the GF（3）permutation module of T_{m-j} ． Since C is faithful it follows from Lemma 4.1 that C is isomorphic to $U_{m-j}\left(3^{1}\right)$ ，as claimed．

Lemma 4．6．Let s be an odd prime and b, m and n be positive integers．Suppose that $W=\left\langle w_{i, j} \mid 1 \leq i \leq 2^{m}, 1 \leq j \leq n\right\rangle$ is a homocyclic group of rank $2^{m} n$ and exponent s^{b} ．Assume that $T=T_{m} \in \operatorname{Syl}_{2}\left(\operatorname{Sym}\left(2^{m}\right)\right)$ ，set $H=T$ 2 $\operatorname{Sym}(n)$ and let H permute the set $\left\{w_{i, j} \mid 1 \leq i \leq 2^{m}, 1 \leq j \leq n\right\}$ of generators of W naturally and thereby realize H as a subgroup of $\operatorname{Aut}(W)$ ．For $0 \leq j \leq m$ ，define

$$
W_{j}=\left\langle\left(\sum_{i=1}^{2^{m-j}} w_{i, 1}-w_{2^{m-j}+i, 1}\right)^{H}\right\rangle
$$

where，by convention，all elements w_{k} with $k>2^{m}$ are ignored．Then
（i）$W_{0}=C_{W}\left(T^{H}\right)$ has order $s^{b n}$ is the natural permutation module for $H /\left\langle T^{H}\right\rangle \cong$ $\operatorname{Sym}(n)$ ，and for $1 \leq j \leq m, W_{j}$ is a homocyclic group of rank $2^{j-1} n$ and exponent s^{b} ；
（ii）$W=\oplus_{j=0}^{m} W_{j}$ ；
（iii）the centralizer in H of W_{j} is the base group of H when H is viewed as the wreath product T_{j}（ T_{m-j} 〕 $\left.\operatorname{Sym}(n)\right)$ ；and
（iv）for $1 \leq j \leq m$ ，the homocyclic subgroups W_{j} comprise the minimal H－ invariant subgroups of $W_{1} \oplus \cdots \oplus W_{m}$ of exponent s^{b} ．

Proof．Let F denote the base group of H ．We have $F \cong T \times \cdots \times T$ with exactly n factors．For $0 \leq j \leq m$ and $1 \leq k \leq n$ ，set $W_{j, k}=\left\langle\left(\sum_{i=1}^{2^{m-j}} w_{i, k}-w_{2^{m-j}+i, k}\right)^{F}\right\rangle$ and note that as a module for the k th direct factor of $F, W_{j, k}$ is isomorphic to $U_{j}=U_{j}\left(s^{b}\right)$ as defined in Lemma 4．1．Furthermore，$W_{j}=\bigoplus_{k=1}^{n} W_{j, k}$ ．This together with Lemma 4.1 （i）provides the exponent and rank of the homocyclic groups W_{j} ．

Since F centralizes W_{0}, W_{0} is naturally isomorphic to the permutation module for $H / F \cong \operatorname{Sym}(n)$ ．This completes the proof of（i）．

Part（ii）is transparent from the definition of the subgroups $W_{j}, 0 \leq j \leq m$ ．
Suppose now that $j>0$ and let W^{*} be a non－zero H－invariant subgroup of $W_{1} \oplus \cdots \oplus W_{m}$ of exponent s^{b} ．Since $j \neq 0$ we have $C_{F}\left(W_{j, k}\right) \neq C_{F}\left(W_{l, k}\right)$ for $j \neq l$ and as a consequence the homocylic subgroups $W_{j, k}$ are pairwise non－isomorphic as F－modules．Therefore the set $\left\{W_{j, k} \mid 1 \leq k \leq n\right\}$ is the set of minimal F－invariant
submodules of W_{j}. In particular, as W^{*} is F-invariant there exists an l such that $W_{j, l} \leq W^{*}$. But then W^{*} contains W_{j} and we have that $\left\{W_{j} \mid 1 \leq j \leq m\right\}$ is the set of all minimal H-invariant subgroups of exponent s^{b} contained in $W_{1} \oplus \cdots \oplus W_{m}$.

As promised in the introduction we now give explicit descriptions of the toral, linking and fuser 2 -minimal subgroups. We begin with the toral ones. We take $H=E \imath \operatorname{Sym}(n)$ where E is a finite cyclic group of odd order, F is the base group of H and X is a complement to F in H containing a fixed Sylow 2-subgroup T of H. We have $F=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ where X permutes the generators of F naturally. As usual, we write $n=2^{n_{1}}+\cdots+2^{n_{r}}$ and accordingly decompose T as $T_{n_{1}} \times \cdots \times T_{n_{r}}$ (see Section 2). Corresponding to this decomposition of n, there is an associated decomposition of F namely $F=F_{1} \times \cdots \times F_{r}$ where the generators of F_{i}, say, are $e_{2^{i-1}+1}, \ldots, e_{2^{i}}$. For $i \in I$, we set $Z_{n_{i}}=C_{F_{i}}\left(T_{n_{i}}\right)$ and then we have $N_{H}(T)=$ $\prod_{i \in I} Z_{n_{i}} T_{n_{i}}$. Set $\Pi=\Pi(|E|)$. So Π is the set of all prime powers greater than one dividing $|E|$ and hence of $\left|F_{i}\right|$ for each $i \in I$. Each F_{i} is a direct product of Sylow s-subgroups S_{i} for primes $s \in \Pi$. These Sylow s-subgroups are homocylic and admit $T_{n_{i}}$ naturally as in Lemma 4.1. Every $N_{H}(T)$-minimal subgroup of F is contained in some S_{i} for appropriate choices of $i \in I$ and prime $s \in \Pi$. Using Lemma 4.1 we see that each such $N_{H}(T)$-minimal subgroup is of the form $U_{j}\left(s^{c}\right)$ for some $1 \leq j \leq n_{i}$ and $s^{c} \in \Pi$. We now denote these $N_{H}(T)$-minimal subgroups by $U\left(i ; s^{c} ; j\right)$. Define $T\left(n_{i} ; s^{c} ; j\right)=U\left(n_{i} ; s^{c} ; j\right) N_{H}(T)$. Notice that $U\left(n_{i} ; s^{c} ; 0\right) \leq Z_{n_{i}}$ for each $s^{c} \in \Pi$. Furthermore, $T\left(n_{i} ; s^{c} ; j\right)$ is a 2-minimal subgroup of H by Lemma 3.4.

For $i \in I$ and for $j \in\left\{1, \ldots, n_{i}-1\right\}$ we set

$$
P\left(n_{i} ; n_{j}\right)=X_{n}\left(n_{i} ; n_{j}\right) C_{F}(T)
$$

And for $i, j \in I$ with $i<j$, set

$$
P\left(n_{i}+n_{j}\right)=X_{n}\left(n_{i}+n_{j}\right)\left\langle C_{F}(T)^{X_{n}\left(n_{i}+n_{j}\right)}\right\rangle
$$

So $P\left(n_{i} ; n_{j}\right)$ and $P\left(n_{i}+n_{j}\right)$ are subgroups of H which contain $N_{H}(T)$.
Definition 4.7. Suppose that E is a cyclic group of odd order and $H=E \imath X$ where $X \cong \operatorname{Sym}(n)$. We employ the notation already developed for H.
(i) $\mathcal{T}\left(H, N_{H}(T)\right)=\left\{T\left(n_{i} ; s^{c} ; j\right) \mid i \in I, s^{c} \in \Pi\right.$ and $\left.1 \leq j \leq n_{i}\right\}$;
(ii) $\mathcal{L}\left(H, N_{H}(T)\right)=\left\{P\left(n_{i} ; n_{j}\right) \mid i \in I, j \in\left\{1, \ldots, n_{i}-1\right\}\right\}$;
(iii) $\mathcal{F}\left(H, N_{H}(T)\right)=\left\{P\left(n_{i}+n_{j}\right) \mid i, j \in I, i<j\right\}$.

For future use we observe the following lemma.
Lemma 4.8. (i) $\left|\mathcal{T}\left(H, N_{H}(T)\right)\right|=|\Pi| \sum_{i \in I} n_{i}$.
(ii) $\left|\mathcal{L}\left(H, N_{H}(T)\right)\right|=\left(\sum_{i \in I} n_{i}\right)-r$
(iii) $\left|\mathcal{F}\left(H, N_{H}(T)\right)\right|=\binom{r}{2}$.

The subgroups in Definition 4.7 (i), (ii) and (iii) are, respectively, the 2-minimal toral, linkers and fusers of H. We have already observed that the $T\left(n_{i} ; s^{c} ; j\right)$ are 2-minimal subgroups and it is transparent that the linkers are also 2-minimal subgroups of H. The structure of the subgroups in $\mathcal{F}\left(H, N_{H}(T)\right)$ is the subject of our next lemma.

Lemma 4.9. Suppose that $P=P\left(n_{i}+n_{j}\right) \in \mathcal{F}\left(H, N_{H}(T)\right)$. Then $P \in \mathcal{M}\left(H, N_{H}(T)\right)$. Additionally, we have the following.
(i) $X_{n}\left(n_{i}+n_{j}\right) / O_{2}\left(X_{n}\left(n_{i}+n_{j}\right)\right) \cong \operatorname{Sym}\left(2^{n_{i}-n_{j}}+1\right)$ and in its action on $\left\{e_{k} \mid\right.$ $\left.k \in \Omega_{i} \cup \Omega_{j}\right\}$ has $2^{n_{j}}$ orbits each of which is natural for $\operatorname{Sym}\left(2^{n_{i}-n_{j}}+1\right)$ and $\left\{e_{k} \mid k \in \Omega_{j}\right\}$ a maximal block of imprimitivity.
(ii) $P \cap F=\left\langle\left(\prod_{k \in \Omega_{j}} e_{k}\right)^{X_{n}\left(n_{i}+n_{j}\right)}\right\rangle$ is homocyclic of order $|E|^{2^{n_{i}-n_{j}}+1}$.
(iii) $P / O_{2}(P) \cong E \imath \operatorname{Sym}\left(2^{n_{1}-n_{2}}+1\right)$.

Proof. Recall that $P\left(n_{i}+n_{j}\right)=X_{n}\left(n_{i}+n_{j}\right)\left\langle C_{F}(T)^{X_{n}\left(n_{i}+n_{j}\right)}\right\rangle$. Set $X^{*}=X_{n}\left(n_{i}+\right.$ $\left.n_{j}\right)$. Then $P=X^{*}\left\langle C_{F}(T)^{X^{*}}\right\rangle$. By Lemma 3.6 there exists a 2-minimal subgroup R of P containing $N_{H}(T)$ such that $R F=P F$. Then

$$
R \geq\left\langle C_{F}(T)^{R}\right\rangle=\left\langle C_{F}(T)^{P}\right\rangle=P \cap F
$$

whence $P=R$.
From the description of $X_{n}\left(n_{i}+n_{j}\right)$ given in Section 2 we have $X^{*} / O_{2}\left(X^{*}\right) \cong$ $\operatorname{Sym}\left(2^{n_{i}-n_{j}}+1\right)$ and in its action on $\left\{e_{k} \mid k \in \Omega_{i} \cup \Omega_{j}\right\}$ has $2^{n_{j}}$ orbits each of which is natural for $\operatorname{Sym}\left(2^{n_{i}-n_{j}}+1\right)$ and $\left\{e_{k} \mid k \in \Omega_{j}\right\}$ a maximal block of imprimitivity. This is the statement in (i).Parts (ii) and (iii) are easy consequences of (i).

Lemma 4.10. If $P \in \mathcal{M}\left(H, N_{H}(T)\right)$, then one of the following holds:
(i) $P \in \mathcal{M}\left(T F, N_{H}(T)\right)$;
(ii) $P \in \mathcal{L}\left(H, N_{H}(T)\right) \cup \mathcal{F}\left(H, N_{H}(T)\right)$.

Proof. If $P \leq T F$, then P does indeed belong to $\mathcal{M}\left(T F, N_{H}(T)\right)$, so we may as well assume that $P \not \leq T F$. Then $P F / F \in \mathcal{M}\left(H / F, N_{H}(T) F / F\right)$ by Lemma 3.5. Let $X^{*} \in \mathcal{M}(X, T)$ be such that $X^{*} F=P F$. Then, as F is abelian, $P \cap F$ is normalized by X^{*}. Assume that $X^{*} \in \mathcal{L}(X, T)$. Then, by Theorem 2.2 and Lemma 4.5, P and $X^{*}(P \cap F)$ are conjugate in $P F$. Because both $B=T C_{F}(T)$ and $C_{F}(T) \leq P \cap F$, we have $P=X^{*}(P \cap F)$. Since P is 2-minimal, we get that $P=X^{*} C_{F}(T) \in$ $\mathcal{L}\left(H, N_{H}(T)\right)$. So (ii) holds in this case.

Suppose now that $X^{*} \in \mathcal{F}(X, T)$ and let $R=O_{2}\left(X^{*}\right)$ (we may have $R=1$). Set $J=\left\langle C_{F}(T)^{X^{*}}\right\rangle$. Then, by Lemma 4.6 (i), $J=C_{F}(R)$. Since $P \cap F$ is normal in $X^{*} F, P \cap F \geq J$. Because $R \leq P$, we have that $(P \cap F) R=P \cap F R$ is normalized by P. Therefore $P=N_{P}(R)(P \cap F)$. Because $P \in \mathcal{M}\left(H, N_{H}(T)\right)$ and $P \not \leq B F$, we get $N_{P}(R)=P$. Since $P \leq X^{*} F$ and $N_{X^{*} F}(R)=X^{*} J$, we now have $P \leq X^{*} J$ and by comparing the orders of these group we get $P=X^{*} J \in \mathcal{F}\left(H, N_{H}(T)\right)$. This completes the proof of the lemma.

Lemma 4.11. If $P \in \mathcal{M}\left(T F, N_{H}(T)\right)$, then $P \in \mathcal{T}\left(H, N_{H}(T)\right)$.
Proof. Since F is abelian and of odd order, we may apply Lemma 3.4 to see that $P=N_{H}(T) L$ where $L=[P \cap F, T]$ is a $N_{H}(T)$-minimal s-group for some prime s. It follows that $P \leq R N_{H}(T)$ where R is a Sylow s-subgroup of F. Since $N_{H}(T) \cap F$ centralizes R, we have $R=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ admits $T \in \operatorname{Syl}_{2}(\operatorname{Sym}(n))$ permuting the generators naturally. Therefore R can be decomposed as a product $R_{n_{1}} \ldots R_{n_{r}}$ of T-invariant subgroups with $R_{n_{i}}$ of rank $2^{n_{i}}$ which may then each be regarded as $T_{n_{i}}$-invariant homocylic subgroups. Since L is T-minimal, we infer that $L \leq R_{n_{i}}$ for some $i \in I$. By Lemma 4.1 we now have $P=U\left(n_{i} ; s^{c} ; j\right) N_{H}(T)=T\left(n_{i} ; s^{c} ; j\right) \in$ $\mathcal{T}\left(H, N_{H}(T)\right)$ for some c, as claimed.

Theorem 4.12. Suppose that $H=E \imath \operatorname{Sym}(n)$ where $n \geq 2$ and E is a cyclic group of od order. Then

$$
\mathcal{M}\left(H, N_{H}(T)\right)=\mathcal{T}\left(H, N_{H}(T)\right) \cup \mathcal{F}\left(H, N_{H}(T)\right) \cup \mathcal{L}\left(H, N_{H}(T)\right)
$$

Proof. Combining Lemmas 4.10 and 4.11 we have

$$
\mathcal{M}\left(H, N_{H}(T)\right) \subseteq \mathcal{T}\left(H, N_{H}(T)\right) \cup \mathcal{F}\left(H, N_{H}(T)\right) \cup \mathcal{L}\left(H, N_{H}(T)\right)
$$

Since the members of the righthand side of this containment are 2-minimal subgroups of H, we have the result.

We close this section by presenting a modest example of the 2-minimal subgroups of $H=E \imath X$ where E has order $3^{2} 5$ and $X \cong \operatorname{Sym}(12)$.

Example 4.13. We have $n=2^{3}+2^{2}$ so $n_{1}=3, n_{2}=2$ and $I=\{1,2\}$. Also $\Pi=\Pi(|E|)=\left\{3,3^{2}, 5\right\}$. Structurally, we have $T=T_{3} \times T_{2}$ with

$$
N_{H}(T)=Z_{3} Z_{2} T=Z_{3} T_{3} \times Z_{2} T_{2}
$$

and $C_{F}(T)=Z_{2} Z_{3}$ homocylic of rank 2 and order $3^{4} 5^{2}$.
The 2-minimal linkers of H are the groups $P\left(n_{i} ; n_{j}\right)=X_{12}\left(n_{i} ; n_{j}\right) Z_{2} Z_{3}$ where $i \in I, j \in\left\{1, \ldots, n_{i}-1\right\}$. Thus we have

$$
\begin{aligned}
& P(1,1)=Z_{2} Z_{3} \times\left(\operatorname{Sym}(4) \imath 2 \times T_{2}\right) ; \\
& P(1,2)=Z_{2} Z_{3} \times\left(2 \imath \operatorname{Sym}(4) \times T_{2}\right) ; \\
& P(2,1)=Z_{2} Z_{3} \times\left(T_{3} \times \operatorname{Sym}(4)\right) ;
\end{aligned}
$$

There is a single 2-minimal fuser and this, by Lemma 4.9, has shape

$$
P(1+2) \sim(45) \times\left(45 \times T_{2}\right) 乙 \operatorname{Sym}(3)
$$

where 45 stands for the cyclic group of order 45 .
The toral 2-minimal subgroups of H are $T\left(n_{i} ; s^{c} ; j\right)$ where $i \in I, s^{c} \in \Pi$ and $1 \leq j \leq n_{i}$. Thus we have

$$
\begin{array}{ll}
T\left(3 ; 3^{1} ; 1\right) \sim 3 . T_{3} Z_{3} \times T_{2} Z_{2} & T\left(3 ; 3^{2} ; 1\right) \sim 9 . T_{3} Z_{3} \times T_{2} Z_{2} \\
T\left(3 ; 5^{1} ; 1\right) \sim 5 . T_{3} Z_{3} \times T_{2} Z_{2} & T\left(3 ; 3^{1} ; 2\right) \sim 3^{2} . T_{3} Z_{3} \times T_{2} Z_{2} \\
T\left(3 ; 3^{2} ; 2\right) \sim 9^{2} . T_{3} Z_{3} \times T_{2} Z_{2} & T\left(3 ; 5^{1} ; 2\right) \sim 5^{2} . T_{3} Z_{3} \times T_{2} Z_{2} \\
T\left(3 ; 3^{1} ; 3\right) \sim 3^{4} . T_{3} Z_{3} \times T_{2} Z_{2} & T\left(3 ; 3^{2} ; 3\right) \sim 9^{4} . T_{3} Z_{3} \times T_{2} Z_{2} \\
T\left(3 ; 5^{1} ; 3\right) \sim 5^{4} . T_{3} Z_{3} \times T_{2} Z_{2} & T\left(2 ; 3^{1} ; 1\right) \sim T_{3} Z_{3} \times 3 . T_{2} Z_{2} \\
T\left(2 ; 3^{2} ; 1\right) \sim T_{3} Z_{3} \times 9 . T_{2} Z_{2} & T\left(2 ; 5^{1} ; 1\right) \sim T_{3} Z_{3} \times 5 . T_{2} Z_{2} \\
T\left(2 ; 3^{1} ; 2\right) \sim T_{3} Z_{3} \times 3^{2} . T_{2} Z_{2} & T\left(2 ; 3^{2} ; 2\right) \sim T_{3} Z_{3} \times 9^{2} . T_{2} Z_{2} \\
T\left(2 ; 5^{1} ; 2\right) \sim T_{3} Z_{3} \times 5^{2} . T_{2} Z_{2} . &
\end{array}
$$

We note that for each 2-minimal subgroup of H we can give explicit generators. Note that $3^{2} 5$ is the odd part of $l-1$ where l is the 3 rd strobogrammatic prime.

5. Subgroups of the linear and unitary groups

The purpose of this section is to present some lemmas illustrating structural properties of $\mathrm{GL}_{n}^{\epsilon}(q)=\mathrm{GL}^{\epsilon}(V)$, where $\epsilon= \pm 1$ and q is odd.

We let V be an n-dimensional vector space over $\operatorname{GF}(q)$ or $\operatorname{GF}\left(q^{2}\right)$ and in the latter case we assume that V supports a non-degenerate unitary form. For ease of expression we will refer to orthogonal decompositions of V in both cases - so in effect we are supposing that V supports a trivial form when it is defined over $\operatorname{GF}(q)$.

We let $S_{1} \in \operatorname{Syl}_{2}\left(\mathrm{GL}_{2}(q)\right)$ and for $2^{m}>2$ a 2 -power we set $S_{m}=S_{1} \backslash T_{m-1}$. Let Z_{m} be the centre of $\mathrm{GL}_{2^{m}}^{\epsilon}(q)$ then $B_{m}=S_{m} Z_{m}$ is the normalizer of a Sylow 2-subgroup of $\mathrm{GL}_{2^{m}}^{\epsilon}(q)$ by [13, Lemma 1]. Finally we let $B_{0}=\mathrm{GL}_{1}^{\epsilon}(q)$ and S_{0} be a Sylow 2-subgroup of B_{0}. Notice that S_{0} is cyclic of order $(q-\epsilon)_{2}$ and that

$$
S_{1} \cong(q-\epsilon)_{2} \prec T_{1}
$$

when $q \equiv \epsilon(\bmod 4)$ and otherwise

$$
S_{1} \cong\left\langle x, y \mid y^{2}=x^{\left(q^{2}-1\right)_{2}}=1, x^{y}=x^{\epsilon q}\right\rangle
$$

which is a semidihedral group of order $2\left(q^{2}-1\right)_{2}$.
Theorem 5.1. Suppose that $G=\operatorname{GL}_{n}^{\epsilon}(q)$ and $n=2^{n_{1}}+\cdots+2^{n_{r}}$ with $n_{1}>\cdots>$ $n_{r} \geq 0$. Let $S=S_{n_{1}} \times \cdots \times S_{n_{r}}$ and $B=B_{n_{1}} \times \cdots \times B_{n_{r}}$. Then $S \in \operatorname{Syl}_{2}(G)$ and $B=N_{G}(S)$.

Proof. See Theorems 1 and 4 of [13].
The decomposition of B leads to a corresponding decomposition of V. Namely, $V=V_{n_{1}} \oplus \cdots \oplus V_{n_{r}}$ where $V_{n_{i}}=\left[V, B_{n_{i}}\right], i \in I$.

If $q \equiv \epsilon(\bmod 4)$, we let A_{0} be a Sylow 2-subgroup of $\operatorname{GL}_{1}^{\epsilon}(q)$. Suppose that $q \equiv-\epsilon(\bmod 4)$. Then A_{1} is defined to be the maximal cyclic subgroup of S_{1}. Thus we have $\left|A_{0}\right|=(q-\epsilon)_{2}$ and $\left|A_{1}\right|=\left(q^{2}-1\right)_{2}=2(q+\epsilon)_{2}$ and both groups have order at least 4.

If $q \equiv \epsilon(\bmod 4)$, then A denotes the base group of $A_{0} \imath \operatorname{Sym}(n)$ while if $q \equiv-\epsilon$ $(\bmod 4)$, we use A to denote the base group of A_{1} ᄂ $\operatorname{Sym}(\lfloor n / 2\rfloor)$.

In the next lemma we encounter the group J_{2}^{ϵ} which is defined only when $q \equiv-\epsilon$ $(\bmod 4)$ and is then the normalizer of A_{1} in $\mathrm{GL}_{2}^{\epsilon}(q)$. We have that

$$
J_{2}^{\epsilon} \cong\left\langle x, s \mid x^{q^{2}-1}=s^{2}=1, x^{s}=x^{\epsilon q}\right\rangle
$$

Thus J_{2}^{ϵ} contains a cyclic subgroup C of order $q^{2}-1$ and index $2,\left|\left[J_{2}^{\epsilon}, J_{2}^{\epsilon}\right]\right|=q+\epsilon$ and $\left|Z\left(J_{2}^{\epsilon}\right)\right|=q-\epsilon$.

Lemma 5.2. For $G=\operatorname{GL}_{n}^{\epsilon}(q)$, the following hold.
(i) If $q \equiv-\epsilon(\bmod 4)$, then $N_{G}(A) \cong J_{2}^{\epsilon} \backslash \operatorname{Sym}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$ if n is even and $J_{2}^{\epsilon} \prec$ $\operatorname{Sym}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \times \operatorname{GL}_{1}^{\epsilon}(q)$ if n is odd.
(ii) If $q \equiv \epsilon(\bmod 4)$, then $N_{G}(A)=\mathrm{GL}_{1}^{\epsilon}(q)$ 亿 $\operatorname{Sym}(n)$.

Proof. We consider case (i) first and write $A=A_{1} \times \cdots \times A_{\lfloor n / 2\rfloor}$ and set $W_{k}=$ [V, A_{k}]. Then $\operatorname{dim} W_{k}=2$ and we have an orthogonal decomposition

$$
[V, A]=W_{1} \oplus \cdots \oplus W_{\lfloor n / 2\rfloor}
$$

These 2-dimensional spaces are permuted naturally by $\operatorname{Sym}(\lfloor n / 2\rfloor)$. Since the A_{i} are the maximal subgroups of A with 2-dimensional commutators, we infer that $N_{G}(A)$ is as described.

If $q \equiv \epsilon(\bmod 4)$, then a similar argument shows that $N_{G}(A)=\mathrm{GL}_{1}^{\epsilon}(q) \imath \operatorname{Sym}(n)$.

Lemma 5.3. Suppose that $G=\operatorname{GL}_{n}^{\epsilon}(q)$ and $g \in G$. If $A^{g} \leq S$, then $A^{g}=A$. In particular, if R is a 2-group containing A, then $N_{G}(R) \leq N_{G}(A)$.

Proof. We prove this explicitly for the case $q=-\epsilon(\bmod 4)$, the case $q \equiv \epsilon(\bmod 4)$ being easier. Again we let $A=A_{1} \times \cdots \times A_{\lfloor n / 2\rfloor}$. For $1 \leq k \leq\lfloor n / 2\rfloor$, set $W_{k}=$ [$\left.V, A_{k}\right]$. Then $\operatorname{dim} W_{k}=2$ and again we have an orthogonal decomposition

$$
[V, A]=W_{1} \oplus \cdots \oplus W_{\lfloor n / 2\rfloor}
$$

These 2-dimensional spaces are permuted naturally by $T \in \operatorname{Syl}_{2}\left(\operatorname{Sym}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right)$. Suppose that $A^{g} \leq S$ and $A^{g} \neq A$. Then $Y=A_{1}^{g} \not \leq A$. If Y centralizes A, then either n is even and $Y \leq A$ or n is odd and $Y \leq A A_{0}$ where $A_{0} \in \operatorname{Syl}_{2}\left(\operatorname{GL}_{1}^{\epsilon}(q)\right)$ from decomposition of $N_{G}(A)$ as $J_{2}^{\epsilon} 2 \operatorname{Sym}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \times \operatorname{GL}_{1}^{\epsilon}(q)$. In particular, if y is a generator
of Y ，then $y^{2} \in A$ is non－trivial．But then $[V, Y]$ has dimension at least 3 ，which is impossible．Since Y is cyclic of order at least 8 ，and every element of order 8 in the base group C of $N_{G}(A)$ is contained in $C_{G}(A)$（as the Sylow 2－subgroups of C are a direct product of semidihedral groups with a possible direct factor of order 2），we now have that Y permutes the spaces W_{k} non－trivially．As $\operatorname{dim}[V, Y]=2$ ，we deduce that $Y C / C$ has order 2 and is generated by a transposition of $\left\{W_{1}, \ldots, W_{\lfloor n / 2\rfloor}\right\}$ ． Let y be an element of order at least 4 in Y which is not contained in C ．Then $y^{2} \in C$ and $\left[V, y^{2}\right] \leq[V, y]$ ．Since $y^{2} \in C$ in non－trivial，$\left[V, y^{2}\right] \cap W_{j} \neq 0$ for some $1 \leq j \leq\lfloor n / 2\rfloor$ whereas，for all $1 \leq i \leq\lfloor n / 2\rfloor,[V, y] \cap W_{i}=0$ ．Thus no such y exists and the lemma is proved in this case．

Lemma 5．4．Let $W=\left\langle c, d, t \mid c^{q^{2}-1}=d^{q^{2}-1}=t^{2}=1, c^{t}=d\right\rangle$ ．Then $W \cong C$ 亿 $\operatorname{Sym}(2)$ where C is cyclic of order $q^{2}-1$ and the assignment $c \mapsto x, d \mapsto x^{\epsilon q}$ and $t \mapsto$ s determines a homomorphism from W onto J_{2}^{ϵ} with kernel $\left\langle(c d)^{q-\epsilon},\left(c d^{-1}\right)^{q+\epsilon}\right\rangle$ ．
Proof．This is easy to verify．
Lemma 5．5．Let C be cyclic of order $q^{2}-1$ and $m \geq 1$ ．Let $F=C \imath\left(T_{1} \imath \operatorname{Sym}(m)\right)$ with $W=C \imath T_{1}$ having the presentation given in Lemma 5．4．Then there is a surjective homomorphism from $C \imath\left(T_{1}\right.$ \ $\left.\operatorname{Sym}(m)\right)$ to J_{2}^{ϵ} l $\operatorname{Sym}(m)$ with kernel the normal closure in F of $\left\langle(c d)^{q-\epsilon},\left(c d^{-1}\right)^{q+\epsilon}\right\rangle$ ．
Proof．This follows from Lemma 5.4 as generally，if $H / K \cong L$ ，then $(H \succ M) /(K$ 乙 $M) \cong L 乙 M$ ．

We continue the notation developed in the statement of Lemma 5．5．We intend to make explicit the generators of the images of the $N_{F}(T)$－minimal subgroups contained in the base group of F ．Recall that these subgroups are parameterized by triples $s^{e} \in \Pi(C), i \in I$ and $1 \leq j \leq n_{i}$ giving us subgroups which we denoted by $U\left(n_{i} ; s^{e} ; j\right)$ ．Let $c_{1}, d_{1} \ldots c_{m}, d_{m}$ be the generating elements（see Lemma 5．4）from the canonical factors of the base group of F permuted transitively by F and having order s^{e} and satisfying $\left\{\left\{d_{i}, c_{i}\right\} \mid 1 \leq i \leq m\right\}$ is a system of imprimitivity．Let $i \in I$ and set $w=\left(2^{n_{1}}+\cdots+2^{n_{i-1}}\right) / 2$ ．Then，when $j<n_{i}, U\left(n_{i} ; s^{e} ; j\right)$ is generated by

$$
\left\langle\left(\prod_{k=w+1}^{w+2^{n_{i}-j-1}} c_{k} d_{k} c_{2^{n_{i}-j}+k}^{-1} d_{2^{n_{i}-j}+k}^{-1}\right)^{\left.T_{n_{i}}\right\rangle}\right.
$$

Now we take x_{1}, \ldots, x_{m} to be the generators of the cyclic subgroups of order $2^{2(q+\epsilon)}$ in the factors of the base group of $J_{2}^{\epsilon} 2 \operatorname{Sym}(m)$ ．Then the image of $U\left(n_{i} ; s^{e} ; j\right)$ ， which we denote by $\overline{U\left(n_{i} ; s^{e} ; j\right)}$ ，is equal to

$$
\left\langle\left(\prod_{k=w+1}^{w+2^{n_{i}-j-1}} x_{k}^{\epsilon q+1} x_{2^{n_{i}-j}+k}^{-\epsilon q-1}\right)^{T_{n_{i}}}\right\rangle
$$

When $j=n_{i}, U\left(n_{i} ; s^{e} ; j\right)$ is generated by

$$
\left\langle\left(c_{k} d_{k}^{-1}\right)^{T_{n_{i}}}\right\rangle .
$$

which maps to

$$
\left\langle\left(\prod_{k=w+1}^{w+2^{n_{i}-j-1}} x_{k}^{-(q+\epsilon)}\right)^{T_{n_{i-1}}}\right\rangle
$$

Lemma 5.6. Assume that $m \geq 2, n=a_{1}+\cdots+a_{m}$ with $a_{i} \geq 2$ for all $1 \leq i \leq m$, $C=\mathrm{GL}_{a_{1}}^{\epsilon}(q) \times \cdots \times \mathrm{GL}_{a_{m}}^{\epsilon}(q)$ is a subgroup of $\mathrm{GL}_{n}^{\epsilon}(q)$ and $C_{0}=C \cap \mathrm{SL}_{n}^{\epsilon}(q)$. Let $S \in \operatorname{Syl}_{2}\left(C_{0}\right)$. Then S is contained in a unique Sylow 2 -subgroup of C.

Proof. Let R be a Sylow 2-subgroup of C containing S. For $1 \leq i \leq m$, we let K_{i} be the $i^{\text {th }}$ component of C. Thus $K_{i} \cong \operatorname{GL}_{a_{i}}^{\epsilon}(q)$. Set $R_{i}=R \cap K_{i}$ and $D_{i}=Z\left(N_{K_{i}}(S)\right)$. So $N_{C}(R)=R D_{1} \ldots D_{m}$ by Theorem 5.1. Plainly $D_{1} \ldots D_{m}$ centralizes R and hence $D_{1} \ldots D_{m} \leq N_{C}(S)$. Thus $D_{i} \leq \pi_{i}\left(N_{C}(S)\right)$ and, since $m \geq 2, \pi_{i}(S)=R_{i}$. It follows that $D_{i} R_{i} \leq \pi_{i}\left(N_{C}(S)\right) \leq N_{K_{i}}\left(R_{i}\right)=R_{i} D_{i}$. Hence $N_{C}(S) \leq R_{1} D_{1} \ldots R_{m} D_{m}=N_{C}(R) \leq N_{C}(S)$. Hence $N_{C}(R)=N_{C}(S)$ and the lemma follows from Lemma 2.5.

The next two theorems, which rely upon the simple group classification, are important in telling us where to look for 2-minimal subgroups.

Theorem 5.7. Suppose that G is a subgroup of $\mathrm{GL}_{n}(q)$ containing $\mathrm{SL}_{n}(q)$ where q is an odd prime power and $n \geq 2$ is an integer. If H is a maximal subgroup of G of odd index then at least one of the following holds.
(i) $q_{0}^{c}=q$, where c is an odd prime and $H \cong \operatorname{GL}_{n}\left(q_{0}\right) \circ(q-1)$. (There are $\left(\frac{q-1}{q_{0}-1}, n\right)$-conjugacy classes of these subgroups in $\left.\mathrm{GL}_{n}(q).\right)$
(ii) H is a maximal parabolic subgroup of G.
(iii) H stabilizes a decomposition of V into spaces of equal dimension.
(iv) $n=4,(q-1)_{2}=2, G$ has index $2 m$ where m is odd, and $G \circ(q-1)$ has two conjugacy classes of subgroup $H \cong \mathrm{GSp}_{4}(q) \circ(q-1)$.
(v) $n=4,(q-1)_{2}=4$, G has index $4 m$ or $2 m$ where m is odd and $G \circ(q-1)$ has two conjugacy classes of subgroup $H \cong\left(4 \circ 2_{+}^{1+4} \cdot \operatorname{Alt}(6)\right) \circ(q-1)$ or $\left(4 \circ 2_{+}^{1+4} \cdot \mathrm{Sp}_{4}(2)\right) \circ(q-1)$ respectively.

Theorem 5.8. Suppose that G is a subgroup of $\mathrm{GU}_{n}(q)$ containing $\mathrm{SU}_{n}(q)$ where q is an odd prime power and $n \geq 2$ is an integer. If H is a maximal subgroup of G of odd index then at least one of the following holds.
(i) $q_{0}^{c}=q$, where c is an odd prime and $H \cong \mathrm{GU}_{n}\left(q_{0}\right) \circ(q+1)$. (There are $\left(\frac{q+1}{q_{0}+1}, n\right)$-conjugacy classes of these subgroups in $\mathrm{GU}_{n}(q)$.)
(ii) H stabilizes a decomposition of V into an orthogonal sum of non-degenerate spaces.
(iii) $n=4,(q+1)_{2}=2$, G has index $2 m$ where m is odd, and $G \circ(q+1)$ has two conjugacy classes of subgroup $H \cong \mathrm{GSp}_{4}(q) \circ(q+1)$.
(iv) $n=4,(q+1)_{2}=4$, G has index $4 m$ or $2 m$ where m is odd and $G \circ(q+1)$ has two conjugacy classes of subgroup $H \cong\left(4 \circ 2_{+}^{1+4} \cdot \operatorname{Alt}(6)\right) \circ(q+1)$ or $\left(4 \circ 2_{+}^{1+4} \cdot \mathrm{Sp}_{4}(2)\right) \circ(q+1)$, respectively.
(v) $G=\mathrm{SU}_{3}(5)$ and there are three conjugacy classes of subgroup $H \cong \operatorname{Mat}(10)$.

Proof of Theorems 5.7 and 5.8. That the given groups contain a Sylow 2-subgroup is readily verified using the orders of the group. We cite either Liebeck and Saxl [24] and Kantor [20] to provide the proof that no other maximal over-groups of a Sylow 2 -subgroup exist. Referring to [21, Theorems 4.1.4, 4.1.14, 4.2.9, 4.3.6, 4.6.6] we see that the number of $\mathrm{GL}_{n}^{\epsilon}(q)$ conjugacy classes, c in their notation, is as indicated in all but the last case of Theorem 5.8 when we refer to the Atlas [16] to see that the number is three.

We turn our attention for a moment to the 2-minimal subgroups of $\operatorname{GL}_{n}^{\epsilon}(q)$ in general.

Proposition 5.9. Suppose that $n \geq 3, G=\mathrm{GL}_{n}(q)$ and $P \in \mathcal{M}(G, B)$. Then either
(i) P is contained in a parabolic subgroup of G;
(ii) P acts irreducibly on V and there exists $b \geq 1$ such that $n=2^{b} m$ and $P \leq \mathrm{GL}_{2^{a}}(q)$ $2 \operatorname{Sym}(m)$; or
(iii) $q \equiv 3(\bmod 4), n=4$, and $P=\mathrm{GL}_{4}(p) \circ(q-1)$.

In particular, if $G \in \mathcal{M}(G, B)$, then $n=4$ and $q=p \equiv 3(\bmod 4)$.
Proof. Suppose that (i) and (ii) do not hold. Then by Lemma 5.7 there exists an odd prime c such that $P \leq \operatorname{GL}_{n}\left(q_{0}\right) \circ(q-1)$ where $q_{0}^{c}=q$. Applying Lemma 5.7 to $\mathrm{GL}_{n}\left(q_{0}\right)$, we find that $P \leq \mathrm{GL}_{4}\left(p^{a_{2}}\right) \circ(q-1)$ and then deduce that $P=\mathrm{GL}_{4}\left(p^{a_{2}}\right) \circ$ $(q-1)$. If n is not a power of 2 , then B preserves a non-trivial direct decomposition of V into a sum of two subspaces. Therefore B is contained in at least two maximal subgroups of P. Thus n is a 2-power. Suppose that $p^{a_{2}} \equiv 1 \bmod 4$ and $n>2$. Then $\mathrm{GL}_{n}\left(p^{a_{2}}\right)$ contains $\mathrm{GL}_{2}\left(p^{a_{2}}\right) \imath \operatorname{Sym}(n / 2)$ and $\mathrm{GL}_{1}\left(p^{a_{2}}\right) \imath \operatorname{Sym}(n)$ which is also impossible. Thus $p^{a_{2}} \equiv 3(\bmod 4)$. In particular, $a_{2}=1$. If $n>4$, then $\mathrm{GL}_{n}(p)$ contains $\mathrm{GL}_{2}(p) \imath \operatorname{Sym}(n / 2)$ and $\mathrm{GL}_{4}(p) \imath \operatorname{Sym}(n / 4)$ and so $\mathrm{GL}_{n}(p)$ is not 2 -minimal in this case. Therefore we have $P=\operatorname{GL}_{4}(p) \circ(q-1)$ as claimed.

Proposition 5.10. Suppose that $n \geq 3, G=\mathrm{GU}_{n}(q)$ and $P \in \mathcal{M}(G, B)$. Then either
(i) P preserves an orthogonal decomposition of V;
(ii) $q \equiv 1(\bmod 4), n=2^{m}+1$ and $P=G$; or
(iii) $p^{a_{2}} \equiv 1(\bmod 4), n=4$ and $P=\mathrm{GU}_{4}\left(p^{a_{2}}\right) \circ(q+1)$.

In particular, if $G \in \mathcal{M}(G, B)$, then either $q \equiv 1(\bmod 4)$ and $n=2^{m}+1$ or $q=p^{a_{2}} \equiv 1(\bmod 4)$ and $n=4$.

Proof. It suffices to show that G is not 2-minimal unless $q \equiv 1(\bmod 4)$ and $n=$ $2^{m}+1$ or $q=p^{a_{2}} \equiv 1(\bmod 4)$ and $n=4$. We use Theorem 5.8 liberally. Recall that $n=2^{n_{1}}+\cdots+2^{n_{r}}$. If $r \geq 3$, then we have that both $\operatorname{GU}_{2^{n_{1}}}(q) \times \operatorname{GU}_{n-2^{n_{1}}}(q)$ and $\mathrm{GU}_{n-2^{n_{r}}}(q) \times \mathrm{GU}_{2^{n_{r}}}(q)$ are maximal subgroups containing B. Hence we must have $r \leq 2$. If $n_{r}>0$, then $\mathrm{GU}_{2^{n_{1}}}(q) \times \mathrm{GU}_{2^{n_{2}}}(q)$ and $\mathrm{GU}_{2}(q)$ 2 $\operatorname{Sym}(n / 2)$ both contain B and together generate G. Hence if $r=2$, we have $n=2^{n_{1}}+1$. If $q \equiv 3$ $(\bmod 4)$, then G is generated by $\mathrm{GU}_{1}(q) \imath \operatorname{Sym}(n)$ and $\mathrm{GU}_{2_{1}^{n}}(q) \times \mathrm{GU}_{1}(q)$ both of which contain B. Thus we must have $q \equiv 1(\bmod 4)$. Notice that as the subfield subgroups $\mathrm{GU}_{n}\left(q_{0}\right)$ where $q_{0}^{c}=q$ for some odd prime c do not contain B, we have that G is 2-minimal in this case.

So suppose that $r=1$. Then $n=2^{n_{1}} \geq 4$. Assume that $2^{n_{1}} \geq 8$. Then both $\operatorname{GU}_{2}(q) 2 \operatorname{Sym}(n / 2)$ and $\mathrm{GU}_{4}(q) 2 \operatorname{Sym}(n / 4)$ contain B and so $n \leq 4$. If $q \equiv 3(\bmod 4)$, then we use the subgroups $\mathrm{GU}_{1}(q) \imath \operatorname{Sym}(n)$ and $\mathrm{GU}_{2}(q) \imath \operatorname{Sym}(n / 2)$. Hence we have $n=4$ and $q \equiv 1(\bmod 4)$. Finally we note that this time B is contained in the normalizer of the subfield subgroups and so if $q \neq p^{a_{2}}$ we would again have two proper over-groups of B which generate G. Hence $q=p^{a_{2}}$ and these groups are indeed 2-minimal.

6. 2-MINIMAL SUBGROUPS IN LINEAR AND UNITARY GROUPS

The one and only theorem of this section highlights the five subdivisions of our later investigations.

Theorem 6.1. Suppose that $G=\mathrm{GL}_{n}^{\epsilon}(q), S=S_{n_{1}} \times \cdots \times S_{n_{r}}, B=N_{G}(S)$ and let A be as in Section 5. Assume that $P \in \mathcal{M}(G, B)$. Then at least one of the following holds.
(i) $r=1$;
(ii) $P=G=\mathrm{GU}_{2^{n_{1}}+1}(q)$;
(iii) $P \in \mathcal{M}\left(N_{G}(A), B\right)$;
(iv) $\epsilon=+$ and P is contained in a parabolic subgroup of G; or
(v) $P \in \mathcal{M}\left(\operatorname{GL}^{\epsilon}(U) \times \mathrm{GL}^{\epsilon}(W), B\right)$ for some non-zero subspaces U and W such that $V=U \oplus W$.

Proof. Assume that $r>1$. Thus, if $G=P$, Propositions 5.9 and 5.10 yield alternative (ii). So we may now suppose that $G \neq P$. Employing Theorems 5.9 and 5.10 again shows that either (iv) or (v) holds, or $P \leq H \leq \mathrm{GL}_{2^{d}}^{\epsilon}(q) \imath \operatorname{Sym}\left(n / 2^{d}\right)$ for some d such that 2^{d} divides n. So assume that $P \leq H=\mathrm{GL}_{2^{d}}^{\epsilon}(q)$ $2 \operatorname{Sym}\left(n / 2^{d}\right)$ where 2^{d} divides n. Let K be the base group of H. If P is not transitive on the wreathed direct factors of K, then (v) holds. Therefore we may suppose that $P K \neq P B$. Finally, Lemma 3.7 implies that $P=N_{P}(S \cap K)$. Since $S \cap K$ contains A, we now have that (iii) holds by Lemma 5.3.

7. 2-minimal Radical subgroups

In this section we assume that $G=\mathrm{GL}_{n}(q)$ and that $\mathrm{SL}_{n}(q) \leq H \leq G$. We investigate 2-minimal subgroups of H which lie in a parabolic subgroup of G (so we are pursuing case (iv) of Theorem 6.1). Notice that in this case we must have $r>1$.
Lemma 7.1. Suppose that $P \in \mathcal{M}(H, B \cap H)$ and that P does not act irreducibly on V. Then either
(i) there exist non-zero subspaces U and W of V such that $V=U \oplus W$ and $P \leq \operatorname{GL}(U) \times \mathrm{GL}(W)$; or
(ii) $O_{p}(P)=O_{p}(R) \cap P$ and $P=O_{p}(P)(B \cap H)$ for all maximal parabolic subgroups R of G which contain P.

Proof. Since P is contained in a parabolic subgroup of G, there exist maximal parabolic subgroups of G containing P. Let R be any such maximal parabolic subgroup. Then $R=N_{G}(W)$ where W is a non-zero proper subspace of V which is of course P-invariant. Let L be a Levi complement in R chosen so as $B \leq L$. Then there is a complement U to W in V such that $L=\mathrm{GL}(U) \times \mathrm{GL}(W)$. Let $w \in Z(L)$ act fixed-point-freely on $O_{p}(R)$. Obviously $w \in Z(B)$. Now $P=C_{P}(w)\left(O_{p}(R) \cap P\right)$ by a Frattini Argument. Since P is 2-minimal, $B \cap H \leq C_{P}(w)$, and $B \cap H \leq$ $\left(O_{p}(R) \cap P\right) B$, we get that either $P=C_{P}(w) \leq L$ or $P=\left(O_{p}(R) \cap P\right)(B \cap H)=$ $O_{p}(P)(B \cap H)$. Hence either (i) or (ii) holds.

Theorem 7.2. Suppose that $P \in \mathcal{M}(H, B \cap H)$ and P is contained in a parabolic subgroup of G. Then either
(i) there exist non-zero subspaces U and W of V such that $V=U \oplus W$ and $P \leq \mathrm{GL}(U) \times \mathrm{GL}(W) ;$ or
(ii) $n=2^{n_{1}}+2^{n_{2}}$ and there exists $i \in I=\{1,2\}$ such that $V_{n_{i}}=\left[V, O_{p}(P)\right]=$ $C_{V}\left(O_{p}(P)\right)$ and $P=O_{p}\left(N_{G}\left(V_{n_{i}}\right)\right)(B \cap H)$. In particular, P is normalized by B.
Proof. We suppose that (i) does not hold. Deploying Lemma 7.1 we now have $O_{p}(P) \leq O_{p}(R)$ for all maximal parabolic subgroups R of G containing P. Let $V=W_{1}>\cdots>W_{k}>0$ be a P-invariant flag such that $\bar{W}_{i}=W_{i} / W_{i+1}$ is an irreducible P-module. Then $O_{p}(P)$ centralizes \bar{W}_{i} and thus \bar{W}_{i} is an irreducible $(B \cap H)$-module. Thus $\left\{\bar{W}_{i} \mid 1 \leq i \leq k\right\}$ is in natural correspondence with $\left\{V_{n_{i}} \mid\right.$ $1 \leq i \leq r\}$. In particular, $k=r$. Let $V_{n_{j}}$ correspond to \bar{W}_{r} and $V_{n_{i}}$ correspond to W_{1} / W_{2}. Set $R_{2}=N_{G}\left(W_{2}\right)$ and $R_{r}=N_{G}\left(W_{r}\right)$. Then $P \leq R_{2} \cap R_{r}$ from which we infer that $O_{p}(P) \leq O_{p}\left(R_{2}\right) \cap O_{p}\left(R_{r}\right)$. Set $U_{0}=V_{n_{i}}+V_{n_{j}}$ and $U_{1}=\oplus_{m \notin\{i, j\}} V_{n_{m}}$ and note that U_{0} and U_{1} are both $(B \cap H)$-invariant. As $U_{1} \leq W_{2}$ and $\left[W_{2}, O_{p}\left(R_{2}\right)\right]=0$, we have that U_{1} is P-invariant and that P acts on U_{1} just as $(B \cap H)$ does. Similarly we have that $\left[V_{n_{j}}, O_{p}(P)\right]=0$. Now $\left[V_{n_{i}}, O_{p}(P)\right] \leq\left[V_{n_{i}}, O_{p}\left(R_{r}\right)\right] \leq\left[V, O_{p}\left(R_{r}\right)\right]=$ $W_{r}=V_{n_{j}} \leq U_{0}$. So U_{0} is also $O_{p}(P)$-invariant. Hence U_{0} is P-invariant. Now we have that $P \leq \mathrm{GL}\left(U_{0}\right) \times \mathrm{GL}\left(U_{1}\right)$ where $V=U_{0} \oplus U_{1}$ which, as (i) is assumed not to hold, implies that $U_{1}=0$. Hence $r=2$ and $V=V_{n_{1}} \oplus V_{n_{2}}$ and $V_{n_{1}}$ and $V_{n_{2}}$ are the only $B \cap H$ invariant subspaces of V. It follows that either $C_{V}\left(O_{p}(P)\right)=V_{n_{1}}$ or $C_{V}\left(O_{p}(P)\right)=V_{n_{2}}$. So suppose that $C_{V}\left(O_{p}(P)\right)=V_{n_{1}}$, for example. Then $P \leq$ $N_{G}\left(V_{n_{1}}\right)$ and $O_{p}\left(N_{G}\left(V_{n_{1}}\right)\right)$ is elementary abelian and admits $B \cap H$ irreducibly. Since $O_{p}(P) \leq O_{p}\left(N_{G}\left(V_{n_{1}}\right)\right)$ by Lemma 7.1, we now have $O_{p}(P)=O_{p}\left(N_{G}\left(V_{n_{1}}\right)\right)$. Thus (ii) holds and the theorem is proved.

Recalling our standard setup of $n=2^{n_{1}}+\cdots+2^{n_{r}}$ with $I=\{1, \ldots, r\}$, we now define another type of 2 -minimal subgroup an example of which has just emerged in Theorem 7.2 (ii).
Definition 7.3. Let $\{i, j\}$ be a 2-element subset of $I, W=V_{n_{i}} \oplus V_{n_{j}}$ and $M=$ $(\mathrm{GL}(W) \cap H)(B \cap H)$. Then the 2-minimal subgroups of M which do not act irreducibly on W are determined in Theorem 7.2. The example arising in Theorem 7.2 (ii) with $C_{W}\left(O_{p}\left(N_{\mathrm{GL}(W)}\left(V_{n_{i}}\right)\right)=V_{n_{j}}\right.$ will be denoted by $R\left(n_{i} \ggg n_{j}\right)$. These 2minimal subgroups will collectively be called 2-minimal radical subgroups and the set of such subgroups of H is denoted by \mathcal{R}.

Note that $\left|O_{p}\left(R\left(n_{i} \ggg n_{j}\right)\right)\right|=q^{n_{i} n_{j}}=\left|O_{p}\left(R\left(n_{j} \ggg n_{i}\right)\right)\right|$.
From Definition 7.3 we see that each two element subset of I gives us two 2minimal radical subgroups. Thus we have
Lemma 7.4. $|\mathcal{R}|=r(r-1)$.

Example 7.5. Suppose that $G=\mathrm{GL}_{26}(q)$. Then $26=2^{4}+2^{3}+2^{1}$ so that $n_{1}=4$, $n_{2}=3, n_{3}=1$ and $r=3$. By Lemma 7.4 there are 6 conjugacy classes of 2 minimal radical subgroups of G. Matrices representing these p-minimal subgroups are depicted in the following schematic where $a{ }^{*}$ indicates an appropriate $M_{x, y}(q)$ and $B_{n_{i}}$ denotes the Sylow 2-normalizer in $\mathrm{GL}_{2^{n_{i}}}(q)$. Also we shall assume that G acts on V by right matrix multiplication.

$$
R(4 \ggg 3)=\left(\begin{array}{ccc}
B_{4} & * & 0 \\
0 & B_{3} & 0 \\
0 & 0 & B_{1}
\end{array}\right) \quad R(3 \ggg 4)=\left(\begin{array}{ccc}
B_{4} & 0 & 0 \\
* & B_{3} & 0 \\
0 & 0 & B_{1}
\end{array}\right)
$$

$$
\begin{array}{ll}
R(4 \gg 1)=\left(\begin{array}{ccc}
B_{4} & 0 & * \\
0 & B_{3} & 0 \\
0 & 0 & B_{1}
\end{array}\right) & R(1 \ggg 4)=\left(\begin{array}{ccc}
B_{4} & 0 & 0 \\
0 & B_{3} & 0 \\
* & 0 & B_{1}
\end{array}\right) \\
R(3 \gg 1)=\left(\begin{array}{ccc}
B_{4} & 0 & 0 \\
0 & B_{3} & * \\
0 & 0 & B_{1}
\end{array}\right) & R(1 \ggg 3)=\left(\begin{array}{ccc}
B_{4} & 0 & 0 \\
0 & B_{3} & 0 \\
0 & * & B_{1}
\end{array}\right)
\end{array}
$$

8. Toral, fuser and linker 2-minimal subgroups of linear and unitary GROUPS

In this section, we first describe the 2-minimal subgroups of $G=\operatorname{GL}_{n}^{\epsilon}(q)$ which normalize A where A is defined as in Section 5 immediately after Theorem 5.1. Throughout this section we set $H=N_{G}(A)$.

We first consider the case when $q \equiv \epsilon(\bmod 4)$. In this case $H \cong(q-\epsilon)\langle\operatorname{Sym}(n)$ where $(q-\epsilon)$ denotes a cyclic group of order $q-\epsilon$. Recall that A is a direct product of n cyclic groups of order $(q-\epsilon)_{2}$ and so has order at least 4^{n}. The 2 -minimal subgroups of H are in one to one correspondence with the 2-minimal subgroups of $H / A \cong(q-\epsilon)_{2^{\prime}}$ ($\operatorname{Sym}(n)$ (which if $q-\epsilon$ is a power of 2 , we understand to be isomorphic to $\operatorname{Sym}(n))$. We extend the notation from Section 4 by taking preimages. Thus we set

$$
\mathcal{T}(H, B)=\left\{T\left(n_{i} ; s^{c} ; j\right) \mid i \in I, s^{c} \in \Pi(q-\epsilon) \text { and } 1 \leq j \leq n_{i}\right\} .
$$

The linkers and fusers for H are defined in a similar fashion by pulling back from $H / O_{2}(H)$ and we continue to denote these sets by $\mathcal{L}(H, B)$ and $\mathcal{F}(H, B)$. So our first result is

Theorem 8.1. Suppose that $q \equiv \epsilon(\bmod 4)$. Then $\mathcal{M}(H, B)=\mathcal{T}(H, B) \cup \mathcal{F}(H, B) \cup$ $\mathcal{L}(H, B)$.

Proof. Taking into account our modified notation, this is just a restatement of Theorem 4.12.

The corresponding subsets of 2-minimal subgroups when $q \equiv-\epsilon(\bmod 4)$ are more technical to define. Recall that in this case $H=N_{G}(A) \cong J_{2}^{\epsilon}\langle\operatorname{Sym}(n / 2)$ when n is even and $H=N_{G}(A) \cong J_{2}^{\epsilon} \backslash \operatorname{Sym}(\lfloor n / 2\rfloor) \times \mathrm{GL}_{1}^{\epsilon}(q)$ when n is odd. When n is odd, the final factor is contained in B and is normal in H and so we can, and will, be suppressed in our considerations. By Lemma 5.5, we have that $N_{G}(A)$ is a quotient of W where $W=C \imath\left(T_{1} \imath \operatorname{Sym}(\lfloor n / 2\rfloor)\right.$ and C has order $q^{2}-1$. By Lemma 3.6 every 2-minimal subgroup of H is an image of a 2-minimal subgroup of W. Hence we read off the 2-minimal subgroups of H from those that we have described in Theorem 4.12 for W considered as a subgroup of $C \imath \operatorname{Sym}(n)$. Let $L=\operatorname{Sym}(\lfloor n / 2\rfloor)$ be a complement to the base group of H containing T.

Using bars to denote images, we have

$$
\mathcal{F}(H, B)=\{\bar{P} \mid P \in \mathcal{F}(W)\}=\left\{\left\langle B, P^{*}\right\rangle \mid P^{*} \in \mathcal{F}(L, T)\right\}
$$

are the fusers and these all have images great than B.
The linkers become

$$
\mathcal{L}(H, B)=\{\bar{P} \mid P \in \mathcal{F}(W), P \neq P(i ; 1)\}=\left\{B P^{*} \mid P^{*} \in \mathcal{F}(L, T)\right\}
$$

and finally the toral 2-minimal subgroups of H are

$$
\begin{gathered}
\mathcal{T}(H, B)=\left\{T\left(n_{i} ; s^{c} ; j\right) \mid i \in I, 1 \leq j<n_{i}, s^{c} \in \Pi(q-\epsilon)\right\} \\
\cup\left\{T\left(n_{i} ; s^{c} ; n_{i}\right) \mid i \in I, s^{c} \in \Pi(q+\epsilon)\right\} .
\end{gathered}
$$

We refer to the discussion in Section 5 for a vibrant description of these toral subgroups.

Theorem 8.2. Suppose that $q \equiv-\epsilon(\bmod 4)$. Then

$$
\mathcal{M}(H, B)=\mathcal{T}(H, B) \cup \mathcal{F}(H, B) \cup \mathcal{L}(H, B) .
$$

Proof. This follows from the foregoing discussion.
Corollary 8.3. $N_{G}(A)$ is tame.
Proof. This follows from the description of the 2-minimal subgroups of $N_{G}(A)$ given in Theorems 8.1 and 8.2.

9. 2-minimal subgroups in dimensions 2 and 4

In this section we determine the 2-minimal subgroups of $\mathrm{GL}_{2}^{\epsilon}(q)$ and $\mathrm{GL}_{4}^{\epsilon}(q)$. These are the base cases for our inductive proof of Theorem 1.1. We first look at the dimension 2 case. Let V be the natural $\mathrm{GL}_{2}^{\epsilon}(q)$-module. Two subgroups of $\mathrm{GL}_{2}^{\epsilon}(q)$ play a leading role. The first is the monomial group $\mathrm{GL}_{1}^{\epsilon}(q) \imath T_{1}$ which has order $2(q-\epsilon)^{2}$ and the second is the group J_{2}^{ϵ} which we have already introduced in Section 5. We now give an alternative description of J_{2}^{ϵ}. If $\epsilon=+, J_{2}^{+}=\mathrm{GL}_{1}\left(q^{2}\right)$: $\langle\alpha\rangle$ where α is the field automorphism of $\operatorname{GF}\left(q^{2}\right)$ which maps every element to its $q^{\text {th }}$ power. If $\epsilon=-$, then J_{2}^{-}preserves a decomposition of V as a sum of two isotropic subspaces and is isomorphic to $\mathrm{GL}_{1}\left(q^{2}\right):\langle\beta\rangle$ where β is the automorphism of the multiplicative group of $\operatorname{GF}\left(q^{2}\right)$ which maps every element to the inverse of its $q^{t h}$ power. In particular, note that $Z\left(J_{2}^{\epsilon}\right)$ is cyclic of order $q-\epsilon$.

Lemma 9.1. Suppose that p is an odd prime, $q=p^{a}>5$ and $G=\mathrm{GL}_{2}^{\epsilon}(q)$. Then the maximal subgroups of G of odd index are as follows.
(i) $\mathrm{GL}_{1}^{\epsilon}(q) \imath T_{1}$ when $q \equiv \epsilon(\bmod 4)$.
(ii) J_{2}^{ϵ} when $q \equiv-\epsilon(\bmod 4)$.
(iii) $\mathrm{GL}_{2}^{\epsilon}\left(p^{a / c}\right) \circ(q-\epsilon)$ for each odd prime divisor c of a.
(iv) $\mathrm{Q}_{8} \cdot \operatorname{Sym}(3) \circ(q-\epsilon)$ when $q \equiv 3,5(\bmod 8)$ is a prime.

Furthermore, in each case there is exactly one conjugacy class of such subgroups.
Proof. This result is deduced from the list of maximal subgroups of $\mathrm{GL}_{2}(q)$ given in [8, Theorem 3.4].

Corollary 9.2. With $G=\mathrm{GL}_{2}^{\epsilon}(q)$, we have $G \in \mathcal{M}(G, B)$ if and only if one of the following holds:
(i) $a=a_{2}>1$;
(ii) $a=1, q \not \equiv 3,5(\bmod 8)$; or
(iii) $G=\mathrm{GL}_{2}^{\epsilon}(3)$ or $\mathrm{GL}_{2}^{\epsilon}(5)$.

Proof. If $G=\mathrm{GL}_{2}^{\epsilon}(3)$ or $\mathrm{GL}_{2}^{\epsilon}(5)$, then it is easily verified that G is 2-minimal. So we may assume that $q>5$.

We first check that if (i) or (ii) hold, then G is 2 -minimal. Note first that exactly one of the groups in (i) and (ii) of Lemma 9.1 can contain B. If (i) holds, then, as
$a=a_{2}$, (iii) of Lemma 9.1 cannot occur, and, as $a_{2}>1, q \not \equiv 3,5(\bmod 8)$ and (iv) of Lemma 9.1 cannot occur. Hence G is 2 -minimal in this case. If (ii) holds, then once again there is only one conjugacy class of maximal subgroups of odd index in G.

Suppose now that $G \in \mathcal{M}(G, B)$. Then as exactly one of the subgroups listed in (i) and (ii) of Lemma 9.1 contain B, the groups listed in (iii) and (iv) of the same lemma cannot arise in G. Hence either (i) or (ii) holds and the lemma is proved.

We can now harvest the 2-minimal subgroups for the groups $\mathrm{GL}_{2}^{\epsilon}(q)$.
Proposition 9.3. Assume that $G=\mathrm{GL}_{2}^{\epsilon}(q)$ (where $q=p^{a}$). Then under the given conditions $\mathcal{M}(G, B)$ is as follows.
(i) $q \equiv \epsilon(\bmod 8)$ and

$$
\mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q) \imath T_{1}, B\right) \cup\left\{\mathrm{GL}_{2}^{\epsilon}\left(p^{a_{2}}\right) \circ(q-\epsilon)\right\}
$$

(ii) $q \equiv-\epsilon(\bmod 8)$ and

$$
\mathcal{M}\left(J_{2}^{\epsilon}, B\right) \cup\left\{\mathrm{GL}_{2}^{\epsilon}\left(p^{a_{2}}\right) \circ(q-\epsilon)\right\}
$$

(iii) $q \equiv 4-\epsilon(\bmod 8), p \neq 5$, and

$$
\mathcal{M}\left(J_{2}^{\epsilon}, B\right) \cup\left\{\mathrm{Q}_{8} \cdot \operatorname{Sym}(3) \circ(q-\epsilon)\right\} .
$$

(iv) $q \equiv 4+\epsilon(\bmod 8), p \neq 5$ and

$$
\mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q) \imath T_{1}, B\right) \cup\left\{\mathrm{Q}_{8} \cdot \operatorname{Sym}(3) \circ(q-\epsilon)\right\}
$$

(v) $q=5^{a}$ with a odd and

$$
\mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q) \prec T_{1}, B\right) \cup\left\{\mathrm{GL}_{2}^{\epsilon}(5) \circ(q-\epsilon)\right\} \cup\left\{\mathrm{Q}_{8} \cdot \operatorname{Sym}(3) \circ(q-\epsilon)\right\}
$$

Proof. Assume that $P \notin \mathcal{M}\left(\operatorname{GL}_{1}^{\epsilon}(q)\left\langle T_{1}, B\right)\right.$ when $q \equiv \epsilon(\bmod 4)$ and $P \notin \mathcal{M}\left(J_{2}^{\epsilon}, B\right)$ when $q \equiv-\epsilon(\bmod 4)$. We prove the result by induction on a. Assume that $a=1$. If $q=3$ or $q=5$, then we observe that the proposition holds. Hence we may take $q>5$. If $P=G$, then (i) or (ii) holds by Lemma 9.2. If $P<G$, then Lemma 9.1 indicates that $q \equiv 3,5(\bmod 8)$ and that one of (iii) and (iv) holds. Assume now that $a>1$. Again if $P=G$, we get $a=a_{2}>1$ from Lemma 9.2 and (i) or (ii) holds. For $P<G$ we again apply Lemma 9.1 to get $P \leq \mathrm{GL}_{2}^{\epsilon}\left(q_{0}\right)$ where $q_{0}^{c}=q$ for some odd prime c. Noting that $q \equiv q_{0}(\bmod 8)$, induction yields the result.

For completeness we rerecord, from Theorems 8.1 and 8.2, the 2-minimal subgroups of $\mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q), B\right)$ for $q \equiv \epsilon(\bmod 4)$ and $\mathcal{M}\left(J_{2}^{\epsilon}, B\right)$ for $q \equiv-\epsilon(\bmod 4)$.

Lemma 9.4. (i) For $q \equiv \epsilon(\bmod 4), \mathcal{M}\left(\operatorname{GL}_{1}^{\epsilon}(q), B\right)=\left\{T\left(1, s^{c}, 1\right) \mid s^{c} \in\right.$ $\Pi(q-\epsilon)\}$.
(ii) For $q \equiv-\epsilon(\bmod 4), \mathcal{M}\left(J_{2}^{\epsilon}, B\right)=\left\{T\left(1, s^{c}, 1\right) \mid s^{c} \in \Pi(q+\epsilon)\right\}$.

Corollary 9.5. $G=\mathrm{GL}_{2}^{\epsilon}(q)$ is tame.
Proof. From Proposition 9.3 and Lemma 9.4 it follows that pairs of distinct members of $\mathcal{M}(G, B)$ are not isomorphic. Hence G is tame.

In the next theorem we determine the 2-minimal subgroups of $H=\mathrm{GL}_{2}^{\epsilon}(q)$ 亿 $T_{n-1} \leq \mathrm{GL}_{2^{n}}^{\epsilon}(q)$ where $B \leq H$. These subgroups break into two types as indicated by Lemma 9.3. Thus we introduce the quaternion 2 -minimal subgroups when $q \equiv$ $3,5(\bmod 8)$

$$
Q(n)=Z_{n}\left((q-\epsilon)_{2} \circ \mathrm{Q}_{8} \cdot \operatorname{Sym}(3)\right) \imath T_{n-1}
$$

and the special linear 2-minimal subgroups

$$
S(2, n)=Z_{n}\left(\mathrm{SL}_{2}^{\epsilon}\left(p^{a_{2}}\right) \cdot(q-\epsilon)_{2}\right) \prec T_{n-1}
$$

for $q \equiv 1,7(\bmod 8)$ or $q=5^{a}$ with a odd. With reference to our notation at this point, we note that $\operatorname{SL}_{2}^{\epsilon}\left(p^{a_{2}}\right) \cdot(q-\epsilon)_{2}=O^{2^{\prime}}\left(\operatorname{GL}_{2}^{\epsilon}\left(p^{a_{2}}\right)\right)$ is the subgroup of $\mathrm{GL}_{2}^{\epsilon}\left(p^{a_{2}}\right) \circ(q-\epsilon)$ consisting of elements with determinant in the subgroup of $\mathrm{GF}(q)^{*}$ when $\epsilon=+$ or $\operatorname{GF}\left(q^{2}\right)^{*}$ when $\epsilon=-$ of order $(q-\epsilon)_{2}$.

Theorem 9.6. Suppose that $H=\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{n-1}$ for some natural number n. Then

$$
\mathcal{M}(H, B)=\mathcal{M}\left(N_{H}(A), B\right) \cup\{Q(n), S(2, n)\}
$$

In particular, H is tame.
Proof. Let K be the base group of H and suppose that $P \in \mathcal{M}(H, B)$. Then by the construction of $H, P \leq K S$ and S operates transitively on the factors $K_{1}, \ldots, K_{2^{n-1}}$ of K. Now $S \cap K \in \operatorname{Syl}_{2}(K)$ and $N_{K}(S \cap K)=(S \cap K) Z_{n}$ by Theorem 5.1. It follows that $\pi_{1}\left(N_{K}(S \cap K)\right)=N_{K_{1}}(S \cap K)$. Finally, K_{1} is tame by Corollary 9.5. Thus the conditions of Lemma 3.17 are satisfied and so we have $P \in \mathcal{M}\left(N_{H}(S \cap\right.$ $K), B)=\mathcal{M}\left(N_{H}(A), B\right)$ by Lemma 5.3 or $P=Z_{n}\left\langle O^{2^{\prime}}(L)^{T_{n-1}}\right\rangle T_{n-1}$ where $L \in$ $\mathcal{M}\left(K_{1}, N_{K_{1}}\left(S \cap K_{1}\right)\right)$. If $L \leq N_{K_{1}}\left(A_{1}\right)$, then we also have $P \in \mathcal{M}\left(N_{H}(A), B\right)$. Proposition 9.3 now delivers the result.

By Propositions 5.9 and 5.10 we now see why $\mathrm{GL}_{4}^{\epsilon}(q)$ is most interesting for us when $q \equiv-\epsilon(\bmod 4)$.

Lemma 9.7. Suppose that $G=\operatorname{GL}_{4}^{\epsilon}(q)$ and $q \equiv-\epsilon(\bmod 4)$. Then $\mathcal{M}(G, B)=$ $\mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{1}, B\right) \cup\left\{\mathrm{GL}_{4}^{\epsilon}\left(p^{a_{2}}\right) \circ(q-\epsilon)\right\}$. In particular, G is tame.

Proof. The first part follows from Propositions 5.9 and 5.10 and then we see that G is tame by applying Theorem 9.6.

Finally, for $q \equiv-\epsilon(\bmod 4)$, we consider groups of the form $H=\operatorname{GL}_{4}^{\epsilon}(q) \imath T_{n-2}$ contained in $\mathrm{GL}_{2^{n}}^{\epsilon}(q)$ and containing B. Our aim is to determine all the 2 -minimal subgroups. Thus we additionally define

$$
S(4, n)=Z_{n}\left(\mathrm{SL}_{4}^{\epsilon}\left(p^{a_{2}}\right) \cdot(q-\epsilon)_{2}\right) \imath T_{n-2}
$$

for $q \equiv-\epsilon(\bmod 4)$. Note that if $\epsilon=+$, then $a_{2}=1$. The group $S(4, n)$ is also called a special linear 2-minimal subgroup.

Theorem 9.8. Suppose that $H=\mathrm{GL}_{4}^{\epsilon}(q)$ ไ T_{n-2} with $q \equiv-\epsilon(\bmod 4)$. Then $\mathcal{M}(H, B)=\mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{n-1}, B\right) \cup\{S(4, n)\}$. In particular, H is tame.

Proof. Just as in Theorem 9.6 we get that Lemma 3.17 is applicable. It then follows from Lemma 9.7 that $\mathcal{M}(H, B)$ is precisely as described.

10. 2-minimal subgroups of $\mathrm{GL}_{2^{m}}^{\epsilon}(q)$

In this section we assume that $n=2^{m}$ and intend to describe in detail the members of $\mathcal{M}(G, B)$. We first examine the basic action of the 2-minimal subgroups of G.

Proposition 10.1. Suppose that $G=\mathrm{GL}_{2^{m}}^{\epsilon}(q)$ with $m>1$.
(i) If $q \equiv \epsilon(\bmod 4)$, then

$$
\mathcal{M}(G, B)=\mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q) \imath \operatorname{Sym}\left(2^{m}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{m-1}, B\right) .
$$

(ii) If $q \equiv-\epsilon(\bmod 4)$, then
$\left.\mathcal{M}(G, B)=\mathcal{M}\left(J_{2}^{\epsilon} \imath \operatorname{Sym}\left(2^{m-1}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{m-1}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{4}^{\epsilon}(q)\left\langle T_{m-2}, B\right)\right.$.
In particular, G is tame.
Proof. Define

$$
\mathcal{M}_{*}=\mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q) \imath \operatorname{Sym}\left(2^{m}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{m-1}, B\right)
$$

if $q \equiv \epsilon(\bmod 4)$ and

$$
\mathcal{M}_{*}=\mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \prec \operatorname{Sym}\left(2^{m-1}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{4}^{\epsilon}(q) \prec T_{m-2}, B\right)
$$

if $q \equiv-\epsilon(\bmod 4)$. Note that by Lemmas 3.7, 5.2 and 5.3 we have

$$
\mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath \operatorname{Sym}\left(2^{m-1}\right), B\right)=\mathcal{M}\left(J_{2}^{\epsilon} \imath \operatorname{Sym}\left(2^{m-1}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{m-1}, B\right)
$$

Observe that the members of \mathcal{M}_{*} are tame in their signified over-groups by Corollary 8.3 and Theorems 9.6 and 9.8.

We may assume that $m>1$ when $q \equiv \epsilon(\bmod 4)$ and that $m>2$ when $q \equiv-\epsilon$ $(\bmod 4)$. Denote by \mathcal{M}_{j} the set of 2 -minimal subgroups of $\mathrm{GL}_{2^{j}}^{\epsilon}(q) 2 \operatorname{Sym}\left(2^{m-j}\right)$ and note that \mathcal{M}_{1} is non-empty if and only if $q \equiv \epsilon(\bmod 4)$. Then using Propositions 5.9 and $5.10, \mathrm{GL}_{2^{m}}^{\epsilon}(q)$ is not 2 -minimal so long as $m>1$ when $q \equiv \epsilon(\bmod 4)$ and $m>2$ when $q \equiv-\epsilon(\bmod 4)$, employing Propositions 5.9 and 5.10 again gives

$$
\mathcal{M}(G)=\bigcup_{j=1}^{m-1} \mathcal{M}_{j}
$$

Suppose that the theorem is false. Then there exist a minimal $j \leq m-1$ such $P \in \mathcal{M}_{j}$ but P is not in \mathcal{M}_{*}. Let $M=\mathrm{GL}_{2^{j}}^{\epsilon}(q) 2 \operatorname{Sym}\left(2^{m-j}\right)$ and C be the base group of M. Lemma 3.7 implies that $P=N_{P}(S \cap C)$ or $P \in \mathcal{M}(C B, B)$. As $S \cap C$ contains A as described before Lemma 5.3 we can apply Lemma 5.3 when $P=N_{P}(S \cap C)$ to get $P \leq N_{G}(A)$ and consequently $P \in \mathcal{M}_{1}$ if $q \equiv \epsilon(\bmod 4)$ and $P \in \mathcal{M}_{2}$ if $q \equiv-\epsilon$ $(\bmod 4)$, which is against the choice of P. Hence $P C=B C=S C$ as $Z(G) \leq C$. In particular we have $P \leq \mathrm{GL}_{2^{j}}^{\epsilon}(q)\left\langle T_{m-j}\right.$. Thus $j>1$ if $q \equiv \epsilon(\bmod 4)$ and $j>2$ if $j \equiv$ $-\epsilon(\bmod 4)$. We now intend to apply Lemma 3.17 , so write $C=K_{1} \times \cdots \times K_{2^{m-j}}$ where $K_{l} \cong \mathrm{GL}_{2^{j}}^{\epsilon}(q), 1 \leq l \leq 2^{m-j}$. Proceeding by induction we may assume $G=\mathrm{GL}_{2^{j}}^{\epsilon}(q)$ is tame and $\pi_{1}\left(N_{C}(S)\right)=\pi_{1}((S \cap C) Z(G))=N_{K_{1}}\left(S \cap K_{1}\right)$, hence Lemma 3.17 and induction shows that there exists P_{0} with $P=\left\langle P_{0}, B\right\rangle$ where $P_{0} \in \mathcal{M}\left(\mathrm{GL}_{1}^{\epsilon}(q) \imath \operatorname{Sym}\left(2^{j}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath T_{j-1}, B\right)$ when $q \equiv \epsilon(\bmod 4)$ and $P_{0} \in$ $\mathcal{M}(G)=\mathcal{M}\left(\mathrm{GL}_{2}^{\epsilon}(q) \imath \operatorname{Sym}\left(2^{j-1}\right), B\right) \cup \mathcal{M}\left(\mathrm{GL}_{4}^{\epsilon}(q) \imath T_{j-2}, B\right)$ when $q \equiv-\epsilon(\bmod 4)$. But then $P \in \mathcal{M}_{*}$ and we have a contradiction. Consequently $\mathcal{M}(G, B)=M^{*}$ so proving the proposition.

11. Proof of main theorem

We first recollect the 2-minimal toral subgroups

$$
\mathcal{T}=\mathcal{T}(G, B)=\left\{T\left(n_{j} ; s^{c} ; k\right) \mid j \in I, s^{c} \in \Pi(q-\epsilon) \text { and } 1 \leq k \leq n_{j}\right\}
$$

when $q \equiv \epsilon(\bmod 4)$ and
$\mathcal{T}=\mathcal{T}(G, B)=\left\{T\left(n_{i} ; s^{c} ; j\right), T\left(n_{i} ; t^{d} ; n_{i}\right) \mid i \in I, 1 \leq j<n_{i}, s^{c} \in \Pi(q-\epsilon), t^{d} \in \Pi(q+\epsilon)\right\}$ when $q \equiv-\epsilon(\bmod 4)$.

The 2-minimal linkers and fusers also vary according to the congruence of q so we have

$$
\mathcal{F}=\mathcal{F}(G, B)=\mathcal{F}(H, B)=\left\{\langle B, P\rangle \mid P=P\left(n_{i}+n_{j}\right) \in \mathcal{F}(\operatorname{Sym}(n), T)\right\}
$$

when $q \equiv \epsilon(\bmod 4)$ and

$$
\mathcal{F}=\mathcal{F}(G, B)=\mathcal{F}(H, B)=\left\{\langle B, P\rangle \mid P=P\left(n_{i}+n_{j}\right) \in \mathcal{F}(\operatorname{Sym}(\lfloor n / 2\rfloor), T)\right\}
$$

when $q \equiv-\epsilon(\bmod 4)$. Similarly

$$
\mathcal{L}=\mathcal{L}(G, B)=\mathcal{L}(H, B)=\left\{B P \mid P=P\left(n_{i} ; n_{j}\right) \in \mathcal{L}(\operatorname{Sym}(n), T)\right\}
$$

when $q \equiv \epsilon(\bmod 4)$ and

$$
\mathcal{L}=\mathcal{L}(G, B)=\mathcal{L}(H, B)=\left\{B P \mid P=P\left(n_{i} ; n_{j}\right) \in \mathcal{L}(\operatorname{Sym}(\lfloor n / 2\rfloor), T)\right\}
$$

when $q \equiv-\epsilon(\bmod 4)$.
The quaternion 2-minimal subgroups $Q(m)$ defined so far only in $\mathrm{GL}_{2^{m}}^{\epsilon}(q)$ (see just after Corollary 9.5) extend to 2-minimal subgroups

$$
Q\left(n_{i}\right) \times \prod_{k \in I \backslash\{i\}} B_{n_{k}}
$$

of $\mathrm{GL}_{n}^{\epsilon}(q)$. We abuse notation and also denote this 2-minimal subgroup of $\mathrm{GL}_{n}^{\epsilon}(q)$ by $Q\left(n_{i}\right)$. The set of quaternion 2-minimal subgroups is

$$
\mathcal{Q}=\mathcal{Q}(G, B)=\left\{Q\left(n_{i}\right) \mid i \in I\right\}
$$

We recollect that this set is non-empty precisely when $q \equiv 3,5(\bmod 8)$. Similarly we have special linear 2-minimal subgroups

$$
S\left(2, n_{i}\right) \times \prod_{k \neq i} B_{n_{k}}
$$

for $q \equiv 1,7(\bmod 8)$ or $q=5^{a}$ with a odd and

$$
S\left(4, n_{i}\right) \times \prod_{k \neq i} B_{n_{k}}
$$

for $q \equiv-\epsilon(\bmod 4)$ of $\mathrm{GL}_{n}^{\epsilon}(q)$. We again abuse notation and denote these subgroups by $S\left(2, n_{i}\right)$ and $S\left(4, n_{i}\right)$ respectively. Put

$$
\mathcal{S}=\mathcal{S}(G, B)=\left\{S\left(2, n_{i}\right), S\left(4, n_{i}\right) \mid i \in I\right\}
$$

When $\epsilon=+$ we have radical 2-minimal subgroups

$$
R\left(n_{i} \ggg n_{j}\right)
$$

and the set of radical 2-minimal subgroups is

$$
\mathcal{R}=\mathcal{R}(G, B)=\left\{R\left(n_{i} \ggg n_{j}\right) \mid\{i, j\} \subseteq I, i \neq j\right\}
$$

subgroups	conditions	number
$T\left(n_{i} ; s^{c} ; j\right)$	$i \in I, s^{c} \in \Pi(q-\epsilon), 1 \leq j \leq n_{i}$	$\|\Pi(q-\epsilon)\| \sum_{i \in I} n_{i}$
$P\left(n_{i}+n_{j}\right)$	$\{i, j\} \subseteq I, i \neq j$	$r(r-1) / 2$
$P\left(n_{i} ; n_{j}\right)$	$i \in I, n_{i} \geq 2$	$\sum_{i \in I, n_{i} \geq 2}\left(n_{i}-1\right)$
$R\left(n_{i} \ggg n_{j}\right)$	$\{i, j\} \subseteq I, i \neq j, \epsilon=+$	$r(r-1)$
$Q\left(n_{i}\right)$	$i \in I, n_{i} \geq 2, q \equiv 1,7(\bmod 8)$	$\left\{\begin{array}{cc\|}r-1 & n \text { odd } \\ r & n \text { even }\end{array}\right.$
$S\left(2, n_{i}\right)$	$i \in I, n_{i} \geq 2, q \equiv 3,5(\bmod 8)$	$\begin{cases}r-1 & n \text { odd } \\ r & n \text { even } \\ \text { or } 5^{a} a \text { odd }\end{cases}$

TABLE 1. The 2-minimal subgroup of $\operatorname{GL}_{n}^{\epsilon}(q), q \equiv \epsilon(\bmod 4)$

When $\epsilon=-, n$ is odd and $q \equiv 1(\bmod 4)$, the counterparts of the 2 -minimal radical subgroups are the 2-minimal unitary subgroups

$$
U\left(n_{j}\right)=\mathrm{GU}_{2^{n_{j}}+1}(q) \times \prod_{k \notin\{j, r\}} B_{n_{k}}
$$

where $j \in I \backslash\{r\}$ and the set of these subgroups is

$$
\mathcal{U}=\mathcal{U}(G, B)=\left\{U\left(n_{j}\right) \mid 1 \leq j \leq r-1\right\} .
$$

Theorem 11.1. For $G=\mathrm{GL}_{n}^{\epsilon}(q)$,

$$
\mathcal{M}(G, B)=\mathcal{T} \cup \mathcal{F} \cup \mathcal{L} \cup \mathcal{Q} \cup \mathcal{S} \cup \mathcal{R} \cup \mathcal{U}
$$

Proof. We proceed by induction on n noting that the result is true for $n=1$ and $n=$ 2. Suppose that $P \in \mathcal{M}(G, B)$. Then by Theorem 6.1, either $P=G \in \mathcal{U}(G, B)$ or $r=1, P \mathcal{M}\left(N_{G}(A), B\right), \epsilon=+$ and $P=O_{p}(P) B$ or $P \in \mathcal{M}\left(\mathrm{GL}^{\epsilon}(U) \times \mathrm{GL}^{\epsilon}(W), B\right)$ for some non-zero subspaces U and W of V. If $r=1$, Proposition 10.1 together with Theorems 9.6 and 9.8 show that either $P \in \mathcal{S}(G, B), \mathcal{Q}(G, B)$ or $\mathcal{M}\left(N_{G}(A), B\right)$. If indeed $P \in \mathcal{M}\left(N_{G}(A), B\right)$, Theorems 8.1 and 8.2 indicate that $P \in \mathcal{T}(G, B) \cup$ $\mathcal{F}(G, B) \cup \mathcal{L}(G, B)$. So we may suppose that $P \in \mathcal{M}\left(\mathrm{GL}^{\epsilon}(U) \times \mathrm{GL}^{\epsilon}(W), B\right)$ for some non-zero subspaces U and W of V. Let $K=\mathrm{GL}^{\epsilon}(U)$ and $L=\mathrm{GL}^{\epsilon}(W)$. Then by Lemma 3.9 either $P \cap K \in \mathcal{M}(K, B \cap K)$ or $P \cap L \in \mathcal{M}(L, B \cap L)$. The proof is now completed by using induction.

subgroups	conditions	number
$T\left(n_{i} ; s^{c} ; j\right)$	$\begin{gathered} i \in I, n_{i} \geq 1 s^{c} \in \Pi(q-\epsilon) \\ 1 \leq j \leq n_{i}-1 \end{gathered}$	$\|\Pi(q-\epsilon)\| \sum_{i \in I}\left(n_{i}-1\right)$
$T\left(n_{i} ; s^{c} ; n_{i}\right)$	$i \in I, s^{c} \in \Pi(q+\epsilon)$,	$r\|\Pi(q+\epsilon)\|$
$P\left(n_{i}+n_{j}\right)$	$\{i, j\} \subseteq I, i \neq j$	$r(r-1) / 2$
$P\left(n_{i} ; n_{j}\right)$	$i \in I, n_{i} \geq 2$	$\sum_{i \in I, n_{i} \geq 2}\left(n_{i}-1\right)$
$R\left(n_{i} \ggg n_{j}\right)$	$\{i, j\} \subseteq I, i \neq j, \epsilon=+$	$r(r-1)$
$U\left(n_{i}\right)$	$i \in I \backslash\{r\}, n_{r}=0, \epsilon=-$	$r-1$
$Q\left(n_{i}\right)$	$i \in I, n_{i} \geq 1, q \equiv 1,7(\bmod 8)$	$\begin{cases}r-1 & n \text { odd } \\ r & n \text { even }\end{cases}$
$S\left(2, n_{i}\right)$	$i \in I, n_{i} \geq 1, q \equiv 3,5(\bmod 8)$ or $5^{a} a$ odd	$\begin{cases}r-1 & n \text { odd } \\ r & n \text { even }\end{cases}$
$S\left(4, n_{i}\right)$	$i \in I, n_{i} \geq 2$	$\begin{cases}r & n \equiv 0(\bmod 4) \\ r-1 & n \equiv 2,3(\bmod 4) \\ r-2 & n \equiv 1(\bmod 4)\end{cases}$

TABLE 2. The 2-minimal subgroup of $\mathrm{GL}_{n}^{\epsilon}(q), q \equiv-\epsilon(\bmod 4)$

References

[1] Aschbacher, Michael. Overgroups of Sylow subgroups in sporadic groups. Mem. Amer. Math. Soc. 60 (1986), no. 343.
[2] Aschbacher, M. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), no. 3, 469-514.
[3] Aschbacher, M. Finite group theory. Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000.
[4] Aschbacher, Michael. Signalizer lattices in finite groups. Michigan Math. J. 58 (2009), no. 1, 79-103.
[5] Aschbacher, Michael. Overgroups of primitive groups. J. Aust. Math. Soc. 87 (2009), no. 1, 37-82.
[6] Aschbacher, Michael. Overgroups of primitive groups. II. J. Algebra 322 (2009), no. 5, 15861626.
[7] Aschbacher, Michael; Shareshian, John. Restrictions on the structure of subgroup lattices of finite alternating and symmetric groups. J. Algebra 322 (2009), no. 7, 2449-2463.
[8] Bloom, David M. The subgroups of PSL(3, q) for odd q. Trans. Amer. Math. Soc. 1271967 150-178.
[9] Brown, Kenneth S. Cohomology of groups. Corrected reprint of the 1982 original. Graduate Texts in Mathematics, 87. Springer-Verlag, New York, 1994.
[10] Borel, A.; Tits, J. Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I. (French) Invent. Math. 12 (1971), 95-104.
[11] Bruhat, F.; Tits, J. Groupes rductifs sur un corps local. (French) Inst. Hautes tudes Sci. Publ. Math. No. 41 (1972), 5-251.
[12] Buekenhout, Francis. On the geometry of diagrams. Geom. Dedicata 8 (1979), no. 3, 253-257.
[13] Carter, Roger; Fong, Paul. The Sylow 2-subgroups of the finite classical groups. J. Algebra 1 1964 139-151.
[14] Chevalley, C. Sur certains groupes simples. (French) Thoku Math. J. (2) 7 (1955), 14-66.
[15] Covello, Sandra. Minimal parabolic subgroups in the symmetric groups, PhD Thesis, University of Birmingham, 1998. http://web.mat.bham.ac.uk/C.W.Parker/sandra-phd.ps.
[16] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, 1985.
[17] Feit, Walter . An interval in the subgroup lattice of a finite group which is isomorphic to M_{7}. Algebra Universalis 17 (1983), no. 2, 220-221.
[18] Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald. The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple K-groups. Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998.
[19] Huppert, B. Endliche Gruppen. I. (German) Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967 xii+793 pp.
[20] Kantor, William M. Primitive permutation groups of odd degree, and an application to finite projective planes. J. Algebra 106 (1987), no. 1, 15-45.
[21] Kleidman, Peter; Liebeck, Martin. The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.
[22] Kondratiev, A. S. Normalizers of Sylow 2-subgroups in finite simple groups. (Russian) Mat. Zametki 78 (2005), no. 3, 368-376; translation in Math. Notes 78 (2005), no. 3-4, 338-346
[23] Lempken, Wolfgang; Parker, Christopher; Rowley, Peter. Minimal parabolic systems for the symmetric and alternating groups. The atlas of finite groups: ten years on (Birmingham, 1995), 149-162, London Math. Soc. Lecture Note Ser., 249, Cambridge Univ. Press, Cambridge, 1998.
[24] Liebeck, Martin W.; Saxl, Jan. The primitive permutation groups of odd degree. J. London Math. Soc. (2) 31 (1985), no. 2, 250-264.
[25] Maslova, N. V. Classification of maximal subgroups of odd index in finite simple classical groups, Proceedings of the Steklov Institute of Mathematics, 2009, Suppl. S164-S183.
[26] Meierfrankenfeld, Ulrich; Parker, Christopher; Rowley, Peter. Isolated subgroups in finite groups. J. Lond. Math. Soc. (2) 79 (2009), no. 1, 107-128.
[27] Meierfrankenfeld, Ulrich; Stroth, Gernot; Weiss, Richard. Local Identification of Spherical Buildings and Finite Simple Groups of Lie Type, preprint 2010.
[28] Pálfy, Péter Pál; Pudlák, Pavel. Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Universalis 11 (1980), no. 1, 22-27.
[29] Parker, Christopher; Rowley Peter. A note on conjugacy of supplements in finite soluble groups, Bull. LMS 42(3) (2010) 417-419.
[30] Ree, Rimhak. A family of simple groups associated with the simple Lie algebra of type $\left(F_{4}\right)$. Bull. Amer. Math. Soc. 67 (1961) 115-116.
[31] Ree, Rimhak. A family of simple groups associated with the simple Lie algebra of type $\left(G_{2}\right)$. Amer. J. Math. 83 (1961) 432-462.
[32] Ronan, M. A.; Smith, S. D. 2-local geometries for some sporadic groups. The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 283-289, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
[33] Ronan, Mark A.; Smith, Stephen D. Computation of 2-modular sheaves and representations for $L_{4}(2), A_{7}, 3 S_{6}$, and M_{24}. Comm. Algebra 17 (1989), no. 5, 1199-1237.
[34] Ronan, M. A.; Stroth, G. Minimal parabolic geometries for the sporadic groups. European J. Combin. 5 (1984), no. 1, 59-91.
[35] Ronan, M. A.; Tits, J. Building buildings. Math. Ann. 278 (1987), no. 1-4, 291-306.
[36] Rowley, Peter; Saninta, Tipaval. Maximal 2-local geometries for the symmetric groups. Comm. Algebra 32 (2004), no. 4, 1339-1371.
[37] Shephard, G. C.; Todd, J. A. Finite unitary reflection groups. Canadian J. Math. 6, (1954). 274-304.
[38] Schmidt, Roland. Subgroup lattices of groups. de Gruyter Expositions in Mathematics, 14. Walter de Gruyter \& Co., Berlin, 1994.
[39] Steinberg, Robert. Variations on a theme of Chevalley. Pacific J. Math. 91959 875-891.
[40] Suzuki, Michio. Structure of a group and the structure of its lattice of subgroups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 10. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. 96 pp.
[41] Taylor, Donald E. The geometry of the classical groups. Sigma Series in Pure Mathematics, 9. Heldermann Verlag, Berlin, 1992.
[42] Tits, Jacques. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics, Vol. 386. Springer-Verlag, Berlin-New York, 1974.
[43] Tits, J. A local approach to buildings. The geometric vein, pp. 519-547, Springer, New YorkBerlin, 1981.
[44] Tits, Jacques. Twin buildings and groups of Kac-Moody type. Groups, combinatorics \& geometry (Durham, 1990), 249-286, London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press, Cambridge, 1992.

Chris Parker, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

E-mail address: c.w.parker@bham.ac.uk
Peter Rowley, School of Mathematics, University of Manchester, Oxford Road, M13 6PL, United Kingdom

E-mail address: peter.j.rowley@manchester.ac.uk

