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Abstract

The asymptotic behavior (as e — 0) of eigenvalues and eigenfunctions of a boundary-
value problem for the Laplace operator in a thick cascade junction with concentrated
masses is investigated. This cascade junction consists of the junction’s body and great
number 5N = O(e~!) of e—alternating thin rods belonging to two classes. One class
consists of rods of finite length and the second one consists of rods of small length of
order O(e). The density of the junction is order O(¢~%) on the rods from the second class
(the concentrated masses if a > 0), and O(1) outside of them. In addition, we study the
influence of the concentrated masses on the asymptotic behavior of these magnitudes in
the case a = 1 and a € (0,1).
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1 Introduction

In present paper we continue our investigation of boundary-value problems in a new kind of
thick junctions, namely thick cascade junctions, which we have begun in [9, 10], see also [11]
and [12].

Boundary-value problems in thick one-level junctions (thick junctions) are intensively in-
vestigated recently (see for instance [2], [3], [41] and references there).

Here we study a spectral problem in a thick cascade junction. It is known that the asymp-
totic behavior of the spectrum of a perturbed spectral problem is highly sensitive to the per-
turbation and it is unexpected; in thick junction it essentially depends on the junction type
and on the conditions given on the boundaries of the attached thin domains. This depen-
dence was observed for spectral problems in thick junctions with the Neumann conditions in
25, 26, 28, 29, 32, 33], with the Dirichlet conditions in [30, 36], with the Fourier conditions in
[35], with the Steklov ones in [34], and for spectral problems in thick multi-level junctions in
(37, 38].



Vibration systems with a concentration of masses on a small set of diameter O(¢) have been
studied for a long time. It was experimentally established that such concentration leads to the
big reduction of the main frequency and to the big localization of vibrations. The new impulse
in this research was given by E. Sdnchez-Palencia in the paper [47], in which the effect of local
vibrations was mathematically described. After this paper, many articles appeared (see for
example [5]-[8], [13, 14, 21, 22, 23, 43]) that deal with the asymptotic behavior of vibrations of
a body containing a small region (many small regions) where the density is very much higher
than elsewhere (see [25, 30, 33, 36] for thick junctions).

1. Statement of the problem.

Let a, by, by, hi, ho be positive numbers such that

h hy hy

1 h h
0<b1<b2<§, 0<b1——1, by + — <by——, b+ —< 2

E.

1
2 2 2 2 2

These inequalities mean that the intervals

hy hy hy hy 1—hy 1+hy
(51—57514‘7)7 <b2—?,b2+7)7 ( 5 9 )7

hl hl hl hl
(1—[)2—5,1—()2—1-5), (1—()1—3,1—1)1—1-3)

are not intersected and they belong to (0,1). Let us divide the segment [0,a] into N equal
segments [ej,e(j + 1)], j = 0,...,N — 1. Here N is a big positive integer, hence the value
e = a/N is a small discrete parameter.

]

Figure 1: The thick cascade junction €2..
A model thick cascade junction ). (see Fig. 1) consists of the junction’s body
W={zeR: 0<x1<a, 0<x9<v(11)},
where v € C*([0,a]), ming,~y >0, and a large number of thin rods

h
GV (dy,e) = {xeR2: 21— (j 4 di)| < % xge(—all,O]}, k=1,...4,

3



1 h
G§2><g>:{xeR2: |x1—5(j+§)]<5—22, 1:26(—[2,0]}, j=01,...,N—1,

where d; = by, dy = by, d3 =1—by, dy =1 —b;, thatis Q. = QUGY UG?, where
N-1 4 N—-1
¢ = J(UeVe), @ =P
§=0 k=1 j=0

Thus the number of the thin rods is equal to 5/V; the thin rods are divided into two classes Ggl)
and G subject to their length and thickness. The length and thickness of the rods from the
first class are equal to €l; and €hy respectively, and these magnitudes are equal to Iy and chs for
the rods from the second class. In addition, the thin rods from each classes are e-periodically
alternated along the segment [y = {z : z; € [0,a], x9 = 0}.

Such thick cascade junctions are prototypes of widely used engineering, physical and bi-
ological systems with very distinct characteristic scales, for instance construction of a bowel
with different levels of absorption on various parts of the bowel trunks, construction of an
animal’s fell consisting of wool and undercoat with different thermal conductivities.

Only vibrations of Q. depending on time by the factor exp(—iv/A t) will be considered.
Hence we have to investigate the corresponding spectral problem

Ay u(e,z) = Ae) pe(x)u(e, x), x € (;
—Oyu(e,x) = 0, zeTPur®ur,;
u(e,z) = 0, el (1.1)
W, , = [Onul,_, =0, 7€ Q. = (ng U G@) N {zy = 0}.

Here 0, = 0/0v is the outward normal derivative; the brackets denote the jump of the enclosed

quantities; T is the union of the lateral sides and the lower bases of the rods from the i—th
class, 1 =1,2; Ty ={x: 23 =~(z1), 1 € [0,a]}; T. =090\ (Tgl) ur? UT4); the density

1 xGQOUGQ)
() = ' ’ 1.2
pe() { 7Y x € Ggl); (1.2)

the parameter a € (—o0,2).

Thus, the Neumann conditions are imposed on the boundaries of the thin rods and if & > 0
then there are concentrated masses on the thin rods from the first class Ggl).

It is known that for each fixed value of € there is a sequence of eigenvalues of problem (1.1)

0<M(e)<XE)<...<\E) <+~ > 40 as n— o0 (1.3)

and a sequence of the corresponding eigenfunctions {u,(e,-) : n € N}, which can be orthonor-
malized by the following way

(U, um)LQ(QouGgm) + e %(uy, um)LQ(Ggl)) = 0pm, {n, m}eN. (1.4)

Here and below d,, ,, is the Kronecker delta.



Our aim is to study the asymptotic behavior of the eigenvalues {A,(¢) : n € N} and the
eigenfunctions {u,(e,-) : n € N} as ¢ — 0, i.e., when the number of the attached thin rods
from each class infinitely increases and their thickness decreases to zero, to find other limiting
points of the spectrum of problem (1.1) and to describe corresponding eigenvibrations.

It should be noted that the limit process is accompanied by the concentrated masses on
the rods from the first class. In fact, we have two kinds of perturbations for problem (1.1):
the domain perturbation and the density perturbation. We are going to study the influence of
both factors on the asymptotic behavior of the eigenvalues and eigenfunctions as well.

We establish five qualitatively different cases in the asymptotic behavior eigenvalues and
eigenfunctions of problem (1.1) as ¢ — 0, namely « € (0,1), a =1, a« € (1,2), « = 2, a > 2.
In the present paper we consider two cases o € (0,1) and a = 1.

2 The case a=1

2.1 Formal Asymptotics

Combining the algorithm of constructing asymptotics in thin domains with the methods of
homogenization theory, we seek the main terms of the asymptotics for the eigenvalue \,(g)
and the eigenfunction uy, (e, ) in the form (index n is omitted):

Ae) = Ao +eX + ... (2.1)
u(e,x) = v (z) +evf (z) +..., in domain Qy; (2.2)
in the thin rectangle G;Q) () (j=0,...,N—1)

_ . _ . T
u(e, x) = vy (T1,2,m — J) +evy (T, 22, —J) + ..., m = ?15 (2.3)

and in the junction zone of the body and thin rectangles of both classes (which we call internal
expansion) the series of the following type:

2
ule, x) = vg (21,0) + s(Z ZO )00 (21,0) + 2O ()ot (24, o>) +

=1 . (2.4)
—1—62ZZéﬁ)(n)Dﬁvar(:rl,O)+..., n=_
|B<2
o8l
We used the following standard notation: 8 = (31, 32), |8] = B1 + B2, 3 € Ny, D? = PP
Ty Oy
0

d 0, = —.
an = 7

Denote I'y := 090\ (I'1U1p). Substituting (2.1) and (2.2) in the problem (1.1) and collecting
terms with equal order of €, we get:

A, vf(z) = Aovg (z), x € Qo,
d, vy (z) = 0, x € Iy, (2.5)
’U(J)r(.f) = O, S Fl-



It remains to ensure the continuity of the asymptotic approximations on the interfaces between
the “rectangles” and the “body”. The necessity of the condition

vy (21,0) = vy (21,0), x € Iy, (2.6)

is evident. Another condition appears when one constructs the junction layer. This condition
has the form

Ouyvg (21,0) — hoOy,vy (21,0) = —4hyli Aovg (21, 0), x € Iy, (2.7)

and will be obtained in the next section.
Collecting terms of order €, we have

A, v (z) = Aoy () + Mg (2), x € Qp,
o, vi(x) = 0, x €Ty, (2.8)
vy (x) = 0, rely.

In the transmission conditions here the following jumps appear
Ui"_(a?l, 0) — 2)1_(1’1,0) = :Fl(l'l), x € Iy, (29)

and
(‘3@1){“(%,0) — hg@mﬂl_(xl,()) = fg(l‘l), T € ]07 (210)

where JF7, F, are given functions on I that will be defined in subsection 2.2.

2.1.1 Formal asymptotics on thin rectangles.

Keeping in mind that in (2.3) v, are smooth functions, using Taylor series for v, and changing
variable z1 +— 7, in the neighborhood of the points z; = e(j + %), we get

—+o0
ule,x) = ZskWéJ)(xg,m), S G§2)(5), (2.11)
k=0
where for k € N we have

j e 4 ,
W (w2,m) = v (20 + 5), w2 — )+

k 1 1 m amv_ 1
—_— ) k—m . )

) > — ). (212

+m§::1 m! (’fh j 2) T <e(] +5) 2, j) (2.12)

Substituting (2.1) and (2.11) in the problem (1.1) instead of A, (¢) and wu, (e, -) respectively,
collecting terms with equal powers of €, we obtain the following problems (k =0,1,2,3) :

. . k—2 .
=02, W (wa,m) = 02, W (wa,m) + 5 AWy (), | — 3 < %,

mn T2T2
m=0

8771W1§j)(232,%) = 07

(2.13)

where )\, and the functions Wéj ) with negative p are equal to zero; the variable x5 is a parameter;

Oy = 2

[



From (2.13) we deduce that Wo(j ), Wl(j ), WZ(j ) and Wg(j ) are independent of 7;. Moreover
the solvability conditions for the problem (2.13) as k = 2, 3, give us the equations

o1
hg 62 U(]_(lL'l,ZEQ) + )\0h2 110_(1'1,1'2) = O, To € (—ZQ,O), T, = 8(] + —) (214)

oI 2

and

1
hy 02, vy (w1, 02) +hodo vy (21, 2) = —hady vy (21, 22), T3 € (—1,0), 21 = 5(]—1—5). (2.15)

Tox2

Since we seek the smooth functions v, and vy and the points x; = e(j + %) form the e-net
in the interval (0,a), then the equations (2.14), (2.15) defined on N segments can be extended
to the whole rectangle Dy = (0,a) X (—I3,0). Bearing in mind the boundary conditions of the
original problem, we add

Ory Vg (1, —l2) = 0, 0,07 (21, —12) = 0. (2.16)

2.1.2 Junction-layer solutions

x
Pass to the “fast” variables n = — in (1.1). Under this transformation as ¢ — 0 the domain
€

Qg transforms to {n: n; > 0, i = 1,2}, the thin rectangle G(()2)<E) to the semistrip

_ 1 hy 1  he
Im=(---= -4+ = _
(2 2,2+2)><(oo,0]

and rectangle G(()l)(dk, g) to the fixed rectangle

h h
Hk = (dk - ?l,dk + é) X (—11,0]

Taking into account the periodic structure of €2, in a neighborhood of I, we take the following
cell of periodicity
O=T1"ulltull,,
4 —
in which we will consider boundary value problems. Here IIT = (0, 1) x (0, +00), II;, := J Ik
k=1

(see Fig.2).
Substituting the series (2.4) and (2.1) in the problem (1.1) and collecting terms with equal

powers of £, we get problems for Z}i), 1 =20,1,2, and Zéﬁ ), 13| < 2. Obviously, these solutions
have to be 1-periodic in 7;. Therefore we will demand the following periodic conditions

OilZ(O,ng) = 8,5712(1,772), n >0, s=0,1, (2.17)

on the vertical sides of semistrip II*. In addition, it is easy to see that all these solutions must
satisfy the Neumann conditions

87722(771, O) = 07 (7717 0) € 81_[7 8,722(771, _ll) = 07 (771, _ll) € 8H7 (218)

on the horizontal parts of the boundary of II.



1

Figure 2: The cell of periodicity.

Denote by OIIj the vertical part of Ol laying in {n: 7, < 0}.

Thus for ZI(Z), 1 =0,1,2, and Zé’g ), |3] < 2, we have the following problems (to all problems

we must add conditions (2.17) and (2.18)):

0 07 UEH+UH_7
_Aﬂ Zf)(n) - {)\0 TIGHZ
) 17

0,20 ) = o, n € olly;

-7, 27 () = 0, nell,
0,20 () = o, neony, i=1,2

A nelltUll-
N, 780 = 9" )
e (7]> )‘1 + )‘021(0)(77)7 n € le
023" () = 0, n € oll;

25me2)(77), 1 nelltull,
20, 2" () + M Z" (), ey,

1,0 0
0, 250 (n) = —20), n € oll;

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



{ ~A, Z30m) = 1420, 21" (), n €1, (2.26)

0,250 (m) = —2" (@), n € ol

The existence and the main asymptotic relations for the functions {Z{i)}, {Zéﬁ )} can be
obtained from general results about the asymptotic behavior of solutions to elliptic problems in
domains with different exits to infinity [17, 19, 20, 44]. The proofs are substantially simplified if
the polynomial property of the corresponding quasilinear forms is employed [45]. However, if a
domain, where we consider a boundary-value problem, has some symmetry, then we can define
more exactly the asymptotic relations and detect other properties of junction-layer solutions
(see Lemma 4.1 and Corollary 4.1 from [31]). Using this approach, one can prove the following
lemma.

Lemma 2.1. There exist solutions Zl(i) € Hy,.,,(I1), i =0,1,2, of the problems (2.19), (2.20)
and 2\" € H}. (1), |3 < 2 of the problems (2.21), (2.22), (2.23), (2.24), (2.25), (2.26),

which have the following differentiable asymptotics

O + O(exp(—2m2)), M — 400,
Zf())(n) = 4h1l1)\0 C(O) (2'27)
e — : + O(exp(ﬂ-h2_17h))7 o — —00,
Ry Ry
1 O(exp(—271)), 2 — +00,
20 () = ) 1 (2.28)
(=m+35) + Olexp(rhs"m)), m — —oc,
2 + O + Ofexp(—2m12)),  m2 — +00,
Z% (n) = e (2.29)
= — —— 4+ O(exp(why 'n2)), 12 — —00,
hy  ho
A
2208+ O + Ofexp(—2m)), b — +oo,
2 () Ao o 4hilid1 + Ao fnl Zl(O) (n)dn C’;O’O) 1
__772 + - 772 - + O(exp<ﬂ-h2 772))7 772 - _007
2 ho hs
(2.30)
O5"0 + O(exp(—2mpn)), T — 400,
(1,0)
Z89 () = g Iy 0o 3 (2.31)
n 772<— m + 5) - + O(exp(mhy "n2)), 12 — —00,
2 2
OV 4+ O(exp(—2mpn)), T — 400,
O\ _
2 =4 Ju, 20y oo » (2:32)
3 N2 — 3 + O(exp(mhy "n2)), no2 — —00,
2 2
2+ CfY + Olexp(—2m12)),  n2 — +00,
Z3 (n) = O (2.33)
7= — ==+ O(exp(rhy 'n2)), ny — —o00,
hy  ho



OS5 + O(exp(—2mny)), 1 — 400,
Zy"V () = (1,1) (2.34)
T2 1 Cz -1
( m+ ) + O(exp(mhy "n2)), 12 — —00,
hQ 2 ho

1
2+ CPY + O(exp(—2mmp)), 110 — +00,

2
2,0
Z0m =3, o (2.35)
iy — —— + O(exp(Thy 'n)), 12 — =00,
hs ha
where
o =2 / 0,2 dn+ [ (140,20 () dn. (2:36)
H11UH7
Moreover functions Zfl), Zél’o), Zél”l) are odd in 1y with respect to %, functions Zfo), Zfz),

Z;o,o); Zéo’l), Z§0’2) and Z§2’0) are even in 1y with respect to %

Proof. Recall that a function ¥ belongs to H,,,,
H(I) A {n: |na| < R}
We will demonstrate this proof for the junction-layer problem (2.21). In the other cases

(IT) if for every R > 0 the function ¥ €

the proof is similar. We look for the solution ZZ(O’O) to problem (2.21) in the form

Ao
2" () = =1 + pex-(n) + 25" (n), - me1L,

where x_(n2) is a smooth cut-off function such that 0 < y_(n2) < 1; it is equal to 1 if ny, < —2,

~(0,0)

and to 0 if 9, > —1. It is easy to see that Z; " must satisfy the problem

(

B 0, nelrt,
—A, 2380 = (X" () 2 (), €T,
2‘/1_{—)‘0(25)(77)_1)’ 77€Hl1;
0:, 230 (0,m2) = 95,27 (1), >0, s=0,1, (2:37)
0, 25" (n1,0) = 0, (m,0) € 1L,
a Z(OO(U) = 0, neaHHa ne <0,
L anzzzoo (m, —=l1) = =X, (1, —11) € OI1.

From Lemma 4.1 (see paper [31]) it follows that there exists the energy solution to the
problem (3.42) if and only if

4hili A+ Ao szl Z£O) (m)dn
ho ’

o= (2.38)
in addition this solution is defined up to an additive constant. Choosing in an appropriate way
this constant (see Remark 4.1 from [31]), we get the asymptotics (2.30).

Since the right-hand sides both in the equation and boundary conditions of problem (3.42)
are even in 7; with respect to %, the solution Zéo’o) has the same property due to Remark 4.2
from [31]. O

10



2.2 Homogenized problem and correctors

We have formally constructed the leading terms of the asymptotic expansions (2.2), (2.3), (2.4)
in three different parts of the junction €2.. Now we apply the method of matching of asymptotic
expansions to complete the constructions. Following this method (see, for instance [16]), the
asymptotics of the external expansions (2.2) and (2.3) as o5 — £0 has to coincide with the
corresponding asymptotics of the internal expansion (2.4) as 7y — Fo00.

Writing down the Taylor series for vy and v; with respect to x5 in the neighborhood of
the point (x1,0), where ; € (0,a), and passing to the variables 1y, = e 'z,, we derive

u(e, ) = v§ (x1,0) + 5(77289621)3(1’1, 0) + v (21, O)>+

t+e ( 102,05 (@1, 0) + oD, (21,0) + v (21,0)) + O(™), @2 = emp — +0,
(2.39)
Bearing in mind the asymptotics of the functions Zl(i) (1=0,1,2), Zéﬁ) (18] <2), as g — +00
(see (2.27)—(2.35)), we write down the asymptotics

ule, x) = v (1,0) + e(ngammxl, 0) + Vv (21, 0) + CPa,,uf (a1, o>)

Ao
+ 82<<_ ? 2 + C 0 >U5r(371; ) + CQ(I’O)a:mU(;r(a:hO) + Céo’l)amvg(xla 0)

X (2.40)
+ (= gm 4+ C0) 2,00 (01, 0) + CEV02 o (21,0)
+ <772 + 052 )aizam (‘Tla O)) + 0(53773)’ T2 — +00.

To match (2.3) and (2.4) we write down (2.3) as o — —0 in fast variables:
U(S, Q?) = Ua($17 0) te (772ax200($17 O) + U;(wla O) + Y(771>ax105($17 O))
+ €2 ( 852902 (SL’l, O) + 7]28332’0; (271, O) + ngY(nl)ﬁxlm <$1, O) + ’U; (Il, 0) (241)

+ Y(nl)arlvl_<xlv O) + Y2<n1)ax1w1 Yo (1‘1, 0)) + O<€377§)7 To = €M — —0

and (2.4) as ng — —o0:

s 0(2)

uleve) = o1, 0)+ (Y ()0 2,0+ (2 = 9
2 2

dhilhg  CON
+( hg e — hg )UO (Il)o)

)amvo (1,0)

, N oAbt X [y Z0mdy 00
e (< My ~ )
2

4

Ao le Z§2) dn Cg’l)
(n1)m2 — 5 ( L
2

) Oy va (71,0) +
o

11



(20 oL
(5 = =2 )02, ol (21,0) + (Y () = == )22, (04,0)
2 2

(2)
H(E = ) (@,0)) + O, (2.42)

where Y (1) = —nm1 + 3 + [m], [m] is the entire part of the number 7, and g is defined by
(2.36). We convince, that the leading terms of the asymptotic expansions (2.2), (2.3) and (2.4)
are matched, if functions F; and F» from (2.9) and (2.10) are equal respectively

14 ho

fl(l‘l) = h
2

<C’£O)Ua_(l’1, 0) + CfQ)amUaL(xl, 0)) . x1 € I, (2.43)

and

Falir) = = o0, 0 (2,0) = o [ 28n) ey (1,0)

I,
(2.44)
— <4h1l1/\1 + /\0 / Z£O) (77) dT])US_(Il, 0), T - ]0
I,
and the conditions (2.6), (2.7), (2.9) and (2.10) hold true.
Finally, for
+
_ Vo (]}')7 YIS QJ
vo() = { vy (), € Dy=(0,a) x (—ly,0),
and the number \y we have the problem
( —Ag vy () = Aovg (o), z € Qo,
_a.gzxz /Ua ('/I") = )\0 /Ua (‘/L‘)7 x e D27
81’ U(—)i_(x) = 07 HS FQ?
vy (r) = 0, xely, (2.45)
U(—)i_(mlao) = U()_(xlvo)> HATRS (O7a)7
(9332@3(:51, O) — h28x206($1, O) = —4h1l1)\0 ’Uar(l'l, O), X1 € (O, a),
\ az2va(x17 _12) = 0, T € (O, CL),

which called homogenized spectral problem for problem (1.1). The spectrum of this problem
is studied in § 2.3. Let Ay be an eigenvalue of problem (2.45) and vy is the corresponding
eigenfunction that we normalize as follows

/ (va“)Q dx + hg/ (00_)2 dx + 4h,ly / (var(xl, 0))2 dx; = 1. (2.46)
Qo Do Iy
Then for

+
_ Ul (ZL‘), T € Q>
n(r) = { vy (x), x € Dy,

12



and A\; we get the following boundary-value problem

¢

= v (z) = Mvi (2) + Ao (), x € Q,

L, v (1) =0, x €Dy vi(z) =0, ze€ly,
)
)

hg)\o "Ul_(JTl,fL’Q) + hg)\l Uo_(l'l,J?g), xr € DQ,
0, xr1 € (O,CL),

1+ hy
ha

—hy 5@@ (5U1, )

81»2’01 (ZEh lg

v (21,0) = vy (21,0) =

(Cl(o)vg(xl, 0) + CP o, v (21, O)) , x € Iy,

0u.f (1,0) = hadyoy (20,0) = 4o, (21,0) = No [ Z7(0) dnf 0,0

ITH

— <4h1l1)\1 + )\0 / Zfo)(T/) d’f}) U;(l‘l, 0), x € Io.

I,

\

(2.47)
We see that the corresponding homogeneous problem has nontrivial solution since A is the
eigenvalue of problem (2.45). Therefore, we should choose A; such that the solvability condition
for problem (2.47) is satisfied. Obviously, in this case the solution to problem (2.47) is not
uniquely defined. For the uniqueness we demand the following orthogonality condition:

/ vy (z1,0) vy (z1,0) dzy = 0. (2.48)

Io

Multiplying the equation in €y by vy, integrating it over the domain and using twice the
Green’s formula and repeating these procedures for the domain D, (only difference is that we
multiply the equation by v, ) and then summarizing these identities, we obtain

/8@1};’(1’1, 0) vg (x1,0) dry — /vf(ﬁ, 0) Op,vg (x1,0) dy—
Iy

I

— hg/azgvl(xl, 0) vy (21, 0) dxy + he /vl(acl, 0) 0z,vg (21,0) dxy = (2.49)

Ip Io
2 2
= )\1/ (vé“) dx + )\1h2/ (UJ) dx
Qo D2
or, keeping in mind the transmission conditions in problem (2.45) on Iy,

/ (Oyvy (21,0) — ROy, 07 (71,0)) vy dxg — / (vf (#1,0) — vy (21,0)) Opyvg day

IQ IO

+4hi 1y /vf(a:l,O) vy (21,0) dzy = M\ / (UO (xl,O))2 dx + /\1h2/ (QJO_(LL‘I,O))2 dx.

Io Qo D2

(2.50)

13



Taking into account the transmission conditions in problem (2.47), the normalized condition
(2.46) and the orthogonality condition (2.48), we get from (2.50)

1+h
M:m/@@fmf(ZZO Ad"ﬁMm@/w%@ml
2 11

To " Io
1+h
Lt 24]1111)\0/ (C£O)UJ+C£2)3IQUSF)USF dx, (2.51)
2 7
1+h
S 0 [ () dn -0 [ 20man [ () o
2 Iy Hll Io

where 1 is defined by (2.36).

2.3 The spectrum of the homogenized spectral problem (2.45)

It is obvious that any eigenvalue of problem (2.45) is real and positive. By solving the ordinary
equation of problem (2.45) in the rectangle D, with regard to the boundary condition on
', ={z: 21 €(0,a), vo = —ls} and the first transmission condition on Iy, we find

— o va_(xlv()) S x
1 () = 2 o/ 2+ ). (252

Now, according to the second transmission condition in problem (2.45), we obtain the following
spectral problem

—Avf(z) = lvf(x), x € $p,

Dy v*( ) = 0, z eIy,
o) = 0 rel (2.53)

8121}0 (l‘l, O) = - (hg \/)\_0 tan(\/)\_olg) -+ 4h1[1)\0) Ua_(iﬂl, O), S Io,

with the spectral parameter \g occurring both in the differential equation and in the boundary
condition on [y, where it enters in a nonlinear way.

Multiplying the differential equation of problem (2.53) with an arbitrary function ¢ €
H'(Q;T';) and integrating by parts in €y, we can reduce the spectral problem (2.53) to a
spectral problem for the following operator-function

L(\o) = Ao A, + (hQ Vo tan(yv/Xo la) + 4h111>\0> Ay -1,

where H'(Qo;T1) = {u € H'(Qo; u|r, = 0} and the scalar product is defined as follows
(4, V) g1 (Qpiry) = fQo Vu - Vudzr, I is the identity operator in H'(Q;T1), Ay, Ay are self-
adjoint compact operators in H'(Qy;T';) and

memmm:mewmm,

(A2S0»¢)H1(QO;F1) :/ 90(55170)@/)@1,0) dry forany o, € Hl(Qo;P1)-

1o
Theorems on existence and concentration of the spectrum for such self-adjoint operator-
functions and mini-max principles for the eigenvalues were proved in [27, 15]. From these
results we have the following theorem.

14



Theorem 2.1. The spectrum of operator-function L and problem (2.45) contains normal eigen-
values (they have finite multiplicity and the corresponding eigenvectors have no Jordan chain)
and also the left accumulation points

2
P T+ 2r(m — 1)  men,
2ly

which divide the eigenvalues into the sequences

O<)\(()1’1)§...§)\81’n)§...—> P oas n — oo, (2.54)
Po <A< <A™ < 5 P, as n— oo, m=23,.... (2.55)

2.4 Asymptotic approximations

Let \g be an eigenvalue of problem (2.45), v is the corresponding eigenfunction, i.e., vy = vy

in €, where vy is the corresponding eigenfunction to problem (2.53), and vy = v; in Do,
where v, is defined by (2.52). Then we can define A; with the help of (2.51) and the unique
solution v} to problem (2.47).

Using the method of matched asymptotic expansions for the leading terms of (2.2), (2.3)
and (2.4), we construct the approximation R, € H(Q; ;) :

R.(z) = vg (z) + evf (z)+

+ exo(a2) ( S (20) = i2(m2 + CP)) 0,0 (21,0) + (27 (n) — )i (a1, o>)
=1
2 2
(0,0) Ao) ) (2,0) n
+€2X0(<Z2 (m)+ 52 ) vir( w} 2 Dy (21,00 + (28 (n) + 2 ) 02, v (21,0)

X
+ 28 ) 02 o (21, 0) + (287 () — ) 32:212@3(961,0)), n=-, z&y; (2.56)

R(x) = vy () + e (vy (2) + Y (11)0z, v (2))

0(2)

+ eXo(w3) ((ZF)(n) =Y () 8oy (20,0) + (287 n) = 32+ ) Bt (00,0)
Ahaly ) c?
L)

(0)
A\ 4h1l1)\1+>\0fn Zl (ﬁ)d?”]
valan) ( (2470 + 0 - o, ) 5 (2,0
2
(2)
Al Ty A Ao Ju, 21
+ (2800 - =2 mwm))aﬂvm,ow (280 - —=— 1) Oeati (1, 0)
2 2
: , n2Y (1
+(2800) — )i o, 0) (280 0) = D)2, 0)

+ (257 (n) — )832;,32 (xl,O)), nzg, ze GMUGH. (2.57)
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Here xq is a smooth cut-off function that equals 1 in a neighborhood of zero.
Substituting R. and Ao + €\; into problem (1.1) instead of u and A(e) respectively, and
finding residuals, we get

| Re — (Mo +eM)AR: ||, < c(6)e*° (6> 0). (2.58)
Here operator A, : H. — H. is defined by the following equality
(Acu,v)y, = (u,v),,  Vu,veH,, (2.59)
where by H. we denote the space {u € H'(€.) : ulp, = 0} with the scalar product
(U, v)y, = Vu - Voudz,
Qe

and by V. we denote the space L*(€).) with the scalar product

(u,v)y, ::/ p: uvdr.
Qe

Obviously, operator A. is self-adjoint, positive, and compact. In addition, problem (1.1) is
equivalent to the spectral problem A.u = A"'(¢)u in H..
By virtue of the minimax principle for eigenvalues, we have that for each n € N A, (¢) < C,
and then due to (1.4) we get
[un(e; )l = An(e) < Con. (2.60)

3 Thecase0<a<l1

3.1 Formal Asymptotics

In this case we seek the main terms of the asymptotics for the eigenvalue \,(¢) and the
eigenfunction w, (e, -) of problem (1.1) in the form (index n is omitted):

Ae) A+ e TN e M+ N g+ (3.1)
u(e, x) = vf (z) + ' (2) +evf (x) + > ] (x)+..., in domain Qp; (3.2)

in the thin rectangle ng) () (j=0,...,N—1)

u(e, r) = vy (w1, 09,1 — J) + (21, 12,1 — J) + vy (w1, 9,1 — J)+
Ty (3.3)

_|_52_"‘v2__a(x1,x2,7]1—j)+..., = e’

and in the junction zone of the body and thin rectangles of both classes (which we call internal
expansion) the series of the following type:

2
u(e, r) =~ v (1,0) + &'~ (21,0) +¢ Z Z9 ()0, v (21,0)+
i—1

2
L2 (Zéo)a(n)vo* (21,0) + > Z3) ()00 o (1, o)) + (3.4)
=1
X
+e? lﬁZQQZéﬁ)(n)DﬁUJ(f’flvO)+--~7 =2
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Substituting (3.1) and (3.2) in the problem (1.1) and collecting terms with equal order of ¢,
we get:

A, vg () = v (), x € Qo,
d, vy (z) = 0, x €Iy, (3.5)
vy (x) = 0, rel.

It remains to ensure the continuity of the asymptotic approximations and their gradients on the
interfaces between the “rectangles” and the “body”. As in the previous section the necessity

of the condition
vy (71,0) = vy (21,0), x € Iy, (3.6)

is evident. Another condition appears when one constructs the junction layer. This condition

has the form
Duyvg (21,0) = hoOyyvy (21,0), x € Iy, (3.7)

and will be obtained in the next section.
Collecting terms of order £'~%, we obtain

A v (1) = Xvf () + M_avg (2), x € Q,
d, vi_ () = 0, x € Iy, (3.8)
’Ufia(x) = 07 T € Fl-

Using the same arguments, we conclude that
Uita(l’lﬂ O) - Ul_fa(xh 0)7 S ]07 (39)

The second condition also appears when one constructs the junction layer. This condition is
the following:

(9121}?,&(&:1,0) — hg&mv;a(xl,O) = —4h1l1>\0’06r(27170), S [0 (310)

and will be obtained in the next section.
Collecting terms of order €, we have

A v (z) = Aoy () + Mg (2), x € o,
o, vi(z) = 0, x €Ty, (3.11)
vy (x) = 0, r el

In the transmission conditions here the following jumps appear
vf(xl, 0) - ’Uf(]?l,O) = fg(l’l), T € Io, (312)

and
8x2v1+(x1, 0) — hgam?};(l’l, 0) = f4($1), S IO, (313)

where F3 and F, are given functions on Iy that will be defined in subsection 3.2.
Finally, collecting terms of order €27, we obtain

—Ay vy () = Avs_o (@) + Mvf_, (2) + A_ov] (2) + Ao (), x € Qo,
0, vy (z) = 0, rely (3.14)
vy (r) = 0, zreTy.
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Similarly we obtain

vy (71,0) — vy (71,0) = Fs(zy), x € I, (3.15)
and to simplify the constructions we set

OuyVy o (71,0) = hoyp,vy (71, 0), x € Iy. (3.16)

The function F5(x;) also is given (see subsection 3.2).

3.1.1 Formal asymptotics on thin rectangles.

Let us enumerate the set {p — 1+ (2 — a)q}:oq:() \ {—1} for fixed « in increasing order 0 =

G <6 < .... Obviously, s =1 —a, g3 =1 as 0 < a < 1. Keeping in mind that in (3.3)

v, are smooth functions, using Taylor series for v_ and changing variable z; +— 7, in the

neighborhood of the points z; = (5 + 1), we get

ZEC’“WU (x9,m), € G§2)(6), (3.17)

where, for instance for £ € N we also have (as in the previous section)

1 .
_)az%nl - j)+

Wk(j)(%ﬂh) = v,;(g(j + 5
k: —
1 amvk 1
m\" 77 72) Ty \FUtg —j) (318
+;m! (771 J 2) oxy (5(]+ 2),:132,771 j) ( )

and, in particular,

. B ) 1 )
W' (e2,m) = v (£ + 5) 22, — j).
. _ ) 1 ]
Wl(i)a(xQJT}l) - Ulfa(g(] + 5)7@;7)1 _]>7
) o1 . vy, . 1 . (3.19)
Wi (mﬂh) =0 (5(J + 5):952,771 _]) + (771 —J— _)5_1( (] + 5)@2,771 —j),
j o1 . o, . . 1 .
W (22,m) = v5_o(e(j + 5)7:1:2,771 —Jj)+ (m —j- 5) 8;:1 (e(j + 5),1’2,771 —J)-

Substituting (3.1) and (3.17) in the problem (1.1) instead of A, (¢) and w, (e, -) respectively,
collecting terms with equal powers of ¢, we obtain the following problems (k =0, 1,2, 3) :

_821771Wj)(x2>771) = aggxzwj) <x27n1) + ZO/\ WkJ)Q m(‘vanl) |T]1 - %| < %7 (320)

&,IWIEJ (332, H:hZ) =0
and (k=1, 2, 3, 4)

_8731771Wl§i)a(x27771) = 89%2962Wk'2 a<x27771)+ Z A chj)Q m— a(x%nl)—i_

m=0

+ Z >\k—2—m—aWTg)<x2an1)v |771 - %| < %
] m=0
Oy ngj—)a(x% M) = 0,

2

(3.21)
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where A, and the functions Wg(pj ) with negative ¢, are equal to zero; the variable x is a
parameter; 0,, = aim.

From (3.20) and (3.21) we deduce that Wéj), V[/I(j)7 WQ(j), Wéj), Wl(];)a, Wéi)a, Wéi)a and
W4(]_ )a are independent of 7;. Moreover the solvability conditions for the problem (3.20) as
k=23 and (3.21) as k = 3,4, give us the equations

1
h2 82 Ua(l’l,l‘g) + )\0h2 Ua(xl, 1’2) == 0, To € (—lg, 0), Ty = 5(] + —) (322)

oI 2

ho 02,0, V1o (X1, T2) + hado V1o (@1, 32) =

1 (3.23)
= —hoAi vy (71,72), T2 € (—12,0), 11 =¢&(j + 5)
s 2,05 (21,2) + hodo 07 (00,) = oy v (a1, 22), - 72 € (=1, 0), 71 =<(j +3) (3:24)
and
ho 3323621)2104(171, 2) + Aoha vy o (21, 22) = —hada—aty (21, 72) — hadi_av (21, T2)
— holvy (71, 29), 9 € (—13,0), 1 = (j + %)' (3.25)

Since we seek the smooth functions vy, v;_,, v; and v,_, and the points z1 = (j + %)
form the e-net in the interval (0,a), then the equations (3.22), (3.23), (3.24), (3.25) defined on
N segments can be extended to the whole rectangle Dy = (0,a) x (—l2,0). Bearing in mind
the boundary conditions of the original problem, we add

83621)5(%1, —12) i 87 anUlifa(xb _12) - O’ (326)

0@1)1_(961, —lg) 8952212__&(1‘1, —lg) = 0

3.1.2 Junction-layer solutions

Similarly as in subsection 2.1.2 we substitute series (3.4) and (3.1) in problem (1.1) and collect

terms with equal powers of ¢ to obtain boundary-value problems in II for Zfi), 1 = 1,2,
ZQ(?a,l =0,1,2, and ZQ(B)7 18| < 2. Obviously, these solutions have to be 1-periodic in 7y, i.e.,

they must satisfy conditions (2.17). In addition, they must satisfy the Neumann conditions
(2.18) as well. We discover that

e function Z\", (i = 1,2) is the solution to problem (2.20) and it has the asymptotics
(2.28) for i =1 ((2.29) for i = 2);

function ZQ((l)a coincides with function Zfo) from subsection 2.1.2, i.e., it satisfies prob-

lem (2.19) and has the asymptotics (2.27);

function Z;i)a = Zfl), i.e., it satisfies problem (2.20) and has the asymptotics (2.28);

ZQQ =0; ZQ(I’O) =0;

. 22(0’1) = Z{Q), i.e., it satisfies the problem (2.20) and has the asymptotics (2.29));
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. Z;Z’O) is identically equal to ZéQ’O) from subsection 2.1.2, i.e., it satisfies problem (2.26)
and has the asymptotics (2.35);

° Zz(l’l) is identically equal to Zél’l) from subsection 2.1.2, i.e., it satisfies the problem (2.25)
and has the asymptotics (2.34);

° Z§0’2) is identically equal to ZP), i.e., it satisfies problem (2.20) and has the asymp-
totics (2.29);

e for function Zéo’o) we obtain
A eIt ull~
A Z(O,O) _ 0 n )
&71 ZQ(O’O) (77) = O, ne 8H||.

Similarly to the proof of Lemma 2.1 we deduce the following statement.

Lemma 3.1. Problem (3.27) has a solution from space H}. . (1) and this solution has the

loc,m2
differentiable asymptotics

A
~ 202 1 O 4 Oexp(=27m2)), 12 — 400,

2
Z0m=1 . qe0 (3.28)
— 5 = =+ Olexp(hy 'ma)), mp — —oc.

0,0) : ,
Moreover, Z2( ) is even in n1 with respect to %

3.2 Homogenized problem and correctors

As in subsection 2.2, here we should match the leading terms of the asymptotic expansions (3.2),
(3.3) and (3.4). Following the method of matching of asymptotic expansions (see [16]), the
asymptotics of the external expansions (3.2) and (3.3) as o — 40 has to coincide respectively
with the corresponding asymptotics of the internal expansion (3.4) as 17y — +oc.

Writing down the Taylor series for functions vy, v{ and vy_, with respect to x5 in the

neighborhood of the point (xy,0), where z; € (0,a), and passing to the variables 1y = e lxy,

we derive
u(e, z) = v (z1,0) + ' "] (z1,0) + 5(7728:62113“(:101, 0) + v (21, 0)>—|—
+ g2 (nﬁwvia(wl, 0) + vy (1, 0)) + (3.29)

1
+ &2 (5773832@03(1:1, 0) + 7202, v7 (71,0) + v (21, 0)) + 95 (e, m),

where 0/ (¢,72) = O(max(e®n3,e* 1)) as vy = eny — +0. Bearing in mind the asymptotics
of the functions Zy) (1=1,2), Zéj_)a (7 =0,1,2), as o — 400, we convince, that the leading

terms of the asymptotic expansions (3.2) and (3.4) are matched.
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In fact, keeping in mind the asymptotics of the functions ZJ(»i), we rewrite (3.4) as 7y — 0

u(e, ) = v (21,0) + ' (21,0) + 6(7726232"08_($1, 0) + CP8,,v7 (a1, O)>+
+e¥e (Cé(i)avgr(xl, 0) + novg (21, O)) +
+&° (( — % S+ O(O’O))vﬁ'(xl, 0) + (n2 + C’f))@mvg(xl, 0)+ (3.30)
(= 02, g, 0) + 002, (a1, 0) ¢
(2 )00, (@0,0)) + U (E12),
where 97, (e,m2) = O(max(e3n3, e3~“n,)) as 7y — +o0.

To match the asymptotics (3.3) and (3.4) we write down the asymptotics (3.3) as 23 — —0
in fast variables:

u(e, x) = vy (z1,0) + ' v (z1,0) + 8(772(9121)()(:61, 0) + vy (21,0) + Y (1m1)0z, v, (21, O)) +
8 (D0 o 000) 05 01,0) Y ()00 (01,0 )+
+€2< 83212 (Ilv ) +7728$2v1_(x170) +772Y(771)8x1x2 0 ($1,0) +U2_(x170)+

1
+Y (m1)0s,v1 (%1,0) + =Y ()02, vg (w1, 0)) + U gown (€5 12),

2
(3.31)
where 97 (£,1m2) = O(max(e®n3, 2% *ny)) as xa = ey — —0 and (3.4) as 7y — —oo:
u(e, ) = v (21,0) + e~ (21,0) + 5<Y(n1)8x1v6r(x1, 0)+ 7 22 0, v (21, 0)—
2
c® oAl + 1 ey,
— #289321}3@1, O)) + 62 (h—27]21)6r($1, 0) — h2 USF(.%l, 0)+
N, O30
Y )0 (21,0)) (= T = Z—)oif (1. 0)+ (3.32)
2
(2) (2,0)
7 C 1 C
+ (h—z — h%)amvg(xl,m + (h—;)ng — 22 )02 4, vd (21, 0)+
oo o®
+ (2Y () = =) 02,0 (21,0) + (12 = 1) 02,,,05 (21,0)) + 0 (=, ),
]’LQ hg h2 h2

where 97, (e,m2) = O(max(e3n3, 3~ “n2)) as 2 — —oo and yy is defined by (2.36).

We convince that the leading terms of the asymptotic expansions (2.2), (3.3) and (3.4) are
matched, if
1+ ho

ha
Fa(w1) = —pod,,,v8 (21,0), 71 € (0,0a), (3.34)

Fs(z1) = CPo, vf (21,0), 21 € (0,a), (3.33)
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and
1+ hy

hs
and conditions (3.6), (3.7), (3.9), (3.10), (3.12), (3.13), (3.15) and (3.16) hold true.

Finally, for
vy (x), =€ Q,
vy (), x € Dy,

Fs(z1) = i vt (21,0), a1 € (0,a), (3.35)

vo(z) =

and the number \g we have the problem

(A, ud(z) = Mg (), z € Q,
=02, vy (@) = Xovg(2), x € Do,
0, vy () = 0, x €Ty,
vy (x) = 0, zely, (3.36)
vy (r1,0) = vy (21,0), z1 € (0,a),
Opovg (21,0) = ha0,,v, (71,0), z1 € (0,a),
\ 812110_(33‘1, _l2) = 07 T € (0,(1),

that called homogenized spectral problem for problem (1.1) in the case a € (0, 1). This problem
coincides with the homogenized spectral problem for a spectral problem in a thick one-level
junction (see [28]). This means that there is no any influence of the concentrated masses in the
first terms of the asymptotics both for the eigenvalues and for eigenfunctions of problem (1.1)
if @ € (0,1). From [28, Theorem 2.1] (see also subsection 2.3) it follows the following theorem.

Theorem 3.1. The spectrum of problem (3.36) contains normal eigenvalues and the left ac-
cumulation points
om(m —1)\?
P, = (w+ m(m )>  meN.

21y
which divide the eigenvalues into the sequences

o< "< <A< o P as n— oo, (3.37)
P4 </\ém’1) <... S/\((]m’n) <...— P, as n—o00, m=23,.... (3.38)
Let Ag be an eigenvalue of problem (3.36). We normalize the corresponding eigenfunction
as follows
/(Ug)zdwr hQ/ (v5) dw = 1. (3.39)
Qo Dy
Then for

+
o (x), xe Q,
Ui-a(®) = { v_.(x), x € Da,

and the number \;_, we get the following boundary-value problem

_A Ul a( ) = )‘0 Ufia(.l’) + Ao v[;r(x)7 T e Q07
—hg E)mm Ul a( ) = hQ)\O U1_7a<x) + hg/\l_a U(]_(C(,’), x € DQ,
a Ul a( ) = 07 S FQ,
vt (@) = 0, rely,  (340)
Ul oa(xl? ) = U;—a<x170)7 T € (0,&),
0x2vfla(x1, 0) hg@xzvl Q(Il, ) = —4h1l1>\0’06r(l’1, 0), T € (0, CL),
Oy V1o (1, —=1l2) = 0, z1 € (0,a).

22



Since )\ is the eigenvalue of the corresponding uniform problem for problem (3.40), we should
choose Aj_, such that the solvability condition for problem (3.40) is satisfied. Obviously, in
this case the solution to problem (3.40) is not uniquely defined. For the uniqueness we demand
the following orthogonality condition:

/vl V0 dx+h2/vl__avo_ dxr = 0. (3.41)
Qo [k

From the solvability condition of the problem (3.40) we derive the formula for A;_,. Multiplying
the equation in €y by vy, integrating it over the domain and using twice the Green’s formula
and repeating these procedures for the domain Dy (only difference is that we multiply the
equation by vy ) and then summarizing these identities, we obtain

) )
/”la d+/—vlads /hzgl%o—

BQO BQO
0

/hggv—(;vl ol dr, = )\1_@/ (vJ)z dx + )\1_ah2/ (Uo_>2 dx

0 Qo Do

(3.42)

or, keeping in mind the normalization condition (3.39) and the boundary conditions of the
problems (3.36) and (3.40), we get

ovf_, oo\ + = 81}3
/ ( Ory ha 017 )UO - / <U1_°‘ a Ul_a>3_xz o= A (3.43)
Io To
and finally
Mo = —4hili N\ / (vi)? day. (3.44)
Iy

+
— U1 (I’), T € Q)
For vy (z) = { v (z), € Dy, and \; we have

( —A, v () = Xovi (2) + Mog (), r € Qo,
0, vi (z) =0, x €y,
vy () =0, r ey,
—hy 02,07 (2) = ha)o v7 () + ha)y vg (), x € Dy, (3.45)
Ory vy (21, —12) = 0, z1 € (0,a), '
+ _ Lt he oy
vy (21,0) — vy (21,0) = n Cy70p,vg (21, 0), z € (0,a),

. (91721);'_(1’1,0) — hg@mvf(xl,O) = —u062 (1'1,0), T € (O,CL).

xlwl

For the uniqueness of the solution to problem (3.45) we demand the following orthogonality
condition:

/’Ul vy dr + hg/vlvo dx = 0. (3.46)

QO D2
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From the solvability condition of problem (3.45), similarly as before, we derive the formula

0
v,

5} B} 0
/ﬂvo ds + / —vf ds—/hzﬂvo dx1+/h2—v1 dr, =
a9 o9 0 Oz ", 0 dr2 |,
’ ’ (3.47)
2 2
= )\1/ (US“) dx + )xlhg/ (UO_> dx
Qo D2

or, keeping in mind the normalization condition (3.39) and the boundary conditions of the
problems (3.36) and (3.45), we get

ovf Ov Ovg
/ ( oy e a;2> v day — / (vf - )a—gj2 dry = A (3.48)
Ip Iy
and finally
14+h
n =t [ (0u) e =~ 200 [ (@) (3.49)
10 IO

Here p is defined by (2.36).

+
g (), e Q,
For ve_o(x) = { v (z), € Do and \y_, we have the problem

( Ay vf (2) = v (2) + Mvf (@) + M_av) (2) + Aa_qvg (), z € Q,

—03,05 Va—a(®) = Ao V2_o(7) + M V1o (2) + Aima 01 (%) + Aoma vg (), 7 € D,

d, vy (z)=0, x € Iy,

U3_o(2) =0, zely,

vy (21,0) — vy (21,0) = 1+hQC vy (1, 0), x € Iy,

Op,Uy o (21,0)=h 83521}2,&(951, 0), x € Iy,

\ 85,;21)2__&(:101,—[2):0, x € ]0,
(3.50)

For the uniqueness we demand the following orthogonality condition:
/U2 oVa dx+h2/v2_av()_ dr = 0. (3.51)
QU Dy

From the solvability condition of the problem (3.50) we derive the formula for As_,. Similarly

as before, we obtain
s, of roovy, |° dvg
_/ Loy ds+/Ev2_ads—/h2 el dx1+/h28 Lo,
0 0

890 8QO

0

dl’l =
I

zkl/vf_ava“ dx+)\1h2/vl__avo_ dx+)\1_a/vaa“ dx+)\1_ah2/vl_v0_ dx+
QO DQ QO D2

+ /\2_a/ (1)8“)2 dx + )\Q_th/ <v0_>2 dzx

Qo D2
(3.52)

24



or, keeping in mind the normalization condition (3.39) and the boundary conditions of the
problems (3.36) and (3.45), we get

31);& an_fa +
/( 81132 —hg an )UO del—/
I

0 0

+
Uy — Vg_g, dri—

+
)5

—
|

X\ [ vi vt de — Mhy | vi vy dr — MN_o | v vd de — N_ghe | vy dr = Ao_q
1-a%0 1-a%0 1 Yo 1 Y

Qo Do Qo Do
(3.53)
and finally, using (3.46) and (3.51), we derive
C1+h
)\2—04 = B C / 83[32 dz;. (354)
1o

3.3 Asymptotic approximations

Let Ao be an eigenvalue of problem (3.36), vy is the corresponding eigenfunction normalized
with (3.39). Then we can define A\;_, with the help of (3.44), A; with the help of (3.49), As_,
with the help of (3.54), the unique solution vi- _, to problem (3.40), the unique solution v} to
problem (3.45) and the unique solution vy , to problem (3.50).

Using the method of matched asymptotic expansions for the leading terms of (3.2), (3.3)
and (3.4), we construct the approximation R, € H'(Q; ;) :

R.(z) = vf (z) + &'~ (x) +ev (2) + exo(x2) < Z (Zfi) (1) = 0ia(n2 + C§2))) O, 07 (21, 0))

i=1

+w“w;uww%wmm04%w c@mumm+%iwaﬁgmm@

)\ 2
+e2yq w%WJ@%@NH%WWﬂh%Wmm+ﬁWW%ah £ (21,0)
2

T
+ Z3 () 2, v8 (21,0) + (2827 () — m) B2, (x1,0>), n=—, z&; (3.55)

Re(z) = vy (z) + & v (2) + £ (07 () + Y ()0, v ()

+wme%Wm—nmmuwmﬂw(a%m—@+——memm)

+ &2 (0o (&) + Y (1) O vr_o (7))

4hi i\ a0
_ 221 0 s + h12 )va*(xl,o)+ (Zgl_)a(n)—Y(m))axlvg(xho))

Ao
+e2xo(@a) ( (287 ) + Sn8) v (21,0) + (287 () = 22) Dt (21,0)
2 ha

Y
—w%mm>hnﬁam<mm+&#Wm—mémyﬁm<mm

+ (2% () - )azm (xl,O)), n:g €GO UGR. (3.56)
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Here xq is a smooth cut-off function that equals 1 in a neighborhood of zero.
Substituting R. and Ao + '7*\;_o + €A + e27%\y_,, into problem (1.1) instead of u and
A(e) respectively, and finding residuals, we get that for arbitrary § > 0

| R: — (N4 €7 Na + M + 7N o)AR. ||, < ()2, (3.57)
where operator A, : H. — H. is defined by (2.59).

4 The extension operator

For domains of the type under consideration there exist no extension operators that would be
bounded uniformly in € in the Sobolev space H'! (see [28, 32]). But as was shown in [28, 32|,
for eigenfunctions of spectral problems in thick junctions it was possible to construct special
extensions that are bounded on each eigenfunction. Here we prove the similar result for the
eigenfunctions of problem (1.1) in the case when the parameter o < 1.

Theorem 4.1 (a < 1). There exists an extension operator P, : H. — H'(Q,Ty) which is
asymptotically bounded in € on each eigenfunctions {u,(e,-)} of problem (1.1), i.e., for any
n € N there exist positive constants C,, and €, that for all values of the parameter ¢ from (0,¢e,)
the following estimate holds:

| Peun(e, ) ar@ry < Cn [l unle, ) [l < Ch, (4.1)

where ) is the interior of the union Qg U Ds.

Proof. Let xo be a smooth cut-off function such that yo(x2) = 0 for x5 > 70, and xo(z2) = 1
for 2o < %, where 7y = min{~y(z1) : x; € [0,a]}.

If w, is an eigenfunction of problem (1.1) normalized by condition (1.4), then the function
Un = XoUp 18 the solution to the following problem

—Aavn(x) = fu(x) + An(e) va(2), 7 € Qo5

—Azv(x) = Ay (8) va(2), reG?

—Aun(x) = 7%\ (g) vp(2), reGW, (4.2)
Un(21,7) = 0, (z1,70) € Iy,
Oyvy(z) =0, x €00 \ Ty -

Here €. ., is the interior of the union QMOUGS) uGY, fn(x) = 2X4 Onytin, + X tn, supp(xg) C
[O,CL] X (%770)7 QO,’YO = (O,CL) X (Oa'YO)’ F’YO = {l‘ MRS [O,CL], Ty = '70}'

In the sequel we interpret Y as follows : if Y is a set, then Y is the union of Y and of its
image symmetric with respect to the ordinate axis {z : z; = 0}; if Y is a function, then Y is
its even extension into the relevant domain with respect to the axis {z : x; = 0}.

We extend this problem to the left into the domain €). ., in the even way and require
2a—periodicity conditions on the corresponding side of the rectangle @07%.

Since the extended problem is invariant with respect to shifts by ¢ along the axis Oxy, the
function (the index n is omitted)

Vo(z) =e H(z +cey) —v(x)), (& =(1,0)), (4.3)
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that is 2a—periodic in z1, satisfies the following relations

Vi(z) = 7' (f(a +2&1) = f(2)) + Male) Vila), z € Qo
—-A V(x): n(e) Ve(z), xeGé),
—AVi(z) = 7N () Vi(x), ze G,
($1770) = 0 (xlv’YO) € /I:"Yoa
Vo(z) =0, T € 8@87% N{x: xy <0},
whence we get the integral equality
HV”éHiﬂ@&V) An(E NH/HLAQO ()HV”HL(G@>-%6‘“A ()HV’HL(Gm
-m*/i(7x+wg—Y@WQm:Jﬂ@+b@H44@+h@y (4.4)
Q0,4

Let us estimate the right-hand side of (4.4). Since

/ dx—/ dxg/ dry 2
QO,’YO

Yo a
< / dz, / (000(t,22))? dt < 200, .
0 —a

x1+€ 2
oW (t, xy) dt| <

we have

~

L) < 1 Flo+ee) = Fe) gy Wollog ) <
< C”al'lf”LQ 20,~¢) ||a$1u||L2(QO) <

< ¢ (lullar @) + 11(x0) 82, 2,1l Lat@o)) N0zl Lagee) < ellule, )i ay)-

Here, in order to estimate the mixed second-order derivative, we have used so-called the second
energy inequality for elliptic operators in the domain (0,a) x (%,79), i.e., the a-priori estimate
Hu||H2 < c(||Aull7, ot ||u||%2(9)) (see [18]) with a suitable cut-off function.

In order to estlmate I, and I3 we use the approach of Theorem 4.1 ([28]). Since the

singularity is greater on the rods Ggl), we estimate I3. Let us represent V. on the rod GSD (d,€)
in the following form :

Vo(z) = pj(x2) + Uj(x), o€ GV (dy,e), (4.5)

/ Uj(x)dxy =0 Vazy € [—¢ly,0],
j (dy2)

where »;(dy, €) is the cross-section of the rod G§1)(dk, £).

Integrating the equation for V. in Gél)(dk, e) over the cross-section s;(dy, <), we get

8332”%(3:2) +e N (e)p(z2) =0, x5 € (—clh,0); Opppi(—ely) =0,
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which implies
1
cos (5_% Ak (g)(xe + 5l1)>

%‘(%) = A o1 , Ty € [—¢ly, 0],
oS <51_§)\2 (¢) l1>
A= V.(21,0)d
= — xq, T
7 8]11 (dk 0 € 1 1
It is easy to calculate that
1
) 5h1A2 sm =2 \2 (5)l1)>
123l 720 gy oy = eh + y
L2(G; (di-e)) 9 [COS (61 72N (e)
Because of a < 2 and A, (e) = O(1) as ¢ — 0,
2
10312 gy < 15243 < o | o Vi 0)
Now using the Poincare inequality for U;, we get
N-1 4
1O <1570 3 3 (1l g * W1 0 ) =
§=0 k=1
N— 1
< Cls_a € xl» )dxl +52||aa:1v|| (1) <
, (dk,€))
=0 k:l 2 dk,E)

< e ( [ vz @0 dn + 10 VI2, o ) <

0
_ 2
< ™ (BIVVR g0+ 2 Vel + 10VEIE )

By the same arguments we obtain

1(8)] < e (mvv;nimw 21Vl + 10 V2 g )

Choosing 83,03 and ¢ such that cyds + c302 + 22 < 1/2, we obtain from (4.4) that for e
small enough

IVellino, .,y < c)llun(e, )llar@.)- (4.6)

This inequality shows that the eigenfunctions have no strong variation of values on neighboring
rods.

Now we can conduct the construction of the extension operator P, : H. — HY(Q,T).
Since the construction closely follows that of Theorem 4.1 in ([28]), where such an extension
operator was constructed for eigenfunctions of the Neumann spectral problem in a thick plane
junction and without any concentrated masses, we omit the proof. From (2.60) it follows the
second inequality in (4.1). O
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5 Justification of the asymptotics

To justify the asymptotic approximations constructed above, we use the scheme proposed in
[40] for investigation of the asymptotic behavior of the eigenvalues and eigenvectors of an
abstract operator A, : H. — H, losing the compactness in the limit passage as ¢ — 0. This
scheme generalizes procedure of the justification of the asymptotic behavior of eigenvalues
and eigenvectors of boundary value problems in perturbed domains that was proposed in [39].
To prove Theorem 5.4 — Theorem 5.7, we additionally use the same arguments as in [24,
Theorem 3.1] (see items 2 — 4 of the proof).

5.1 Condition D; — Dg

In our case this is the family of the operators {A. : H. — H.}oso defined in (2.59). Recall
that A, corresponds to problem (1.1).

Let us define an operator that corresponds to the homogenized problem (2.45) in the case
a =1 and to the homogenized problem (3.36) if & € (0,1). In the case a = 1 we denote by V),
the space L?(Qqg) x L?(Dy) x L*(Iy) with the scalar product

(u,v)y, = /zﬁv+ dr + hg/uv dx + 4hy 14 /uovo dxy,

Qo D2 Iy

where u = (u*,u™,u°), v.= (v, v7,0°). If & € (0,1), then Vy = L*(Qp) x L*(D,) and in the
scalar product the integral over I, is absent.
It is easy to see that the anisotropic Sobolev space

Ho :={u € L2(Q) - out e HI(QO,Fl), 3 0,u” € L2(D2), ut |, =u" |5} (5.1)

where u™ = ulq,, u~ = u|p, and the last equality in (5.1) is understood in the sense of traces,
with the scalar product

(u, v)Hoz /Vu+ -Votde + hz/amu v dx

Qo Do

is densely and only continuously embedded into V.
Problem (2.45) ((3.36)) is equivalent to the spectral problem Aqv = A\;' v in Hy, where the
operator Ag : Hy — Hy is defined by the equality

(Aou,v)HO = (u, V)VO Y u,v € Hy. (5.2)

Here u = (ulq,, u|p,, u|1,). Obviously, Ay is self-adjoint, positive, continuous, but non-compact.

Also denote by Zy := HY(Q,T;). Obviously, that Z, is densely and compactly embedded
into V.

Now let us verify conditions Dy — Dg of the scheme from [40].

The operator S, : Zy — H,. assigns to each function v € Z; its restriction on €2.. Clearly,
S, is uniformly bounded with respect to . Thus condition D is satisfied.

The operator P, : H. — Z; from condition D5 is associated with the extension operator
P. from Theorem 4.1.
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Let us verify condition Dj3. Consider the sequence {u,(e,-)}eso for any fixed index n € N.
Due to Theorem 4.1 there exists some subsequence {¢'} C {e} (again denoted by {e}) such
that P.u(e, ) — v weakly in Z; (index n is omitted) as ¢ — 0.

Since

/xw(%)azzf’s(lt(&x))cb(x) dr = —/Xhzi—l)Ps(U(&x))ax2¢dfv V¢ e G (Dy),

Do Do

we get
Xhz(%)ﬁsza(u(s, 7)) — hy Op,v(z) weakly in L*(Dy) as e — 0. (5.3)

Here xp,(m), m € R, is a 1-periodic function that equals 1 on the interval (%, %) and
vanishing on the rest of the segment [0, 1].

Consider the corresponding integral identity for problem (1.1) with the following test func-
tion

0, 2cQuUGY
— ' ’ € Ci° (Do),
vlz) { ey (2)g(z), zeGP, 0 € 7 (D)
where Y is defined in (2.42). As a result, we have
/ Y (@1/8)00 Po(ule, 7)) ddz = O(e), £ — 0. (5.4)

Do

Due to the second inequality in (4.1), it is easy to verify that

/ Vu(e,z) - Vo(x)der — 0 as ¢ >0 VoeZ. (5.5)

al

Taking into account limits (5.3)-(5.5) , we ascertain that

lim (u(s, ), Sscp)HE = (v,gp)Hg Y p e Z,

e—0

i.e., condition Dj is satisfied.
Let for certain functions u®,v® € H. one has P.u® — u° and P.v® — 1% weakly in Z; as
€ — 0. Then

lim (u®,0%),, = /u+v+ dx + ho / uw v dr + lime™® / u*v® dz, (5.6)

e—0 Ve e—0
Qo Do Gél)

where u* and v* are the restrictions of u° and v° on Qg and D, respectively.
To find the limit in the right-hand side of (5.6) for a < 1 we use the following inequality

e / ©*dr < Ce*™ / (8$2g0)2 dx + 0281_(1/(,02(1‘17 0) dzx;. (5.7)

Ge(;l) Gél) IO
Thus lim. o™ [, u*v®dr =0 for a € (0, 1).

30



If « = 1, then with the help of the inequality

el/(wM—¢@um%ms5h/me@»%u Ve HY(GY),

G,S—l) Gg_l)

we deduce that lim,_,oe™* fGQ) usvf dr = 4hqly ro u®(x1,0)v°(x1,0) day.

Therefore, lim,._, (us,va)vs = (uo,vo)vo for a € (0,1]. This means that the first part of
condition D4 holds.

We put by definition that for each function v € Z; P.S.v = v. Then the second condition
D, is satisfied.

Condition Ds, in fact, has been verified in subsection 3.3 and in subsection 2.4: the result
of the action of the operator R. in Dj is the construction of the approximating function on
the basis of an eigenfunction of the homogenized problem. Furthermore, the approximating
function satisfies inequality (2.58) for « = 1 and (3.57) for o € (0, 1) that are analog of the
corresponding inequality in condition Ds.

5.1.1 Condition Dg. Pseudovibrations
To verify this condition, we choose the approximating function W, in the case when g coincides

2
%) , m € N (points of the essential spectrum of the
2

homogenized problems (2.45) and (3.36)) as follows:

We(x> = v 5h2l22p7" COS Pm($2 + l2)a S Ggi)(g)’ (58)
0, v e\ GY(e),

with one of the numbers P,, = (

where Géi) () is certain fixed rod from the second class.
It is easy to verify that W, satisfies the boundary conditions of problem (1.1), |||

He — 17
— AW (x) = Pupe(2)We(z), =z € Q.
a:vQWe(xla 0 + O) - a’L“QWE(xb 0— O) = bm(8>7 T € [Zg(j())?

where b, (¢) = 5’%(—1)7“\/?%2, 15, (o) = (5(j0 + 1—2&)’800 + #» :
From these relations and the definition of operator A. (see (2.59) it follows the following
integral identity

(We - PmAst-:a "(ﬂ)HE = _bm(5>/ w<x17 O) dxl v w € HE' (59)

15, (Go)

Using Lemma 1.5 [46, Sec.1] and inequality

Yo o
v?(21,0) < 251/2/ v (21, 22) dry + 251/2/ (Opyv(21, 72))? da, (5.10)
0 0

(see Lemma 6 [42, p. 412]), we get

— 1
| = b (e) » )w(xl,O) drr] < A2 W00z oy < ee* llcan. (5.11)
+(Jo
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Then we deduce from (5.9) and (5.11) the following estimate
IW. — Pu AWy, < coet, (5.12)

which shows that condition Dg holds. Here the constant ¢; is independent of m.

Eigenvibrations with eigenfrequencies near to the discrete spectrum of the homogenized
problems are vibrations of the junction (2. like an entire system. From (5.12) it will follow that
there are eigenvibrations that have structure of function W, (obviously we could take function
W, that is not equal to zero on several different rods from the second class). This means that
different rods of the junction can vibrate and the other stay immobile. Such vibrations were
discovered in paper [36] and called pseudovibrations. It turn out that there are pseudovibrations
in which each rod can have its own frequency and can have quickly oscillating character (see
[36, Sec. 5]). In should be noted that energy of a pseudovibration is concentrated on the thin
rods.

5.2 The main results

Thus, all conditions D;-Dg of the scheme from [40] are satisfied both for problem (1.1) and
the corresponding homogenized problem (2.45) for & = 1 and the homogenized problem (3.36)
for a € (0,1). Applying this scheme, we get the following theorems.

Theorem 5.1 (the Hausdorff convergence). Only points of the spectrum of the homogenized
problem (2.45) if a = 1 ((3.36) if a € (0,1)) are accumulation points for the spectrum of
problem (1.1) as € — 0.

The eigenvalues {\,(¢)} at fixed indices n, are usually called low eigenvalues (see [36]); the
corresponding eigenfunctions are called low frequency oscillations.

Definition 5.1. ([36]) The value T := sup,cn limsup, ., A.(€) is called threshold of the
low eigenvalues of problem (1.1).

This value indicate the frequency range where pseudovibrations can appeared.
Recall that {\,(¢) : n € N} is the ordered sequence (1.3) of eigenvalues of problem (1.1),
{un(g,-) : n € N} is the corresponding sequence of eigenfunctions that are orthonormalized

with relations (1.4), and {/\[()1’") : n € N} is the first series of eigenvalues of the homogenized
problem (2.45) if &« =1 (see Th. 2.1) and (3.36) if o € (0,1) (see Th. 3.1)).

Theorem 5.2 (Low-frequency convergence; « € (0,1) and a =1 ). For anyn € N
An(e) = A as e =0,

and the threshold of the low eigenvalues of problem (1.1) is equal to P.
There exists a subsequence of the sequence {€} (again denoted by {€}) such that

VneN P.u,le ) — v(()l’") weakly in H'(Q,T1) as € — 0,
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where {vél’n) : n € N} are the corresponding eigenfunctions of the homogenized problem (2.45)
((3.36)) that satisfy the following orthonormalized condition

(vél’"),vél’k))vo = /v[()l’") v§hP dx+h2/v(()1’") oS da
Qo D2

+ 5a714h1l1 /Uél7n) (1‘1,0) U(()l’k)(iL‘l,O) d:El = On k-

1o
Next using condition Dg we get the following theorem.

Theorem 5.3 (Asymptotic behavior near the essential spectrum. Pseudovibrations). Let g
2
coincides with one of the points < P, = <M> , m € N} of the essential spectrum of

25
the homogenized problem (2.45) (or (3.36)).
Then there exist co > 0 and g9 > 0 such that for all values of the parameter € € (0,eq) the

interval
1 1 1 N 1
— — (yer, — Co €
Ao 0 Ao 0

contains finitely many eigenvalues of the operator A..
In addition, there exists a finite linear combination U, (|Us||n. = 1) of the eigenfunctions

{ure)1i(e,-) = i =1, p(e)} that correspond, respectively, to the eigenvalues {()\k(a)+i(€))_l

i=1, p(e)} of operator A. from the segment [/\io — cyes | /\1—0 + ¢ 55} such that

1
< 2es,

HWa_ﬁa
He

where W, is defined by (5.8).

For next theorems, where asymptotic estimates are established, we have to consider two
cases o € (0,1) and o = 1 separately.

5.2.1 The case o« =1

Let A" = . = A"*) be an r—multiple eigenvalue of the homogenized problem (2.45)
(Lnt1) (Lntr)
N sy Vg

1,n+1)

from the first series and the corresponding eigenfunctions v, are orthonor-

malized in Vy. Using formula (2.51), we can construct next term ¢ A§ of the asymptotic

expansion (2.1) (¢ = 1,...,r) and then define the unique solution vﬁl’nﬂ) to problem (2.47),
which satisfies condition (2.48). Denote by

A(l,n) (8) — )\él,n—l—i) + 6/\gl,n-‘ri)
the partial sum of (2.1). Assume that {Agl’n) (): ¢=1,...,r} split into k groups
1,n n 1n n
A ) = =AM << AN L ) = = ALY (e),

where ri + ... +7r, =71.
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Theorem 5.4 (Asymptotic estimates for the low eigenvalues; o = 1 ). For any § > 0 and
se€{l,...,k} and for sufficiently small €, we have

Mtrtoarat(©) = AR 4 ()] € Cin,0)e™ V=11, (rg=0).

In addition, for anyt € {1,...,rs} there exist {ag’s) (e), p=1,...,7s} CR such that 0 < ¢; <
> et (az(,t’s) (6))2 < ¢y and

ts n+ri+...4+rg—1+t
Hzp L0 () Unry i€, ) — B st

< Cy(n,0) &

HY(Qe)

where Ré"”ﬁ”'ws_lﬂ) 1$ the approximation function constructed with the help of solutions
v(()l’"+rl+"'+Ts’l+t) and vgl’"HlJr“'Jrrs’lH) by formulas (2.56) and (2.57).

It follows from Theorems 5.1 and 5.2 that there exist other converging sequences of eigenval-
ues A\, (€) so-called high frequency convergences; the corresponding eigenfunctions are called
high frequency oscillations. Obviously, in this case the index n depends on ¢ and n(e) — 400
as € — 0.

Let )\ém’nH) = ... = /\((]m’nM) be an r—multiple eigenvalue of the homogenized problem
(2.45) from the m-th series (m > 1) and the corresponding eigenfunctions v{™™ ™, ... v{m"*")
are orthonormalized in V,. Using formula (2.51), we construct next term &A™ ™ of the
asymptotic expansion (2.1) (¢ =1,...,r) and then define the unique solution vgm’””’ to prob-

lem (2.47), which satisfies condition (2.48). Denote by

A(m,n) (5) — )\E)m,n—i-i) +e )\gm,n—l—i)

the partial sum of (2.1). Assume that {A™™(e): i =1,...,r} split into k groups
Agm,n) (E) == Ag«T’n)( ) - < A£T+n Freg_1+1 (8) = qumffl) (5)7
where ri + ... +7r, =71.

Theorem 5.5 (High frequency convergences and estimates; o = 1). For any 6 > 0 and
s € {1,...,k} there exist eg > 0 and ¢ > 0 such that for all value of the parameter € € (0, )
the interval

L) = (A () = e L AT () o)

contains exactly rs eigenvalues of problem (1.1).

In addition, for the approximation function RUme ATt ATt D) (t=1 ,Ts), which con-

structed with the help of solutions vém’n+rl+"'+rs’1+t) and v§m’”+’“l+"'+”*1+” by formulas (2.56)

and (2.57), the following asymptotic estimate

< C 52—5

R(m,n+7“1+...+7"571+t) _ ﬁz . ’
H c (&) HY(Q:) —

holds, where ﬁi(s, -) 1s a linear combination of eigenfunctions of problem (1.1) that correspond
to the eigenvalues from the interval I™™ (€).
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5.2.2 The case o € (0,1)

Let A" = . = "% be an r—multiple eigenvalue of the homogenized problem (3.36)
from the first series and the corresponding eigenfunctions v(()l’nﬂ), e ,v(()l’nM) are orthonor-

malized in V. Using formulas (3.44), (3.49) and (3.54), we successively construct next terms

gl ML) g (L) - o2—a A (L) o the asymptotic expansion (3.1) (i = 1,...,r) and define
the unique solutions v{""™ v§1 w0 ) 6 problems (3.40), (3.45) and (3.50) respectively.
Denote by

Agl,n) (E) — A(l,n-‘,—i) + gl_a)\(l_,n-‘ri) + gAgl,n-l—i) + gg_a)\él_,z-‘ri)
the partial sum of (3.1). Assume that {A (1, n)( ): i=1,...,7} split into k groups

Agl,n)(s) S A’g,n)(8> < A(ln ( ) =...= Afnl,n)(g%

it 10
where ri 4+ ... +1r, =r.

Theorem 5.6 (Asymptotic estimates for the low eigenvalues; o € (0,1) ). For any § > 0 and
se{l,...,k} and for sufficiently small e, we have

Artritotre 1 +£(€) — Afﬁf)w (e)| < Ci(n,0) g2 Vt=1,...,rs (r0=0).

In addition, for any t € {1,...,rs} there exist {aét’s) (e), p=1,...,7s} CR such that 0 < ¢; <
St (a(e)” < ¢ and

E t,s n+ri+...+rs—1+t
H p=1 ; ) un+7’1+---+7"sf1+p(5v') _Rg- ! 1+1)

< Cy(n,0) &

HY(Qe)

R t) . . . . . .
where RITTTATT e ype approximation function constructed with the help of solutions
1, et t) (1, sttt (1, T 1+t 1, T 1+t
U(() n+rit.rs—1+ )’ ’U&_ZJFHJF +rs—1+ )7 Ui n+rit..+rs—1+1t) andvé_?;ﬂ“ﬁr +rs—1+1) by formulas (355)

and (3.56).
Let )\(()m’nH) = ... = /\((]m,n—i-r) be an r—multiple eigenvalue of the homogenized problem
(3.36) from the m-th series (m > 1) and the corresponding eigenfunctions v{™™ ™, ... v{m"*")

are orthonormalized in Vy. Using formulas (3.44), (3.49) and (3.54), we successively construct

next terms el=@ A" g At - o2ma \(mnt) - op the asymptotic expansion (3.1) (i =

1,...,r) and define the unique solutions U%m nﬂ), v§m’"”), vgf;f”) to problems (3.40), (3.45)
and (3.50) respectively. Denote by

Al(m,n) (5) - )\(()m,n—‘rz) 1 a)\(m ,n+i) + )\ m,n+1) + 52 a/\ m n-H

the partial sum of (3.1). Assume that {Agm’n)(e) : i=1,...,7r} split into k groups
Aoy = = A () << AT (E) = = A,

where ri 4+ ... +1r, =r.
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Theorem 5.7 (High frequency convergences and estimates; « € (0,1)). For any § > 0 and
s € {1,...,k} there exist eg > 0 and ¢ > 0 such that for all value of the parameter € € (0, )
the interval

1m(e) = (A () = e L AT, (0) + )

contains exactly ry eigenvalues of problem (1.1).

m,n+ri+..4rs_1+1t)

In addition, for the approximation function Rg (t=1,...,75), which con-

(m,n+ri+..4rs—1+1t) (m,n+ri+..+rs_1+1t) (m,n+ri+..4+rs_1+t)

structed with the help of solutions v, , Ui_l , U
and véT’anHﬁ'“Hs’lH) by formulas (3.55) and (3.56), the following asymptotic estimate
HR(m,n—i-rH-...—i-rsfl—&-t) o [72(5 )H < 082_6
€ ) Q)

holds, where ﬁi(s, -) is a linear combination of eigenfunctions of problem (1.1) that correspond
to the eigenvalues from the interval I™™ (€).
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