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Abstract

The asymptotic behavior (as ε → 0) of eigenvalues and eigenfunctions of a boundary-
value problem for the Laplace operator in a thick cascade junction with concentrated
masses is investigated. This cascade junction consists of the junction’s body and great
number 5N = O(ε−1) of ε−alternating thin rods belonging to two classes. One class
consists of rods of finite length and the second one consists of rods of small length of
order O(ε). The density of the junction is order O(ε−α) on the rods from the second class
(the concentrated masses if α > 0), and O(1) outside of them. In addition, we study the
influence of the concentrated masses on the asymptotic behavior of these magnitudes in
the case α = 1 and α ∈ (0, 1).
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1 Introduction

In present paper we continue our investigation of boundary-value problems in a new kind of
thick junctions, namely thick cascade junctions, which we have begun in [9, 10], see also [11]
and [12].

Boundary-value problems in thick one-level junctions (thick junctions) are intensively in-
vestigated recently (see for instance [2], [3], [41] and references there).

Here we study a spectral problem in a thick cascade junction. It is known that the asymp-
totic behavior of the spectrum of a perturbed spectral problem is highly sensitive to the per-
turbation and it is unexpected; in thick junction it essentially depends on the junction type
and on the conditions given on the boundaries of the attached thin domains. This depen-
dence was observed for spectral problems in thick junctions with the Neumann conditions in
[25, 26, 28, 29, 32, 33], with the Dirichlet conditions in [30, 36], with the Fourier conditions in
[35], with the Steklov ones in [34], and for spectral problems in thick multi-level junctions in
[37, 38].
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Vibration systems with a concentration of masses on a small set of diameter O(ε) have been
studied for a long time. It was experimentally established that such concentration leads to the
big reduction of the main frequency and to the big localization of vibrations. The new impulse
in this research was given by E. Sánchez-Palencia in the paper [47], in which the effect of local
vibrations was mathematically described. After this paper, many articles appeared (see for
example [5]–[8], [13, 14, 21, 22, 23, 43]) that deal with the asymptotic behavior of vibrations of
a body containing a small region (many small regions) where the density is very much higher
than elsewhere (see [25, 30, 33, 36] for thick junctions).

1. Statement of the problem.

Let a, b1, b2, h1, h2 be positive numbers such that

0 < b1 < b2 <
1

2
, 0 < b1 − h1

2
, b1 +

h1

2
< b2 − h1

2
, b2 +

h1

2
<

1

2
− h2

2
.

These inequalities mean that the intervals
(

b1 − h1

2
, b1 +

h1

2

)
,

(
b2 − h1

2
, b2 +

h1

2

)
,

(
1− h2

2
,

1 + h2

2

)
,

(
1− b2 − h1

2
, 1− b2 +

h1

2

)
,

(
1− b1 − h1

2
, 1− b1 +

h1

2

)

are not intersected and they belong to (0, 1). Let us divide the segment [0, a] into N equal
segments [εj, ε(j + 1)], j = 0, . . . , N − 1. Here N is a big positive integer, hence the value
ε = a/N is a small discrete parameter.

x

x

2

a0

- l

- e
1

2

e

l

1

Figure 1: The thick cascade junction Ωε.

A model thick cascade junction Ωε (see Fig. 1) consists of the junction’s body

Ω0 = {x ∈ R2 : 0 < x1 < a, 0 < x2 < γ(x1) },
where γ ∈ C1([0, a]), min[0,a] γ > 0, and a large number of thin rods

G
(1)
j (dk, ε) =

{
x ∈ R2 : |x1 − ε (j + dk)| < εh1

2
, x2 ∈ (−ε l1, 0]

}
, k = 1, . . . , 4,
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G
(2)
j (ε) =

{
x ∈ R2 : |x1 − ε (j +

1

2
)| < εh2

2
, x2 ∈ (−l2, 0]

}
, j = 0, 1, . . . , N − 1,

where d1 = b1, d2 = b2, d3 = 1− b2, d4 = 1− b1, that is Ωε = Ω0 ∪G
(1)
ε ∪G

(2)
ε , where

G(1)
ε =

N−1⋃
j=0

( 4⋃

k=1

G
(1)
j (dk, ε)

)
, G(2)

ε =
N−1⋃
j=0

G
(2)
j (ε).

Thus the number of the thin rods is equal to 5N ; the thin rods are divided into two classes G
(1)
ε

and G
(2)
ε subject to their length and thickness. The length and thickness of the rods from the

first class are equal to εl1 and εh1 respectively, and these magnitudes are equal to l2 and εh2 for
the rods from the second class. In addition, the thin rods from each classes are ε-periodically
alternated along the segment I0 = {x : x1 ∈ [0, a], x2 = 0}.

Such thick cascade junctions are prototypes of widely used engineering, physical and bi-
ological systems with very distinct characteristic scales, for instance construction of a bowel
with different levels of absorption on various parts of the bowel trunks, construction of an
animal’s fell consisting of wool and undercoat with different thermal conductivities.

Only vibrations of Ωε depending on time by the factor exp(−i
√

λ t) will be considered.
Hence we have to investigate the corresponding spectral problem

−∆x u(ε, x) = λ(ε) ρε(x)u(ε, x), x ∈ Ωε;

−∂νu(ε, x) = 0, x ∈ Υ
(1)
ε ∪Υ

(2)
ε ∪ Γε;

u(ε, x) = 0, x ∈ Γ1;

[u]|x2=0
= [∂x2u]|x2=0

= 0, x1 ∈ Qε =
(
G

(1)
ε ∪G

(2)
ε

)
∩ {x2 = 0}.

(1.1)

Here ∂ν = ∂/∂ν is the outward normal derivative; the brackets denote the jump of the enclosed

quantities; Υ
(i)
ε is the union of the lateral sides and the lower bases of the rods from the i−th

class, i = 1, 2; Γ1 = {x : x2 = γ(x1), x1 ∈ [0, a]}; Γε = ∂Ωε \
(
Υ

(1)
ε ∪Υ

(2)
ε ∪ Γ1

)
; the density

ρε(x) =

{
1, x ∈ Ω0 ∪G

(2)
ε ,

ε−α, x ∈ G
(1)
ε ;

(1.2)

the parameter α ∈ (−∞, 2).
Thus, the Neumann conditions are imposed on the boundaries of the thin rods and if α > 0

then there are concentrated masses on the thin rods from the first class G
(1)
ε .

It is known that for each fixed value of ε there is a sequence of eigenvalues of problem (1.1)

0 < λ1(ε) < λ2(ε) ≤ . . . ≤ λn(ε) ≤ · · · → +∞ as n →∞ (1.3)

and a sequence of the corresponding eigenfunctions {un(ε, ·) : n ∈ N}, which can be orthonor-
malized by the following way

(un, um)
L2(Ω0∪G

(2)
ε )

+ ε−α(un, um)
L2(G

(1)
ε )

= δn,m, {n, m} ∈ N. (1.4)

Here and below δn,m is the Kronecker delta.
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Our aim is to study the asymptotic behavior of the eigenvalues {λn(ε) : n ∈ N} and the
eigenfunctions {un(ε, ·) : n ∈ N} as ε → 0, i.e., when the number of the attached thin rods
from each class infinitely increases and their thickness decreases to zero, to find other limiting
points of the spectrum of problem (1.1) and to describe corresponding eigenvibrations.

It should be noted that the limit process is accompanied by the concentrated masses on
the rods from the first class. In fact, we have two kinds of perturbations for problem (1.1):
the domain perturbation and the density perturbation. We are going to study the influence of
both factors on the asymptotic behavior of the eigenvalues and eigenfunctions as well.

We establish five qualitatively different cases in the asymptotic behavior eigenvalues and
eigenfunctions of problem (1.1) as ε → 0, namely α ∈ (0, 1), α = 1, α ∈ (1, 2), α = 2, α > 2.
In the present paper we consider two cases α ∈ (0, 1) and α = 1.

2 The case α = 1

2.1 Formal Asymptotics

Combining the algorithm of constructing asymptotics in thin domains with the methods of
homogenization theory, we seek the main terms of the asymptotics for the eigenvalue λn(ε)
and the eigenfunction un(ε, ·) in the form (index n is omitted):

λ(ε) ≈ λ0 + ελ1 + . . . (2.1)

u(ε, x) ≈ v+
0 (x) + εv+

1 (x) + . . . , in domain Ω0; (2.2)

in the thin rectangle G
(2)
j (ε) (j = 0, . . . , N − 1)

u(ε, x) ≈ v−0 (x1, x2, η1 − j) + εv−1 (x1, x2, η1 − j) + . . . , η1 =
x1

ε
; (2.3)

and in the junction zone of the body and thin rectangles of both classes (which we call internal
expansion) the series of the following type:

u(ε, x) ≈ v+
0 (x1, 0) + ε

( 2∑
i=1

Z
(i)
1 (η)∂xi

v+
0 (x1, 0) + Z

(0)
1 (η)v+

0 (x1, 0)

)
+

+ ε2
∑

|β|≤2

Z
(β)
2 (η)Dβv+

0 (x1, 0) + . . . , η =
x

ε
.

(2.4)

We used the following standard notation: β = (β1, β2), |β| = β1 + β2, βi ∈ N0, Dβ =
∂|β|

∂xβ1

1 ∂xβ2

2

and ∂xi
=

∂

∂xi

.

Denote Γ2 := ∂Ω0\(Γ1∪I0). Substituting (2.1) and (2.2) in the problem (1.1) and collecting
terms with equal order of ε, we get:

−∆x v+
0 (x) = λ0v

+
0 (x), x ∈ Ω0,

∂ν v+
0 (x) = 0, x ∈ Γ2,

v+
0 (x) = 0, x ∈ Γ1.

(2.5)
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It remains to ensure the continuity of the asymptotic approximations on the interfaces between
the “rectangles” and the “body”. The necessity of the condition

v+
0 (x1, 0) = v−0 (x1, 0), x ∈ I0, (2.6)

is evident. Another condition appears when one constructs the junction layer. This condition
has the form

∂x2v
+
0 (x1, 0)− h2∂x2v

−
0 (x1, 0) = −4h1l1λ0v

+
0 (x1, 0), x ∈ I0, (2.7)

and will be obtained in the next section.
Collecting terms of order ε, we have

−∆x v+
1 (x) = λ0v

+
1 (x) + λ1v

+
0 (x), x ∈ Ω0,

∂ν v+
1 (x) = 0, x ∈ Γ2,

v+
1 (x) = 0, x ∈ Γ1.

(2.8)

In the transmission conditions here the following jumps appear

v+
1 (x1, 0)− v−1 (x1, 0) = F1(x1), x ∈ I0, (2.9)

and
∂x2v

+
1 (x1, 0)− h2∂x2v

−
1 (x1, 0) = F2(x1), x ∈ I0, (2.10)

where F1, F2 are given functions on I0 that will be defined in subsection 2.2.

2.1.1 Formal asymptotics on thin rectangles.

Keeping in mind that in (2.3) v−k are smooth functions, using Taylor series for v−k and changing
variable x1 7→ η1 in the neighborhood of the points x1 = ε(j + 1

2
), we get

u(ε, x) =
+∞∑

k=0

εkW
(j)
k (x2, η1), x ∈ G

(2)
j (ε), (2.11)

where for k ∈ N we have

W
(j)
k (x2, η1) = v−k (ε(j +

1

2
), x2, η1 − j)+

+
k∑

m=1

1

m!

(
η1 − j − 1

2

)m ∂mv−k−m

∂xm
1

(
ε(j +

1

2
), x2, η1 − j

)
. (2.12)

Substituting (2.1) and (2.11) in the problem (1.1) instead of λn(ε) and un(ε, ·) respectively,
collecting terms with equal powers of ε, we obtain the following problems (k = 0, 1, 2, 3) :

−∂2
η1η1

W
(j)
k (x2, η1) = ∂2

x2x2
W

(j)
k−2(x2, η1) +

k−2∑
m=0

λmW
(j)
k−2−m(x2, η1), |η1 − 1

2
| < h2

2
,

∂η1W
(j)
k (x2,

1±h2

2
) = 0,

(2.13)

where λp and the functions W
(j)
p with negative p are equal to zero; the variable x2 is a parameter;

∂η1 = ∂
∂η1

.
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From (2.13) we deduce that W
(j)
0 , W

(j)
1 , W

(j)
2 and W

(j)
3 are independent of η1. Moreover

the solvability conditions for the problem (2.13) as k = 2, 3, give us the equations

h2 ∂2
x2x2

v−0 (x1, x2) + λ0h2 v−0 (x1, x2) = 0, x2 ∈ (−l2, 0), x1 = ε(j +
1

2
) (2.14)

and

h2 ∂2
x2x2

v−1 (x1, x2)+h2λ0 v−1 (x1, x2) = −h2λ1 v−0 (x1, x2), x2 ∈ (−l2, 0), x1 = ε(j+
1

2
). (2.15)

Since we seek the smooth functions v−0 and v−1 and the points x1 = ε(j + 1
2
) form the ε-net

in the interval (0, a), then the equations (2.14), (2.15) defined on N segments can be extended
to the whole rectangle D2 = (0, a)× (−l2, 0). Bearing in mind the boundary conditions of the
original problem, we add

∂x2v
−
0 (x1,−l2) = 0, ∂x2v

−
1 (x1,−l2) = 0. (2.16)

2.1.2 Junction-layer solutions

Pass to the “fast” variables η =
x

ε
in (1.1). Under this transformation as ε → 0 the domain

Ω0 transforms to {η : ηi > 0, i = 1, 2}, the thin rectangle G
(2)
0 (ε) to the semistrip

Π− =

(
1

2
− h2

2
,
1

2
+

h2

2

)
× (−∞, 0]

and rectangle G
(1)
0 (dk, ε) to the fixed rectangle

Πk =

(
dk − h1

2
, dk +

h1

2

)
× (−l1, 0].

Taking into account the periodic structure of Ωε in a neighborhood of I0, we take the following
cell of periodicity

Π = Π− ∪ Π+ ∪ Πl1 ,

in which we will consider boundary value problems. Here Π+ = (0, 1)× (0, +∞), Πl1 :=
4⋃

k=1

Πk

(see Fig.2).
Substituting the series (2.4) and (2.1) in the problem (1.1) and collecting terms with equal

powers of ε, we get problems for Z
(i)
1 , i = 0, 1, 2, and Z

(β)
2 , |β| ≤ 2. Obviously, these solutions

have to be 1-periodic in η1. Therefore we will demand the following periodic conditions

∂s
η1

Z(0, η2) = ∂s
η1

Z(1, η2), η2 > 0, s = 0, 1, (2.17)

on the vertical sides of semistrip Π+. In addition, it is easy to see that all these solutions must
satisfy the Neumann conditions

∂η2Z(η1, 0) = 0, (η1, 0) ∈ ∂Π, ∂η2Z(η1,−l1) = 0, (η1,−l1) ∈ ∂Π, (2.18)

on the horizontal parts of the boundary of Π.
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Figure 2: The cell of periodicity.

Denote by ∂Π‖ the vertical part of ∂Π laying in {η : η2 < 0}.
Thus for Z

(i)
1 , i = 0, 1, 2, and Z

(β)
2 , |β| ≤ 2, we have the following problems (to all problems

we must add conditions (2.17) and (2.18)):




−∆η Z

(0)
1 (η) =

{
0, η ∈ Π+ ∪ Π−,
λ0, η ∈ Πl1 ,

∂η1Z
(0)
1 (η) = 0, η ∈ ∂Π‖;

(2.19)

{
−∆η Z

(i)
1 (η) = 0, η ∈ Π,

∂η1Z
(i)
1 (η) = −δ1i, η ∈ ∂Π‖, i = 1, 2;

(2.20)




−∆η Z

(0,0)
2 (η) =

{
λ0, η ∈ Π+ ∪ Π−,

λ1 + λ0Z
(0)
1 (η), η ∈ Πl1 ,

∂η1Z
(0,0)
2 (η) = 0, η ∈ ∂Π‖;

(2.21)




−∆η Z

(1,0)
2 (η) =

{
2∂η1Z

(0)
1 (η), η ∈ Π+ ∪ Π−,

2∂η1Z
(0)
1 (η) + λ0Z

(1)
1 (η), η ∈ Πl1 ,

∂η1Z
(1,0)
2 (η) = −Z

(0)
1 (η), η ∈ ∂Π‖;

(2.22)




−∆η Z

(0,1)
2 (η) =

{
0, η ∈ Π+ ∪ Π−,

λ0Z
(2)
1 (η), η ∈ Πl1 ,

∂η1Z
(0,1)
2 (η) = 0, η ∈ ∂Π‖;

(2.23)

{
−∆η Z

(0,2)
2 (η) = 0, η ∈ Π,

∂η1Z
(0,2)
2 (η) = 0, η ∈ ∂Π‖;

(2.24)

{
−∆η Z

(1,1)
2 (η) = 2∂η1Z

(2)
1 (η), η ∈ Π,

∂η1Z
(1,1)
2 (η) = −Z

(2)
1 (η), η ∈ ∂Π‖;

(2.25)
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{
−∆η Z

(2,0)
2 (η) = 1 + 2∂η1Z

(1)
1 (η), η ∈ Π,

∂η1Z
(2,0)
2 (η) = −Z

(1)
1 (η), η ∈ ∂Π‖.

(2.26)

The existence and the main asymptotic relations for the functions {Z(i)
1 }, {Z(β)

2 } can be
obtained from general results about the asymptotic behavior of solutions to elliptic problems in
domains with different exits to infinity [17, 19, 20, 44]. The proofs are substantially simplified if
the polynomial property of the corresponding quasilinear forms is employed [45]. However, if a
domain, where we consider a boundary-value problem, has some symmetry, then we can define
more exactly the asymptotic relations and detect other properties of junction-layer solutions
(see Lemma 4.1 and Corollary 4.1 from [31]). Using this approach, one can prove the following
lemma.

Lemma 2.1. There exist solutions Z
(i)
1 ∈ H1

loc,η2
(Π), i = 0, 1, 2, of the problems (2.19), (2.20)

and Z
(β)
2 ∈ H1

loc,η2
(Π), |β| ≤ 2 of the problems (2.21), (2.22), (2.23), (2.24), (2.25), (2.26),

which have the following differentiable asymptotics

Z
(0)
1 (η) =





C
(0)
1 +O(exp(−2πη2)), η2 → +∞,

4h1l1λ0

h2

η2 − C
(0)
1

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.27)

Z
(1)
1 (η) =





O(exp(−2πη2)), η2 → +∞,

(
− η1 +

1

2

)
+O(exp(πh−1

2 η2)), η2 → −∞,
(2.28)

Z
(2)
1 (η) =





η2 + C
(2)
1 +O(exp(−2πη2)), η2 → +∞,

η2

h2

− C
(2)
1

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.29)

Z
(0,0)
2 (η) =





−λ0

2
η2

2 + C
(0,0)
2 +O(exp(−2πη2)), η2 → +∞,

−λ0

2
η2

2 +
4h1l1λ1 + λ0

∫
Πl1

Z
(0)
1 (η)dη

h2

η2 − C
(0,0)
2

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.30)

Z
(1,0)
2 (η) =





C
(1,0)
2 +O(exp(−2πη2)), η2 → +∞,

4h1l1λ0

h2

η2

(
− η1 +

1

2

)
− C

(1,0)
2

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.31)

Z
(0,1)
2 (η) =





C
(0,1)
2 +O(exp(−2πη2)), η2 → +∞,

λ0

∫
Πl1

Z
(2)
1 (η)dη

h2

η2 − C
(0,1)
2

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.32)

Z
(0,2)
2 (η) =





η2 + C
(2)
1 +O(exp(−2πη2)), η2 → +∞,

η2

h2

− C
(2)
1

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.33)
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Z
(1,1)
2 (η) =





C
(1,1)
2 +O(exp(−2πη2)), η2 → +∞,

η2

h2

(
− η1 +

1

2

)
− C

(1,1)
2

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.34)

Z
(2,0)
2 (η) =





−1

2
η2

2 + C
(2,0)
2 +O(exp(−2πη2)), η2 → +∞,

µ0

h2

η2 − C
(2,0)
2

h2

+O(exp(πh−1
2 η2)), η2 → −∞,

(2.35)

where

µ0 = 2

∫

Π+

∂η1Z
(1)
1 (η) dη +

∫

Πl1
∪Π−

(1 + ∂η1Z
(1)
1 (η)) dη. (2.36)

Moreover functions Z
(1)
1 , Z

(1,0)
2 , Z

(1,1)
2 are odd in η1 with respect to 1

2
; functions Z

(0)
1 , Z

(2)
1 ,

Z
(0,0)
2 , Z

(0,1)
2 , Z

(0,2)
2 and Z

(2,0)
2 are even in η1 with respect to 1

2
.

Proof. Recall that a function Ψ belongs to H1
loc,η2

(Π) if for every R > 0 the function Ψ ∈
H1(Π) ∩ {η : |η2| < R}.

We will demonstrate this proof for the junction-layer problem (2.21). In the other cases

the proof is similar. We look for the solution Z
(0,0)
2 to problem (2.21) in the form

Z
(0,0)
2 (η) = −λ0

2
η2

2 + µ η2χ−(η2) + Z̃
(0,0)
2 (η), η ∈ Π,

where χ−(η2) is a smooth cut-off function such that 0 ≤ χ−(η2) ≤ 1; it is equal to 1 if η2 ≤ −2,

and to 0 if η2 ≥ −1. It is easy to see that Z̃
(0,0)
2 must satisfy the problem





−∆η Z̃
(0,0)
2 (η) =





0, η ∈ Π+,
µ
(
η2χ

′′
−(η2) + 2χ′−(η2)

)
, η ∈ Π−,

λ1 + λ0

(
Z

(0)
1 (η)− 1

)
, η ∈ Πl1 ,

∂s
η1

Z̃
(0,0)
2 (0, η2) = ∂s

η1
Z̃

(0,0)
2 (1, η2), η2 > 0, s = 0, 1,

∂η2Z̃
(0,0)
2 (η1, 0) = 0, (η1, 0) ∈ ∂Π,

∂η1Z̃
(0,0)
2 (η) = 0, η ∈ ∂Π‖, η2 < 0,

∂η2Z̃
(0,0)
2 (η1,−l1) = −λ0l1, (η1,−l1) ∈ ∂Π.

(2.37)

From Lemma 4.1 (see paper [31]) it follows that there exists the energy solution to the
problem (3.42) if and only if

µ =
4h1l1λ1 + λ0

∫
Πl1

Z
(0)
1 (η)dη

h2

; (2.38)

in addition this solution is defined up to an additive constant. Choosing in an appropriate way
this constant (see Remark 4.1 from [31]), we get the asymptotics (2.30).

Since the right-hand sides both in the equation and boundary conditions of problem (3.42)

are even in η1 with respect to 1
2
, the solution Z̃

(0,0)
2 has the same property due to Remark 4.2

from [31].
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2.2 Homogenized problem and correctors

We have formally constructed the leading terms of the asymptotic expansions (2.2), (2.3), (2.4)
in three different parts of the junction Ωε. Now we apply the method of matching of asymptotic
expansions to complete the constructions. Following this method (see, for instance [16]), the
asymptotics of the external expansions (2.2) and (2.3) as x2 → ±0 has to coincide with the
corresponding asymptotics of the internal expansion (2.4) as η2 → ±∞.

Writing down the Taylor series for v+
0 and v+

1 with respect to x2 in the neighborhood of
the point (x1, 0), where x1 ∈ (0, a), and passing to the variables η2 = ε−1x2, we derive

u(ε, x) = v+
0 (x1, 0) + ε

(
η2∂x2v

+
0 (x1, 0) + v+

1 (x1, 0)
)
+

+ ε2
(1

2
η2

2∂
2
x2x2

v+
0 (x1, 0) + η2∂x2v

+
1 (x1, 0) + v+

2 (x1, 0)
)

+O(ε3η3
2), x2 ≡ εη2 → +0.

(2.39)

Bearing in mind the asymptotics of the functions Z
(i)
1 (i = 0, 1, 2), Z

(β)
2 (|β| < 2), as η2 → +∞

(see (2.27)–(2.35)), we write down the asymptotics

u(ε, x) = v+
0 (x1, 0) + ε

(
η2∂x2v

+
0 (x1, 0) + C

(0)
1 v+

0 (x1, 0) + C
(2)
1 ∂x2v

+
0 (x1, 0)

)

+ ε2

((
− λ0

2
η2

2 + C
(0,0)
2

)
v+

0 (x1, 0) + C
(1,0)
2 ∂x1v

+
0 (x1, 0) + C

(0,1)
2 ∂x2v

+
0 (x1, 0)

+
(
− 1

2
η2

2 + C
(2,0)
2

)
∂2

x1x1
v+

0 (x1, 0) + C
(1,1)
2 ∂2

x1x2
v+

0 (x1, 0)

+
(
η2 + C

(2)
1

)
∂2

x2x2
v+

0 (x1, 0)

)
+O(ε3η3

2), η2 → +∞.

(2.40)

To match (2.3) and (2.4) we write down (2.3) as x2 → −0 in fast variables:

u(ε, x) = v−0 (x1, 0) + ε

(
η2∂x2v

−
0 (x1, 0) + v−1 (x1, 0) + Y (η1)∂x1v

−
0 (x1, 0)

)

+ ε2

(
1

2
η2

2∂
2
x2x2

v−0 (x1, 0) + η2∂x2v
−
1 (x1, 0) + η2Y (η1)∂

2
x1x2

v−0 (x1, 0) + v−2 (x1, 0)

+ Y (η1)∂x1v
−
1 (x1, 0) +

1

2
Y 2(η1)∂

2
x1x1

v−0 (x1, 0)

)
+O(ε3η3

2), x2 ≡ εη2 → −0

(2.41)

and (2.4) as η2 → −∞:

u(ε, x) = v+
0 (x1, 0) + ε

(
Y (η1)∂x1v

+
0 (x1, 0) +

(η2

h2

− C
(2)
1

h2

)
∂x2v

+
0 (x1, 0)

+
(4h1l1λ0

h2

η2 − C
(0)
1

h2

)
v+

0 (x1, 0)

)

+ε2

((
− λ0

2
η2

2 +
4h1l1λ1 + λ0

∫
Πl1

Z
(0)
1 (η dη

h2

η2 − C
(0,0)
2

h2

)
v+

0 (x1, 0)

+
(4h1l1λ0

h2

Y (η1)η2 − C
(1,0)
2

h2

)
∂x1v

+
0 (x1, 0) +

(λ0

∫
Πl1

Z
(2)
1 dη

h2

η2 − C
0,1)
2

h2

)
∂x2v

+
0 (x1, 0)
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+
(µ0

h2

η2 − C
(2,0)
2

h2

)
∂2

x1x1
v+

0 (x1, 0) +
(η2

h2

Y (η1)− C
(1,1)
2

h2

)
∂2

x1x2
v+

0 (x1, 0)

+
(η2

h2

− C
(2)
1

h2

)
∂2

x2x2
v+

0 (x1, 0)

)
+O(ε3η3

2), (2.42)

where Y (η1) = −η1 + 1
2

+ [η1], [η1] is the entire part of the number η1 and µ0 is defined by
(2.36). We convince, that the leading terms of the asymptotic expansions (2.2), (2.3) and (2.4)
are matched, if functions F1 and F2 from (2.9) and (2.10) are equal respectively

F1(x1) =
1 + h2

h2

(
C

(0)
1 v+

0 (x1, 0) + C
(2)
1 ∂x2v

+
0 (x1, 0)

)
, x1 ∈ I0, (2.43)

and

F2(x1) =− µ0∂
2
x1x1

v+
0 (x1, 0)− λ0

∫

Πl1

Z
(2)
1 (η) dη∂x2v

+
0 (x1, 0)−

−
(
4h1l1λ1 + λ0

∫

Πl1

Z
(0)
1 (η) dη

)
v+

0 (x1, 0), x1 ∈ I0

(2.44)

and the conditions (2.6), (2.7), (2.9) and (2.10) hold true.
Finally, for

v0(x) =

{
v+

0 (x), x ∈ Ω,
v−0 (x), x ∈ D2 = (0, a)× (−l2, 0),

and the number λ0 we have the problem





−∆x v+
0 (x) = λ0v

+
0 (x), x ∈ Ω0,

−∂2
x2x2

v−0 (x) = λ0 v−0 (x), x ∈ D2,
∂ν v+

0 (x) = 0, x ∈ Γ2,
v+

0 (x) = 0, x ∈ Γ1,
v+

0 (x1, 0) = v−0 (x1, 0), x1 ∈ (0, a),
∂x2v

+
0 (x1, 0)− h2∂x2v

−
0 (x1, 0) = −4h1l1λ0 v+

0 (x1, 0), x1 ∈ (0, a),
∂x2v

−
0 (x1,−l2) = 0, x1 ∈ (0, a),

(2.45)

which called homogenized spectral problem for problem (1.1). The spectrum of this problem
is studied in § 2.3. Let λ0 be an eigenvalue of problem (2.45) and v0 is the corresponding
eigenfunction that we normalize as follows

∫

Ω0

(
v+

0

)2
dx + h2

∫

D2

(
v−0

)2
dx + 4h1l1

∫

I0

(
v+

0 (x1, 0)
)2

dx1 = 1. (2.46)

Then for

v1(x) =

{
v+

1 (x), x ∈ Ω,
v−1 (x), x ∈ D2,
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and λ1 we get the following boundary-value problem





−∆x v+
1 (x) = λ0v

+
1 (x) + λ1v

+
0 (x), x ∈ Ω0,

∂ν v+
1 (x) = 0, x ∈ Γ2; v+

1 (x) = 0, x ∈ Γ1,

−h2 ∂2
x2x2

v−1 (x1, x2) = h2λ0 v−1 (x1, x2) + h2λ1 v−0 (x1, x2), x ∈ D2,

∂x2v
−
1 (x1,−l2) = 0, x1 ∈ (0, a),

v+
1 (x1, 0)− v−1 (x1, 0) =

1 + h2

h2

(
C

(0)
1 v+

0 (x1, 0) + C
(2)
1 ∂x2v

+
0 (x1, 0)

)
, x ∈ I0,

∂x2v
+
1 (x1, 0)− h2∂x2v

−
1 (x1, 0) = −µ0∂

2
x1x1

v+
0 (x1, 0)− λ0

∫

Πl1

Z
(2)
1 (η) dη ∂x2v

+
0 (x1, 0)

−
(
4h1l1λ1 + λ0

∫

Πl1

Z
(0)
1 (η) dη

)
v+

0 (x1, 0), x ∈ I0.

(2.47)
We see that the corresponding homogeneous problem has nontrivial solution since λ0 is the
eigenvalue of problem (2.45). Therefore, we should choose λ1 such that the solvability condition
for problem (2.47) is satisfied. Obviously, in this case the solution to problem (2.47) is not
uniquely defined. For the uniqueness we demand the following orthogonality condition:

∫

I0

v+
1 (x1, 0) v+

0 (x1, 0) dx1 = 0. (2.48)

Multiplying the equation in Ω0 by v+
0 , integrating it over the domain and using twice the

Green’s formula and repeating these procedures for the domain D2 (only difference is that we
multiply the equation by v−0 ) and then summarizing these identities, we obtain

∫

I0

∂x2v
+
1 (x1, 0) v+

0 (x1, 0) dx1 −
∫

I0

v+
1 (x1, 0) ∂x2v

+
0 (x1, 0) dx1−

− h2

∫

I0

∂x2v
−
1 (x1, 0) v−0 (x1, 0) dx1 + h2

∫

I0

v−1 (x1, 0) ∂x2v
−
0 (x1, 0) dx1 =

= λ1

∫

Ω0

(
v+

0

)2

dx + λ1h2

∫

D2

(
v−0

)2

dx

(2.49)

or, keeping in mind the transmission conditions in problem (2.45) on I0,

∫

I0

(
∂x2v

+
1 (x1, 0)− h2∂x2v

−
1 (x1, 0)

)
v+

0 dx1 −
∫

I0

(
v+

1 (x1, 0)− v−1 (x1, 0)
)
∂x2v

+
0 dx1

+ 4h1l1

∫

I0

v−1 (x1, 0) v+
0 (x1, 0) dx1 = λ1

∫

Ω0

(
v+

0 (x1, 0)
)2

dx + λ1h2

∫

D2

(
v−0 (x1, 0)

)2
dx.

(2.50)
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Taking into account the transmission conditions in problem (2.47), the normalized condition
(2.46) and the orthogonality condition (2.48), we get from (2.50)

λ1 =µ0

∫

I0

(
∂x1v

+
0

)2
dx1 −

(
1 + h2

h2

C
(0)
1 + λ0

∫

Πl1

Z
(2)
1 (η) dη

)∫

I0

v+
0 ∂x2v

+
0 dx1

− 1 + h2

h2

4h1l1λ0

∫

I0

(
C

(0)
1 v+

0 + C
(2)
1 ∂x2v

+
0

)
v+

0 dx1

− 1 + h2

h2

C
(2)
1

∫

I0

(
∂x2v

+
0

)2
dx1 − λ0

∫

Πl1

Z
(0)
1 (η) dη

∫

I0

(
v+

0

)2
dx1,

(2.51)

where µ0 is defined by (2.36).

2.3 The spectrum of the homogenized spectral problem (2.45)

It is obvious that any eigenvalue of problem (2.45) is real and positive. By solving the ordinary
equation of problem (2.45) in the rectangle D2 with regard to the boundary condition on
Γ−l2 = {x : x1 ∈ (0, a), x2 = −l2} and the first transmission condition on I0, we find

v−0 (x) =
v+

0 (x1, 0)

cos(
√

λ0 l2)
cos(

√
λ0 (x2 + l2)) . (2.52)

Now, according to the second transmission condition in problem (2.45), we obtain the following
spectral problem




−∆ v+
0 (x) = λ0 v+

0 (x) , x ∈ Ω0,
∂ν v+(x) = 0 , x ∈ Γ2,

v+(x) = 0 , x ∈ Γ1,
∂x2v

+
0 (x1, 0) = − (

h2

√
λ0 tan(

√
λ0 l2) + 4h1l1λ0

)
v+

0 (x1, 0), x ∈ I0,

(2.53)

with the spectral parameter λ0 occurring both in the differential equation and in the boundary
condition on I0, where it enters in a nonlinear way.

Multiplying the differential equation of problem (2.53) with an arbitrary function ψ ∈
H1(Ω0; Γ1) and integrating by parts in Ω0, we can reduce the spectral problem (2.53) to a
spectral problem for the following operator-function

L(λ0) = λ0 A1 +
(
h2

√
λ0 tan(

√
λ0 l2) + 4h1l1λ0

)
A2 − I,

where H1(Ω0; Γ1) = {u ∈ H1(Ω0; u|Γ1 = 0} and the scalar product is defined as follows
(u, v)H1(Ω0;Γ1) :=

∫
Ω0
∇u · ∇v dx, I is the identity operator in H1(Ω0; Γ1), A1 , A2 are self-

adjoint compact operators in H1(Ω0; Γ1) and

(A1ϕ, ψ)H1(Ω0;Γ1) =

∫

Ω0

ϕ(x) ψ(x) dx ,

(A2ϕ, ψ)H1(Ω0;Γ1) =

∫

I0

ϕ(x1, 0) ψ(x1, 0) dx1 for any ϕ, ψ ∈ H1(Ω0; Γ1).

Theorems on existence and concentration of the spectrum for such self-adjoint operator-
functions and mini-max principles for the eigenvalues were proved in [27, 15]. From these
results we have the following theorem.
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Theorem 2.1. The spectrum of operator-function L and problem (2.45) contains normal eigen-
values (they have finite multiplicity and the corresponding eigenvectors have no Jordan chain)
and also the left accumulation points

Pm =

(
π + 2π(m− 1)

2l2

)2

, m ∈ N,

which divide the eigenvalues into the sequences

0 < λ
(1,1)
0 ≤ . . . ≤ λ

(1,n)
0 ≤ . . . → P1 as n → ∞ , (2.54)

Pm−1 < λ
(m,1)
0 ≤ . . . ≤ λ

(m,n)
0 ≤ . . . → Pm as n → ∞, m = 2, 3, . . . . (2.55)

2.4 Asymptotic approximations

Let λ0 be an eigenvalue of problem (2.45), v0 is the corresponding eigenfunction, i.e., v0 = v+
0

in Ω0, where v+
0 is the corresponding eigenfunction to problem (2.53), and v0 = v−0 in D2,

where v−0 is defined by (2.52). Then we can define λ1 with the help of (2.51) and the unique
solution v±1 to problem (2.47).

Using the method of matched asymptotic expansions for the leading terms of (2.2), (2.3)
and (2.4), we construct the approximation Rε ∈ H1(Ω0; Γ1) :

Rε(x) = v+
0 (x) + εv+

1 (x)+

+ εχ0(x2)

( 2∑
i=1

(
Z

(i)
1 (η)− δi,2(η2 + C

(2)
1 )

)
∂xi

v+
0 (x1, 0) + (Z

(0)
1 (η)− C

(0)
1 )v+

0 (x1, 0)

)

+ε2χ0

((
Z

(0,0)
2 (η)+

λ0η
2
2

2

)
v+

0 (x1, 0)+
∑

|β|=1

Z
(β)
2 (η)Dβv+

0 (x1, 0)+
(
Z

(2,0)
2 (η)+

η2
2

2

)
∂2

x1x1
v+

0 (x1, 0)

+ Z
(1,1)
2 (η) ∂2

x1x2
v+

0 (x1, 0) +
(
Z

(0,2)
2 (η)− η2

)
∂2

x2x2
v+

0 (x1, 0)

)
, η =

x

ε
, x ∈ Ω0; (2.56)

Rε(x) = v−0 (x) + ε
(
v−1 (x) + Y (η1)∂x1v

−
0 (x)

)

+ εχ0(x2)

((
Z

(1)
1 (η)− Y (η1)

)
∂x1v

+
0 (x1, 0) +

(
Z

(2)
1 (η)− η2

h2

+
C

(2)
1

h2

)
∂x2v

+
0 (x1, 0)

+
(
Z

(0)
1 (η)− 4h1l1λ0

h2

η2 +
C

(0)
1

h2

)
v+

0 (x1, 0)

)

+ ε2χ0(x2)

((
Z

(0,0)
2 (η) +

λ0

2
η2

2 −
4h1l1λ1 + λ0

∫
Πl1

Z
(0)
1 (η)dη

h2

η2

)
v+

0 (x1, 0)

+
(
Z

(1,0)
2 (η)− 4h1l1λ0

h2

η2Y (η1)
)
∂x1v

+
0 (x1, 0) +

(
Z

(0,1)
2 (η)−

λ0

∫
Πl1

Z
(2)
1 (η)dη

h2

η2

)
∂x2v

+
0 (x1, 0)

+
(
Z

(2,0)
2 (η)− µ0

h2

η2

)
∂2

x1x1
v+

0 (x1, 0) +
(
Z

(1,1)
2 (η)− η2Y (η1)

h2

)
∂2

x1x2
v+

0 (x1, 0)

+
(
Z

(0,2)
2 (η)− η2

h2

)
∂2

x2x2
v+

0 (x1, 0)

)
, η =

x

ε
, x ∈ G(1)

ε ∪G(2)
ε . (2.57)
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Here χ0 is a smooth cut-off function that equals 1 in a neighborhood of zero.
Substituting Rε and λ0 + ελ1 into problem (1.1) instead of u and λ(ε) respectively, and

finding residuals, we get

‖Rε − (λ0 + ελ1)AεRε ‖Hε ≤ c(δ) ε2−δ (δ > 0). (2.58)

Here operator Aε : Hε 7→ Hε is defined by the following equality

(Aεu, v)Hε
= (u, v)Vε

∀ u, v ∈ Hε, (2.59)

where by Hε we denote the space {u ∈ H1(Ωε) : u|Γ1 = 0} with the scalar product

(u, v)Hε :=

∫

Ωε

∇u · ∇v dx,

and by Vε we denote the space L2(Ωε) with the scalar product

(u, v)Vε
:=

∫

Ωε

ρε u v dx.

Obviously, operator Aε is self-adjoint, positive, and compact. In addition, problem (1.1) is
equivalent to the spectral problem Aεu = λ−1(ε) u in Hε.

By virtue of the minimax principle for eigenvalues, we have that for each n ∈ N λn(ε) ≤ Cn

and then due to (1.4) we get
‖un(ε, ·)‖Hε = λn(ε) ≤ Cn. (2.60)

3 The case 0 < α < 1

3.1 Formal Asymptotics

In this case we seek the main terms of the asymptotics for the eigenvalue λn(ε) and the
eigenfunction un(ε, ·) of problem (1.1) in the form (index n is omitted):

λ(ε) ≈ λ0 + ε1−αλ1−α + ελ1 + ε2−αλ2−α + . . . (3.1)

u(ε, x) ≈ v+
0 (x) + ε1−αv+

1−α(x) + εv+
1 (x) + ε2−αv+

2−α(x) + . . . , in domain Ω0; (3.2)

in the thin rectangle G
(2)
j (ε) (j = 0, . . . , N − 1)

u(ε, x) ≈ v−0 (x1, x2, η1 − j) + ε1−αv−1−α(x1, x2, η1 − j) + εv−1 (x1, x2, η1 − j)+

+ ε2−αv−2−α(x1, x2, η1 − j) + . . . , η1 =
x1

ε
;

(3.3)

and in the junction zone of the body and thin rectangles of both classes (which we call internal
expansion) the series of the following type:

u(ε, x) ≈ v+
0 (x1, 0) + ε1−αv+

1−α(x1, 0) + ε

2∑
i=1

Z
(i)
1 (η)∂xi

v+
0 (x1, 0)+

+ ε2−α

(
Z

(0)
2−α(η)v+

0 (x1, 0) +
2∑

i=1

Z
(i)
2−α(η)∂xi

v+
1−α(x1, 0)

)
+

+ ε2
∑

|β|≤2

Z
(β)
2 (η)Dβv+

0 (x1, 0) + . . . , η =
x

ε
.

(3.4)
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Substituting (3.1) and (3.2) in the problem (1.1) and collecting terms with equal order of ε,
we get:

−∆x v+
0 (x) = λ0v

+
0 (x), x ∈ Ω0,

∂ν v+
0 (x) = 0, x ∈ Γ2,

v+
0 (x) = 0, x ∈ Γ1.

(3.5)

It remains to ensure the continuity of the asymptotic approximations and their gradients on the
interfaces between the “rectangles” and the “body”. As in the previous section the necessity
of the condition

v+
0 (x1, 0) = v−0 (x1, 0), x ∈ I0, (3.6)

is evident. Another condition appears when one constructs the junction layer. This condition
has the form

∂x2v
+
0 (x1, 0) = h2∂x2v

−
0 (x1, 0), x ∈ I0, (3.7)

and will be obtained in the next section.
Collecting terms of order ε1−α, we obtain

−∆x v+
1−α(x) = λ0v

+
1−α(x) + λ1−αv+

0 (x), x ∈ Ω0,
∂ν v+

1−α(x) = 0, x ∈ Γ2,
v+

1−α(x) = 0, x ∈ Γ1.
(3.8)

Using the same arguments, we conclude that

v+
1−α(x1, 0) = v−1−α(x1, 0), x ∈ I0, (3.9)

The second condition also appears when one constructs the junction layer. This condition is
the following:

∂x2v
+
1−α(x1, 0)− h2∂x2v

−
1−α(x1, 0) = −4h1l1λ0v

+
0 (x1, 0), x ∈ I0 (3.10)

and will be obtained in the next section.
Collecting terms of order ε, we have

−∆x v+
1 (x) = λ0v

+
1 (x) + λ1v

+
0 (x), x ∈ Ω0,

∂ν v+
1 (x) = 0, x ∈ Γ2,

v+
1 (x) = 0, x ∈ Γ1.

(3.11)

In the transmission conditions here the following jumps appear

v+
1 (x1, 0)− v−1 (x1, 0) = F3(x1), x ∈ I0, (3.12)

and
∂x2v

+
1 (x1, 0)− h2∂x2v

−
1 (x1, 0) = F4(x1), x ∈ I0, (3.13)

where F3 and F4 are given functions on I0 that will be defined in subsection 3.2.
Finally, collecting terms of order ε2−α, we obtain

−∆x v+
2−α(x) = λ0v

+
2−α(x) + λ1v

+
1−α(x) + λ1−αv+

1 (x) + λ2−αv+
0 (x), x ∈ Ω0,

∂ν v+
2−α(x) = 0, x ∈ Γ2,

v+
2−α(x) = 0, x ∈ Γ1.

(3.14)
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Similarly we obtain

v+
2−α(x1, 0)− v−2−α(x1, 0) = F5(x1), x ∈ I0, (3.15)

and to simplify the constructions we set

∂x2v
+
2−α(x1, 0) = h2∂x2v

−
2−α(x1, 0), x ∈ I0. (3.16)

The function F5(x1) also is given (see subsection 3.2).

3.1.1 Formal asymptotics on thin rectangles.

Let us enumerate the set
{
p − 1 + (2 − α)q

}∞
p,q=0

\ {−1} for fixed α in increasing order 0 =

ς1 < ς2 ≤ . . . . Obviously, ς2 = 1 − α, ς3 = 1 as 0 < α ≤ 1. Keeping in mind that in (3.3)
v−ςk are smooth functions, using Taylor series for v−ςk and changing variable x1 7→ η1 in the
neighborhood of the points x1 = ε(j + 1

2
), we get

u(ε, x) =
+∞∑

k=0

εςkW (j)
ςk

(x2, η1), x ∈ G
(2)
j (ε), (3.17)

where, for instance for k ∈ N we also have (as in the previous section)

W
(j)
k (x2, η1) = v−k (ε(j +

1

2
), x2, η1 − j)+

+
k∑

m=1

1

m!

(
η1 − j − 1

2

)m ∂mv−k−m

∂xm
1

(
ε(j +

1

2
), x2, η1 − j

)
(3.18)

and, in particular,

W
(j)
0 (x2, η1) = v−0 (ε(j +

1

2
), x2, η1 − j),

W
(j)
1−α(x2, η1) = v−1−α(ε(j +

1

2
), x2, η1 − j),

W
(j)
1 (x2, η1) = v−1 (ε(j +

1

2
), x2, η1 − j) +

(
η1 − j − 1

2

)∂v−0
∂x1

(ε(j +
1

2
), x2, η1 − j),

W
(j)
2−α(x2, η1) = v−2−α(ε(j +

1

2
), x2, η1 − j) +

(
η1 − j − 1

2

)∂v−1−α

∂x1

(ε(j +
1

2
), x2, η1 − j).

(3.19)

Substituting (3.1) and (3.17) in the problem (1.1) instead of λn(ε) and un(ε, ·) respectively,
collecting terms with equal powers of ε, we obtain the following problems (k = 0, 1, 2, 3) :

−∂2
η1η1

W
(j)
k (x2, η1) = ∂2

x2x2
W

(j)
k−2(x2, η1) +

k−2∑
m=0

λmW
(j)
k−2−m(x2, η1), |η1 − 1

2
| < h2

2
,

∂η1W
(j)
k (x2,

1±h2

2
) = 0

(3.20)

and (k=1, 2, 3, 4)

−∂2
η1η1

W
(j)
k−α(x2, η1) = ∂2

x2x2
W

(j)
k−2−α(x2, η1) +

k−3∑
m=0

λmW
(j)
k−2−m−α(x2, η1)+

+
k−3∑
m=0

λk−2−m−αW
(j)
m (x2, η1), |η1 − 1

2
| < h2

2
,

∂η1W
(j)
k−α(x2,

1±h2

2
) = 0,

(3.21)
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where λςp and the functions W
(j)
ςp with negative ςp are equal to zero; the variable x2 is a

parameter; ∂η1 = ∂
∂η1

.

From (3.20) and (3.21) we deduce that W
(j)
0 , W

(j)
1 , W

(j)
2 , W

(j)
3 , W

(j)
1−α, W

(j)
2−α, W

(j)
3−α and

W
(j)
4−α are independent of η1. Moreover the solvability conditions for the problem (3.20) as

k = 2, 3 and (3.21) as k = 3, 4, give us the equations

h2 ∂2
x2x2

v−0 (x1, x2) + λ0h2 v−0 (x1, x2) = 0, x2 ∈ (−l2, 0), x1 = ε(j +
1

2
) (3.22)

h2 ∂2
x2x2

v−1−α(x1, x2) + h2λ0 v−1−α(x1, x2) =

= −h2λ1−αv−0 (x1, x2), x2 ∈ (−l2, 0), x1 = ε(j +
1

2
).

(3.23)

h2 ∂2
x2x2

v−1 (x1, x2)+h2λ0 v−1 (x1, x2) = −h2λ1 v−0 (x1, x2), x2 ∈ (−l2, 0), x1 = ε(j +
1

2
) (3.24)

and

h2 ∂2
x2x2

v−2−α(x1, x2) + λ0h2 v−2−α(x1, x2) = −h2λ2−αv−0 (x1, x2)− h2λ1−αv−1 (x1, x2)

− h2λ1v
−
1−α(x1, x2), x2 ∈ (−l2, 0), x1 = ε(j +

1

2
).

(3.25)

Since we seek the smooth functions v−0 , v−1−α, v−1 and v−2−α and the points x1 = ε(j + 1
2
)

form the ε-net in the interval (0, a), then the equations (3.22), (3.23), (3.24), (3.25) defined on
N segments can be extended to the whole rectangle D2 = (0, a) × (−l2, 0). Bearing in mind
the boundary conditions of the original problem, we add

∂x2v
−
0 (x1,−l2) = 0, ∂x2v

−
1−α(x1,−l2) = 0,

∂x2v
−
1 (x1,−l2) = 0, ∂x2v

−
2−α(x1,−l2) = 0.

(3.26)

3.1.2 Junction-layer solutions

Similarly as in subsection 2.1.2 we substitute series (3.4) and (3.1) in problem (1.1) and collect

terms with equal powers of ε to obtain boundary-value problems in Π for Z
(i)
1 , i = 1, 2,

Z
(i)
2−α, ı = 0, 1, 2, and Z

(β)
2 , |β| ≤ 2. Obviously, these solutions have to be 1-periodic in η1, i.e.,

they must satisfy conditions (2.17). In addition, they must satisfy the Neumann conditions
(2.18) as well. We discover that

• function Z
(i)
1 , (i = 1, 2) is the solution to problem (2.20) and it has the asymptotics

(2.28) for i = 1 ((2.29) for i = 2);

• function Z
(0)
2−α coincides with function Z

(0)
1 from subsection 2.1.2, i.e., it satisfies prob-

lem (2.19) and has the asymptotics (2.27);

• function Z
(1)
2−α ≡ Z

(1)
1 , i.e., it satisfies problem (2.20) and has the asymptotics (2.28);

• Z
(2)
2−α ≡ 0; Z

(1,0)
2 ≡ 0;

• Z
(0,1)
2 ≡ Z

(2)
1 , i.e., it satisfies the problem (2.20) and has the asymptotics (2.29));
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• Z
(2,0)
2 is identically equal to Z

(2,0)
2 from subsection 2.1.2, i.e., it satisfies problem (2.26)

and has the asymptotics (2.35);

• Z
(1,1)
2 is identically equal to Z

(1,1)
2 from subsection 2.1.2, i.e., it satisfies the problem (2.25)

and has the asymptotics (2.34);

• Z
(0,2)
2 is identically equal to Z

(2)
1 , i.e., it satisfies problem (2.20) and has the asymp-

totics (2.29);

• for function Z
(0,0)
2 we obtain




−∆η Z

(0,0)
2 (η) =

{
λ0, η ∈ Π+ ∪ Π−,
0, η ∈ Πl1 ,

∂η1Z
(0,0)
2 (η) = 0, η ∈ ∂Π‖.

(3.27)

Similarly to the proof of Lemma 2.1 we deduce the following statement.

Lemma 3.1. Problem (3.27) has a solution from space H1
loc,η2

(Π) and this solution has the
differentiable asymptotics

Z
(0,0)
2 (η) =





−λ0

2
η2

2 + C
(0,0)
2 +O(exp(−2πη2)), η2 → +∞,

−λ0

2
η2

2 −
C

(0,0)
2

h2

+O(exp(πh−1
2 η2)), η2 → −∞.

(3.28)

Moreover, Z
(0,0)
2 is even in η1 with respect to 1

2
.

3.2 Homogenized problem and correctors

As in subsection 2.2, here we should match the leading terms of the asymptotic expansions (3.2),
(3.3) and (3.4). Following the method of matching of asymptotic expansions (see [16]), the
asymptotics of the external expansions (3.2) and (3.3) as x2 → ±0 has to coincide respectively
with the corresponding asymptotics of the internal expansion (3.4) as η2 → ±∞.

Writing down the Taylor series for functions v+
0 , v+

1 and v+
2−α with respect to x2 in the

neighborhood of the point (x1, 0), where x1 ∈ (0, a), and passing to the variables η2 = ε−1x2,
we derive

u(ε, x) = v+
0 (x1, 0) + ε1−αv+

1−α(x1, 0) + ε
(
η2∂x2v

+
0 (x1, 0) + v+

1 (x1, 0)
)
+

+ ε2−α
(
η2∂x2v

+
1−α(x1, 0) + v+

2−α(x1, 0)
)
+

+ ε2
(1

2
η2

2∂
2
x2x2

v+
0 (x1, 0) + η2∂x2v

+
1 (x1, 0) + v+

2 (x1, 0)
)

+ ϑ+
up(ε, η2),

(3.29)

where ϑ+
up(ε, η2) = O(max(ε3η3

2, ε
3−αη2)) as x2 ≡ εη2 → +0. Bearing in mind the asymptotics

of the functions Z
(i)
1 (i = 1, 2), Z

(j)
2−α (j = 0, 1, 2), as η2 → +∞, we convince, that the leading

terms of the asymptotic expansions (3.2) and (3.4) are matched.
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In fact, keeping in mind the asymptotics of the functions Z
(i)
j , we rewrite (3.4) as η2 → 0

u(ε, x) = v+
0 (x1, 0) + ε1−αv+

1−α(x1, 0) + ε
(
η2∂x2v

+
0 (x1, 0) + C

(2)
1 ∂x2v

+
0 (x1, 0)

)
+

+ ε2−α
(
C

(0)
2−αv+

0 (x1, 0) + η2v
+
0 (x1, 0)

)
+

+ ε2
((− λ0

2
η2

2 + C
(0,0)
2

)
v+

0 (x1, 0) +
(
η2 + C

(2)
1

)
∂x2v

+
0 (x1, 0)+

+
(− η2

2

2
+ C

(2,0)
2

)
∂2

x1x1
v+

0 (x1, 0) + C
(1,1)
2 ∂2

x1x2
v+

0 (x1, 0)+

+
(
η2 + C

(2)
1

)
∂2

x2x2
v+

0 (x1, 0)
)

+ ϑ+
down(ε, η2),

(3.30)

where ϑ+
down(ε, η2) = O(max(ε3η3

2, ε
3−αη2)) as η2 → +∞.

To match the asymptotics (3.3) and (3.4) we write down the asymptotics (3.3) as x2 → −0
in fast variables:

u(ε, x) = v−0 (x1, 0) + ε1−αv−1−α(x1, 0) + ε

(
η2∂x2v

−
0 (x1, 0) + v−1 (x1, 0) + Y (η1)∂x1v

−
0 (x1, 0)

)
+

+ ε2−α

(
η2∂x2v

−
1−α(x1, 0) + v−2−α(x1, 0) + Y (η1)∂x1v

−
1−α(x1, 0)

)
+

+ ε2

(
1

2
η2

2∂
2
x2x2

v−0 (x1, 0) + η2∂x2v
−
1 (x1, 0) + η2Y (η1)∂

2
x1x2

v−0 (x1, 0) + v−2 (x1, 0)+

+ Y (η1)∂x1v
−
1 (x1, 0) +

1

2
Y 2(η1)∂

2
x1x1

v−0 (x1, 0)

)
+ ϑ−down(ε, η2),

(3.31)
where ϑ−down(ε, η2) = O(max(ε3η3

2, ε
3−αη2)) as x2 ≡ εη2 → −0 and (3.4) as η2 → −∞:

u(ε, x) = v+
0 (x1, 0) + ε1−αv+

1−α(x1, 0) + ε
(
Y (η1)∂x1v

+
0 (x1, 0) +

η2

h2

∂x2v
+
0 (x1, 0)−

− C
(2)
1

h2

∂x2v
+
0 (x1, 0)

)
+ ε2−α

(4h1l1λ0 + 1

h2

η2v
+
0 (x1, 0)− C

(0)
2−α

h2

v+
0 (x1, 0)+

+ Y (η1)∂x1v
+
1−α(x1, 0)

)
+ ε2

((− λ0

2
η2

2 −
C

(0,0)
2

h2

)
v+

0 (x1, 0)+

+
(η2

h2

− C
(2)
1

h2

)
∂x2v

+
0 (x1, 0) +

(µ0

h2

η2 − C
(2,0)
2

h2

)
∂2

x1x1
v+

0 (x1, 0)+

+
(η2

h2

Y (η1)− C
(1,1)
2

h2

)
∂2

x1x2
v+

0 (x1, 0) +
(η2

h2

− C
(2)
1

h2

)
∂2

x2x2
v+

0 (x1, 0)
)

+ ϑ+
up(ε, η2),

(3.32)

where ϑ+
down(ε, η2) = O(max(ε3η3

2, ε
3−αη2)) as η2 → −∞ and µ0 is defined by (2.36).

We convince that the leading terms of the asymptotic expansions (2.2), (3.3) and (3.4) are
matched, if

F3(x1) =
1 + h2

h2

C
(2)
1 ∂x2v

+
0 (x1, 0), x1 ∈ (0, a), (3.33)

F4(x1) = −µ0∂
2
x1x1

v+
0 (x1, 0), x1 ∈ (0, a), (3.34)
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and

F5(x1) =
1 + h2

h2

C
(0)
2−αv+

0 (x1, 0), x1 ∈ (0, a), (3.35)

and conditions (3.6), (3.7), (3.9), (3.10), (3.12), (3.13), (3.15) and (3.16) hold true.
Finally, for

v0(x) =

{
v+

0 (x), x ∈ Ω,
v−0 (x), x ∈ D2,

and the number λ0 we have the problem




−∆x v+
0 (x) = λ0v

+
0 (x), x ∈ Ω0,

−∂2
x2x2

v−0 (x) = λ0 v−0 (x), x ∈ D2,
∂ν v+

0 (x) = 0, x ∈ Γ2,
v+

0 (x) = 0, x ∈ Γ1,
v+

0 (x1, 0) = v−0 (x1, 0), x1 ∈ (0, a),
∂x2v

+
0 (x1, 0) = h2∂x2v

−
0 (x1, 0), x1 ∈ (0, a),

∂x2v
−
0 (x1,−l2) = 0, x1 ∈ (0, a),

(3.36)

that called homogenized spectral problem for problem (1.1) in the case α ∈ (0, 1). This problem
coincides with the homogenized spectral problem for a spectral problem in a thick one-level
junction (see [28]). This means that there is no any influence of the concentrated masses in the
first terms of the asymptotics both for the eigenvalues and for eigenfunctions of problem (1.1)
if α ∈ (0, 1). From [28, Theorem 2.1] (see also subsection 2.3) it follows the following theorem.

Theorem 3.1. The spectrum of problem (3.36) contains normal eigenvalues and the left ac-
cumulation points

Pm =

(
π + 2π(m− 1)

2l2

)2

, m ∈ N,

which divide the eigenvalues into the sequences

0 < λ
(1,1)
0 ≤ . . . ≤ λ

(1,n)
0 ≤ . . . → P1 as n → ∞ , (3.37)

Pm−1 < λ
(m,1)
0 ≤ . . . ≤ λ

(m,n)
0 ≤ . . . → Pm as n → ∞, m = 2, 3, . . . . (3.38)

Let λ0 be an eigenvalue of problem (3.36). We normalize the corresponding eigenfunction
as follows ∫

Ω0

(
v+

0

)2
dx + h2

∫

D2

(
v−0

)2
dx = 1. (3.39)

Then for

v1−α(x) =

{
v+

1−α(x), x ∈ Ω,
v−1−α(x), x ∈ D2,

and the number λ1−α we get the following boundary-value problem

−∆x v+
1−α(x) = λ0 v+

1−α(x) + λ1−α v+
0 (x), x ∈ Ω0,

−h2 ∂2
x2x2

v−1−α(x) = h2λ0 v−1−α(x) + h2λ1−α v−0 (x), x ∈ D2,
∂ν v+

1−α(x) = 0, x ∈ Γ2,
v+

1−α(x) = 0, x ∈ Γ1,
v+

1−α(x1, 0) = v−1−α(x1, 0), x1 ∈ (0, a),
∂x2v

+
1−α(x1, 0)− h2∂x2v

−
1−α(x1, 0) = −4h1l1λ0v

+
0 (x1, 0), x1 ∈ (0, a),

∂x2v
−
1−α(x1,−l2) = 0, x1 ∈ (0, a).

(3.40)
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Since λ0 is the eigenvalue of the corresponding uniform problem for problem (3.40), we should
choose λ1−α such that the solvability condition for problem (3.40) is satisfied. Obviously, in
this case the solution to problem (3.40) is not uniquely defined. For the uniqueness we demand
the following orthogonality condition:

∫

Ω0

v+
1−αv+

0 dx + h2

∫

D2

v−1−αv−0 dx = 0. (3.41)

From the solvability condition of the problem (3.40) we derive the formula for λ1−α. Multiplying
the equation in Ω0 by v+

0 , integrating it over the domain and using twice the Green’s formula
and repeating these procedures for the domain D2 (only difference is that we multiply the
equation by v−0 ) and then summarizing these identities, we obtain

−
∫

∂Ω0

∂v+
1−α

∂ν
v+

0 ds +

∫

∂Ω0

∂v+
0

∂ν
v+

1−α ds−
a∫

0

h2

∂v−1−α

∂x2

v−0

∣∣∣∣
0

−l2

dx1+

+

a∫

0

h2
∂v−0
∂x2

v−1−α

∣∣∣∣
0

−l2

dx1 = λ1−α

∫

Ω0

(
v+

0

)2

dx + λ1−αh2

∫

D2

(
v−0

)2

dx

(3.42)

or, keeping in mind the normalization condition (3.39) and the boundary conditions of the
problems (3.36) and (3.40), we get

∫

I0

(
∂v+

1−α

∂x2

− h2

∂v−1−α

∂x2

)
v+

0 dx1 −
∫

I0

(
v+

1−α − v−1−α

)∂v+
0

∂x2

dx1 = λ1−α (3.43)

and finally

λ1−α = −4h1l1λ0

∫

I0

(
v+

0

)2
dx1. (3.44)

For v1(x) =

{
v+

1 (x), x ∈ Ω,
v−1 (x), x ∈ D2,

and λ1 we have





−∆x v+
1 (x) = λ0v

+
1 (x) + λ1v

+
0 (x), x ∈ Ω0,

∂ν v+
1 (x) = 0, x ∈ Γ2,

v+
1 (x) = 0, x ∈ Γ1,

−h2 ∂2
x2x2

v−1 (x) = h2λ0 v−1 (x) + h2λ1 v−0 (x), x ∈ D2,

∂x2v
−
1 (x1,−l2) = 0, x1 ∈ (0, a),

v+
1 (x1, 0)− v−1 (x1, 0) =

1 + h2

h2

C
(2)
1 ∂x2v

+
0 (x1, 0), x ∈ (0, a),

∂x2v
+
1 (x1, 0)− h2∂x2v

−
1 (x1, 0) = −µ0∂

2
x1x1

v+
0 (x1, 0), x1 ∈ (0, a).

(3.45)

For the uniqueness of the solution to problem (3.45) we demand the following orthogonality
condition: ∫

Ω0

v+
1 v+

0 dx + h2

∫

D2

v−1 v−0 dx = 0. (3.46)
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From the solvability condition of problem (3.45), similarly as before, we derive the formula

−
∫

∂Ω0

∂v+
1

∂ν
v+

0 ds +

∫

∂Ω0

∂v+
0

∂ν
v+

1 ds−
a∫

0

h2
∂v−1
∂x2

v−0

∣∣∣∣
0

−l2

dx1 +

a∫

0

h2
∂v−0
∂x2

v−1

∣∣∣∣
0

−l2

dx1 =

= λ1

∫

Ω0

(
v+

0

)2

dx + λ1h2

∫

D2

(
v−0

)2

dx

(3.47)

or, keeping in mind the normalization condition (3.39) and the boundary conditions of the
problems (3.36) and (3.45), we get

∫

I0

(
∂v+

1

∂x2

− h2
∂v−1
∂x2

)
v+

0 dx1 −
∫

I0

(
v+

1 − v−1
)∂v+

0

∂x2

dx1 = λ1 (3.48)

and finally

λ1 =µ0

∫

I0

(
∂x1v

+
0

)2
dx1 − 1 + h2

h2

C
(2)
1

∫

I0

(
∂x2v

+
0

)2
dx1. (3.49)

Here µ0 is defined by (2.36).

For v2−α(x) =

{
v+

2−α(x), x ∈ Ω,
v−2−α(x), x ∈ D2,

and λ2−α we have the problem





−∆x v+
2−α(x) = λ0v

+
2−α(x) + λ1v

+
1−α(x) + λ1−αv+

1 (x) + λ2−αv+
0 (x), x ∈ Ω0,

−∂2
x2x2

v−2−α(x) = λ0 v−2−α(x) + λ1 v−1−α(x) + λ1−α v−1 (x) + λ2−α v−0 (x), x ∈ D2,
∂ν v+

2−α(x) = 0, x ∈ Γ2,
v+

2−α(x) = 0, x ∈ Γ1,

v+
2−α(x1, 0)− v−2−α(x1, 0) = 1+h2

h2
C

(0)
1 v+

0 (x1, 0), x ∈ I0,

∂x2v
+
2−α(x1, 0) = h2∂x2v

−
2−α(x1, 0), x ∈ I0,

∂x2v
−
2−α(x1,−l2) = 0, x ∈ I0,

(3.50)
For the uniqueness we demand the following orthogonality condition:

∫

Ω0

v+
2−αv+

0 dx + h2

∫

D2

v−2−αv−0 dx = 0. (3.51)

From the solvability condition of the problem (3.50) we derive the formula for λ2−α. Similarly
as before, we obtain

−
∫

∂Ω0

∂v+
2−α

∂ν
v+

0 ds +

∫

∂Ω0

∂v+
0

∂ν
v+

2−α ds−
a∫

0

h2

∂v−2−α

∂x2

v−0

∣∣∣∣
0

−l2

dx1 +

a∫

0

h2
∂v−0
∂x2

v−2−α

∣∣∣∣
0

−l2

dx1 =

= λ1

∫

Ω0

v+
1−αv+

0 dx + λ1h2

∫

D2

v−1−αv−0 dx + λ1−α

∫

Ω0

v+
1 v+

0 dx + λ1−αh2

∫

D2

v−1 v−0 dx+

+ λ2−α

∫

Ω0

(
v+

0

)2

dx + λ2−αh2

∫

D2

(
v−0

)2

dx

(3.52)
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or, keeping in mind the normalization condition (3.39) and the boundary conditions of the
problems (3.36) and (3.45), we get

∫

I0

(
∂v+

2−α

∂x2

− h2

∂v−2−α

∂x2

)
v+

0 dx1 −
∫

I0

(
v+

2−α − v−2−α

)∂v+
0

∂x2

dx1−

−λ1

∫

Ω0

v+
1−αv+

0 dx− λ1h2

∫

D2

v−1−αv−0 dx− λ1−α

∫

Ω0

v+
1 v+

0 dx− λ1−αh2

∫

D2

v−1 v−0 dx = λ2−α

(3.53)
and finally, using (3.46) and (3.51), we derive

λ2−α =− 1 + h2

h2

C
(0)
1

∫

I0

v+
0 ∂x2v

+
0 dx1. (3.54)

3.3 Asymptotic approximations

Let λ0 be an eigenvalue of problem (3.36), v0 is the corresponding eigenfunction normalized
with (3.39). Then we can define λ1−α with the help of (3.44), λ1 with the help of (3.49), λ2−α

with the help of (3.54), the unique solution v±1−α to problem (3.40), the unique solution v±1 to
problem (3.45) and the unique solution v±2−α to problem (3.50).

Using the method of matched asymptotic expansions for the leading terms of (3.2), (3.3)
and (3.4), we construct the approximation Rε ∈ H1(Ω0; Γ1) :

Rε(x) = v+
0 (x) + ε1−αv+

1−α(x) + εv+
1 (x) + εχ0(x2)

( 2∑
i=1

(
Z

(i)
1 (η)− δi,2(η2 + C

(2)
1 )

)
∂xi

v+
0 (x1, 0)

)

+ ε2−αv+
2−α(x) + ε2−αχ0(x2)

(
(Z

(0)
2−α(η)− C

(0)
1 )v+

0 (x1, 0) + Z
(1)
2−α(η)∂x1v

+
1−α(x1, 0)

)

+ε2χ0

((
Z

(0,0)
2 (η)+

λ0η
2
2

2

)
v+

0 (x1, 0)+
(
Z

(0,1)
2 (η)− η2

)
∂x2v

+
0 (x1, 0)+

(
Z

(2,0)
2 (η)+

η2
2

2

)
∂2

x1x1
v+

0 (x1, 0)

+ Z
(1,1)
2 (η) ∂2

x1x2
v+

0 (x1, 0) +
(
Z

(0,2)
2 (η)− η2

)
∂2

x2x2
v+

0 (x1, 0)

)
, η =

x

ε
, x ∈ Ω0; (3.55)

Rε(x) = v−0 (x) + ε1−αv−1−α(x) + ε
(
v−1 (x) + Y (η1)∂x1v

−
0 (x)

)

+ εχ0(x2)

((
Z

(1)
1 (η)− Y (η1)

)
∂x1v

+
0 (x1, 0) +

(
Z

(2)
1 (η)− η2

h2

+
C

(2)
1

h2

)
∂x2v

+
0 (x1, 0)

)

+ ε2−α
(
v−2−α(x) + Y (η1)∂x1v

−
1−α(x)

)

+ ε2−αχ0(x2)
(
Z

(0)
2−α(η)− 4h1l1λ0

h2

η2 +
C

(0)
1

h2

)
v+

0 (x1, 0) +
(
Z

(1)
2−α(η)− Y (η1)

)
∂x1v

+
0 (x1, 0)

)

+ ε2χ0(x2)

((
Z

(0,0)
2 (η) +

λ0

2
η2

2

)
v+

0 (x1, 0) +
(
Z

(0,1)
2 (η)− η2

h2

)
∂x2v

+
0 (x1, 0)

+
(
Z

(2,0)
2 (η)− µ0

h2

η2

)
∂2

x1x1
v+

0 (x1, 0) +
(
Z

(1,1)
2 (η)− η2Y (η1)

h2

)
∂2

x1x2
v+

0 (x1, 0)

+
(
Z

(0,2)
2 (η)− η2

h2

)
∂2

x2x2
v+

0 (x1, 0)

)
, η =

x

ε
, x ∈ G(1)

ε ∪G(2)
ε . (3.56)
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Here χ0 is a smooth cut-off function that equals 1 in a neighborhood of zero.
Substituting Rε and λ0 + ε1−αλ1−α + ελ1 + ε2−αλ2−α into problem (1.1) instead of u and

λ(ε) respectively, and finding residuals, we get that for arbitrary δ > 0

‖Rε − (λ0 + ε1−αλ1−α + ελ1 + ε2−αλ2−α)AεRε ‖Hε ≤ c(δ) ε2−δ, (3.57)

where operator Aε : Hε 7→ Hε is defined by (2.59).

4 The extension operator

For domains of the type under consideration there exist no extension operators that would be
bounded uniformly in ε in the Sobolev space H1 (see [28, 32]). But as was shown in [28, 32],
for eigenfunctions of spectral problems in thick junctions it was possible to construct special
extensions that are bounded on each eigenfunction. Here we prove the similar result for the
eigenfunctions of problem (1.1) in the case when the parameter α ≤ 1.

Theorem 4.1 (α ≤ 1). There exists an extension operator Pε : Hε 7→ H1(Ω, Γ1) which is
asymptotically bounded in ε on each eigenfunctions {un(ε, ·)} of problem (1.1), i.e., for any
n ∈ N there exist positive constants Cn and εn that for all values of the parameter ε from (0, εn)
the following estimate holds:

‖ Pεun(ε, ·) ‖H1(Ω,Γ1)≤ Cn ‖ un(ε, ·) ‖Hε ≤ Cn, (4.1)

where Ω is the interior of the union Ω0 ∪D2.

Proof. Let χ0 be a smooth cut-off function such that χ0(x2) = 0 for x2 ≥ γ0, and χ0(x2) = 1
for x2 ≤ γ0

2
, where γ0 = min{γ(x1) : x1 ∈ [0, a]}.

If un is an eigenfunction of problem (1.1) normalized by condition (1.4), then the function
vn = χ0un is the solution to the following problem

−∆xvn(x) = fn(x) + λn(ε) vn(x), x ∈ Ω0,γ0 ,

−∆xvn(x) = λn(ε) vn(x), x ∈ G(2)
ε ,

−∆xvn(x) = ε−αλn(ε) vn(x), x ∈ G(1)
ε , (4.2)

vn(x1, γ0) = 0, (x1, γ0) ∈ Γγ0 ,

∂νvn(x) = 0, x ∈ ∂Ωε,γ0 \ Γγ0 .

Here Ωε,γ0 is the interior of the union Ω0,γ0∪G
(1)
ε ∪G

(2)
ε , fn(x) = 2χ ′

0 ∂x2un + χ ′′
0 un, supp(χ′0) ⊂

[0, a]× (γ0

2
, γ0), Ω0,γ0 = (0, a)× (0, γ0), Γγ0 = {x : x1 ∈ [0, a], x2 = γ0}.

In the sequel we interpret Ŷ as follows : if Y is a set, then Ŷ is the union of Y and of its
image symmetric with respect to the ordinate axis {x : x1 = 0}; if Y is a function, then Ŷ is
its even extension into the relevant domain with respect to the axis {x : x1 = 0}.

We extend this problem to the left into the domain Ωε,γ0 in the even way and require

2a−periodicity conditions on the corresponding side of the rectangle Ω̂0,γ0 .
Since the extended problem is invariant with respect to shifts by ε along the axis Ox1, the

function (the index n is omitted)

Vε(x) = ε−1( v̂(x + εē1)− v̂(x) ), ( ē1 = (1, 0) ) , (4.3)
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that is 2a−periodic in x1, satisfies the following relations

−∆xVε(x) = ε−1(f̂(x + εē1)− f̂(x)) + λn(ε) Vε(x), x ∈ Ω̂0,γ0 ,

−∆xVε(x) = λn(ε) Vε(x), x ∈ Ĝ(2)
ε ,

−∆xVε(x) = ε−αλn(ε) Vε(x), x ∈ Ĝ(1)
ε ,

Vε(x1, γ0) = 0, (x1, γ0) ∈ Γ̂γ0 ,

∂νVε(x) = 0, x ∈ ∂Ω̂ε,γ0 ∩ {x : x2 ≤ 0},

whence we get the integral equality

‖∇Vε‖2
L2(Ω̂ε,γ0 )

= λn(ε)‖Vε‖2
L2(Ω̂0,γ0)

+ λn(ε)‖Vε‖2

L2(Ĝ
(2)
ε )

+ ε−αλn(ε)‖Vε‖2

L2(Ĝ
(1)
ε )

+

+ε−1

∫

Ω̂0,γ0

(f̂(x + εē1)− f̂(x))Vε dx =: I1(ε) + I2(ε) + I3(ε) + I4(ε). (4.4)

Let us estimate the right-hand side of (4.4). Since

∫

Ω̂0,γ0

(Vε)
2 dx =

∫ γ0

0

dx2

∫ a

−a

dx1 ε−2

∣∣∣∣
∫ x1+ε

x1

∂tv̂
(1)(t, x2) dt

∣∣∣∣
2

≤

≤
∫ γ0

0

dx2

∫ a

−a

(∂tv̂(t, x2))
2 dt ≤ 2‖∂x1un‖2

L2(Ω0),

we have
|I4(ε)| ≤ ‖ε−1(f̂(x + εē1)− f̂(x))‖L2(Ω̂0,γ0 ) · ‖Vε‖L2(Ω̂0,γ0 ) ≤

≤ c‖∂x1f‖L2(Ω0,γ0 ) ‖∂x1u‖L2(Ω0) ≤
≤ c

(‖u‖H1(Ω0) + ‖(χ0)
′∂2

x1x2
u‖L2(Ω0,γ0 )‖

) ‖∂x1u‖L2(Ω0) ≤ c‖u(ε, ·)‖2
H1(Ω0).

Here, in order to estimate the mixed second-order derivative, we have used so-called the second
energy inequality for elliptic operators in the domain (0, a)× (γ0

2
, γ0), i.e., the a-priori estimate

‖u‖2
H2(Ω) ≤ c(‖∆u‖2

L2(Ω) + ‖u‖2
L2(Ω)) (see [18]) with a suitable cut-off function.

In order to estimate I2 and I3 we use the approach of Theorem 4.1 ([28]). Since the

singularity is greater on the rods G
(1)
ε , we estimate I3. Let us represent Vε on the rod G

(1)
j (dk, ε)

in the following form :

Vε(x) = ϕj(x2) + Uj(x), x ∈ G
(1)
j (dk, ε), (4.5)

∫

κj(dk,ε)

Uj(x) dx1 = 0 ∀x2 ∈ [−εl1, 0],

where κj(dk, ε) is the cross-section of the rod G
(1)
j (dk, ε).

Integrating the equation for Vε in G
(1)
j (dk, ε) over the cross-section κj(dk, ε), we get

∂2
x2x2

ϕj(x2) + ε−αλn(ε)ϕj(x2) = 0 , x2 ∈ (−εl1, 0) ; ∂x2ϕj(−εl1) = 0 ,
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which implies

ϕj(x2) = Aj

cos
(
ε−

α
2 λ

1
2
n (ε)(x2 + εl1)

)

cos
(
ε1−α

2 λ
1
2
n (ε) l1

) , x2 ∈ [−εl1, 0],

Aj =
1

εh1

∫

κj(dk,ε)

Vε(x1, 0) dx1.

It is easy to calculate that

‖ϕj‖2

L2(G
(1)
j (dk,ε))

=
εh1A

2
j

2
[
cos

(
ε1−α

2 λ
1
2
n (ε) l1

)]2


εl1 +

sin
(
2ε1−α

2 λ
1
2
n (ε)l1)

)

2ε−
α
2 λ

1
2
n (ε)


 .

Because of α < 2 and λn(ε) = O(1) as ε → 0,

‖ϕj‖2

L2(G
(1)
j (dk,ε))

≤ c1ε
2A2

j ≤ c2ε

∫

κj(dk,ε)

V 2
ε (x1, 0) dx1.

Now using the Poincare inequality for Uj, we get

|I3(ε)| ≤ 4ε−αλn(ε)
N−1∑
j=0

4∑

k=1

(
‖ϕj‖2

L2(G
(1)
j (dk,ε))

+ ‖Uj‖2

L2(G
(1)
j (dk,ε))

)
≤

≤ c1ε
−α

N−1∑
j=0

4∑

k=1

(
ε

∫

κj(dk,ε)

V 2
ε (x1, 0) dx1 + ε2‖∂x1Vε‖2

L2(G
(1)
j (dk,ε))

)
≤

≤ c1ε
−α

(
ε

∫ a

0

V 2
ε (x1, 0) dx1 + ε2‖∂x1Vε‖2

L2(G
(1)
ε )

)
≤

≤ c2ε
1−α

(
δ3‖∇Vε‖2

L2(Ω0,γ0 ) +
2

δ3

‖Vε‖2
L2(Ω0,γ0 ) + ε2‖∂x1Vε‖2

L2(G
(1)
ε )

)
.

By the same arguments we obtain

|I2(ε)| ≤ c3

(
δ2‖∇Vε‖2

L2(Ω0,γ0 ) +
2

δ2

‖Vε‖2
L2(Ω0,γ0 ) + ε2‖∂x1Vε‖2

L2(G
(2)
ε )

)
.

Choosing δ2, δ3 and ε such that c2δ3 + c3δ2 + 2ε2 < 1/2, we obtain from (4.4) that for ε
small enough

‖Vε‖H1(Ω̂ε,γ0 ) ≤ c(n)‖un(ε, ·)‖H1(Ωε). (4.6)

This inequality shows that the eigenfunctions have no strong variation of values on neighboring
rods.

Now we can conduct the construction of the extension operator Pε : Hε 7→ H1(Ω, Γ1).
Since the construction closely follows that of Theorem 4.1 in ([28]), where such an extension
operator was constructed for eigenfunctions of the Neumann spectral problem in a thick plane
junction and without any concentrated masses, we omit the proof. From (2.60) it follows the
second inequality in (4.1).
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5 Justification of the asymptotics

To justify the asymptotic approximations constructed above, we use the scheme proposed in
[40] for investigation of the asymptotic behavior of the eigenvalues and eigenvectors of an
abstract operator Aε : Hε 7→ Hε losing the compactness in the limit passage as ε → 0. This
scheme generalizes procedure of the justification of the asymptotic behavior of eigenvalues
and eigenvectors of boundary value problems in perturbed domains that was proposed in [39].
To prove Theorem 5.4 – Theorem 5.7, we additionally use the same arguments as in [24,
Theorem 3.1] (see items 2 – 4 of the proof).

5.1 Condition D1 – D6

In our case this is the family of the operators {Aε : Hε 7→ Hε}ε>0 defined in (2.59). Recall
that Aε corresponds to problem (1.1).

Let us define an operator that corresponds to the homogenized problem (2.45) in the case
α = 1 and to the homogenized problem (3.36) if α ∈ (0, 1). In the case α = 1 we denote by V0

the space L2(Ω0)× L2(D2)× L2(I0) with the scalar product

(u,v)V0
:=

∫

Ω0

u+v+ dx + h2

∫

D2

u−v− dx + 4h1l1

∫

I0

u0v0 dx1,

where u =
(
u+, u−, u0

)
, v =

(
v+, v−, v0

)
. If α ∈ (0, 1), then V0 = L2(Ω0)× L2(D2) and in the

scalar product the integral over I0 is absent.
It is easy to see that the anisotropic Sobolev space

H0 := {u ∈ L2(Ω) : u+ ∈ H1(Ω0, Γ1), ∃ ∂x2u
− ∈ L2(D2), u+|I0 = u−|I0}, (5.1)

where u+ = u|Ω0 , u− = u|D2 and the last equality in (5.1) is understood in the sense of traces,
with the scalar product

(
u, v

)
H0

=

∫

Ω0

∇u+ · ∇v+ dx + h2

∫

D2

∂x2u
− ∂x2v

− dx

is densely and only continuously embedded into V0.
Problem (2.45) ((3.36)) is equivalent to the spectral problem A0v = λ−1

0 v in H0, where the
operator A0 : H0 7→ H0 is defined by the equality

(
A0u, v

)
H0

=
(
u,v

)
V0

∀ u, v ∈ H0. (5.2)

Here u = (u|Ω0 , u|D2 , u|I0). Obviously, A0 is self-adjoint, positive, continuous, but non-compact.
Also denote by Z0 := H1(Ω, Γ1). Obviously, that Z0 is densely and compactly embedded

into V .
Now let us verify conditions D1 – D6 of the scheme from [40].
The operator Sε : Z0 7→ Hε assigns to each function v ∈ Z0 its restriction on Ωε. Clearly,

Sε is uniformly bounded with respect to ε. Thus condition D1 is satisfied.
The operator Pε : Hε 7→ Z0 from condition D2 is associated with the extension operator

Pε from Theorem 4.1.
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Let us verify condition D3. Consider the sequence {un(ε, ·)}ε>0 for any fixed index n ∈ N.
Due to Theorem 4.1 there exists some subsequence {ε′} ⊂ {ε} (again denoted by {ε}) such
that Pεu(ε, ·) → v weakly in Z0 (index n is omitted) as ε → 0.

Since
∫

D2

χh2(
x1

ε
) ∂x2Pε(u(ε, x)) φ(x) dx = −

∫

D2

χh2

x1

ε
)Pε(u(ε, x)) ∂x2φ dx ∀ φ ∈ C∞

0 (D2),

we get

χh2(
x1

ε
)∂x2Pε(u(ε, x)) → h2 ∂x2v(x) weakly in L2(D2) as ε → 0. (5.3)

Here χh2(η1), η1 ∈ R, is a 1-periodic function that equals 1 on the interval
(

1−h2

2
, 1+h2

2

)
and

vanishing on the rest of the segment [0, 1].
Consider the corresponding integral identity for problem (1.1) with the following test func-

tion

ψ(x) =

{
0, x ∈ Ω0 ∪G

(1)
ε ,

εY
(

x1

ε

)
φ(x), x ∈ G

(2)
ε ,

φ ∈ C∞
0 (D2),

where Y is defined in (2.42). As a result, we have

∫

D2

χh2(x1/ε)∂x1Pε(u(ε, x)) φ dx = O(ε), ε → 0. (5.4)

Due to the second inequality in (4.1), it is easy to verify that

∫

G
(1)
ε

∇u(ε, x) · ∇ϕ(x) dx → 0 as ε → 0 ∀ ϕ ∈ Z0. (5.5)

Taking into account limits (5.3)-(5.5) , we ascertain that

lim
ε→0

(
u(ε, ·), Sεϕ

)
Hε

=
(
v, ϕ

)
Hε

∀ ϕ ∈ Z0,

i.e., condition D3 is satisfied.
Let for certain functions uε, vε ∈ Hε one has Pεu

ε → u0 and Pεv
ε → v0 weakly in Z0 as

ε → 0. Then

lim
ε→0

(
uε, vε

)
Vε

=

∫

Ω0

u+v+ dx + h2

∫

D2

u−v− dx + lim
ε→0

ε−α

∫

G
(1)
ε

uεvε dx, (5.6)

where u± and v± are the restrictions of u0 and v0 on Ω0 and D2 respectively.
To find the limit in the right-hand side of (5.6) for α < 1 we use the following inequality

ε−α

∫

G
(1)
ε

ϕ2 dx ≤ C1ε
2−α

∫

G
(1)
ε

(
∂x2ϕ

)2
dx + C2ε

1−α

∫

I0

ϕ2(x1, 0) dx1. (5.7)

Thus limε→0 ε−α
∫

G
(1)
ε

uεvε dx = 0 for α ∈ (0, 1).
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If α = 1, then with the help of the inequality

ε−1

∫

G
(1)
ε

(
ϕ(x)− ϕ(x1, 0)

)2
dx ≤ ε l1

∫

G
(1)
ε

(
∂x2ϕ(x)

)2
dx ∀ ϕ ∈ H1(G(1)

ε ),

we deduce that limε→0 ε−1
∫

G
(1)
ε

uεvε dx = 4h1l1
∫

I0
u0(x1, 0) v0(x1, 0) dx1.

Therefore, limε→0

(
uε, vε

)
Vε

=
(
u0, v0

)
V0

for α ∈ (0, 1]. This means that the first part of
condition D4 holds.

We put by definition that for each function v ∈ Z0 PεSεv = v. Then the second condition
D4 is satisfied.

Condition D5, in fact, has been verified in subsection 3.3 and in subsection 2.4: the result
of the action of the operator Rε in D5 is the construction of the approximating function on
the basis of an eigenfunction of the homogenized problem. Furthermore, the approximating
function satisfies inequality (2.58) for α = 1 and (3.57) for α ∈ (0, 1) that are analog of the
corresponding inequality in condition D5.

5.1.1 Condition D6. Pseudovibrations

To verify this condition, we choose the approximating function Wε in the case when λ0 coincides

with one of the numbers Pm =
(

π+2π(m−1)
2l2

)2

, m ∈ N (points of the essential spectrum of the

homogenized problems (2.45) and (3.36)) as follows:

Wε(x) =

{ √
2

εh2l2Pm
cos

√
Pm(x2 + l2), x ∈ G

(2)
j0

(ε),

0, x ∈ Ωε \G
(2)
j0

(ε),
(5.8)

where G
(2)
j0

(ε) is certain fixed rod from the second class.
It is easy to verify that Wε satisfies the boundary conditions of problem (1.1), ‖Wε‖Hε = 1,

−∆Wε(x) = Pmρε(x)Wε(x), x ∈ Ωε,

∂x2Wε(x1, 0 + 0)− ∂x2Wε(x1, 0− 0) = bm(ε), x1 ∈ Iε
h2

(j0),

where bm(ε) = ε−
1
2 (−1)m

√
2

h2 l2
, Iε

h2
(j0) =

(
ε(j0 + 1−h2

2
), ε(j0 + 1+h2

2
)
)
.

From these relations and the definition of operator Aε (see (2.59) it follows the following
integral identity

(
Wε − PmAεWε, ψ

)
Hε

= −bm(ε)

∫

Iε
h2

(j0)

ψ(x1, 0) dx1 ∀ ψ ∈ Hε. (5.9)

Using Lemma 1.5 [46, Sec.1] and inequality

v2(x1, 0) ≤ 2ε−1/2

∫ γ0

0

v2(x1, x2) dx2 + 2ε1/2

∫ γ0

0

(∂x2v(x1, x2))
2 dx2, (5.10)

(see Lemma 6 [42, p. 412]), we get

∣∣− bm(ε)

∫

Iε
h(j0)

ψ(x1, 0) dx1

∣∣ ≤
√

2l−1
2 ‖ψ‖L2(Iε

h2
(j0)) ≤ c ε

1
4‖ψ‖H1(Ω0). (5.11)
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Then we deduce from (5.9) and (5.11) the following estimate

‖Wε − PmAεWε‖Hε
≤ c0 ε

1
4 , (5.12)

which shows that condition D6 holds. Here the constant c0 is independent of m.
Eigenvibrations with eigenfrequencies near to the discrete spectrum of the homogenized

problems are vibrations of the junction Ωε like an entire system. From (5.12) it will follow that
there are eigenvibrations that have structure of function Wε (obviously we could take function
Wε that is not equal to zero on several different rods from the second class). This means that
different rods of the junction can vibrate and the other stay immobile. Such vibrations were
discovered in paper [36] and called pseudovibrations. It turn out that there are pseudovibrations
in which each rod can have its own frequency and can have quickly oscillating character (see
[36, Sec. 5]). In should be noted that energy of a pseudovibration is concentrated on the thin
rods.

5.2 The main results

Thus, all conditions D1–D6 of the scheme from [40] are satisfied both for problem (1.1) and
the corresponding homogenized problem (2.45) for α = 1 and the homogenized problem (3.36)
for α ∈ (0, 1). Applying this scheme, we get the following theorems.

Theorem 5.1 (the Hausdorff convergence). Only points of the spectrum of the homogenized
problem (2.45) if α = 1 ((3.36) if α ∈ (0, 1)) are accumulation points for the spectrum of
problem (1.1) as ε → 0.

The eigenvalues {λn(ε)} at fixed indices n, are usually called low eigenvalues (see [36]); the
corresponding eigenfunctions are called low frequency oscillations.

Definition 5.1. ([36]) The value T := supn∈N lim supε→0 λn(ε) is called threshold of the
low eigenvalues of problem (1.1).

This value indicate the frequency range where pseudovibrations can appeared.
Recall that {λn(ε) : n ∈ N} is the ordered sequence (1.3) of eigenvalues of problem (1.1),

{un(ε, ·) : n ∈ N} is the corresponding sequence of eigenfunctions that are orthonormalized

with relations (1.4), and {λ(1,n)
0 : n ∈ N} is the first series of eigenvalues of the homogenized

problem (2.45) if α = 1 (see Th. 2.1) and (3.36) if α ∈ (0, 1) (see Th. 3.1)).

Theorem 5.2 (Low-frequency convergence; α ∈ (0, 1) and α = 1 ). For any n ∈ N

λn(ε) → λ
(1,n)
0 as ε → 0,

and the threshold of the low eigenvalues of problem (1.1) is equal to P1.
There exists a subsequence of the sequence {ε} (again denoted by {ε}) such that

∀ n ∈ N Pεun(ε, ·) → v
(1,n)
0 weakly in H1(Ω, Γ1) as ε → 0,
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where {v(1,n)
0 : n ∈ N} are the corresponding eigenfunctions of the homogenized problem (2.45)

((3.36)) that satisfy the following orthonormalized condition

(
v

(1,n)
0 , v

(1,k)
0

)
V0

=

∫

Ω0

v
(1,n)
0 v

(1,k)
0 dx + h2

∫

D2

v
(1,n)
0 v

(1,k)
0 dx

+ δα,14h1l1

∫

I0

v
(1,n)
0 (x1, 0) v

(1,k)
0 (x1, 0) dx1 = δn,k.

Next using condition D6 we get the following theorem.

Theorem 5.3 (Asymptotic behavior near the essential spectrum. Pseudovibrations). Let λ0

coincides with one of the points

{
Pm =

(
π+2π(m−1)

2l2

)2

, m ∈ N
}

of the essential spectrum of

the homogenized problem (2.45) (or (3.36)).
Then there exist c0 > 0 and ε0 > 0 such that for all values of the parameter ε ∈ (0, ε0) the

interval (
1

λ0

− c0 ε
1
4 ,

1

λ0

+ c0 ε
1
4

)

contains finitely many eigenvalues of the operator Aε.
In addition, there exists a finite linear combination Ũε (‖Ũε‖Hε = 1) of the eigenfunctions

{uk(ε)+i(ε, ·) : i = 1, p(ε)} that correspond, respectively, to the eigenvalues
{(

λk(ε)+i(ε)
)−1

:

i = 1, p(ε)
}

of operator Aε from the segment
[

1
λ0

− c0 ε
1
8 , 1

λ0
+ c0 ε

1
8

]
such that

∥∥∥Wε − Ũε

∥∥∥
Hε

≤ 2ε
1
8 ,

where Wε is defined by (5.8).

For next theorems, where asymptotic estimates are established, we have to consider two
cases α ∈ (0, 1) and α = 1 separately.

5.2.1 The case α = 1

Let λ
(1,n+1)
0 = . . . = λ

(1,n+r)
0 be an r−multiple eigenvalue of the homogenized problem (2.45)

from the first series and the corresponding eigenfunctions v
(1,n+1)
0 , . . . , v

(1,n+r)
0 are orthonor-

malized in V0. Using formula (2.51), we can construct next term ε λ
(1,n+i)
1 of the asymptotic

expansion (2.1) (i = 1, . . . , r) and then define the unique solution v
(1,n+i)
1 to problem (2.47),

which satisfies condition (2.48). Denote by

Λ
(1,n)
i (ε) := λ

(1,n+i)
0 + ε λ

(1,n+i)
1

the partial sum of (2.1). Assume that {Λ(1,n)
i (ε) : i = 1, . . . , r} split into k groups

Λ
(1,n)
1 (ε) = . . . = Λ(1,n)

r1
(ε) < . . . < Λ

(1,n)
r1+...+rk−1+1(ε) = . . . = Λ(1,n)

r (ε),

where r1 + . . . + rk = r.
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Theorem 5.4 (Asymptotic estimates for the low eigenvalues; α = 1 ). For any δ > 0 and
s ∈ {1, . . . , k} and for sufficiently small ε, we have

∣∣∣λn+r1+...+rs−1+ t(ε)− Λ
(1,n)
r1+...+rs

(ε)
∣∣∣ ≤ C1(n, δ) ε2−δ ∀ t = 1, . . . , rs (r0 = 0).

In addition, for any t ∈ {1, . . . , rs} there exist {a(t,s)
p (ε), p = 1, . . . , rs} ⊂ R such that 0 < c1 ≤∑rs

p=1

(
a

(t,s)
p (ε)

)2 ≤ c2 and

∥∥∥
∑rs

p=1
a(t,s)

p (ε) un+r1+...+rs−1+p(ε, ·)−R(n+r1+...+rs−1+ t)
ε

∥∥∥
H1(Ωε)

≤ C2(n, δ) ε2−δ,

where R
(n+r1+...+rs−1+ t)
ε is the approximation function constructed with the help of solutions

v
(1,n+r1+...+rs−1+ t)
0 and v

(1,n+r1+...+rs−1+ t)
1 by formulas (2.56) and (2.57).

It follows from Theorems 5.1 and 5.2 that there exist other converging sequences of eigenval-
ues λn(ε)(ε) so-called high frequency convergences; the corresponding eigenfunctions are called
high frequency oscillations. Obviously, in this case the index n depends on ε and n(ε) → +∞
as ε → 0.

Let λ
(m,n+1)
0 = . . . = λ

(m,n+r)
0 be an r−multiple eigenvalue of the homogenized problem

(2.45) from the m-th series (m > 1) and the corresponding eigenfunctions v
(m,n+1)
0 , . . . , v

(m,n+r)
0

are orthonormalized in V0. Using formula (2.51), we construct next term ε λ
(m,n+i)
1 of the

asymptotic expansion (2.1) (i = 1, . . . , r) and then define the unique solution v
(m,n+i)
1 to prob-

lem (2.47), which satisfies condition (2.48). Denote by

Λ
(m,n)
i (ε) := λ

(m,n+i)
0 + ε λ

(m,n+i)
1

the partial sum of (2.1). Assume that {Λ(m,n)
i (ε) : i = 1, . . . , r} split into k groups

Λ
(m,n)
1 (ε) = . . . = Λ(m,n)

r1
(ε) < . . . < Λ

(m,n)
r1+...+rk−1+1(ε) = . . . = Λ(m,n)

r (ε),

where r1 + . . . + rk = r.

Theorem 5.5 (High frequency convergences and estimates; α = 1). For any δ > 0 and
s ∈ {1, . . . , k} there exist ε0 > 0 and c > 0 such that for all value of the parameter ε ∈ (0, ε0)
the interval

I(m,n)
s (ε) :=

(
Λ

(m,n)
r1+...+rs

(ε)− c ε2−δ , Λ
(m,n)
r1+...+rs

(ε) + c ε2−δ
)

contains exactly rs eigenvalues of problem (1.1).

In addition, for the approximation function R
(m, n+r1+...+rs−1+ t)
ε (t = 1, . . . , rs), which con-

structed with the help of solutions v
(m,n+r1+...+rs−1+ t)
0 and v

(m,n+r1+...+rs−1+ t)
1 by formulas (2.56)

and (2.57), the following asymptotic estimate

∥∥∥R(m, n+r1+...+rs−1+ t)
ε − Ũi(ε, ·)

∥∥∥
H1(Ωε)

≤ C ε2−δ

holds, where Ũi(ε, ·) is a linear combination of eigenfunctions of problem (1.1) that correspond

to the eigenvalues from the interval I
(m,n)
s (ε).
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5.2.2 The case α ∈ (0, 1)

Let λ
(1,n+1)
0 = . . . = λ

(1,n+r)
0 be an r−multiple eigenvalue of the homogenized problem (3.36)

from the first series and the corresponding eigenfunctions v
(1,n+1)
0 , . . . , v

(1,n+r)
0 are orthonor-

malized in V0. Using formulas (3.44), (3.49) and (3.54), we successively construct next terms

ε1−α λ
(1,n+i)
1−α , ε λ

(1,n+i)
1 , ε2−α λ

(1,n+i)
2−α of the asymptotic expansion (3.1) (i = 1, . . . , r) and define

the unique solutions v
(1,n+i)
1−α , v

(1,n+i)
1 , v

(1,n+i)
2−α to problems (3.40), (3.45) and (3.50) respectively.

Denote by
Λ

(1,n)
i (ε) := λ

(1,n+i)
0 + ε1−αλ

(1,n+i)
1−α + ελ

(1,n+i)
1 + ε2−αλ

(1,n+i)
2−α

the partial sum of (3.1). Assume that {Λ(1,n)
i (ε) : i = 1, . . . , r} split into k groups

Λ
(1,n)
1 (ε) = . . . = Λ(1,n)

r1
(ε) < . . . < Λ

(1,n)
r1+...+rk−1+1(ε) = . . . = Λ(1,n)

r (ε),

where r1 + . . . + rk = r.

Theorem 5.6 (Asymptotic estimates for the low eigenvalues; α ∈ (0, 1) ). For any δ > 0 and
s ∈ {1, . . . , k} and for sufficiently small ε, we have

∣∣∣λn+r1+...+rs−1+ t(ε)− Λ
(1,n)
r1+...+rs

(ε)
∣∣∣ ≤ C1(n, δ) ε2−δ ∀ t = 1, . . . , rs (r0 = 0).

In addition, for any t ∈ {1, . . . , rs} there exist {a(t,s)
p (ε), p = 1, . . . , rs} ⊂ R such that 0 < c1 ≤∑rs

p=1

(
a

(t,s)
p (ε)

)2 ≤ c2 and

∥∥∥
∑rs

p=1
a(t,s)

p (ε) un+r1+...+rs−1+p(ε, ·)−R(n+r1+...+rs−1+ t)
ε

∥∥∥
H1(Ωε)

≤ C2(n, δ) ε2−δ,

where R
(n+r1+...+rs−1+ t)
ε is the approximation function constructed with the help of solutions

v
(1,n+r1+...+rs−1+ t)
0 , v

(1,n+r1+...+rs−1+ t)
1−α , v

(1,n+r1+...+rs−1+ t)
1 and v

(1,n+r1+...+rs−1+ t)
2−α by formulas (3.55)

and (3.56).

Let λ
(m,n+1)
0 = . . . = λ

(m,n+r)
0 be an r−multiple eigenvalue of the homogenized problem

(3.36) from the m-th series (m > 1) and the corresponding eigenfunctions v
(m,n+1)
0 , . . . , v

(m,n+r)
0

are orthonormalized in V0. Using formulas (3.44), (3.49) and (3.54), we successively construct

next terms ε1−α λ
(m,n+i)
1−α , ε λ

(m,n+i)
1 , ε2−α λ

(m,n+i)
2−α of the asymptotic expansion (3.1) (i =

1, . . . , r) and define the unique solutions v
(m,n+i)
1−α , v

(m,n+i)
1 , v

(m,n+i)
2−α to problems (3.40), (3.45)

and (3.50) respectively. Denote by

Λ
(m,n)
i (ε) := λ

(m,n+i)
0 + ε1−αλ

(m,n+i)
1−α + ελ

(m,n+i)
1 + ε2−αλ

(m,n+i)
2−α

the partial sum of (3.1). Assume that {Λ(m,n)
i (ε) : i = 1, . . . , r} split into k groups

Λ
(m,n)
1 (ε) = . . . = Λ(m,n)

r1
(ε) < . . . < Λ

(m,n)
r1+...+rk−1+1(ε) = . . . = Λ(m,n)

r (ε),

where r1 + . . . + rk = r.
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Theorem 5.7 (High frequency convergences and estimates; α ∈ (0, 1)). For any δ > 0 and
s ∈ {1, . . . , k} there exist ε0 > 0 and c > 0 such that for all value of the parameter ε ∈ (0, ε0)
the interval

I(m,n)
s (ε) :=

(
Λ

(m,n)
r1+...+rs

(ε)− c ε2−δ , Λ
(m,n)
r1+...+rs

(ε) + c ε2−δ
)

contains exactly rs eigenvalues of problem (1.1).

In addition, for the approximation function R
(m, n+r1+...+rs−1+ t)
ε (t = 1, . . . , rs), which con-

structed with the help of solutions v
(m, n+r1+...+rs−1+ t)
0 , v

(m, n+r1+...+rs−1+ t)
1−α , v

(m, n+r1+...+rs−1+ t)
1

and v
(m, n+r1+...+rs−1+ t)
2−α by formulas (3.55) and (3.56), the following asymptotic estimate

∥∥∥R(m, n+r1+...+rs−1+ t)
ε − Ũi(ε, ·)

∥∥∥
H1(Ωε)

≤ C ε2−δ

holds, where Ũi(ε, ·) is a linear combination of eigenfunctions of problem (1.1) that correspond

to the eigenvalues from the interval I
(m,n)
s (ε).
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