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Self-Adjoint Differential-Algebraic Equations ∗

Peter Kunkel† Volker Mehrmann‡ Lena Scholz‡

July 28, 2011

Abstract

Motivated from linear-quadratic optimal control problems for differential-algebraic
equations (DAEs), we study the functional analytic properties of the operator associated
with the necessary optimality boundary value problem and show that it is associated
with a self-conjugate operator and a self-adjoint pair of matrix functions. We then study
general self-adjoint pairs of matrix valued functions and derive condensed forms under
orthogonal congruence transformations that preserve the self-adjointness. We analyze the
relationship between self-adjoint DAEs and Hamiltonian systems with symplectic flows.
We also show how to extract self-adjoint and Hamiltonian reduced systems from derivative
arrays.

Keywords: Differential-algebraic equation, self-conjugate operator, self-adjoint pair, opti-
mal control, necessary optimality condition, strangeness index, condensed form, congruence
transformation, Hamiltonian system, symplectic flow.

AMS(MOS) subject classification: 93C10, 93C15, 93B52, 65L80, 49K15, 34H05.

1 Introduction

In this paper we study a class of structured systems of differential-algebraic equations (DAEs).
The main motivation arises from the linear-quadratic optimal control problem of minimizing
a cost functional

J (x, u) =
1

2
x(t)TMex(t) +

1

2

∫ t

t

(

xTWx+ xTSu+ uTSTx+ uTRu
)

dt, (1.1)

subject to the constraint

Eẋ = Ax+Bu+ f, x(t) = x ∈ R
n, (1.2)

with E,A ∈ C0(I,Rn,n), W ∈ C0(I,Rn,n), B ∈ C0(I,Rn,m), S ∈ C0(I,Rn,m), R ∈
C0(I,Rm,m), f ∈ C0(I,Rn) and Me ∈ R

n,n, where R = RT , W = W T and Me = MT
e .
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Furthermore, I = [t, t] is a real time-interval and Cℓ(I,Rn,m) denotes the ℓ-times continuously
differentiable functions from the interval I to the real n×m matrices. Note that for simplicity
we omit the argument t in all matrix and vector valued functions.

Typically in applications, the matrix function

[

W S

ST R

]

and the weight matrix Me for the final state are pointwise positive semidefinite, but problems
where these are indefinite also arise in applications from robust control [4, 24].

If the differential-algebraic equation (1.2) has some further properties, (i. e., if it is
strangeness-free as a behavior system and if the coefficients are sufficiently smooth), then
it has been shown in [20] that the necessary optimality condition is given by the boundary
value problem





0 E 0
−ET 0 0
0 0 0





d

dt





λ

x

u



 =





0 A B

AT + d
dt
ET W S

BT ST R









λ

x

u



+





f

0
0



 , (1.3)

with boundary conditions x(t) = x, E(t)Tλ(t)−Mex(t) = 0. Note that compared to [20] here
λ is replaced by −λ. Since (1.3) is again a differential-algebraic equation, these boundary
conditions may not be consistent, which means that there may be restrictions to the value x

and the weighting matrix Me that need to be satisfied to guarantee the existence of solutions
[20].

If we denote the associated differential-algebraic equation (1.3) as E ż = Az + f̃ , then
it is an easy calculation to show that the pair (E ,A) of matrix functions has the property
that ET = −E and AT = A + Ė . We call pairs of matrix functions with this property self-
adjoint pairs, since, as we will show below, this is a property that is associated with a linear
self-conjugate differential-algebraic operator.

Formal adjoint equations (or dual systems) and their role for the solvability of optimal
control problems have also been considered in [21], and observability as well as controllability
of linear descriptor systems has been previously studied in [9]. Furthermore, self-adjoint
differential-algebraic systems and the underlying Hamiltonian subsystem have been studied
in [3].

In this paper we will first introduce some preliminary results in Section 2, and then in
Section 3 discuss self-conjugate differential-algebraic operators arising in optimal control in
an abstract setting. In Section 4 we analyze the structure of the resulting self-adjoint pairs of
matrix functions and the associated boundary value problems via condensed forms under con-
gruence transformations using certain constant rank assumptions. Based on these condensed
forms we can characterize the consistency of boundary values, as well as the consistency and
smoothness requirements for the inhomogeneities, and thus derive altogether the conditions
for unique solvability of the system. In Section 5 we then show that the underlying ordinary
differential equation of the differential-algebraic equation associated with a self-adjoint pair
of matrix functions is a Hamiltonian system and generates a symplectic flow. A global con-
densed form for self-adjoint DAEs with symplectic flow is derived in Section 6. In Section 7
we then discuss the structure preserving construction of the symplectic flow from derivative
arrays. Finally, in Section 8 we show that these results also hold locally for nonlinear optimal
control problems and close with some conclusions in Section 9.
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2 Preliminaries

In order to treat general linear DAEs and the constraint equation (1.2) in the same framework
we introduce the so-called behavior formulation (see [28]) by setting

E =
[

E 0
]

, A =
[

A B
]

, z =

[

x

u

]

, (2.1)

such that equations (1.2) can be written as

E ż = Az + f. (2.2)

with sufficiently smooth E ,A ∈ C0(I,Rn,n+m) and f ∈ C0(I,Rn). It is well known [5, 11, 19]
that the solution of the general differential-algebraic equation (2.2) may depend on derivatives
of the coefficient functions E ,A and the inhomogeneity f .

Since it is generally difficult or even impossible to differentiate data that are numerically
computed, an idea due to [8] is to differentiate (2.2) and consider the equation together with
its derivatives. In this way, we get so-called derivative arrays

Mℓżℓ = Nℓzℓ + gℓ, (2.3)

where the coefficient functions form an inflated pair of block matrix functions

(Mℓ)i,j =
(

i
j

)

E(i−j) −
(

i
j+1

)

A(i−j−1), i, j = 0, . . . , ℓ,

(Nℓ)i,j =

{

A(i) for i = 0, . . . , ℓ, j = 0,
0 otherwise,

(zℓ)j = z(j), j = 0, . . . , ℓ,

(gℓ)i = f (i), i = 0, . . . , ℓ.

(2.4)

Here we have used the convention that
(

i
j

)

= 0 for i < 0, j < 0 or j > i.
It is then known, [17, 19], that the following hypothesis is sufficient to characterize the

solution behavior.

Hypothesis 2.1 Consider the system of differential-algebraic equations (2.3). There exist
integers µ, a, d, v such that the following properties hold.

1. For all t ∈ I we have rankMµ(t) = (µ + 1)n − a − v. This implies the existence of a
smooth matrix function Z with orthonormal columns and size ((µ+1)n, a+v) satisfying
ZTMµ = 0.

2. For all t ∈ I we have rankZ(t)TNµ(t)[In+m 0 · · · 0]T = a and without loss of generality
Z can be partitioned as [Z2, Z3], with Z2 of size ((µ+1)n, a) and Z3 of size ((µ+1)n, v),
such that Â2 = ZT

2 Nµ[In+m 0 · · · 0]T has full row rank a and ZT
3 Nµ[In+m 0 · · · 0]T = 0.

Furthermore, there exists a smooth matrix function T2 with orthonormal columns and
size (n+m, d), d = n+m− a satisfying Â2T2 = 0.

3. For all t ∈ I we have that rank E(t)T2(t) = d. This implies the existence of a smooth
matrix function Z1 with orthonormal columns and size (n, d) so that Ê1 = ZT

1 E has
constant rank d.
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If the hypothesis holds, then system (2.2) has the same solution set as the so-called reduced
system





Ê1
0
0



 ż =





Â1

Â2

0



 z +





f̂1

f̂2

f̂3



 , (2.5)

where Ê1 = ZT
1 E , Â1 = ZT

1 A, Â2 = ZT
2 Nµ[In+m 0 · · · 0]T , f̂1 = ZT

1 f , and f̂i = ZT
i gµ for

i = 2, 3. The block rows have dimensions d, a and v, respectively.
If v > 0 and f̂3 6= 0 then the system has no solution and if v = 0 and m = 0 (i. e., there

are as many equations as unknowns), then every consistent initial condition fixes a unique
solution. In the latter case we call the system regular. If the system is regular, then from
(2.5) we see that an initial condition z(t) = z for (2.2) is consistent if and only if

Â2(t)z + f̂2(t) = 0

holds or the second block is void.
The quantity µ in Hypothesis 2.1 is called the strangeness index of the DAE system and

it is well known [19] that a system with m = 0 that satisfies Hypothesis 2.1 with v = 0 has a
well-defined differentiation index, [5]. The differentiation index is commonly used to classify
regular DAEs, except for the case of ordinary differential equations it is one less than the
strangeness index. Note that the reduced system (2.5) is strangeness-free in the sense that it
satisfies Hypothesis 2.1 with µ = 0.

For the DAE (1.2) of the optimal control problem, we require that it satisfies Hypothe-
sis 2.1 with v = 0 such that the corresponding reduced system is given by

Êẋ = Âx+ B̂u+ f̂ , (2.6)

where

Ê1 = ZT
1 E, Â1 = ZT

1 A, B̂1 = ZT
1 B, f̂1 = ZT

1 f,

Â2 = ZT
2 NµV

[

In
0

]

, B̂2 = ZT
2 NµV

[

0
Im

]

, f̂2 = ZT
2 gµ,

with V =
[

In+m 0 . . . 0
]T

. Due to construction it satisfies the condition that

[

Ê1 0

Â2 B̂2

]

has (pointwise) full row rank.

3 Self-conjugate differential-algebraic operators

In this section, we present an abstract setting that allows us to interpret the operator behind
the boundary value problem as a self-conjugate Banach space operator. We refer to [14] for
the general functional framework and the proofs of the following results.

The most general definition of a conjugate operator appears in the context of bilinear
systems.

Definition 3.1 A pair 〈X,X∗〉 of (real) vector spaces equipped with a bilinear form 〈·, ·〉 is
called a bilinear system.
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Definition 3.2 Let 〈X,X∗〉 and 〈Y,Y∗〉 be two bilinear systems and let D : X → Y be a
homomorphism. A homomorphism D∗ : Y∗ → X

∗ is called conjugate to D if and only if

〈Dx, y∗〉 = 〈x,D∗y∗〉 for all x ∈ X, y∗ ∈ Y
∗. (3.1)

In general, we cannot guarantee that a given homomorphism possesses a conjugate nor that it
is unique, if it exists. In order to have at least uniqueness for the conjugate, we need bilinear
systems with stronger properties.

Definition 3.3 A bilinear system 〈X,X∗〉 is called a dual system if and only if the bilinear
form satisfies

〈x, x∗〉 = 0 for all x ∈ X ⇐⇒ x∗ = 0,
〈x, x∗〉 = 0 for all x∗ ∈ X

∗ ⇐⇒ x = 0.
(3.2)

Theorem 3.4 Let 〈X,X∗〉 and 〈Y,Y∗〉 be two bilinear systems and let D : X → Y be a
homomorphism. If 〈X,X∗〉 is a dual system, then D possesses at most one conjugate.

Since we mainly deal with Banach spaces of continuous functions, the main tool to show
that a given bilinear system is a dual system is given by the following well-known result called
du Bois-Reymond Lemma, see, e. g., [12, Lemma 3.2], where C∞

0 (I,Rn) denotes the set of
functions in C∞(I,Rn) with compact support.

Theorem 3.5 Let f ∈ C(I,Rn) with

〈f, g〉 =

∫

I

fT g dt = 0 for all g ∈ C∞
0 (I,Rn). (3.3)

Then f ≡ 0.

With these preparations, following [20], we now write the optimal control problem con-
sisting of (1.1) and (2.6), omitting hats for simplicity, as

1

2
Q(z, z) = min! s. t. L(z) = c, z =

[

x

u

]

, c =

[

f

E(t)+E(t)x

]

, (3.4)

where Q : Z× Z → R is a (symmetric) quadratic form and L : Z → Y is a linear submersion
(i. e., it is Fréchet differentiable with a surjective Fréchet derivative that has a kernel that is
continuously projectable), defined by

Q(v, z) = v(t)T
[

Me 0
0 0

]

z(t) +

∫

I

vT
[

W S

ST R

]

z dt,

L(z) = (E d
dt
(E+Ex)− (A+ E d

dt
(E+E))x−Bu, E(t)+E(t)x(t))

(3.5)

with the Banach spaces Z = X× U and

X = C1
E+E

(I,Rn) = {x ∈ C(I,Rn), E+Ex ∈ C1(I,Rn)}, U = C(I,Rm),
Y = C(I,Rn)× rangeE(t)T .

(3.6)

It should be noted that in contrast to usual convention Z is not the set of integers. Here E+

denotes the Moore-Penrose pseudo-inverse of the matrix function E, see [20] for details on
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the representation of the DAE operator and the choice of the spaces. In view of the results
in [20], we define bilinear systems 〈Z,Z∗〉 and 〈Y,Y∗〉 by introducing the Banach spaces

Z
∗ = C(I,Rn)× C(I,Rm)× rangeE(t)T × rangeE(t)T ,

Y
∗ = C1

EE+(I,R
n)× rangeE(t)T

(3.7)

and corresponding bilinear forms

〈z, (η, ϑ, δ, ε)〉 =

∫

I

(ηTx+ ϑTu) dt+ δTx(t) + εTx(t),

〈(g, r), (λ, γ)〉 =

∫

I

λT g dt+ γT r.
(3.8)

Theorem 3.6 The bilinear systems 〈Z,Z∗〉 and 〈Y,Y∗〉 are dual systems.

Proof. Consider the bilinear system 〈Y,Y∗〉 with its bilinear form given in (3.8).
Let y∗ = (λ, γ) ∈ Y

∗ be fixed and assume that 〈y, y∗〉 = 0 for all y ∈ Y, i. e.,

∫

I

λT g dt+ γT r = 0 for all (g, r) ∈ Y.

Choosing (g, r) = (0, γ) gives γTγ = 0, hence γ = 0. Therefore,

∫

I

λT g dt = 0 for all g ∈ C∞
0 (I,Rn) ⊆ C(I,Rn),

where λ ∈ C1
EE+(I,R

n) ⊆ C(I,Rn). Thus, by Theorem 3.5 we have λ = 0.
Let y = (g, r) ∈ Y be fixed and assume that 〈y, y∗〉 = 0 for all y∗ ∈ Y

∗, i. e.,

∫

I

λT g dt+ γT r = 0 for all (λ, γ) ∈ Y
∗.

Choosing (λ, γ) = (0, r) gives rT r = 0, and hence r = 0. Therefore,

∫

I

λT g dt = 0 for all λ ∈ C∞
0 (I,Rn) ⊆ C1

EE+(I,R
n),

where g ∈ C(I,Rn). Thus, again by Theorem 3.5 we have g = 0.
The proof for 〈Z,Z∗〉 follows the same lines and is therefore omitted.

In order to bring the necessary conditions (1.3) into this abstract setting, we define the
operator L∗ : Y∗ → Z

∗ by

L∗(λ, γ) = (−ET d
dt
(EE+λ)− (A+ EE+Ė)Tλ,−BTλ, γ − E(t)Tλ(t), E(t)Tλ(t)), (3.9)

compare again [20]. We can then show that L∗ is conjugate to L.

Theorem 3.7 The operator L∗ : Y
∗ → Z

∗ defined by (3.9) is the (unique) conjugate of
L : Z → Y defined by (3.5).
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Proof. Let z = (x, u) ∈ Z and Λ = (λ, γ) ∈ Y
∗. Using that E(t)+E(t)γ = γ and

E = EE+E, EE+Ė = EE+ĖE+E + E d
dt
(E+E)

we have

〈L(z), Λ〉 =
∫

I

(

λT
[

E d
dt
(E+Ex)− (A+ E d

dt
(E+E))x−Bu

])

dt+ γT (E+Ex)(t)

= λTEx|tt +
∫

I

(

− d
dt
(λTEE+E)E+Ex− λT

[

(A+ E d
dt
(E+E))x−Bu

])

dt+ γT (E+Ex)(t)

= (λTEx)(t)− (λTEx)(t) + γTx(t)

+
∫

I

(

− d
dt
(λTEE+)Ex − λTEE+ĖE+Ex −λT

[

(A+ E d
dt
(E+E))x−Bu

])

dt

= (λTEx)(t)− (λTEx)(t) + γTx(t)

+
∫

I

(

− d
dt
(λTEE+)Ex − λT (A+ EE+Ė)x −λTBu)

)

dt = 〈z,L∗(Λ)〉.

Finally, defining

T : Y∗ × Z → Y× Z
∗, T (Λ, z) = (L(z),L∗(Λ)−R(z)), (3.10)

with R : Z → Z
∗ given by

R(z) = (Wx+ Su, STx+Ru, 0,Mex(t))

for z = (x, u) ∈ Z and Λ = (λ, γ) ∈ Y
∗, we have that

T (Λ, z) =
(

E d
dt
(E+Ex)− (A+ E d

dt
(E+E))x−Bu,E(t)+E(t)x(t),

− ET d
dt
(EE+λ)− (A+ EE+Ė)Tλ−Wx− Su,

−BTλ− STx−Ru, γ − E(t)Tλ(t), E(t)Tλ(t)−Mex(t)
)

and the necessary conditions given by (1.3) and the stated boundary conditions can be written
as

T (Λ, z) = (c, 0). (3.11)

We now show that the operator T is self-conjugate with respect to suitably chosen dual
systems. For this purpose, we introduce the abbreviations

V = Y
∗ × Z, W = Y× Z

∗,

set
V
∗ = W, W

∗ = V

and introduce the so-called canonical bilinear forms

〈(y∗, z), (y, z∗)〉 = 〈y, y∗〉+ 〈z, z∗〉 = 〈(y, z∗), (y∗, z)〉.

Obviously, the pairs 〈V,V∗〉 and 〈W,W∗〉 become dual systems. By construction, we then
not only have T : V → W but also T : W∗ → V

∗.

Theorem 3.8 The operator T as defined in (3.10) is self-conjugate, i. e., we have

〈T (v), ṽ〉 = 〈v, T (ṽ)〉 for all v, ṽ ∈ V. (3.12)
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Proof. Let v = (Λ, z) ∈ V and ṽ = (Λ̃, z̃) ∈ V. Then

〈T (Λ, z), (Λ̃, z̃)〉 = 〈(L(z),L∗(Λ)−R(z)), (Λ̃, z̃)〉 = 〈L(z), Λ̃〉 − 〈z̃,R(z)〉+ 〈z̃,L∗(Λ)〉

as well as

〈(Λ, z), T (Λ̃, z̃)〉 = 〈(Λ, z), (L(z̃),L∗(Λ̃)−R(z̃))〉 = 〈L(z̃), Λ〉 − 〈z,R(z̃)〉+ 〈z,L∗(Λ̃)〉.

The claim then follows because of

〈z̃,R(z)〉 = Q(z, z̃) = Q(z̃, z) = 〈z,R(z̃)〉,

using the symmetry of Q.

Note that the boundary value problem (3.11) coincides with (1.3) together with the stated
boundary conditions if we assume sufficient smoothness of the data, see again [20]. In partic-
ular, we get the DAE for the Lagrange multiplier λ as

−ET λ̇= − d
dt
(ETλ) + ĖTλ = − d

dt
(ETEE+λ) + ĖTλ

= −ET d
dt
(EE+λ)− ĖTEE+λ+ ĖTλ

= ATλ+ ĖTEE+λ+Wx+ Su− ĖTEE+λ+ ĖTλ

= (A+ Ė)Tλ+Wx+ Su.

In view of the observations from the abstract analysis, we introduce the following defini-
tion.

Definition 3.9 A pair (E ,A) of matrix functions, A ∈ C0(I,Rn,n), E ∈ C1(I,Rn,n), is called
self-adjoint if and only if the following conditions are satisfied

1. ET = −E,

2. AT = A+ Ė.

Consider now a self-adjoint pair of sufficiently smooth matrix functions E ,A ∈ C0(I,Rn,n)
and an associated DAE

E ż = Az + f, (3.13)

cf. (2.2), with an inhomogeneity f ∈ C0(I,Rn) that is also assumed to be sufficiently smooth.
Then we can scale the equation with a pointwise nonsingular matrix function P ∈ C0(I,Rn,n)
and perform a change of variables z = Qy with a pointwise nonsingular matrix function
Q ∈ C1(I,Rn,n) which gives

PEQẏ = PAQy − PEQ̇y + Pf. (3.14)

We want to discuss transformations that preserve the self-adjointness of the pair. For this,
we have to preserve the skew-symmetry of E and hence we have to require that P = QT , i. e.,
that the transformation is a congruence transformation. We then have the following lemma.

Lemma 3.10 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions
E ,A ∈ C0(I,Rn,n) and apply a congruence transformation with a pointwise nonsingular
Q ∈ C1(I,Rn,n), leading to the pair

(Ẽ , Ã) = (QTEQ,QTAQ−QTEQ̇).

Then the pair (Ẽ , Ã) is again self-adjoint.
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Proof. The condition for Ẽ is trivially satisfied and for Ã we get

Ã+ ˙̃E = QTAQ−QTEQ̇+ Q̇TEQ+QT ĖQ+QTEQ̇ = QTAQ+ Q̇TEQ+QT ĖQ

and

ÃT = (QTAQ−QTEQ̇)T = QTATQ− Q̇TETQ = QTAQ+QT ĖQ+ Q̇TEQ.

4 Condensed forms for self-adjoint pairs of matrix functions

For matrix pairs (E ,A), with E ,A ∈ R
n,n, E = −ET and A = AT , the canonical form under

congruence, i. e., (QTEQ,QTAQ) is well known, see e. g. [29, 30]. If the transformation
matrices are restricted to be real orthogonal matrices, then the resulting staircase form has
been developed in [7], modifying the staircase form of [31].

We will now extend these results to self-adjoint pairs of matrix functions. To achieve a
staircase form, we always have to assume that certain matrix functions have constant rank
in the given interval I. If this is not the case, then one can restrict the problem to a smaller
interval where this condition holds, and consider the problem piecewise. In the following, we
therefore assume that the desired ranks are constant in the complete interval I. Then we can
make use of the following theorem which is an extended real version of Theorem 3.9 in [19]
originating to [10].

Theorem 4.1 Let E ∈ Cℓ(I,Rm,n), ℓ ∈ N0 ∪ {∞}, with rank E(t) = r for all t ∈ I. Then
there exist pointwise real orthogonal matrix functions U ∈ Cℓ(I,Rm,m) and V ∈ Cℓ(I,Rn,n),
such that

UTEV =

[

Σ 0
0 0

]

(4.1)

with pointwise nonsingular Σ ∈ Cℓ(I,Rr,r).
If E ∈ Cℓ(I,Rn,n) is symmetric (skew-symmetric), with rankE(t) = r for all t ∈ I, then

there exists a pointwise real orthogonal matrix function U ∈ Cℓ(I,Rn,n) such that

UTEU =

[

∆ 0
0 0

]

(4.2)

with pointwise nonsingular and symmetric (skew-symmetric) ∆ ∈ Cℓ(I,Rr,r).

Based on sequences of factorizations as in Theorem 4.1 we then have the following staircase
form.

Theorem 4.2 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions
E ,A ∈ C0(I,Rn,n). Then, under appropriate constant rank conditions, there exists a con-
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gruence transformation with a pointwise orthogonal U ∈ C1(I,Rn,n), leading to the pair

UTEU =


































E11 . . . . . . E1,m E1,m+1 E1,m+2 . . . E1,2m 0
...

. . .
...

...
... . .

.
. .
.

...
. . .

...
... Em−1,m+2 . .

.

−ET
1,m · · · · · · Em,m Em,m+1 0

−ET
1,m+1 . . . . . . −ET

m,m+1 Em+1,m+1

−ET
1,m+2 · · · −ET

m−1,m+2 0
... . .

.
. .
.

−ET
1,2m

. .
.

0



































n1

...

...
nm

l

qm
...
q2
q1

UTAU − UTEU̇ =




































A11 · · · · · · A1,m A1,m+1 A1,m+2 . . . . . . A1,2m+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

Am,1 . . . . . . Am,m Am,m+1 Am,m+2

Am+1,1 . . . . . . Am+1,m Am+1,m+1

Am+2,1 . . . . . . Am+2,m

... . .
.

... . .
.

A2m+1,1





































n1

...

...
nm

l

qm
...
...
q1

,

(4.3)

where q1 ≥ n1 ≥ q2 ≥ n2 ≥ . . . ≥ qm ≥ nm,

Ej,2m+1−j ∈ C0(I,Rnj ,qj+1), 1 ≤ j ≤ m− 1,

Em+1,m+1 =

[

∆ 0
0 0

]

, ∆ = −∆T ∈ C0(I,R2p,2p),

Ej,j = −ET
j,j , j = 1, . . . ,m,

Aj,2m+2−j = AT
2m+2−j,j =

[

Γj 0
]

∈ C0(I,Rnj ,qj ), Γj ∈ C0(I,Rnj ,nj ), 1 ≤ j ≤ m,

Am+1,m+1 =

[

Σ11 Σ12

ΣT
12 Σ22

]

, Σ11 = ΣT
11 + ∆̇T ∈ C0(I,R2p,2p),

Σ22 = ΣT
22 ∈ C0(I,Rl−2p,l−2p),

and the blocks Σ22 and ∆ and Γj, j = 1, . . . ,m are pointwise nonsingular. Furthermore, each
of the first m block columns (block rows) of the matrix UTEU has full column rank (full row
rank).

Proof. The proof is an extension of the proof for the matrix case given in [7]. It is described
by an explicit, but recursive procedure. Note that some blocks may be void, i. e., they may
have zero rows or zero columns or both.

Let (E ,A) be self-adjoint. If E = A = 0, or if E is nonsingular, then the pair is trivially
in staircase form.
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If E is singular and of constant rank, then determine via Theorem 4.1 a factorization

UT
1 EU1 =

[

∆ 0
0 0

]

,

with U1 pointwise orthogonal and ∆ = −∆T pointwise nonsingular. Perform a congruence
transformation with U1 to form

UT
1 EU1 =

[

∆ 0
0 0

]

, UT
1 AU1 − UT

1 EU̇1 =

[

Â11 Â12

Â21 Â22

]

. (4.4)

If Â22 is pointwise nonsingular, then the staircase form is complete.
If Â22 is globally singular and has constant rank, then determine via Theorem 4.1 a

factorization

UT
2 Â22U2 =

[

Σ 0
0 0

]

with U2 orthogonal and Σ pointwise nonsingular. This leads to the congruence transformation

[

I 0
0 U2

]T [

∆ 0
0 0

] [

I 0
0 U2

]

=





∆ 0 0
0 0 0
0 0 0





[

I 0
0 U2

]T [

Â11 Â12

Â21 Â22

] [

I 0
0 U2

]

−

[

I 0
0 U2

]T [

∆ 0
0 0

] [

0 0

0 U̇2

]

(4.5)

=





Ã11 Ã12 Ã13

Ã21 Σ 0

Ã31 0 0



 ,

with Ã21 = ÃT
12 and Ã31 = ÃT

13. Under a constant rank assumption for Ã13, we determine a
factorization

UT
3 Ã13V3 =

[

Γ 0
0 0

]

with U3 and V3 pointwise orthogonal and Γ pointwise nonsingular, and perform a congruence
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transformation





U3 0 0
0 I 0
0 0 V3





T 



∆ 0 0
0 0 0
0 0 0









U3 0 0
0 I 0
0 0 V3



 =













E11 E12 E13 0 0
−ET

12 E22 0 0 0
−ET

13 0 0 0 0
0 0 0 0 0
0 0 0 0 0

















U3 0 0
0 I 0
0 0 V3





T 



Ã11 Ã12 Ã13

Ã21 Σ 0

Ã31 0 0









U3 0 0
0 I 0
0 0 V3



 (4.6)

−





U3 0 0
0 I 0
0 0 V3





T 



∆ 0 0
0 0 0
0 0 0









U̇3 0 0
0 0 0

0 0 V̇3





=













A11 A12 A13 Γ 0
A21 A22 A23 0 0
A31 A32 Σ 0 0
Γ T 0 0 0 0
0 0 0 0 0













,

where UT
3 ∆U3 =

[

E11 E12
−ET

12 E22

]

is skew-symmetric and E13 = 0. The block E13 may fill with

nonzero entries later in the process, so we do not distinguish it from other blocks that may
be nonzero.

We then recursively apply the same reduction to the central self-adjoint pair

([

E22 0
0 0

]

,

[

A22 A23

A32 Σ

])

.

This corresponds to performing another congruence transformation to (4.6) that modifies
block rows and columns 2 and 3, typically changing E12, E13, A12, A21, A13, and A31 along
with the central pair. After a finite number of steps of congruence transformations then the
pair is still self-adjoint and in the desired staircase form.

The property that each of the first m block columns (block rows) has full rank follows by
our construction.

The orthogonal staircase form allows to characterize many of the properties of the self-
adjoint pair and associated differential-algebraic systems. With nonsingular congruence trans-
formations it is possible to reduce the system even further.

Corollary 4.3 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions
E ,A ∈ C0(I,Rn,n) . Then, under appropriate constant rank conditions, there exists a congru-
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ence transformation with a pointwise nonsingular T ∈ C1(I,Rn,n), leading to the pair

TTET =


































E11 . . . . . . E1,m E1,m+1 E1,m+2 . . . E1,2m 0
...

. . .
...

...
... . .

.
. .
.

...
. . .

...
... Em−1,m+2 . .

.

−ET
1,m · · · · · · Em,m Em,m+1 0

−ET
1,m+1 . . . . . . −ET

m,m+1 Em+1,m+1

−ET
1,m+2 · · · −ET

m−1,m+2 0
... . .

.
. .
.

−ET
1,2m

. .
.

0



































n1

...

...
nm

l

qm
...
q2
q1

TTAT − TTE Ṫ =


































A1,1 · · · · · · A1,m A1,m+1 A1,m+2 . . . . . . A1,2m+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

Am,1 . . . . . . Am,m Am,m+1 Am,m+2

Am+1,1 . . . . . . Am+1,m Am+1,m+1

0 . . . 0 Am+2,m

... . .
.

0 . .
.

A2m+1,1



































n1

...

...
nm

l

qm
...
...
q1

,

(4.7)

where q1 ≥ n1 ≥ q2 ≥ n2 ≥ . . . ≥ qm ≥ nm,

Ej,2m+1−j ∈ C0(I,Rnj ,qj+1), 1 ≤ j ≤ m− 1,

Em+1,m+1 =

[

Jp 0
0 0

]

, Jp :=

[

0 Ip
−Ip 0

]

,

Aj,2m+2−j = AT
2m+2−j,j =

[

Inj
0
]

∈ C0(I,Rnj ,qj ), 1 ≤ j ≤ m,

Ai,j = −Ėi,j , i = 1, . . . ,m− 1, j = m+ 2, . . . , 2m+ 1− i,

Am+1,m+1 =

[

Σ11 0
0 Σ22

]

, Σ11 = ΣT
11 ∈ C0(I,R2p,2p), Σ22 = ΣT

22 ∈ C0(I,Rl−2p,l−2p),

and the block Σ22 is pointwise nonsingular. Furthermore, each of the first m block columns
(block rows) of the matrix T TET has full column rank (full row rank).

Proof. Starting from the staircase form (4.3) we can first perform a congruence transforma-
tion

(Ẽ , Ã) = (T T
1 UTEUT1, T

T
1 UTAUT1 − T T

1 UTE d
dt
(UT1))

with T T
1 = diag(Γ−1

1 , . . . , Γ−1
m , L, Iqm , . . . , Iq1) where

L =

[

I2p −Σ12Σ
−1
22

0 I2p

]

.

Then, with block-Gauss congruence transformations, we can eliminate all elements above the
block anti-diagonal of Ã in block-columns 1, . . . ,m.
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Finally, we perform a congruence transformation to the nonsingular first diagonal block
∆ in Em+1,m+1. Let

QT
1 ∆Q1 =

[

∆11 ∆12

∆21 0

]

be a block anti-triangular decomposition of ∆, where ∆12, ∆21 are invertible. This can be
constructed just as in the constant coefficient case, see [6]. Then let

QT
2 =

[

I −1
2∆11∆

−1
21

0 −∆−1
21

]

be partitioned analogously, such that

QT
2 Q

T
1 ∆Q1Q2 =

[

0 Ip
−Ip 0

]

= Jp.

Note that neither the orthogonal staircase form (4.3) nor the condensed form (4.7) is a normal
from in the algebraic sense, since there is still further refinement possible using congruence
transformations. For the purpose of analyzing systems of differential-algebraic equations,
however, these condensed forms are sufficient.

Corollary 4.4 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions
E ,A ∈ C0(I,Rn,n) and suppose that appropriate constant rank assumptions hold so that there
exists a congruence transformation with a pointwise orthogonal U ∈ C1(I,Rn,n) to the stair-
case form (4.3).

i) The differential-algebraic equation (3.13) is regular if and only if in the staircase form
nj = qj for all j = 1, . . . ,m.

ii) If m = 0 then the DAE is regular and strangeness-free.

iii) If m > 0 then µ ≤ 2m−1 differentiations will be necessary to solve the system if 2p = ℓ

and µ ≤ 2m differentiations will be necessary otherwise. If the system is regular, then
the inequalities become equalities.

Proof. i) If q1 > n1 then it is clear that the DAE is nonregular, because then it has
a zero row and hence the problem is not solvable for every smooth right hand side. If
ni = qi for i = 1, . . . , ℓ − 1 but qℓ > nℓ, then we can successively solve the equation from
the bottom up in a unique way, until we reach the remaining system with a nonsquare block

A2m+2−ℓ,ℓ = AT
ℓ,2m+2−ℓ =

[

Γℓ 0
]T

. Then again, the last qℓ − nℓ equations associated with
this block are not solvable for every smooth right hand side and hence the problem is not
regular.

ii) If m = 0, then the associated staircase form has the form (4.4) with Â22 pointwise
nonsingular and it is well known already from the unstructured case, see [17, 19], that the
associated DAE is regular and strangeness-free.

iii) Using the condensed form (4.7), we can apply backward substitution starting with the
last block row. Then we have to differentiate the right hand side at most m times until we
reach the middle block. If after backward substitution the middle block contains an algebraic
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part, then we continue with at most m further differentiations. If the middle block has no
algebraic part, then at most m− 1 further differentiations are necessary.

In the regular case, using the fact that the first m block columns (block rows) have full
rank makes sure that all derivatives actually occur.

Example 4.5 Consider the DAE













0 0 1 1 0

0 0 −1 0 0
−1 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

























ẋ1
ẋ2
ẋ3
ẋ4
ẋ5













=













0 0 0 0 1

0 1 0 0 0
0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

























x1
x2
x3
x4
x5













+













f1
f2
f3
f4
f5













,

which is in the condensed form (4.7) with m = 2, q1 = n1 = 1, q2 = 1, n2 = 0, l = 2, p = 1.
Since q2 6= n2 the system is non-regular. To solve the system we first get x1 = −f5, and by
substituting ẋ1 = −ḟ5 the solution for x2, x3 can be determined from the Hamiltonian system

[

0 −1
1 0

] [

ẋ2
ẋ3

]

=

[

x2
x3

]

+

[

f2
f3 − ḟ5

]

.

Finally we can solve the differential system

ẋ4 = x2 + x5 + f1 + f2

to obtain a solution for x4. Thus, µ = 1 < 3 differentiations are necessary to solve the system.
The component x5 is undetermined and we have the consistency condition f4− ḟ5 = 0 for the
inhomogeneity.

Example 4.6 Consider the DAE













0 −1 0 −1 0

1 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

0 0 0 0 0

























ẋ1
ẋ2
ẋ3
ẋ4
ẋ5













=













0 0 0 0 1

0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

1 0 0 0 0

























x1
x2
x3
x4
x5













+













f1
f2
f3
f4
f5













,

which again is in the condensed form (4.7) with m = 1, q1 = n1 = 1, l = 3, p = 1. For the
solution we get x1 = −f5, and by substituting ẋ1 = −ḟ5 we get x4 = −f4 − ḟ5. The solution
for x2, x3 can be determined from the Hamiltonian system

[

0 1
−1 0

] [

ẋ2
ẋ3

]

=

[

0 0
0 1

] [

x2
x3

]

+

[

f2 + ḟ5
f3

]

.

and by substituting ẋ4 = −ḟ4 − f̈5 we get

x5 = x3 − f1 + f3 + ḟ4 + f̈5.

Here, µ = 2 = 2m differentiations are necessary to solve the system.
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When the pair (E ,A) is in the condensed form (4.7) and the associated DAE (3.13) is
regular, then we can permute and re-arrange the condensed form to the form



















Ẽ11 Ẽ12 Ẽ13 Ẽ14
−ẼT

12 Ẽ22 0 0

−ẼT
13 0 0 0

−ẼT
14 0 0 0









,











Ã11 Ã12 −
˙̃E12 Ã13 −

˙̃E13 Ir −
˙̃E14

ÃT
12 Ã22 0 0

ÃT
13 0 Ã33 0
Ir 0 0 0





















, (4.8)

where Ẽ22 = Jp and Ã33 are invertible, and Ẽ14 is block upper-triangular with square diagonal
blocks, which are zero matrices. Performing some further block-Gauss elimination congruence
transformation we can eliminate all blocks above Ã33 and above and to the left of Ẽ22 = Jp
and obtain the form



















Ê11 0 Ê13 Ê14
0 Jp 0 0

−ÊT
13 0 0 0

−ÊT
14 0 0 0









,











Â11 Â12 −
˙̂
E12 −

˙̂
E13 Ir −

˙̂
E14

ÂT
12 Â22 0 0

0 0 Â33 0
Ir 0 0 0





















. (4.9)

One further block permutation (exchanging the first two block rows and columns), partitioning
the blocks further, and renaming the blocks, we finally obtain the form

























0 Ip 0 0 0
−Ip 0 0 0 0
0 0 E33 E34 E35
0 0 −ET

34 0 0
0 0 −ET

35 0 0













,













A11 A12 A13 0 0
AT

12 A22 A23 0 0

AT
13 AT

23 A33 −Ė34 Ir − Ė35
0 0 0 A44 0
0 0 Ir 0 0

























, (4.10)

with A44 invertible, and E35 block upper-triangular with square diagonal blocks, which are
zero matrices.

If we consider the DAE corresponding to the pair (4.10), then we obtain the following
equations.

ż2 = A11z1 +A12z2 +A13z3 + f̃1,

−ż1 = AT
12z1 +A22z2 +A23z3 + f̃2,

E33ż3 + E34ż4 + E35ż5 = AT
13z1 +AT

23z2 +A33z3 − Ė34z4 + (Ir − Ė35)z5 + f̃3, (4.11)

−ET
34ż3 = A44z4 + f̃4,

−ET
35ż3 = z3 + f̃5.

From (4.11) we can directly obtain the algebraic constraints that are included in the system
which are in the third to fifth equation. These equations determine the consistency conditions
for initial or boundary conditions and the smoothness requirements for the inhomogeneities.

5 Self-adjoint DAEs and Hamiltonian systems

It is well known that for the optimal control of ordinary differential equations, i. e., E = In,
with an invertible weight function R, the optimality boundary value problem is associated
with a Hamiltonian system of differential equations

[

ẋ

λ̇

]

=

[

A−BR−1ST −BR−1BT

SR−1ST −W −(A−BR−1ST )T

] [

x

λ

]

+

[

f

0

]

, (5.1)
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that is obtained by inserting u = −R−1(BTλ+ STx) and multiplying with J−1
n from the left

see [1, 13, 15, 25].
This Hamiltonian system generates a symplectic flow, i. e., the fundamental solution Φ

satisfies ΦTJnΦ = Jn, see [13].
On the other hand, even in the case of ordinary differential equations, when R is singular,

this reduction to a Hamiltonian system is not possible and one typically uses the theory of
singular perturbations [26].

In the following, we will analyze whether there is nevertheless a symplectic flow describing
the dynamic part of a differential-algebraic equation of the form (3.13).

Lemma 5.1 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions E ,A ∈
C0(I,Rn,n) and the associated DAE (3.13), where

E =





0 Ip 0
−Ip 0 0
0 0 0



 , A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (5.2)

Suppose that there exists a symmetric matrix Me = MT
e ∈ R

p,p such that the Riccati differ-
ential equation

Ṗ + PA22P −A12P − PAT
12 +A11 = 0, P (t) = Me

has a symmetric solution P ∈ C1(I,Rp,p). Then there exists a congruence transformation
with a pointwise nonsingular Q ∈ C1(I,Rn,n), leading to a pair

(Ẽ , Ã) = (QTEQ,QTAQ−QTEQ̇),

with

(Ẽ , Ã) =









0 Ip 0
−Ip 0 0
0 0 0



 ,





0 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33







 . (5.3)

Proof. With

QT =





Ip −P 0
0 Ip 0
0 0 I





we obtain

QTEQ =





0 Ip 0
−Ip 0 0
0 0 0



 , QTAQ−QTEQ̇ =





Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33





with Ã11 = Ṗ + PA22P −A12P − PAT
12 +A11 = 0.

If the self-adjoint pair is in the form (5.3), then it has exactly the structure of the self-
adjoint pair arising from the linear quadratic optimal control problem. If E has constant rank
r = 2p (r has to be even since E is skew-symmetric), then the form (5.2) is easily achieved
as we have seen in the first step of the construction of the condensed form (4.3) which yields
the form (4.4). Since in this form the matrix ∆ is nonsingular and skew-symmetric, it is
congruent to Jp as we have seen in the proof of Corollary 4.3. But in the form (5.3), we
cannot decide whether the flow is symplectic, since the matrix Ã33 may be singular.

Based on the condensed form this decision is possible.
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Theorem 5.2 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions
E ,A ∈ C0(I,Rn,n), and an associated DAE system of the form (3.13). If the constant rank
conditions that allow the construction of the condensed form (4.3) hold, and the DAE (3.13)
is regular then the underlying flow is symplectic.

Proof. We may assume w.l.o.g. that the pair is in the condensed form (4.10) with the
equations (4.11). Then the equations for z3, z4, z5 are the algebraic constraints which can be
solved by backward substitution (including differentiation).

The resulting ordinary differential equation can be rewritten as a linear Hamiltonian
system

[

ż1
ż2

]

= −Jp

[

A11 A12

A21 A22

] [

z1
z2

]

+

[

f1
f2

]

,

that clearly generates a symplectic flow since the coefficient matrix on the right hand side is
Hamiltonian.

Applying Theorem 5.2 to the boundary value problem associated with the linear-quadratic
optimal control problem, we thus immediately obtain that the underlying flow (if there is
such a flow) is symplectic.

Example 5.3 [7] Consider the optimal control problem to minimize 1
2

∫ 1
0 x(t)2 dt subject to

ẋ = u, x(0) = 1. Then the necessary optimality condition is given by the boundary value
problem





0 1 0
−1 0 0
0 0 0









λ̇

ẋ

u̇



 =





0 0 1
0 −1 0
1 0 0









λ

x

u



 , x(0) = 1, λ(1) = 0, (5.4)

which is a boundary value problem with a self-adjoint pair associated with a differentiation
index 3 DAE which is already in the condensed form (4.8), where the second equation for x2
is missing and hence there is no flow at all.

Example 5.4 [2] Consider the linear-quadratic control problem (1.1),(1.2) on I = [0, 1] with
coefficients

E =





1 0 0
0 1 0
0 0 0



 , A =





0 0 0
0 0 −1
0 1 0



 , B =





0
1
0



 , f =





0
0
0



 ,

Me =





1 0 0
0 0 0
0 0 0



 , W =





0 0 0
0 0 0
0 0 1



 , S =





0
0
0



 , R = 0,

and the initial condition x1(0) = α, x2(0) = 0.
A simple calculation yields that u = x2 = λ2 = x3 = λ3 = 0 combined with the Hamilto-

nian system ẋ1 = 0, −λ̇1 = 0, x1(0) = α, −λ1(1) = x1(1).

6 A global condensed form for self-adjoint DAEs

The staircase forms for self-adjoint pairs of matrix function as developed in Section 4 are
based on series of constant rank assumptions. Similar to [19, Corollary 3.26], these results
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are local in the sense that we may have restricted the interval I. In the following we develop
a global condensed form for self-adjoint pairs similar to that of [8] in the unstructured case.
To derive this we need the following lemma.

Lemma 6.1 Let E ∈ R
2p,2p with E = −ET . Then there exists an orthogonal symplectic matrix

U ∈ R
2p,2p such that

UTEU =

[

0 E12
−ET

12 E22

]

with E12 ∈ R
p,p, E22 ∈ R

p,p.

Proof. The proof is an immediate consequence of a corresponding factorization for skew-
Hamiltonian matrices in [27].

Theorem 6.2 Consider a self-adjoint pair (E ,A) of sufficiently smooth matrix functions
E ,A ∈ C0(I,Rn,n), and an associated DAE system of the form (3.13). Suppose that (3.13)
has a well-defined differentiation index, and that the underlying flow associated with 2p dif-
ferential equations is symplectic. Then there exists a matrix function L ∈ C1(I,Rn,n) such
that

Ẽ = LTEL =





0 E12 0
−ET

12 E22 0
0 0 E33



 , Ã = LTEL− LTAL̇ =





0 −Ė12 0
0 A22 A23

0 A32 A33



 , (6.1)

with E12 pointwise nonsingular, so that z2 is uniquely determined from

d

dt
(E12z2) = f1,

and, furthermore,
E33ż3 = A32z2 +A33z3 + f3

has a unique solution z3 for every sufficiently smooth inhomogeneity f3 and given z2.

Proof. The proof partly follows the lines of the proof of the corresponding result for unstruc-
tured pairs of matrix functions given in [8].

If the homogeneous equation
E ż = Az

has only the trivial solution, then the first two blocks are missing and the claim holds trivially
by assumption. In any case, the solution space is finite dimensional. Let {Φ1, . . . , Φ2p} be a
basis of the solution space and Φ =

[

Φ1 · · · Φ2p

]

. Then

rankΦ(t) = 2p for all t ∈ I.

Hence, there exists a smooth, pointwise nonsingular matrix function U with

UTΦ =

[

I2p
0

]

for all t ∈ I.
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Defining

Φ′ = U

[

0
Ia

]

with a = n − 2p yields a pointwise nonsingular matrix function Q =
[

Φ Φ′
]

. Since

EΦ̇ = AΦ, we obtain
(Ẽ , Ã) = (QTEQ,QTAQ−QTEQ̇)

with

Ẽ =

[

ΦTEΦ ΦTEΦ′

(Φ′)TEΦ (Φ′)TEΦ′

]

=

[

E11 E12
−ET

12 E22

]

,

Ã =

[

ΦT (AΦ− EΦ̇) ΦT (AΦ′ − EΦ̇′)

(Φ′)T (AΦ− EΦ̇) (Φ′)T (AΦ′ − EΦ̇′)

]

=

[

0 A12

0 A22

]

,

and E11 = −ET
11 ∈ C(I,R2p,2p). Here, E1 :=

[

E11
−ET

12

]

has full column rank 2p. To see this,

suppose that rank E1(t̂) < 2p for some t̂ ∈ I. In this case, there would exist a vector w 6= 0
with E1(t̂)w = 0. Defining then

f̃(t) =

{

1
t−t̂

E1(t)w for t 6= t̂,

d
dt
(E1(t)w) for t = t̂,

we have a smooth inhomogeneity f̃ . The function z given by

z(t) =

[

log(|t− t̂|)w
0

]

then solves
Ẽ(t)ż = Ã(t)z + f̃(t)

on I\{t̂} in contradiction to the assumption of a well-defined differentiation index, which
implies that local solutions can always be extended to a global solution on the entire interval I.

Since Ẽ and Ã are obtained by a congruence transformation, the self-adjoint structure of
the pair (E ,A) is preserved which directly yields the conditions

Ė11 = 0 and A12 = −Ė12,

i. e., the block E11 is constant. Hence, by Lemma 6.1, applied to E11, there exists an orthogonal
symplectic Ũ ∈ R

2p,2p such that

Ê =

[

ŨT 0
0 I

]

Ẽ

[

Ũ 0
0 I

]

=





0 Ê12 Ê13
−ÊT

12 Ê22 Ê23
−ÊT

13 −ÊT
23 Ê33



 ,

Â =

[

ŨT 0
0 I

]

Ã

[

Ũ 0
0 I

]

=





0 0 Â13

0 0 Â23

0 0 Â33



 ,

with the conditions

Â13 = −
˙̂
E13, Â23 = −

˙̂
E23,

˙̂
E12 = 0,

˙̂
E22 = 0,
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and
[

Ê12 Ê13
]

has full row rank d. By Theorem 4.1 there exists a smooth, pointwise
nonsingular matrix function V such that

[

Ê12 Ê13
]

V =
[

Ē12 0
]

and thus
[

I 0
0 V T

]

Ê

[

I 0
0 V

]

=





0 Ē12 0
−ĒT

12 Ē22 Ē23
0 −ĒT

23 Ē33





as well as

[

I 0
0 V T

]

Â

[

I 0
0 V

]

−

[

I 0
0 V T

]

Ê

[

0 0

0 V̇

]

=





0 Ā12 Ā13

0 Ā22 Ā23

0 Ā32 Ā33





where the block

[

0 Ē12
−ĒT

12 Ē22

]

is invertible. ¿From the self-adjoint structure we have the

condition




0 0 0
ĀT

12 ĀT
22 ĀT

32

ĀT
13 ĀT

23 ĀT
33



 =





0 Ā12 Ā13

0 Ā22 Ā23

0 Ā32 Ā33



+







0 ˙̄E12 0

− ˙̄ET
12

˙̄E22
˙̄E23

0 − ˙̄ET
23

˙̄E33







yielding that

Ā12 = − ˙̄E12 and Ā13 = 0.

Finally, defining the matrix

W T =





I 0 0
0 I 0

ĒT
23Ē

−1
12 0 I





we get

W T





0 Ē12 0
−ĒT

12 Ē22 Ē23
0 −ĒT

23 Ē33



W =





0 Ẽ12 0

−ẼT
12 Ẽ22 0

0 0 Ẽ33



 ,

and

W T





0 − ˙̄E12 0
0 Ā22 Ā23

0 Ā32 Ā33



W −W T





0 Ē12 0
−ĒT

12 Ē22 Ē23
0 −ĒT

23 Ē33



 Ẇ =







0 − ˙̃E12 0

0 Ã22 Ã23

0 Ã32 Ã33






.

Thus, with

L = Q

[

U 0
0 I

] [

I 0
0 V

]

W

we have the form (6.1).
The associated differential-algebraic system can be written as

Ẽ12ż2 +
˙̃E12z2 =

d

dt
(Ẽ12z2) = f̃1,

−ẼT
12ż1 + Ẽ22ż2 = Ã22z2 + Ã23z3 + f̃2,

Ẽ33ż3 = Ã32z2 + Ã33z3 + f̃3.
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If the claim for the third equation does not hold then there exists a sufficiently smooth f̃3
and z2 such that the third equation possesses more than one solution. Consequently, the
corresponding homogeneous equation Ẽ33ż3 = Ã33z3 possesses a non-trivial solution space.
Together with the 2p degrees of freedom for the other two equations which are equivalent to
ODEs due to the pointwise nonsingularity of Ẽ12 gives a solution space for the homogeneous
DAE of dimension at least 2p + 1. But this contradicts the assumption on the dimension of
the flow.

7 Self-adjoint DAEs and derivative arrays

So far we have used global staircase forms to analyze DAE boundary value problems, but
this is merely a theoretical result that is used for the analysis. In practice, to avoid the
differentiation of numerically computed quantities, one applies a derivative array approach,
see [8, 19], and determines a strangeness-free system of equations with the same solution set,
where the equations describing the algebraic equations and those describing the dynamical
system are separated.

But if one does this for a self-adjoint pair of matrix functions, then unfortunately the
self-adjoint structure is destroyed, since the transformations are only applied from the left.
It is the purpose of this section to discuss necessary modifications and their numerical costs
if we want to retrieve self-adjointness.

Ignoring the structure, from the derivative array of the system (3.13) using Hypothesis 2.1
we obtain matrix functions Z1, Z2 and T2 such that

Â2 = ZT
2 Nµ [ I 0 · · · 0 ]T

has full row rank a and Â2T2 = 0. We now consider the overdetermined system

E ż = Az + f,

0 = Â2z + f̂2,

where f̂2 = ZT
2 gµ. Choosing T ′

2 such that the matrix T =
[

T2 T ′
2

]

is orthogonal we get

T TET ˙̃z = T TAT z̃ − T TE Ṫ z̃ + T T f,

0 = T T Â2T z̃ + T T f̂2,

with z = T z̃, which yields





E11 E12
−ET

12 E22
0 0





[

˙̃z1
˙̃z2

]

=





A11 A12

A21 A22

0 Â22





[

z̃1
z̃2

]

+





f̃1
f̃2
f̃3



 ,

with

T TET =

[

E11 E12
−ET

12 E22

]

, T TAT − T TE Ṫ =

[

A11 A12

A21 A22

]

, T T

[

f

f̂2

]

=





f̃1
f̃2
f̃3
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and E11 and Â22 nonsingular. Removing the second block row and eliminating the entries
belonging to z̃2 yields

[

E11 0
0 0

] [

˙̃z1
˙̃z2

]

=

[

A11 0

0 Â22

] [

z̃1
z̃2

]

+

[

f̄1
f̄2

]

,

where
[

f̄1
f̄2

]

=

[

f̃1 −A12Â
−1
22 f̃3 + E12

d
dt
(Â−1

22 f̃3)

f̃3

]

.

Note that the values of f̄1, z̃2 can be obtained pointwise by solving the corresponding algebraic
equations. To obtain the derivatives of z̃2, we can differentiate the third equation and solve
for z̃2 pointwise. Further, note that Â22 can be computed in such a way that the matrix
function is smooth, see [16].

The first equation, which has the form

T T
2

d
dt
(ET2z̃1) = T T

2 AT2z̃1 + f̄1

then gives the subsystem which can be reformulated as a Hamiltonian system and which
has a symplectic flow. All quantities can be obtained from the derivative array and by
differentiation. Note that the formulation of f̄1 requires the computation of the derivative Ṫ

of the transformation matrix T , for example by means according to [19, Corollary 3.10].

8 Nonlinear DAEs with self-adjoint linearization

In this section we consider the optimality system arising in nonlinear optimal control problems

J (x, u) = M(x(t)) +

∫ t

t

K(t, x(t), u(t)) dt = min! (8.1)

subject to a constraint
F (t, x, u, ẋ) = 0 (8.2)

and
x(t) = x. (8.3)

We assume that F ∈ C0(I× Dx × Du × Dẋ,R
l) is sufficiently smooth, that I = [t, t] ⊆ R is a

(compact) interval, and that Dx,Dẋ ⊆ R
n, Du ⊆ R

m are open sets.
We will analyze, whether some of the self-adjointness properties can be found in this case

as well. We briefly recall the structure of the necessary optimality conditions from [20]. We
again use derivative arrays, which take the form

Fℓ(t, z, ż, . . . , z
(ℓ+1)) = 0, (8.4)

with z = [xT , uT ]T , which stacks the original equation and all its derivatives up to level ℓ in
one large system.

Here, partial derivatives of Fℓ with respect to selected variables p from (t, z, ż, . . . , z(ℓ+1))
are denoted by Fℓ;p. The solution set of the nonlinear algebraic equation associated with the
derivative array Fµ for some integer µ is denoted by

Lµ = {zµ ∈ I× R
n+m × R

n+m × . . .× R
n+m | Fµ(zµ) = 0} (8.5)

and the hypothesis takes the following form, see [19].
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Hypothesis 8.1 Consider the general system of nonlinear differential-algebraic equations
(8.2). There exist integers µ, r, a, d, and v such that Lµ is not empty and such that for every

z0µ = (t0, z0, ż0, . . . , z
(µ+1)
0 ) ∈ Lµ there exists a (sufficiently small) neighborhood in which the

following properties hold:

1. The set Lµ ⊆ R
(µ+2)(n+m)+1 forms a manifold of dimension (µ+ 2)(n+m) + 1− r.

2. We have rankFµ;z,ż,...,z(µ+1) = r on Lµ.

3. We have corankFµ;z,ż,...,z(µ+1) −corankFµ−1;z,ż,...,z(µ) = v on Lµ, where the corank is the
dimension of the corange and the convention is used that corankF−1;z = 0.

4. We have rankFµ;ż,...,z(µ+1) = r − a on Lµ such that there exist smooth full rank matrix
functions Z2 and T2 of size (µ+1)l×a and (n+m)×(n+m−a), respectively, satisfying

ZT
2 Fµ;ż,...,z(µ+1) = 0, rankZT

2 Fµ;z = a, ZT
2 Fµ;zT2 = 0 (8.6)

on Lµ.

5. We have rankFżT2 = d = l − a − v on Lµ such that there exists a smooth full rank
matrix function Z1 of size (n+m)× d satisfying rankZT

1 FżT2 = d.

Again, the smallest possible µ for which Hypothesis 8.1 is valid is called the strangeness
index of (8.2). It has been shown in [18] that Hypothesis 8.1 implies locally (via the implicit
function theorem) the existence of a reduced system given by

(a) F̂1(t, z1, z2, z3, ż1, ż2, ż3) = 0,

(b) F̂2(t, z1, z2, z3) = 0,
(8.7)

with F̂1 = ZT
1 F , where (z1, z2, z3) ∈ R

d × R
n+m−a−d × R

a is a suitable splitting of the
unknown z. Part 4 of Hypothesis 8.1 guarantees that equation (8.7b) can be solved for z3
according to z3 = R(t, z1, z2). Eliminating z3 and ż3 in (8.7a) with the help of this relation
and its derivative then leads to

F̂1(t, z1, z2,R(t, z1, z2), ż1, ż2,Rt(t, z1, z2) +Rz1(t, z1, z2)ż1 +Rz2(t, z1, z2)ż2) = 0.

By part 5 of Hypothesis 8.1 we may assume without loss of generality that this system can
(locally) be solved for ż1 leading to the system

ż1 = L(t, z1, z2, ż2),
z3 = R(t, z1, z2).

(8.8)

Obviously, in this system, interpreted as a DAE, z2 ∈ C1(I,Rn+m−a−d) can be chosen arbi-
trarily (at least when staying in the domain of definition of R and L), while the resulting
system has locally a unique solution for z1 and z3, provided a consistent initial condition is
given. This means that z2 can be interpreted as a control. The quantity v, which has not
been addressed yet, measures the number of equations in the original system that give rise to
trivial equations 0 = 0, i. e., it counts the number of redundancies in the system. Together
with a and d it gives a complete classification of the l equations into d differential equations,
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a algebraic equations and v trivial equations. Of course, trivial equations can be simply
removed without altering the solution set.

If the variable z is a combined vector of states and controls, then, since (8.7) consists of
original variables, these can again be split into parts stemming from x and from u. It has
been shown in [18, 22], see also [19], how this system then can be treated.

With this preliminaries, it has then been shown in [20] that the necessary optimality
conditions are given by the following boundary value problem

(a) ẋ1 = L(t, x1, u), x1(t) = x1,

(b) x2 = R(t, x1, u),

(c) λ̇1 = Kx1(t, x1, x2, u)
T − Lx1(t, x1, x2, u)

Tλ1 −Rx1(t, x1, u)
Tλ1,

λ1(t) = −Mx1(x1(t), x2(t))
T ,

(d) 0 = Kx2(t, x1, x2, u)
T + λ2,

(e) 0 = Ku(t, x1, x2, u)
T − Lu(t, x1, u)

Tλ1 −Ru(t, x1, u)
Tλ2,

(f) γ = λ1(t).

(8.9)

Note that the necessary equations are linear with respect to λ. This follows from the general
result of Ljusternik [23] where the Lagrangian is a linear form appearing additively in the
necessary conditions. Linearizing with respect to the other unknowns yields a linear DAE of
the form (1.3) with the replacements

E =

[

Id 0
0 0

]

,

A =

[

Lx1(t, x1, u) 0
Rx1(t, x1, u) −I

]

, B =

[

Lu(t, x1, u)
Ru(t, x1, u)

]

,

W =

[

Kx1,x1(t, x1, x2, u) Kx1,x2(t, x1, x2, u)
Kx2,x1(t, x1, x2, u) Kx2,x2(t, x1, x2, u)

]

, S =

[

Kx1,u(t, x1, x2, u)
Kx2,u(t, x1, x2, u)

]

,

R = Ku,u(t, x1, x2, u).

Hence, linearization gives a self-adjoint DAE possessing a Hamiltonian subsystem as in the
linear time-varying case.

9 Conclusion

We have studied the properties of the necessary optimality systems arising from optimal
control problems for differential-algebraic systems. We have shown that the system is self-
conjugate with the coefficients forming a self-adjoint pair of matrix functions. We have derived
(under some constant rank assumptions) condensed forms under congruence transformations
with orthogonal matrix functions and also shown that then there always exists a Hamiltonian
subsystem with a symplectic flow. We have discussed that the Hamiltonian subsystem also
can be obtained from the derivative array and that similar structures can be achieved locally
in the nonlinear case.
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