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INTRODUCTION 3

Abstract. We introduce categories of groups with commutator relations with respect

to root groups and Weyl elements, permuting the root groups. This allows us to view the
classical Steinberg groups, for example the Steinberg group of a ring, as an initial object

in an appropriate category.

The general framework is then specialized to groups associated to Jordan pairs, first
for arbitrary Jordan pairs and then later for Jordan pairs with Peirce gradings or more

general gradings by root systems, for example Jordan pairs covered by grids.

Introduction

Background. Throughout its history, the theory of Jordan algebras and Jordan
pairs was heavily influenced by its connection to Lie algebras and groups. This
started with the work of Chevalley-Schafer [11], it continued with the fundamental
contributions by Jacobson [19, 20, 21], Kantor [27, 28], Koecher [29, 30, 31, 32],
Springer [53], Tits [57, 58], and was later taken up by others. We explore this
relation further by studying categories of groups associated to Jordan pairs.

The model for the groups considered here comes from the theory of semisimple
algebraic groups over an algebraically closed field. Let G be such a group and R
its root system (with respect to a maximal torus). Then G is generated by the
family of root groups (Uα)α∈R, isomorphic to the additive group of the base field.
Moreover, G has commutator relations with respect to these subgroups in the sense
defined below. Generalizations in different directions are possible. The base field
can be arbitrary (Chevalley groups [55]) or can be replaced by a commutative ring
(classical groups over rings [17], group schemes over rings [13, 12]). Even more
general coordinate systems appear in Faulkner’s work on groups with Steinberg
relations [14] and in the theory of Moufang polygons [61]. For R = A1, the
most general coordinate system considered up to now is a Jordan pair, and the
corresponding groups are the groups over V , studied in Chapter II.

One can also replace the finite root system R by a more general root system,
for example the set of real roots of a Kac-Moody algebra. In fact, in [59] (see also
[49]) Tits constructs a Steinberg group functor St for every Kac-Moody algebra
with root system R with the property that for any ring A, the group St(A) has
R-commutator relations.

We now give a detailed description of the contents.

Chapter I: Groups with commutator relations. These are groups with a
distinguished family of subgroups indexed by a root system R of some sort. In the
examples mentioned before, R is a finite root system or the set of real roots of a
Kac-Moody algebra. However, it turns out that a good deal of the theory can be
developed under minimal assumptions on R. In essence, it suffices to have a subset
R of some vector space over a field of characteristic zero.

The key notion is that of a nilpotent pair in R. This was developed in [42] and
is reviewed in Section 1. For non-zero elements α, β ∈ R and putting N+ = N \ {0}
we define(((((((

α, β
)))))))

= R ∩ (N+α+ N+β),
[[[[
α, β

]]]]
=
(((((((
α, β

)))))))
∪ (R ∩ N+α) ∪ (R ∩ N+β),

called the open and closed root interval from α to β, respectively. We say (α, β) is
a nilpotent pair if

[[[[
α, β

]]]]
is finite and does not contain zero.
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The central concept of Chapter I is introduced in Section 2. Let G be a group
and let (Uα)α∈R be a family of subgroups of G. We say that G has R-commutator
relations with root groups Uα if U0 = {1} and, for all α, β ∈ R,

Uα ⊂ Uβ if α ∈ Nβ,(((((((
Uα, Uβ

)))))))
⊂ U(((((α,β))))) if (α, β) is a nilpotent pair.

Here
(((((((
Uα, Uβ

)))))))
denotes the subgroup generated by all group commutators

(((((((
a, b
)))))))

=
aba−1b−1 for a ∈ Uα, b ∈ Uβ , and for any subset A of R, UA is the subgroup
generated by all Uγ , γ ∈ A.

Groups with R-commutator relations form a category gcR, the morphisms being
group homomorphisms ϕ: G → G′ preserving root groups: ϕ(Uα) ⊂ U ′α for all α.
Let us now fix a group Ḡ with subgroups Ūα in gcR. In Section 3 we introduce
the Steinberg category st(Ḡ) as follows. Its objects are the morphisms π: G → Ḡ
of gcR which induce isomorphisms

π: Uα
∼=−→ Ūα and π: U[[[α,β]]]

∼=−→ Ū[[[α,β]]],

for all α and all nilpotent pairs (α, β). We show in Theorem 3.13 that st(Ḡ) has
an initial object, called the Steinberg group of Ḡ and denoted St(Ḡ). It is unique
up to unique isomorphism and is constructed as an inductive limit, following Tits’
approach to Steinberg groups in the Kac-Moody setting. Under a mild assumption
on Ḡ, it can also be described in more down-to-earth fashion by generators and
relations (Theorem 3.17). As we show in 3.18, this notion of Steinberg group
specializes to the well-known Steinberg group Stn(A) of a ring A in case n > 3,
with Ḡ being the elementary linear group En(A) of A. Similarly, taking for Ḡ the
elementary unitary group EU2n(A,Λ), we obtain the usual unitary Steinberg group.

The remainder of Chapter I contains the beginning of a theory of Weyl elements
in groups with commutator relations. To do so, we must assume that R is a
reflection system in the sense of [42, §2], reviewed in Section 4. Essentially, this
means that, for all α in a suitable subset of Rre of R, reflections sα of R are defined
which have properties similar to the well-known reflections of ordinary root systems.

Weyl elements and Weyl triples are introduced in Section 5 and studied further
in Section 6. A Weyl element for the root α ∈ Rre in a group G ∈ gcR is an element
w = xyz where x, z ∈ Uα and y ∈ U−α such that conjugation by w in G corresponds
to the reflection sα in the sense that wUβw

−1 = Usα(β) for all β ∈ R. We then say
that (x, y, z) is a Weyl triple for α. It is well known that Weyl elements exist in the
standard examples mentioned above, e.g., in Stn(A), En(A), semisimple algebraic
groups and Kac-Moody groups.

Let Ḡ ∈ gcR and fix a set X̄ of Weyl triples for Ḡ. We define a full subcategory
st(Ḡ, X̄) of st(Ḡ) whose objects have Weyl triples projecting onto the prescribed
Weyl triples X̄ of Ḡ. In Theorem 5.10 we show that st(Ḡ, X̄) is a reflective subcat-
egory of st(Ḡ). Hence (Corollary 5.11) it has an initial object as well, called the
Steinberg group St(Ḡ, X̄). For example, when Ḡ = E2(A) and X̄ is the set of all
Weyl triples, we show in 5.12 that St(Ḡ, X̄) is the usual Steinberg group St2(A).

Section 6 contains further material on Weyl elements and Weyl triples and in
particular studies the connection with rank one groups in the sense of Timmesfeld
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[56]. We give a characterization of rank one groups in terms of Weyl triples in
Proposition 6.7. A Weyl triple (x, y, z) is called balanced if x = z and xyx = yxy.
We show that a rank one group is special if and only if its Weyl triples are balanced
(Proposition 6.8).

Chapter II: Groups associated to Jordan pairs. Here we begin to spe-
cialize the theory developed in Chapter I to groups related to Jordan pairs. In an
attempt to make this book accessible to readers unfamiliar with Jordan theory, we
give in Section 7 an introduction to Jordan pairs, following [34] and [38]. In partic-
ular, we introduce fundamental notions like quasi-inverses, inner automorphisms,
structural transformations, and idempotents. We continue with Section 8 on Peirce
gradings which form an important tool for our work.

Let V = (V +, V −) be a Jordan pair. Section 9 introduces the Tits-Kantor-
Koecher algebra

L(V ) =
⊕
i∈Z

Li(V ),

a Z-graded Lie algebra with Li(V ) = 0 for |i| > 1, L±1(V ) ∼= V ± and L0(V )
isomorphic to a suitable subalgebra of the derivation algebra of V . From the Z-
graded structure it is clear that (adx)3 = 0 for x ∈ V ±. Hence, the exponentials

exp±(x) = exp(adx) = Id + adx+
1

2
(adx)2

for x ∈ V ± define automorphisms of L(V ) (due to the definition of Jordan pairs
involving quadratic operators, the last term makes sense even when 2 is not a
unit in the base ring). The projective elementary group PE(V ) is then defined
as the subgroup of Aut(L(V )) generated by Ū± = exp±(V ±). These subgroups
are abelian, so that PE(V ) is a group with A1-commutator relations. For a quasi-
invertible pair (x, y) ∈ V +×V −, the inner automorphism β(x, y) of V is contained
(after a natural identification) in PE(V ). We extend the notion of a quasi-invertible
pair to Faulkner’s notion of higher order quasi-inverses and use it to determine the
centre of PE(V ) in Theorem 9.9. For an idempotent e of V we define the element

ωe = exp+(e+) exp−(e−) exp+(e+) ∈ PE(V )

and prove formulas for the action of ωe on L(V ) and PE(V ).
In the final Section 10 of Chapter II we define the category st(V ) of groups over

V as the Steinberg category of PE(V ), viewed as a group with A1-commutator
relations. Thus an object of st(V ) can be considered as a quadruple (G,U±, π)
consisting of a group G, two abelian subgroups U+ and U−, and a group homo-
morphism π: G → PE(V ) which induces an isomorphism from U± ⊂ G onto the
subgroups Ū± of PE(V ). The elements β(x, y) and ωe of PE(V ) have canonical
lifts, denoted b(x, y) and we, to any group G over V . In general, they do not
satisfy the relations enjoyed by β(x, y) and ωe. This gives rise to relations B(x, y)
and W(e) in G which will later be used to define subcategories of st(V ) in case
V has additional structure, for example, a Peirce grading or a suitable family of
idempotents.

This preprint is a preliminary version of the first two chapters of a book which
will contain material on groups over Jordan pairs with Peirce gradings and, more
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generally, root gradings, as well as a description of groups over Jordan pairs with
a root grading. For example, we will describe the universal central extension of
PE(V ) in case V has a root grading of infinite rank by generators and relations.
Some of these results have been announced in [41].

Acknowledgment. The authors gratefully acknowledge the hospitality of the
Mathematisches Forschungs-Institut Oberwolfach during a stay in the “Research
in Pairs” Programme in November-December 2010 where part of the work on the
first two chapters was done. They also thank the department of each author for
providing a fruitful working environment during several visits of the other author.
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CHAPTER I

GROUPS WITH COMMUTATOR RELATIONS

§1. Nilpotent sets of roots

1.1. N-free subsets. In this section, X is a vector space over a field k of
characteristic 0. We identify Q with the prime field of k. For a subset A of X we
use the notation

Z[A] = spanZ(A) and N[A]

for the subgroup and the submonoid of (X,+) generated by A. Moreover, we let
N(A) be the free abelian monoid generated by A, i.e., the set of all maps v: A→ N
with finite support. Depending on the context, it may be more convenient to think
of an element of N(A) as a family (nα)α∈A, where nα ∈ N and nα = 0 except
for finitely many α. We denote by κ: N(A) → X the canonical map sending v to∑
α∈A v(α)α and put

N+[A] := κ
(
N(A) \ {0}

)
=

∞⋃
n=1

(A+ · · ·+A)︸ ︷︷ ︸
n

.

Note that N[A] = κ
(
N(A)).

A subset A of X is called N-free [5] if 0 /∈ N+[A]; in other words, if for all
(nα)α∈A ∈ N(A), the relation

∑
α∈A nα · α = 0 implies nα = 0 for all α. Clearly

subsets of N-free sets are N-free, and N-free sets do not contain 0. An N-free set A
defines a partial order <A on X by

x<A y ⇐⇒ x− y ∈ N[A]. (1)

This is easily verified. The notation x �A y means x<A y and x 6= y.
The following fact will be useful.

1.2. Lemma. Let V be a finite-dimensional real vector space and let VQ ⊂ V
be a rational form of V , i.e., a Q-vector subspace such that VQ⊗QR ∼= V under the
natural map sending x ⊗ r to xr . We endow V with its natural topology and let
U ⊂ V be an open subset. Then

U 6= ∅ =⇒ U ∩ VQ 6= ∅. (1)

Proof. After choosing a basis of V contained in VQ, we may identify V with Rn
and VQ with Qn, so the claim follows from density of Qn in Rn.
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1.3. Lemma. Let A ⊂ X be a finite non-empty N-free subset. We denote by
VQ = spanQ(A) the rational span of A and put V = VQ ⊗Q R. We endow V with
its natural topology and embed A into V canonically.

(a) The convex hull K of A in V is compact and does not contain 0.

(b) The pointed convex cone C spanned by A in V is closed and proper and
spanned by its extremal rays. An extremal ray has the form R+ · α for suitable
α ∈ A; in particular, A contains elements α such that R+ · α is an extremal ray of
C.

Proof. (a) Recall that the convex hull of A consists of all real linear combina-
tions x =

∑
α∈A rα · α where rα > 0 with the property that

∑
rα = 1 [7, II, §2.3,

Cor. 1 of Prop. 8]. Assume to the contrary that x = 0 has such a representation.
Consider the finite-dimensional rational vector space QA with basis (eα)α∈A and
the canonical map f : QA → VQ sending eα to α. Let fR: RA → V be the R-linear
extension of f , let WQ = Ker(f) ⊂ QA and W = Ker(fR) ⊂ RA. Since the exact
sequence

0 // WQ // QA
f // VQ // 0

remains exact upon tensoring with R, we have WQ ⊗ R ∼= Ker(fR) = W , so WQ is
a rational form of W .

Let U = W ∩ RA++. Then U is open in W because RA++ is open in RA, and
by our assumption, (rα)α∈A ∈ U . By (1.2.1), U ∩WQ is not empty as well. So
there exists u = (qα) ∈ QA++ such that 0 = f(u) =

∑
α∈A qα · α. By multiplying

this relation with the product of the denominators of the qα we obtain a non-trivial
relation 0 =

∑
α∈A nα ·α where nα ∈ N+. This contradicts the fact that A is N-free.

Finally, K is compact by [7, II, §2.6, Cor. 1 of Prop. 15].

(b) The pointed convex cone C (with vertex 0) spanned by A is

C = R+[A] =
{∑
α∈A

rα · α : rα ∈ R+

}
,

and this is clearly the same as the smallest pointed cone which contains K. By [7,
II, §7.3, Prop. 6], C is proper and closed in V . Hence by [7, II, §7.2, Prop. 5], C
is the closed convex hull of the union of its extremal rays; in particular, such rays
exist. One sees easily (cf. [40, B.1]) that an extremal ray of C has the form R+ ·α
for some α ∈ A, so A contains elements α such that R+ ·α is an extremal ray of C.

By a height function for a subset A of X we mean a homomorphism h: Z[A]→ Z
of abelian groups taking strictly positive values on A.

1.4. Proposition. Any subset of X admitting a height function is N-free.
Conversely, a finite N-free subset admits a height function.

Proof. Suppose h is a height function for A, and let (nα)α∈A in N(A) with∑
α∈A nα · α = 0. Applying h yields

∑
α∈A nα · h(α) = 0, and since all h(α) are

positive, it follows that all nα = 0.
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Conversely, suppose A is finite and N-free. We use the notations of Lemma 1.3.
By that lemma, K is compact and does not contain 0. By [7, II, §5.3, Prop. 4],
there exists a hyperplane separating {0} and K strictly. Thus there exists a linear
form g ∈ V ∗, the dual of V , and c ∈ R such that g(0)− c < 0 and g(x)− c > 0 for
all x ∈ K; in particular, g(α) > 0 for all α ∈ A.

V ∗ has the rational form V ∗Q = {f ∈ V ∗ : f(VQ) ⊂ Q}, and for each α ∈ A,
the set Uα = {f ∈ V ∗ : f(α) > 0} is open in V ∗. Since A is finite, U :=

⋂
α∈A Uα

is open as well, and g ∈ U by the above. By (1.2.1), U ∩ V ∗Q 6= ∅, so there exists
f ∈ V ∗ such that f(α) = qα ∈ Q++, for all α ∈ A. Multiplying f with the product
of the denominators of the qα yields the desired height function.

1.5. The category SVk, closed and strictly positive sets. We introduce
the category SVk of sets in vector spaces over k whose objects are pairs (R,X)
consisting of a k-vector space X and a subset R ⊂ X which spans X and satisfies
0 ∈ R. The morphisms f : (R,X)→ (S, Y ) of SVk are the k-linear maps f : X → Y
satisfying f(R) ⊂ S. If k is unimportant we will abbreviate SVk by SV. The
elements of

R× = R \ {0}
will often be referred to as roots. More generally, for any subset A of R, we put
A× = A \ {0}. Note that the locally finite root systems of [40], see also 4.6, form
a full subcategory of SVR.

Let (R,X) ∈ SVk = SV. Generalizing a concept of [40, 10.2], a subset
C ⊂ R is called additively closed in R (or simply closed if there is no ambiguity) if
C = R∩N+[C], i.e., if for all α1, . . . , αn ∈ C with β := α1 + · · ·+αn ∈ R, we have
β ∈ C. The additive closure Ac of a subset A of R is the smallest additively closed
subset containing A; it is given by

Ac = R ∩ N+[A]. (1)

In the special case A = {α, β}, we write[[[[
α, β

]]]]
:= {α, β}c = {mα+ nβ : m,n ∈ N, m+ n > 0} (2)

and call it the closed root interval between α and β. If f : (R,X) → (R′, X ′) is a
morphism of SV, then

f(Ac) ⊂ f(A)c. (3)

This is immediate from the definitions.

A subset A of R is called strictly positive if it is additively closed and N-free.
We remark that

A is strictly positive ⇐⇒ A is closed and 0 /∈ A. (4)

Indeed, the implication from left to right is clear because an N-free set does not
contain 0. Conversely, let A be closed and 0 /∈ A. If

∑
nα · α = 0 then 0 ∈ A since

A is closed in R and 0 ∈ R, contradiction. Let us also remark that a subset A is
positive in the sense of [40, 10.5] if and only if A× is strictly positive.
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1.6. Commutator sets. Let (R,X) ∈ SV. For arbitrary subsets A,B of R
we define the commutator set(((((((

A,B
)))))))

:= R ∩
(
N+[A] + N+[B]

)
. (1)

Thus γ ∈
(((((((
A,B

)))))))
if and only if γ belongs to R and has the form

γ = α1 + · · ·+ αp + β1 + · · ·+ βq (2)

where p, q > 1, αi ∈ A, and βj ∈ B.
If A = {α} consists of a single element, we simply write

(((((((
α,B

)))))))
instead of(((((((

{α}, B
)))))))

, and similarly(((((((
α, β

)))))))
:=
(((((((
{α}, {β}

)))))))
= R ∩

(
N+α+ N+β

)
, (3)

called the open root interval from α to β. The following properties follow easily
from the definition: (((((((

A, ∅
)))))))

= ∅, A ∪
(((((((
A,A

)))))))
= Ac =

(((((((
A, 0

)))))))
, (4)

A is closed ⇐⇒
(((((((
A,A

)))))))
⊂ A, (5)

0 ∈ Bc =⇒ Ac ⊂
(((((((
A,B

)))))))
, (6)(((((((

A,B
)))))))

=
(((((((
B,A

)))))))
=
(((((((
Ac, B

)))))))
=
(((((((
Ac, Bc

)))))))
=
(((((((
A,B

)))))))
c, (7)

A′ ⊂ A, B′ ⊂ B =⇒
(((((((
A′, B′

)))))))
⊂
(((((((
A,B

)))))))
, (8)(

A ∪B
)c

= Ac ∪
(((((((
A,B

)))))))
∪ Bc, (9)(((((((

A,
(((((((
A,B

))))))))))))))
⊂
(((((((
A,B

)))))))
. (10)

If f : (R,X)→ (R′, X ′) is a morphism of SV then for A,B ⊂ X,

f
(((((((
A,B

)))))))
⊂
(((((((
f(A), f(B)

)))))))
∩ f(R). (11)

Let A ⊂ R be additively closed. A subset B of A is called normal (in A) if(((((((
A,B

)))))))
⊂ B. We remark that in [55, p. 24], the terminology “B is an ideal in A”

is employed. By (5) and (8), a normal subset is in particular closed. Moreover, by
(4) and (5), ∅ and A are always normal subsets of A, and by (6) any proper normal
subset B of A has 0 /∈ Bc.

1.7. The lower central series. Let (R,X) ∈ SV and let A ⊂ R be an
arbitrary subset. The lower central series of A is defined inductively by

C 1(A) = Ac, C n+1(A) =
(((((((
A,C n(A)

)))))))
. (1)

From (1.6.7) and (1.6.8) it follows by induction that

C n(A) = C n(Ac) = C n(A)c, (2)

C n(A) ⊃ C n+1(A), (3)



1. NILPOTENT SETS OF ROOTS 11

and (1.6.6) and (1.6.4) yield

0 ∈ Ac =⇒ C n(A) = Ac, (4)

for all n > 1. Thus the lower central series is mainly of interest for closed subsets
not containing 0, i.e., for strictly positive subsets, cf. (1.5.4). We note also that all
C n(A) are normal subsets of A if A is closed. The lower central series behaves well
with respect to inclusions and morphisms:

B ⊂ A =⇒ C n(B) ⊂ C n(A), (5)

f
(
C n(A)

)
⊂ C n

(
f(A)

)
. (6)

Indeed, (5) is a consequence of (1.6.8) while (6) follows from (1.5.3) and (1.6.11).

1.8. The upper central series. Let (R,X) ∈ SV and let A ⊂ R be a closed
subset. We define the upper central series of A inductively by

Z0(A) = ∅, Zn(A) = {γ ∈ A :
(((((((
γ,A

)))))))
⊂ Zn−1(A)}, (1)

and the centre of A by

Z (A) := Z1(A) = {γ ∈ A :
(((((((
γ,A

)))))))
= ∅}. (2)

From the definition, it is clear that

∅ = Z0(A) ⊂ Z1(A) ⊂ Z2(A) ⊂ · · · ⊂ A, (3)

and that (((((((
A,Zn(A)

)))))))
⊂ Zn−1(A), (4)

in particular, the Zn(A) are normal in A.

As for the lower central series, only the case 0 /∈ A is of interest, because 0 ∈ A
implies γ = γ + 0 ∈

(((((((
γ,A

)))))))
for all γ ∈ A, so Z (A) and therefore also all the other

Zn(A) are empty.

1.9. Prenilpotent and nilpotent subsets. Let (R,X) ∈ SV. A subset A
of R is said to be prenilpotent if C n(A) = ∅ for sufficiently large n, and it is called
nilpotent if it is closed and prenilpotent. From 1.5 and 1.7 it is immediate that a
prenilpotent set cannot contain 0 and that the following implications hold:

A prenilpotent =⇒ 0 /∈ Ac, (1)

B ⊂ A and A prenilpotent =⇒ B prenilpotent, (2)

f(A) prenilpotent =⇒ A prenilpotent, (3)

A prenilpotent =⇒ Ac nilpotent, (4)

A nilpotent =⇒ A strictly positive. (5)
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The class of a nilpotent A is the smallest k such that C k+1(A) = ∅. Thus

k 6 1 ⇐⇒ A = Z (A) ⇐⇒
(((((((
A,A

)))))))
= ∅,

k 6 2 ⇐⇒
(((((((
A,A

)))))))
⊂ Z (A) ⇐⇒

(((((((
A,
(((((((
A,A

))))))))))))))
= ∅,

and we will call an A of class 6 1 resp. 6 2 abelian resp. 2-step nilpotent.

As in the case of groups, nilpotence can also be characterized by the upper
central series. More generally, let A be a strictly positive subset of R. A chain of
subsets A ⊃ A1 ⊃ A2 ⊃ · · · is called a central chain if

(((((((
A,An

)))))))
⊂ An+1 for all n>1.

For example, the lower central series is a central chain, and so is Ai := Zm+1−i for
some fixed m, provided we define Zj(A) = ∅ for j < 0.

Clearly the terms An of a central chain are normal in A. From (1.7.1) and
(1.8.1) it follows easily that

A1 = A =⇒ Ai ⊃ C i(A), (6)

An+1 = ∅ =⇒ Ai ⊂ Zn+1−i(A). (7)

Now (6) shows

A is nilpotent of class 6 n ⇐⇒ there exists a central chain
with A1 = A and An+1 = ∅, (8)

and (7) implies

A is nilpotent of class 6 n ⇐⇒ Zn(A) = A. (9)

Let us also note that the length of the upper central series of a nilpotent A of class
k is exactly k. Indeed, Zk(A) = A holds by (9). Assuming Zk−1(A) = A would
yield a central chain Ai := Zk−i(A) with A1 = A and Ak = Z0(A) = ∅, so A would
have class 6 k − 1, contradiction.

1.10. Lemma. Let (R,X) ∈ SV and let A ⊂ R be a finite strictly positive
subset of cardinality n.

(a) There exist total orders > on A compatible with the partial order <A defined
by A, cf. (1.1.1), in the sense that α<A β implies α> β.

(b) Let > be as in (a), and enumerate A = {α1, . . . , αn} in such a way that
α1 < · · · < αn. Then Ai := {αi, . . . , αn} for i = 1, . . . , n, and Ai := ∅ for i > n, is
a central chain of A. In particular, A is nilpotent of class 6 n.

Proof. (a) This follows from the Szpilrajn-Marczewski Lemma [23, Ch. 8,
Section 8.6].

(b) We show
(((((((
A,Ai

)))))))
⊂ Ai+1. By (1.6.2), an element γ ∈

(((((((
A,Ai

)))))))
has the form

γ = αi1 +· · ·+αip+αj1 +· · ·+αjq where p, q>1, iλ ∈ {1, . . . , n} and jµ ∈ {i, . . . , n};
in particular, γ �A αj1 . On the other hand, γ ∈ A because A is closed, say, γ = αk.
Hence k > j1 > i so αk ∈ Ak ⊂ Ai+1.

The statement about the nilpotence of A now follows from (1.9.8).
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1.11. Lemma. Let F be a finite set and let NF , the set of functions F → N,
be equipped with the partial order

v 6 w ⇐⇒ v(α)6 w(α) for all α ∈ F .

Then every infinite subset S of NF contains a strictly increasing sequence v1 <
v2 < · · ·.

Proof. The proof is by induction on the cardinality of F , the case F = ∅
being trivial. If S has no maximal element then the assertion is clear. Otherwise,
let m be a maximal element of S. Then v > m holds for no v ∈ S, i.e., for
every v ∈ S there exists an element α ∈ F such that v(α) 6 m(α). Letting
Sα := {v ∈ S : v(α)6m(α)}, we thus have S =

⋃
α∈F Sα. Since S is infinite, there

must be a β ∈ F such that Sβ is infinite. Consider the evaluation map Sβ → N,
v 7→ v(β), whose image is contained in the finite interval I := {0, 1, . . . ,m(β)} of N.
Since Sβ is infinite, there exists i ∈ I such that the fibre Siβ := {v ∈ Sβ : v(β) = i}
is infinite. Let F ′ := F \{β}, denote by res: NF → NF ′ the restriction map induced
by the inclusion F ′ ↪→ F , and put S′ := res(Siβ) ⊂ NF ′ . Clearly, res: Siβ → S′ is

bijective, with inverse ext: S′ → Siβ given by extending an element v′ ∈ S′ (which
after all is a map F ′ → N) to a map F → N via β 7→ i. By induction, there exists a
strictly increasing sequence v′1 < v′2 < · · · in S′. Then vk := ext(v′k) is the desired
sequence in S.

1.12. Proposition. Let (R,X) ∈ SV. For a subset F ⊂ R with closure
F c = A, the following conditions are equivalent:

(i) F is finite and prenilpotent,
(ii) A is finite and nilpotent,

(iii) A is finite and strictly positive,
(iv) A is finite and 0 /∈ A.

Proof. (i) ⇐⇒ (ii): F is prenilpotent if and only if A is nilpotent by (1.9.4), so
it remains to show that F finite implies A is finite. Assume, by way of contradiction,
that A is infinite. Then by definition of the closure of a set in (1.5.1) we have
S := κ−1(A) ⊂ NF infinite, where κ is defined in 1.1. Choose a sequence (vk)k>1

in S as in Lemma 1.11 and put γk = κ(vk). We will show by induction that
γk ∈ C k(F ) for all k > 1, contradicting the fact that C k(F ) = ∅ for sufficiently big
k, by nilpotence of A. Obviously, γ1 ∈ A = C 1(F ). Suppose we have γk ∈ C k(F ).
Then γk+1−γk =

∑
α∈F nαα where all nα := vk+1(α)−vk(α) ∈ N, and at least one

nα is positive because vk+1 > vk. Hence γk+1 ∈
(((((((
F, γk

)))))))
⊂
(((((((
F,C k(F )

)))))))
= C k+1(F ).

(ii) =⇒ (iii) is (1.9.5), and the implication (iii) =⇒ (ii) is a consequence of
Lemma 1.10(b). The equivalence of (iii) and (iv) follows from (1.5.4).

1.13. Corollary. A finite prenilpotent subset admits a height function.

Proof. Let F be finite and prenilpotent with closure A. By Proposition 1.12(iii),
A is finite and strictly positive, hence in particular N-free, see 1.5. By Proposi-
tion 1.4, A admits a height function and hence so does F .
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1.14. Corollary. The following conditions on a subset A of R are equivalent:

(i) A is closed in R and every finite subset of A is prenilpotent,
(ii) A is strictly positive and every finite subset of A has finite closure.

This follows easily from Proposition 1.12. A subset satisfying these conditions
is called locally nilpotent. In particular, if R is a locally finite root system, cf. 4.6,
then a subset of R is locally nilpotent if and only if it is strictly positive.
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§2. Groups with commutator relations

2.1. Nilpotent pairs and division of roots. Let (R,X) ∈ SVk = SV and
α, β ∈ R. Recall from (1.5.2) and (1.6.9) that the closed root interval from α to β
is [[[[

α, β
]]]]

= {α, β}c = {α}c ∪
(((((((
α, β

)))))))
∪ {β}c

= R ∩ {pα+ qβ : p, q ∈ N, p+ q > 1}. (1)

We will call (α, β) a nilpotent pair if
[[[[
α, β

]]]]
is a nilpotent subset of R, in other

words, if the subset {α, β} of R is prenilpotent, see 1.9. Clearly, if (α, β) is a
nilpotent pair then so is (β, α). By Proposition 1.12,

(α, β) is a nilpotent pair ⇐⇒
[[[[
α, β

]]]]
is finite and 0 6∈

[[[[
α, β

]]]]
. (2)

On the other hand, one shows easily that, for α, β ∈ R×,

0 ∈
[[[[
α, β

]]]]
⇐⇒ 0 ∈

(((((((
α, β

)))))))
⇐⇒ α ∈

(((((((
α, β

)))))))
⇐⇒ β ∈

(((((((
α, β

)))))))
. (3)

Let α, β ∈ R. We say α divides β, written α
∣∣β, if β ∈ N · α, i.e., β = nα for some

n ∈ N. Note that

α
∣∣0 always holds, while 0

∣∣β implies β = 0. (4)

Divisibility is a partial order, in particular it is transitive:

α
∣∣β and β

∣∣γ =⇒ α
∣∣γ. (5)

2.2. Definition. Let G be a group. The commutator of a, b ∈ G is
(((((((
a, b
)))))))

=

aba−1b−1. If X and Y are subsets of G, we use the notation
(((((((
X,Y

)))))))
for the subgroup

of G generated by all
(((((((
a, b
)))))))

, a ∈ X, b ∈ Y . If (Xi)i∈I is a family of subsets of G,〈
Xi : i ∈ I

〉
denotes the subgroup of G generated by the union of the Xi.

Let (R,X) ∈ SVk and let (Uα)α∈R be a family of subgroups of G. For a subset
A of R we put

UA =
〈
Uα : α ∈ A

〉
;

thus in particular U∅ = {1}. We say G has R-commutator relations with root groups
(Uα)α∈R if the following conditions hold for all α, β ∈ R:

U0 = {1}, (1)

α divides β =⇒ Uβ ⊂ Uα, (2)

(α, β) nilpotent =⇒
(((((((
Uα, Uβ

)))))))
⊂ U(((((α,β))))). (3)
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Note that by (2.1.4) and (1), the relation (2) holds automatically if α or β is
zero. We will usually refer to the subgroups Uα as root groups. Because of (1)
only the Uα, α 6= 0, are of interest. In particular, when considering examples it is
sufficient to specify Uα, α ∈ R×.

Note also that we do not require G to be generated by its root subgroups. On
the other hand, the subgroup

r(G) = UR

generated by all root subgroups clearly has R-commutator relations as well. If
G = r(G) we say that G is tight or the (Uα)α∈R form a generating family.

2.3. Examples. (a) The case R = A1. The reader will find many examples
of groups with R-commutator relations throughout this book. A very simple case
is R = {0, 1,−1} ⊂ k, the root system of type A1. Then a group G has A1-
commutator relations if and only if U1 = U+ and U−1 = U− are two abelian
subgroups. In particular, the projective elementary group PE(V ) of a Jordan pair
V as in 9.2 has A1-commutator relations with root subgroups U± = exp±(V ±).

(b) Commutator relations are inherited by homomorphic images: if ϕ: G→ H
is a group homomorphism then H has R-commutator relations with root groups
ϕ(Uα).

(c) Reductive algebraic groups over fields. Let G be a connected reductive
algebraic group over an algebraically closed field in the sense of [6, 54], and let
Φ = Φ(G,T ) be the root system of G with respect to a maximal torus T . For
α ∈ Φ let Uα be the root group defined in [6, Thm. 13.18(4.d)]. Then R = Φ ∪ {0}
is a reduced finite root system and G has R-commutator relations with respect to
the family (Uα)α∈R [6, 14.5 (*)], which is generating in case G is semisimple [54,
Thm. 8.1.5].

More generally, let G be a connected reductive algebraic group defined over
an arbitrary field k in the sense of [6, 54], and let Φ′ be the set of k-roots of G
with respect to a maximal k-split torus T ′ of G. One knows [6, Thm. 21.6] that
R′ = Φ′ ∪ {0} is a finite but not necessarily reduced root system. Moreover, for
every α′ ∈ Φ′ there exists a unique closed connected unipotent k-subgroup U ′α′
normalized by the centralizer of T ′ and with Lie algebra gα′ ⊕ g2α′ , where g2α′ = 0
if 2α′ 6∈ Φ′ [6, Prop. 21.9]. The construction of the U ′α′ in [6] is a special case of
the construction given in Proposition 3.3(a). We note that even if G is generated
by the Uα, this will in general no longer hold for the U ′α′ .

The analogous statement also holds for the groups G(k) and U ′α′(k) of k-rational
points of G and the U ′α: the group G(k) has R′-commutator relations. Note,
however, that G(k) is in general not generated by the U ′α′(k), even when G is
semisimple and simply connected, see for example [17, Ch. 2.2.E] for a discussion
of this question for groups of type A (the Tannaka-Artin problem).

(d) Split reductive group schemes. Let G be a split reductive group scheme
over a scheme S [13, Exp. XXII, Déf. 1.13]. Recall [13, Exp. XXII, Prop. 1.14] that
the root system R of G is reduced. Let Uα, α ∈ R×, be the root subgroups of G
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(denoted Pα in [13]). Let S′ → S be a morphism of schemes. Then G = G(S′) is
a group with R-commutator relations with respect to the subgroups Uα = Uα(S′)
[13, Exp. XXII, Cor. 5.5.2]. If G is simply connected and S′ is a local scheme the
group G is generated by the root subgroups [13, Exp. XXII, Cor. 5.7.6].

Let in particular S = Spec(Z) and let S′ = Spec(k) where k is any field. Then
UR =

〈
Uα : α ∈ R

〉
is a Chevalley group in the sense of [55, §3] and hence has

R-commutator relations.

(e) Groups associated to Moufang buildings. Let B be a thick irreducible
spherical Moufang building over I = {1, . . . , l} with l > 2 and different from an
octagon (we use the notation of [56, II, §5] and [61]). Let Φ be the set of roots of
an apartment A of B. It is known [56, p. 126] that Φ∪ {0} can be identified with
a finite irreducible reduced root system. Moreover, there exist an irreducible finite
root system R ⊃ Φ and a subgroup G ⊂ Aut(B) with root groups Uα, α ∈ R, such
that G = UR has R-commutator relations. We have R = Φ∪{0} if Φ is not of type
B or C, and R ∈ {Bl,Cl,BCl} otherwise depending on B.

The construction of these groups is for example given in [56, II, §5]. It is
immediate from this construction that the relation (2.2.2) holds. Note that it only
has to be verified in case α and 2α ∈ R. The relation (2.2.3) for the nilpotent pair
(α, α) is also clear from the construction. To verify (2.2.3) in the remaining cases,
we can therefore in view of 4.8 assume that α and β are Q-linearly independent.
For l = 2 the commutator relation (2.2.3) then follows by comparing the list in 4.8
with the one in [60] or [62, §5.4]. The case l > 3 can be reduced to the case l = 2,
see e.g. [56, II, (5.7)]. For example, for a Moufang quadrangle of type F4 in the
sense of [61, (16.7)], the root system R is of type BC2, see [61, (40.59)].

(f) The reader can find more examples of groups with commutator relations
in 2.14 (nilpotent groups), 2.16 (groups with unique factorization, in particular
elementary linear groups), 3.19 (Tits’ Steinberg group), 6.7 (rank one groups), 10.3
(elementary groups of special Jordan pairs), 10.16 (Steinberg groups Stn(R) for R
an associative k-algebra). In particular, we will see in 2.14 that nilpotent groups
provide natural examples of groups with R-commutator relations where {α}c can
have any finite cardinality.

2.4. Remarks. Let G have R-commutator relations with root groups Uα.

(a) Suppose (α, β) ∈ R× × R× is not nilpotent, so that either 0 ∈
[[[[
α, β

]]]]
or[[[[

α, β
]]]]

is infinite. In the first case, (2.1.3) implies that even〈
Uα ∪ Uβ

〉
⊂ U(((((α,β))))) (1)

holds. In the second case we do not have nor do we require any relations.

(b) In many interesting examples, e.g. if R = Re(S) where R is the set of
reflective roots of a partial root system S in the sense of [42], R satisfies the
finiteness condition

(F1): {α}c is finite, for every α ∈ R. (2)
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Then a pair (α, β) ∈ R××R× is nilpotent if and only if the commutator set
(((((((
α, β

)))))))
is finite and does not contain zero.

(c) Suppose (R,X) satisfies the stronger finiteness condition

(F2):
[[[[
α, β

]]]]
is finite, for all α, β ∈ R. (3)

Then also (F1) holds, and for α, β ∈ R× either (α, β) is nilpotent or 0 ∈
[[[[
α, β

]]]]
.

Hence by (1), a group with R-commutator relations actually satisfies(((((((
Uα, Uβ

)))))))
⊂ U(((((α,β))))) for all α, β ∈ R. (4)

Note that (F2) is always fulfilled if (R,X) is a locally finite root system in the sense
of [40], see 4.6.

(d) Let R = Re(S) where S is a partial root system, see [42, Def. 3.3]; in
particular, R = S could be a locally finite root system. Then

(((((((
α, α

)))))))
⊂ {2α} for all

α ∈ R, so (2.2.3) implies(((((((
Uα, Uα

)))))))
⊂ U2α,

(((((((
Uα, U2α

)))))))
= 1. (5)

Hence all root groups are 2-step nilpotent (the derived group is central), and they
are even abelian if R is reduced.

2.5. Lemma. Let G be a group with R-commutator relations and let (α, β) be
a nilpotent pair.

(a) For all γ, δ ∈
[[[[
α, β

]]]]
, the pair (γ, δ) is nilpotent and satisfies(((((((

γ, δ
)))))))
⊂
(((((((
α, β

)))))))
. (1)

(b) Uα and Uβ normalize U(((((α,β))))), and

U[[[α,β]]] = Uα · U(((((α,β))))) · Uβ . (2)

Proof. (a) Clearly
[[[[
γ, δ
]]]]
⊂
[[[[
α, β

]]]]
, and

(((((((
γ, δ
)))))))
⊂
(((((((
α, β

)))))))
holds by (1.6.8). Since

subsets of prenilpotent sets are prenilpotent (cf. (1.9.2)), we have (a).

(b) Let γ, δ ∈
[[[[
α, β

]]]]
. By (a) and the commutator relation (2.2.3), we have

Int(Uγ) · Uδ ⊂
(((((((
Uγ , Uδ

)))))))
· Uδ ⊂ U(((((γ,δ))))) · Uδ. (3)

In particular, for γ ∈ {α, β} and δ ∈
(((((((
α, β

)))))))
, (3) and (1) imply Int(Uγ)·Uδ ⊂ U(((((α,β))))),

from which it follows that Uα and Uβ normalize U(((((α,β))))). Hence Uα · U(((((α,β))))) =
U(((((α,β))))) · Uα and K = Uβ · U(((((α,β))))) = U(((((α,β))))) · Uβ are subgroups of G.

The inclusion from right to left in (2) is clear from (2.1.1). For the reverse
inclusion, let H = Uα ·K denote the right hand side of (2). Note first that, because
of (2.1.1) and the relation (2.2.2), H contains all Uγ , γ ∈

[[[[
α, β

]]]]
. Hence it suffices

to show that H is a subgroup of G. Now, for (γ, δ) = (α, β), (3) shows that
Int(Uα) · Uβ ⊂ K. Thus Uα normalizes the
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2.6. Commutator formulas. Let G be a group. For elements a, b of G we
write ab = aba−1, and denote by Z (G) the centre of G. Then the following formulas
hold: (((((((

a, b
)))))))−1 =

(((((((
b, a
)))))))
, (1)(((((((

ab, c
)))))))

= a
(((((((
b, c
)))))))
·
(((((((
a, c
)))))))

=
(((((((
a,
(((((((
b, c
))))))))))))))
·
(((((((
b, c
)))))))
·
(((((((
a, c
)))))))
, (2)(((((((

a, bc
)))))))

=
(((((((
a, b
)))))))
· b
(((((((
a, c
)))))))

=
(((((((
a, b
)))))))
·
(((((((
a, c
)))))))
·
((((((((((((((
c, a
)))))))
, b
)))))))
, (3)(((((((

a−1, b
)))))))

= a−1
(((((((
a, b
)))))))−1a, (4)(((((((

a, b−1
)))))))

= b−1
(((((((
a, b
)))))))−1b. (5)(((((((

a,
(((((((
b, c
))))))))))))))

=
(((((((
ab, c

)))))))
·
(((((((
c, a
)))))))
·
(((((((
c, b
)))))))
, (6)((((((((((((((

a, b
)))))))
, c
)))))))

=
(((((((
a, b
)))))))
·
(((((((
c, b
)))))))
·
(((((((
b, ca

)))))))
, (7)

a ≡ a ′ and b ≡ b′ mod Z (G) =⇒
(((((((
a, b
)))))))

=
(((((((
a′, b′

)))))))
. (8)

We also have the following relations, see [9, I, §6.2]. Formula (11) is a group-
theoretic analogue of the Jacobi identity in Lie algebras.(((((((

a, bc
)))))))
·
(((((((
b, ca

)))))))
·
(((((((
c, ab

)))))))
= 1, (9)(((((((

ab, c
)))))))
·
(((((((
ca, b

)))))))
·
(((((((
bc, a

)))))))
= 1, (10)(((((((

ba,
(((((((
c, b
))))))))))))))
·
(((((((
cb,
(((((((
a, c
))))))))))))))
·
(((((((
ac,
(((((((
b, a
))))))))))))))

= 1. (11)

The proofs are straightforward verifications.

2.7. Lemma. Let G be a group, H a subgroup and let X1, X2 be subsets of G
normalizing H and satisfying

(((((((
X1, X2

)))))))
⊂ H. Then the subgroups Gi generated by

Xi normalize H and
(((((((
G1, G2

)))))))
⊂ H.

Proof. Since the normalizer of any subset is a subgroup, it is clear that the Gi
normalize H. For the proof of the second claim, we first note that

(((((((
x±1

1 , x±1
2

)))))))
∈ H

by (2.6.4) and (2.6.5). We may therefore assume Xi = X−1
i , so that Gi is the

submonoid generated by Xi. Then
(((((((
g1, g2

)))))))
∈ H for all gi ∈ Gi by a straightforward

induction, using (2.6.2) and (2.6.3), and this in turn implies
(((((((
G1, G2

)))))))
⊂ H.

2.8. Lemma. Let (R,X) ∈ SV and let G be a group with a family of subgroups
Uα indexed by α ∈ R, which satisfy (2.2.1) and (2.2.2). For each α ∈ R let
Xα = X−1

α ⊂ Uα be a symmetric set of generators of Uα, and suppose that(((((((
Xα, Xβ

)))))))
⊂ U(((((α,β))))) (1)

holds for all nilpotent pairs (α, β). Then G has R-commutator relations with root
groups Uα.

Proof. It remains to verify the commutator relation (2.2.3) for every nilpotent
pair (α, β). To do so, we apply Lemma 2.7 to X1 = Xα, X2 = Xβ and H = U(((((α,β))))),
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so we must show that Xα and Xβ normalize H. Now H is generated by all Uγ ,
γ ∈

(((((((
α, β

)))))))
, and (α, γ) is a nilpotent pair, by 2.5(a). Thus our hypothesis (1) yields

xαyγx
−1
α ∈ U(((((α,γ))))) · yγ ⊂ H for all xα ∈ Xα, yγ ∈ Xγ . As Uγ is generated by Xγ ,

this implies xαUγx
−1
α ⊂ H. By definition, H is generated by all Uγ , γ ∈

(((((((
α, β

)))))))
.

Conjugation with xα is an automorphism so xαHx
−1
α ⊂ H. As also x−1

α ∈ Xα by
symmetry of Xα, we have xαHx

−1
α = H, so xα does normalize H. In the same way,

one shows that Xβ normalizes H. Now Lemma 2.7 yields
(((((((
Uα, Uβ

)))))))
⊂ H. This

completes the proof.

Recall that the lower and upper central series of a group H are defined in-
ductively by C 1(H) = H, C n+1(H) =

(((((((
H, C n(H)

)))))))
and Z0(H) = {1} and

Zn(H) = {a ∈ H :
(((((((
a,H

)))))))
⊂ Zn−1(H)}, respectively.

2.9. Lemma. Let G be a group with R-commutator relations.

(a) Let A and B be subsets of R with the property that, for all α ∈ A, β ∈ B and
γ ∈

(((((((
A,B

)))))))
, the pairs (α, β), (α, γ) and (β, γ) are nilpotent. Then the subgroups

UA and UB normalize U(((((A,B))))), and the generalized commutator relations(((((((
UA, UB

)))))))
⊂ U(((((A,B))))) (1)

hold.

(b) Let A be a strictly positive subset (cf. 1.5) of R with the property that (α, β)
is a nilpotent pair, for all α, β ∈ A. Then a central chain A ⊃ A1 ⊃ A2 ⊃ · · · in A
gives rise to a central chain UA ⊃ UA1

⊃ UA2
⊃ · · · in UA. The lower and upper

central series of A and UA are related by

C n(UA) ⊂ UCn(A), UZn(A) ⊂ Zn(UA). (2)

If D ⊂ A is a normal subset then UD is a normal subgroup of UA.

Proof. (a) Let C :=
(((((((
A,B

)))))))
and put X1 :=

⋃
α∈A Uα, X2 :=

⋃
β∈B Uβ and

H := UC . Since UA =
〈
X1

〉
and UB =

〈
X2

〉
, our claim will follow from Lemma 2.7

once we verify the assumptions of that lemma. First, since the pair (α, β) is
nilpotent for all α ∈ A, β ∈ B and satisfies

(((((((
α, β

)))))))
⊂ C by (1.6.8), we obtain(((((((

X1, X2

)))))))
⊂ UC = H. Thus, in order to apply 2.7, it remains to show that X1

and X2 normalize H. By symmetry, it is enough to do so for X1. Let α ∈ A and
γ ∈ C. Then (α, γ) is a nilpotent pair by assumption, and

(((((((
α, γ

)))))))
⊂
(((((((
A,C

)))))))
⊂ C

by (1.6.10). Hence, for all xα ∈ Uα,

xαUγx
−1
α ⊂

(((((((
Uα, Uγ

)))))))
· Uγ ⊂ U(((((α,γ))))) · Uγ ⊂ UC = H.

This implies xαHx
−1
α ⊂ H because the Uγ generate H, and even xαHx

−1
α = H

because Uα, being a subgroup, is closed under inversion. Thus X1 normalizes H,
as required.
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(b) Note first that formula (1) applies to any subset B of A. Indeed,
(((((((
A,B

)))))))
⊂ A

because A is closed, so our assumption on A shows that the property required in (a)
holds. By 1.9, a central chain in A satisfies

(((((((
A,Ai

)))))))
⊂ Ai+1. Hence

(((((((
UA, UAi

)))))))
⊂

U(((((A,Ai))))) ⊂ UAi+1 , showing the UAi form a central chain in UA.
For n = 1 the first formula of (2) is clear. The induction step follows by putting

B = C n(A), whence C n+1(UA) =
(((((((
UA,C n(UA)

)))))))
⊂
(((((((
UA, UB

)))))))
(by induction)

⊂ U(((((A,B))))) = UCn+1(A) (by (1.7.1)).
The second formula of (2) obviously holds for n = 0. Assume it is true for

n − 1 and let α ∈ Zn(A). Then
(((((((
Uα, UA

)))))))
⊂ U(((((α,A))))) ⊂ UZn−1(A) (by (1.8.1))

⊂ Zn−1(UA) (by induction). A normal subset D of A satisfies
(((((((
A,D

)))))))
⊂ D. Hence

the last statement follows from Int(UA) · UD ⊂
(((((((
UA, UD

)))))))
UD ⊂ U(((((A,D)))))UD ⊂ UD.

The following lemma is due to J. Tits [59, 4.7, Lemma 2], for (b) see also [55,
Lemma 18] .

2.10. Lemma. Let X be a group generated by subgroups X1, . . . , Xn. Suppose
that X has a central chain X = Z1 ⊃ Z2 ⊃ · · · ⊃ Zh ⊃ Zh+1 = {1} such that, for
all i ∈ {1, . . . , h}, there exists j ∈ {1, . . . , n} for which the inclusion Zi ⊂ Xj ·Zi+1

holds. Then:

(a) For every permutation σ ∈ Sn, the product map Xσ(1) × · · · ×Xσ(n) → X
is surjective.

(b) If that map is injective for one permutation σ, it is injective for all σ.

2.11. Indivisibility. Let A ⊂ R. A root β ∈ A is said to be indivisible in A
if β 6= 0 and, for all α ∈ A, the relation α

∣∣β implies α = β. We denote the set of
indivisible roots in A by Aind. Note that indivisibility depends very much on A:

B ⊂ A =⇒ B ∩Aind ⊂ Bind, (1)

and this is in general a proper inclusion. For example, if α and 2α belong to R×

then 2α is indivisible in B = {2α} while it is divisible in A = {α, 2α}.

2.12. Proposition. Let G be a group with R-commutator relations and root
groups Uα.

(a) If A ⊂ R is a nilpotent subset of class at most k then UA is a nilpotent
subgroup of G of class at most k.

(b) Let A be a finite nilpotent subset of R. Then UA is nilpotent of class at
most Card(A), and for any ordering Aind = {β1, . . . , βn},

UA = UAind
= Uβ1

· · · Uβn . (1)

If the product map Uβ1
× · · · ×Uβn → UA is injective for one ordering of Aind then

it is so for all orderings.
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Proof. (a) A is strictly positive by (1.9.5), and (α, β) is a nilpotent pair for all
α, β ∈ A. Thus Lemma 2.9(b) is applicable to A, and the assertion follows from
the definition of nilpotence of a given class in (1.9.8) which is analogous to the
definition for groups.

(b) Let h = Card(A), order A = {α1, . . . , αh} as in Lemma 1.10(a), and
consider the central chain Ai = {αi, . . . , αh} of A as in Lemma 1.10(b). By 2.9(b),
the Zi := UAi form a central chain in UA. Since Z1 = UA and Zh+1 = {1}, UA is
nilpotent of class at most h. Now let Aind = {β1, . . . , βn} and put Xj := Uβj , for
j = 1, . . . , n. By finiteness of A, for every α ∈ A there exists a β ∈ Aind dividing
α. Hence for every i ∈ {1, . . . , h} there exists some j = j(i) ∈ {1, . . . , n} such that
βj
∣∣αi, and therefore Xj = Uβj ⊃ Uαi (by (2.2.2)). This shows that the Xj generate

UA. The members of a central chain are normal subgroups. Hence Uαi · Zi+1 is a
subgroup of UA, and therefore

Zi =
〈
Uαi ∪ · · · ∪ Uαn

〉
=
〈
Uαi ∪ Zi+1

〉
= Uαi · Zi+1 ⊂ Xj(i) · Zi+1.

Now the assertion follows from Tits’ Lemma 2.10.

2.13. Corollary. Let G be a group having R-commutator relations with root
groups Uα.

(a) If {α}c is finite then Uα is nilpotent.

(b) If A ⊂ R is locally nilpotent in the sense of 1.14 then UA is a locally
nilpotent group.

(c) Let R be a locally finite root system and let (α, β) be a nilpotent pair which
does not fall under the cases 7 or 8 of the table in 4.8. Then U(((((α,β))))) is abelian. In

particular, this is so if Card
(((((((
α, β

)))))))
6 2.

Proof. (a) We may assume α 6= 0. The set A := {α}c is finite by assumption,
and obviously strictly positive, hence nilpotent by Proposition 1.12. As Aind = {α},
the assertion follows from Proposition 2.12.

(b) We must show that every finite subset E of UA is contained in a nilpotent
subgroup. Now E ⊂ UF where F is a suitable finite subset of A. By Corollary 1.14,
B := F c is nilpotent, and therefore so is UB by Proposition 2.12(a). Since UF ⊂ UB
we are done.

(c) It follows from 4.8 that in the cases 1 – 6, the set A =
(((((((
α, β

)))))))
is abelian.

Hence by Proposition 2.12(a), UA is abelian as well.

We will now show how nilpotent groups fit into our framework.

2.14. Corollary. For k ∈ N+ let R = {0, 1, . . . , k} ⊂ k. Then any group G
with R-commutator relations and generated by its root groups (Ui)i∈R is nilpotent
of class at most k. Conversely, if G is a nilpotent group of class at most k then G
has R-commutator relations with root groups Ui = C i(G) for i = 1, . . . , k.
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Proof. Let A = R× = {1, . . . , k}. One shows easily by induction that C i(A) =
{i, . . . , n}, so A is nilpotent of class k. By Proposition 2.12(a), G = UA is nilpotent
of class 6 k.

Conversely, let G be nilpotent of class 6 k and put Ui = C i(G) for i = 1, . . . , k
(and of course U0 = {1}). Then the R-commutator relations hold. Indeed, the
condition (2.2.2) follows from the fact that Ui ⊃ Uj for i 6 j. To verify (2.2.3)
observe that the nilpotent pairs of R are the pairs (i, j) with 1 6 i, j 6 k. They
satisfy i+ j ∈

(((((((
i, j
)))))))
⊂ {l ∈ N : i+ j6 l6k} if i+ j6k, while

(((((((
i, j
)))))))

= ∅ if i+ j > k.
It now follows that(((((((

Ui, Uj
)))))))

=
(((((((
C i(G),C j(G)

)))))))
⊂ C i+j(G) = Ui+j ⊂ U(((((i,j)))))

in either case.

Remark. There is a similar result for a group G containing two nilpotent
subgroups, say U+ of class at most k and U− of class at most l, respectively.
Indeed, put R = {−l, . . . ,−1, 0, 1, . . . , k} ⊂ k. Then

G has R-commutator relations with root groups U±i = C i(U±). (1)

Conversely, ifG hasR-commutator relations with root groups Ui then the subgroups
U1 and U−1 are nilpotent of class 6 k and of class 6 l respectively. Details are left
to the reader.

2.15. Groups with unique factorization. Let G have R-commutator rela-
tions and let A ⊂ R be a finite nilpotent subset. We say G has unique factorization
for A if there exists an enumeration Aind = {γ1, . . . , γn} such that the product map

µ: Uγ1 × · · · × Uγn → UA

is injective. Recall from Proposition 2.12(b) that µ is surjective and that the
injectivity of µ is independent of the choice of enumeration. A group having unique
factorization for all finite nilpotent subsets is said to have (unqualified) unique
factorization.

It is convenient to introduce the following weaker form, called unique factoriza-
tion for nilpotent pairs: For all nilpotent pairs (α, β), unique factorization holds
for the sets

[[[[
α, β

]]]]
and

(((((((
α, β

)))))))
.

In general, unique factorization for
[[[[
α, β

]]]]
will not imply this property for(((((((

α, β
)))))))

. For example, let α ∈ R× and assume that {α}c = {α, 2α, 3α}. Then[[[[
α, α

]]]]
ind = {α} so unique factorization for

[[[[
α, α

]]]]
holds trivially, while

(((((((
α, α

)))))))
=

{2α, 3α} =
(((((((
α, α

)))))))
ind, and so unique factorization for

(((((((
α, α

)))))))
means that U2α∩U3α =

{1}. On the other hand,

α and β linearly independent over Q =⇒
(((((((
α, β

)))))))
ind ⊂

[[[[
α, β

]]]]
ind,

and hence unique factorization for
[[[[
α, β

]]]]
implies that for

(((((((
α, β

)))))))
.
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For the proof, let γ ∈
(((((((
α, β

)))))))
ind and assume that γ is divisible by some δ 6= γ

in
[[[[
α, β

]]]]
. Thus δ = pα + qβ where p, q ∈ N, and γ = npα + nqβ for some n > 2.

Since α and β are linearly independent over Q,
(((((((
α, β

)))))))
contains no multiple of α or

β, so we have np> 1 and nq> 1. But then also p> 1 and q> 1, whence δ ∈
(((((((
α, β

)))))))
,

contradicting the fact that γ is indivisible in
(((((((
α, β

)))))))
.

As a consequence, we see: if R has Card
(((((((
α, β

)))))))
6 1 for all Q-linearly dependent

nilpotent pairs, which is for instance the case when R is a locally finite root system
by 4.8, then unique factorization for nilpotent pairs follows from that for all

[[[[
α, β

]]]]
.

2.16. Examples. (a) The condition that the map µ of 2.15 be injective is
trivially fulfilled for any finite nilpotent A with Card(Aind) = 1. For example, let
R = A1 = {0, 1,−1}, let V be a Jordan pair, and let G = PE(V ). As noted in
2.3(a), G then has R-commutator relations with root groups U±1 = U±. Since {1}
and {−1} are the only nilpotent subsets of R, PE(V ) has unique factorization.

(b) Here is an example which shows that not every group has unique fac-
torization for nilpotent pairs and that unique factorization for nilpotent pairs is
weaker than unqualified unique factorization. Let X = kn with standard basis
B = {ε1, . . . , εn} and let R = {0} ∪ B. Then B is an abelian subset of R in the
sense of 1.9. A group G with R-commutator relations is a group with a family of
abelian subgroups Ui = Uεi which commute pairwise. We may replace G by the
subgroup generated by the Ui. Then G is commutative, and in additive notation,
we have G =

∑n
i=1 Ui. The nilpotent pairs (α, β) are the pairs (εi, εj), and since(((((((

εi, εj
)))))))

= ∅, we have
[[[[
εi, εj

]]]]
= {εi, εj}, so that U[[[εj ,εj ]]] = Ui + Uj . Hence G has

unique factorization for all nilpotent pairs if and only if Ui∩Uj = {0} for i 6= j. On
the other hand, G has (unqualified) unique factorization if and only if G =

⊕n
i=1 Ui.

(c) Elementary linear groups. Let I be an index set, let A be a unital associative
ring and M = A(I) the free right A-module with standard basis (ei)i∈I . Let
EI(A) ⊂ GL(M) be the elementary linear group, that is, the subgroup of GL(M)
generated by all transvections

eij(a) = Id + Eij(a) (a ∈ A, i 6= j),

where the Eij(a) are the usual matrix units mapping ek to δjkeia. Let R = ȦI =
{εi − εj : i, j ∈ I} be the locally finite root system as in [40, 8.1], see also (4.7.1).

Then it is well-known and easy to see (cf. [17]) that G = EI(A) has ȦI -commutator
relations and root groups Uεi−εj = eij(A) for i 6= j. Moreover, it is well-known
that G has unqualified unique factorization. But we will give an elementary proof
for the special case of unique factorization for nilpotent pairs now.

Thus, let (α, β) be a nilpotent pair in R. In the present situation, this means
α = εi − εj , β = εk − εl where i 6= j, k 6= l, and α + β 6= 0. It suffices to treat
the case α 6= β. By 4.8, either α + β /∈ R× and then

(((((((
α, β

)))))))
= ∅, or α + β ∈ R×

and then
(((((((
α, β

)))))))
= {α + β} (all this holds for any simply laced locally finite root

system).
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Case 1: α+β /∈ R. This is equivalent to j 6= k and i 6= l. We must show that the
multiplication map Uα×Uβ → G is injective, which is equivalent to Uα∩Uβ = {1}.
Thus assume eij(a) = ekl(b) ∈ Uα ∩ Uβ . Applying this to ej and el yields

eij(a) · ej = ej + eia = ekl(b) · ej = ej + δjlekb,

eij(a) · el = el + δjleia = ekl(b) · el = el + ekb.

If i 6= k then these equations imply a = b = 0, as required. If i = k then necessarily
j 6= l, otherwise α = β. Hence these equations again show a = b = 0.

Case 2: γ = α + β ∈ R×. Possibly after exchanging α and β we may assume
j = k and have i 6= l, so γ = εi − εl. We show that the multiplication map Uα ×
Uβ × Uγ → G is injective. Let g = eij(a)ejl(b)eil(c). Then a simple computation
shows that

g · ej = ej + eia, g · el = el + ejb+ ei(c+ ab).

This shows that a, b, c are uniquely determined by g and proves our claim.

(d) Any of the groups considered in Examples 2.3(c)–(f) has unique factor-
ization. Indeed, if G is a connected reductive algebraic group defined over a field
k and so has commutator relations with respect to some finite root system R, it
follows from [42, Lemma 3.4] that any nilpotent subset A ⊂ R lies in a positive
system of R. Then [6, Prop. 14.5] shows that the product map

∏
γ∈A Uγ → UA

is bijective if k is algebraically closed. The case of an arbitrary base field k then
follows from the algebraically closed case. For split reductive group schemes as in
Example 2.3(d) unique factorization is a consequence of [13, Exp. XXII, Prop. 5.5.1]
while for Chevalley groups this is proven in [55, p. 24, Lemma 17].

For the groups in Example 2.3(e) one can argue as above: any nilpotent subset
lies in a positive system so that it suffices to know that the product map

∏
γ∈P Uγ →

UP is bijective. This is for example proven in [61, 8.10] for l = 2 or [63, Prop. 11.11]
in general. Other examples are discussed in 3.18.

2.17. Lemma. If a subset A of R is the disjoint union of two closed subsets
B and C, then

Aind = Bind ∪̇ Cind. (1)

Proof. Since B and C are disjoint so is the union on the right hand side of (1).
By (2.11.1) we have B∩Aind ⊂ Bind and C∩Aind ⊂ Cind. This proves the inclusion
from left to right. Conversely, let β ∈ Bind and assume β /∈ Aind. Then β = nα for
some α ∈ A and n> 2. We cannot have α ∈ B because β is indivisible in B. Hence
α ∈ C. But then also nα ∈ C because C is closed, whence β ∈ Bind ∩ C = ∅, a
contradiction which proves β ∈ Aind. By symmetry, we have Cind ⊂ Aind, so the
inclusion from right to left in (1) holds as well.

2.18. Corollary. Let α and β be linearly independent over Q. Then[[[[
α, β

]]]]
ind = {α} ∪

(((((((
α, β

)))))))
ind ∪ {β}.
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If moreover (α, β) is a nilpotent pair and G is a group with R-commutator relations
and root groups Uα and unique factorization for nilpotent pairs, then Uβ ∩U(((((α,β))))) =
{1}.

Proof. From linear independence it follows that the union A :=
[[[[
α, β

]]]]
=

{α}c ∪
(((((((
α, β

)))))))
∪ {β}c is disjoint. Moreover, B := {α}c is closed by definition, and

C :=
(((((((
α, β

)))))))
∪{β}c is easily seen to be closed. By Lemma 2.17, Aind = Bind ∪Cind,

and obviously Bind = {α}. Repeating this argument for the disjoint decomposition
C =

(((((((
α, β

)))))))
∪̇ {β}c into two closed subsets yields the first assertion. The second is

then immediate from the definitions.

2.19. Lemma. Let G be a group with R-commutator relations and assume R
and G have the following property: For every finite non-empty nilpotent subset A
of R there exists α0 ∈ A such that

(i) B := A \ {α0}c is closed, and
(ii) Uα0

∩ UB = {1}.

Then G has unique factorization.

Proof. Let A be a finite nilpotent subset of R and assume α0 ∈ A satisfies
condition (i). Then

Aind = {α0} ∪̇Bind (1)

by Lemma 2.17. We show by induction on n = Card(Aind): there exists an
enumeration Aind = {α1, . . . , αn} such that the multiplication map Uα1 × · · · ×
Uαn → G is injective.

This is trivial for Card(Aind) = 1. Let Card(Aind) = n+ 1 and let α0 ∈ A and
B be as in (i). Observe that B is nilpotent, being a closed subset of a nilpotent set,
cf. (1.9.4) and (1.9.2). By (1), Bind has cardinality n, so by induction hypothesis,
there exists an enumeration Bind = {α1, . . . , αn} such that the multiplication map
Uα1 × · · · × Uαn → G is injective. Let gi, hi ∈ Uαi for i = 0, . . . , n, and assume
g0g1 · · · gn = h0h1 · · ·hn. Then h−1

0 g0 = h1 · · ·hng−1
n · · · g−1

1 ∈ Uα0
∩ UB = {1}.

This implies g0 = h0, hence also g1 · · · gn = h1 · · ·hn, and therefore, by induction,
gi = hi for i = 1, . . . , n. Hence the multiplication map Uα0

× · · · × Uαn → G is
injective.

Remark. Condition (i) is always fulfilled if R is reduced in the sense that
R ∩ N+α = {α} for every α ∈ R×. Indeed, choose α0 ∈ A of minimal height with
respect to a height function h (Corollary 1.13). If B = A \ {α0} were not closed
there would exist β1, . . . βp ∈ B such that β1 + · · · + βp = α0. Applying h to this
equation yields p = 1 and α0 = β1 ∈ B, contradiction.

2.20. Locally nilpotent endomorphisms and exponentials. Let V be a
vector space over a field k of characteristic 0. Recall, see e. g. [46, 1.5], that an
endomorphism f of V is called locally nilpotent if for every v ∈ V there exists
m ∈ N, possibly depending on v, such that fm(v) = 0. In this case the exponential
of f ,
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exp(f) =
∑
n∈N

fn

n!
,

is a well-defined invertible endomorphism of V with inverse exp(f)−1 = exp(−f). If
d is a locally nilpotent derivation of a k-algebra A, one knows that exp d ∈ Aut(A).
For example, if L is a Lie algebra over k and x ∈ L is locally ad-nilpotent, i.e., adx
is locally nilpotent, then exp adx is a so-called elementary automorphism of L.

If f and g are locally nilpotent and commuting endomorphisms of V , then
exp(f) exp(g) = exp(f + g) holds. In general, exp(f) exp(g) need not be an ex-
ponential. The cases where this is still true are governed by the theory of the
Hausdorff series, which we quickly review.

Let F be the free Lie k-algebra on two generators X,Y and denote by F̂ its stan-
dard completion [8, II, §6.2]. Then expX expY = expH(X,Y ) where H(X,Y ) ∈ F̂
is the Hausdorff series. One knows

H(X,Y ) =
∑
n>1

Hn(X,Y ) = X + Y +
1

2
[X,Y ] + · · · (1)

where theHn(X,Y ) are rational linear combinations of higher order commutators in
X and Y , homogeneous of total degree n (thus H1(X,Y ) = X+Y and H2(X,Y ) =
1
2 [X,Y ]). Their precise form is for example given in [8, II, §6.4, Th. 2]. It follows
from that theorem that Hn(X,Y ) ∈ C n(F), the nth term of the central descending
series of F.

If x, y are elements of a k-Lie algebra L, we denote by Hn(x, y) the element in
C n(L) obtained by the substitution (X,Y ) 7→ (x, y). If L is nilpotent, only finitely
many Hn(x, y) are different from zero, thus H(x, y) is a finite sum. The form of
the Hn(x, y) shows in particular that, for ideals Li of L and xi ∈ Li,

H(x1, x2) ≡ x1 + x2 mod [L1, L2]. (2)

2.21. Lemma. Let L be a nilpotent Lie algebra and let %: L → gl(V ) be a
representation such that %(x) is locally nilpotent for all x ∈ L. Then for all x, y ∈ L,

exp %(x) exp %(y) = exp %(H(x, y)) (1)

in GL(V ).

Proof. Since L and %(L) are nilpotent, it follows from 2.20 that H(x, y) and
H(%(x), %(y)) are well-defined elements of L and %(L) ⊂ gl(V ), respectively. Be-
cause %(Hn(x, y)) = Hn(%(x), %(y)) holds for all n ∈ N, we get that %(H(x, y)) =
H(%(x), %(y)) is a locally nilpotent endomorphism of V , whence exp %(H(x, y)) =
exp(H(%(x), %(y)) is well-defined. The equality (1) can then be checked for each
v ∈ V .

We can now get another example of a group with commutator relations.
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2.22. Proposition. Let Λ be a torsion-free abelian group, k a field of charac-
teristic zero. In order to apply the results of section 1 we view Λ canonically embed-
ded in the k-vector space Λ⊗Z k. Assume further that L =

⊕
λ∈Λ Lλ is a Λ-graded

Lie algebra, that %: L→ gl(V ) is a representation of L written as %(x)(v) = x ·v for
x ∈ L and v ∈ V , and that R is a subset of S := {0} ∪ {λ ∈ Λ : Lλ 6= 0} satisfying
0 ∈ R and the following conditions:

(i) %(Lα) consists of locally nilpotent endomorphisms of V , for all α ∈ R×,
(ii) for any nilpotent pair (α, β) in R we have

(ii.1) S ∩ {pα + qβ : p, q ∈ N, p + q > 1} ⊂ R, i.e., the root interval[[[[
α, β

]]]]
S calculated in S is the same as the root interval

[[[[
α, β

]]]]
R

calculated in R, and
(ii.2) for every x ∈

⊕
γ∈(((((α,β))))) Lγ , the endomorphism %(x) is locally nilpo-

tent,
(iii) Lnα = {0} for n> 2 and α ∈ R×.

(a) Then GL(V ) has R-commutator relations with respect to the family of
abelian subgroups U = (Uα)α∈R defined by U0 = {1} and Uα = exp %(Lα) for
α 6= 0.

(b) Assume that V =
⊕

λ∈Λ Vλ is Λ-graded and that % is a graded repre-
sentation, i.e., Lα · Vλ ⊂ Vα+λ for all α, λ ∈ Λ. Then (GL(V ),U ) has unique
factorization in the sense of 2.15.

Proof. (a) That the Uα are subgroups of GL(V ) follows from the identities
mentioned in 2.20: (exp f)−1 = exp(−f) and exp f exp g = exp(f+g) for f = %(x),
g = %(y), x, y ∈ Lα. The latter identity holds since [%(x), %(y)] ∈ %(L2α) = 0 in
view of the assumption (iii).

If β = nα, n> 2, then Lβ = {0} by (iii), so Uβ = {1} ⊂ Uα shows (2.2.2). Thus
it remains to show the relation (2.2.3) for a nilpotent pair (α, β) in R, i.e.,

[[[[
α, β

]]]]
is a nilpotent subset of R. For any subset A ⊂

[[[[
α, β

]]]]
we put LA =

⊕
γ∈A Lγ . In

order to apply Lemma 2.21, we first observe that

L[[[α,β]]] is a nilpotent subalgebra of L.

Indeed, for arbitrary subsets A,B ⊂
[[[[
α, β

]]]]
we have

[LA, LB ] ⊂ L(((((A,B)))))

using the assumption (ii.1) and that L is Λ-graded. In particular, LA for A =
[[[[
α, β

]]]]
is a subalgebra of L. Denoting by C n the nth term of the central descending series,
nilpotency of LA will follow from C n(LA)) ⊂ LCn(A) which is proved by induction:
C n+1(LA) = [LA,C n(LA)] ⊂ [LA, LCn(A)] ⊂ L(((((A,Cn(A)))))) = LCn+1(A). Next we
show

exp %(x) ∈ U(((((α,β))))) for x ∈ L(((((α,β))))). (1)

We abbreviate B =
(((((((
α, β

)))))))
, and enumerate B = {β1, . . . , βn} as in Lemma 1.10(b).

Thus Bi = {βi, . . . , βn}, 16 i6 n and Bi = ∅ for i > n is a central chain for B. In
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particular,
(((((((
B,Bi

)))))))
⊂ Bi+1 holds, which implies that Ki = LBi is an ideal of the

nilpotent subalgebra K1 = L(((((α,β))))) with [K,Ki] ⊂ Ki+1. To prove (1), it suffices to
show by downward induction on i that

exp %(x) ∈ UBi =
〈
Uγ : γ ∈ Bi

〉
for x ∈ Ki. (2)

Write x ∈ Ki in the form x = xi + x′ with xi ∈ Lβi and x′ ∈ Ki+1. From (2.20.2)
we know that H(−xi, x) ≡ x′ mod [Ki,Ki] ⊂ Ki+1, and therefore H(−xi, x) ∈
Ki+1. Applying (2.21.1) now yields exp %(−xi) exp %(x) = exp %(H(−xi, x)) ∈
UBi+1

proving (2) and thus also (1).
Finally, we are ready to show the commutator relation (2.2.3). Let x ∈ Lα and

y ∈ Lβ . Then, by [46, Proposition 6.1.2] applied to the nilpotent Lie algebra L[[[α,β]]],
we obtain

exp(%(x)) %(y) (exp %(x))−1 = %(z), z = (exp adx)(y) ∈ L[[[α,β]]],

whence also exp(%(x)) %(y)n (exp %(x))−1 = %(z)n, and since %(y) and %(z) are
locally nilpotent we get

exp(%(x)) exp(%(y)) (exp %(x))−1 = exp %(z).

Therefore, by (2.21.1),(((((((
exp %(x), exp %(y)

)))))))
= exp %(z) exp %(−y) = exp %(H(z,−y))

But z =
∑
n∈N

1
n! (adx)n(y) ≡ y mod L(((((α,β))))), whence H(z,−y) ∈ [L[[[α,β]]], L(((((α,β)))))] ⊂

L(((((α,β))))). Then (1) shows exp %(H(z,−y)) ∈ U(((((α,β))))).

(b) Let A ⊂ R be a finite nilpotent subset. By assumption (iii), there is no
harm in assuming A = Aind. Let A = {α1, . . . , αn} be an enumeration of A as
in Lemma 1.10(b). As explained in 2.15, it is sufficient to show that the product
map µ: Uα1

× · · · ×Uαn → UA is injective. This will follow from the claim that the
product map

Uαi × Uαi+1
× · · · × Uαn → UAi , Ai = {αi, . . . , αn}, (3)

is injective for all i, 1 6 i 6 n. We will prove (3) by downward induction from
i = n to i = 1. Thus, suppose exp %(xi)ui+1 = exp %(x′i)u

′
i+1 for some xi, x

′
i ∈ Lαi

and ui+1, u
′
i+1 ∈ UAi+1

. Then exp %(xi − x′i) = u−1
i+1u

′
i+1 ∈ UAi+1

because all
UAi are subgroups of UA. Let vλ ∈ Vλ. Then exp %(xi − x′i)(vλ) = vλ + %(xi −
x′i)(vλ) + · · · ∈

⊕
n∈N Vλ+nαi while u−1

i+1u
′
i+1(vλ) ∈

⊕
µ Vµ, the sum being taken

over all µ of the form µ = λ+mi+1αi+1 + · · ·+mnαn, m = (mi+1, . . . , nn) ∈ Nn−i.
Hence, if 0 6= %(xi − x′i)(vλ) ∈ Vλ+αi , then αi = mi+1αi+1 + · · · + mnαn for some
m = (mi+1, . . . ,mn) ∈ Nn−i. At least two of the components mj of m are non-zero,
whence αi ∈

(((((((
A,Aj

)))))))
⊂ Aj+1 for some j > i. contradiction. Thus %(xi − x′i) = 0,

exp %(xi) = exp %(x′i), and injectivity of the map in (3) follows.

We will consider two types of Lie algebras to which the proposition applies,
Kac-Moody algebras in 2.23 and extended affine Lie algebras in 2.26.
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2.23. Example: Category O-representation of a Kac-Moody algebra.
Let L be a Kac-Moody algebra over k [26, 46] with standard Cartan subalgebra H,
and let %: L→ gl(V ) be an integrable representation of L in category O. For σ ∈ H∗
let Lσ = {x ∈ L : [h, x] = σ(h)x for all h ∈ H} and let S = {σ ∈ H∗ : Lσ 6= 0}.
It is known that S is a reflection system, see Section 4, in fact even a partial root
system in the sense of [42, §3]. In particular, 0 ∈ S since L0 = H 6= 0. We will
show that Proposition 2.22 can be applied with R = Re(S).

The root space decomposition L =
⊕

α∈H∗ Lα with respect to H is a grading
with grading group Λ = H∗. It is well-known that assumption (iii) of Proposi-
tion 2.22 holds, see for instance [26, Prop. 5.1], while the condition (ii.1) follows
from [42, Theorem 3.7]. By definition a representation %: L → gl(V ) is integrable
if it satisfies the following two conditions:

(i) V has a weight space decomposition V =
⊕

λ∈H∗ Vλ with respect to the
action of H, in particular the assumption 2.22(b) holds: Lα · Vλ ⊂ Vα+λ.

(ii) Let B = {α1, . . . , αl} be the standard root basis of S. Then L±αi acts
by locally nilpotent endomorphisms. It is known, see e.g. [46, Proposi-
tion 6.1.3], that then also condition (i) of Proposition 2.22 holds.

To establish assumption (ii.2) of that proposition we use that % is a representation
in the category O. Denoting by P(V ) = {λ ∈ H∗ : Vλ 6= 0} the set of weights of
V and putting Q+ = Nα1 + · · ·+ Nαl, a requirement for % to be in O is that there
exist λ1, . . . , λs ∈ H∗ such that

P(V ) ⊂
s⋃
i=1

(λi −Q+). (1)

Let now (α, β) be a nilpotent pair in R. Assume first that α, β are positive roots,
i.e., α, β ∈ R+ = R∩Q+. It is then clear from (1) that %(x) for x ∈

⊕
γ∈(((((α,β))))) Lγ is

locally nilpotent. For an arbitrary nilpotent pair (α, β) there exists w ∈W (R) such
that w(

[[[[
α, β

]]]]
) ⊂ R+ [42, Theorem 3.9]. It is known, see e.g. [46, Proposition 4.1.4],

that there exists an elementary automorphism wL of L such that wL(Lσ) = Lw(σ)

for all σ ∈ S. Moreover, there also exist wV ∈ GL(V ) satisfying %(wLy) =
wV %(y)w−1

V for all y ∈ L, see e.g. [26, 3.8]. Condition (ii.2) follows by combining
these results.

We can now apply Proposition 2.22 and obtain that GL(V ) is a group with
commutator relations with respect to the family U = (Uα)α∈R of root groups
Uα = exp %(Lα) for α ∈ R× and U0 = {1}. Moreover, (GL(V ),U ) has unique
factorization.

For our second example, we assume that the support set suppΛ L = {λ ∈ Λ :
Lλ 6= 0} is an affine reflection system. A structure theory of affine reflection systems
is developed in [42, §5], to which the reader is referred for all unexplained notions
used in the following lemma and its proof.
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2.24. Lemma. Let (R,X) be an affine reflection system and let α, β ∈ Rre.
We denote by (S, Y ) the quotient root system of (R,X) and by f : (R,X)→ (S, Y )
the canonical projection.

Then (α, β) is a nilpotent pair of (R,X) if and only if (f(α), f(β)) is a nilpotent
pair in (S, Y ). In this case

[[[[
α, β

]]]]
⊂ Rre.

Nilpotent pairs in root systems are characterized in 4.8.

Proof. We first take care of the easy direction, namely assume that (f(α), f(β))
is a nilpotent pair of (S, Y ), i.e., f({α, β}) is a prenilpotent subset of (S, Y ). By
(1.9.3), {α, β} ⊂ R is a prenilpotent subset, hence (α, β) is a nilpotent pair. We
also know f(

[[[[
α, β

]]]]
) = f({α, β}c) ⊂ {f(α), f(β)}c =

[[[[
f(α), f(β)

]]]]
by (1.5.3). Since

0 6∈
[[[[
f(α), f(β)

]]]]
, we conclude that

[[[[
α, β

]]]]
⊂ Rre.

Let us now assume that (α, β) is a nilpotent pair in R. To show that then
(f(α), f(β)) is a nilpotent pair in S, we recall that (R,X) is isomorphic to the ex-
tension of the root system (S, Y ) by an extension datum (Λξ)ξ∈S of type (S, Sind, Z).
To simplify the notation we assume that (R,X) is in fact equal to this extension.
Thus, R =

⋃
ξ∈S ξ ⊕ Λξ ⊂ X = Y ⊕ Z, f : X → Y is the projection along Z, and

γ ∈ Rre ⇐⇒ f(γ) ∈ S× = Sre. We write α, β as α = ξ + λα and β = τ + λβ with
ξ, τ ∈ S×, λα ∈ Λξ and λβ ∈ Λτ .

The characterization of nilpotent pairs in root systems (4.8) says that (ξ, τ) is
a nilpotent pair in (S, Y ) if and only if {ξ, τ} is N-free. To finish the proof of the
lemma, it is therefore sufficient to show that if τ = −sξ for s ∈ {1, 2} then (α, β) is
not nilpotent, i.e.,

[[[[
α, β

]]]]
is infinite or contains zero. For n ∈ N and m = 1+sn ∈ N

we claim that mα+ nβ = ξ ⊕ ((1 + ns)λα + nλ ∈ Rre, i.e.,

λn := (1 + ns)λα + nλβ ∈ Λξ for all n ∈ N. (1)

For the proof of (1) we will use that Λξ is a symmetric reflection subspace of
(Z,+), i.e., 2Λξ − Λξ ⊂ Λξ = −Λξ, which contains Λsξ = Λ−sξ, in particular
λβ ∈ Λξ. We will prove (1) by induction. For s = 1 we have λ0 = λα ∈ Λξ,
λ1 = 2λα + λβ ∈ Λξ, and hence by induction λ2p = (2p + 1)λα + 2pλβ = 2((p +
1)λα + pλβ) − λα = 2λp − λα ∈ Λξ and λ2p+1 = (2p + 2)λα + (2p + 1)λβ =
2((p + 1)λα + pλβ) + λβ = 2λp + λβ ∈ Λξ. The case s = 2 can be shown in the
same way. If {λn : n ∈ N} is not infinite, there exist n1, n2 ∈ N, n1 6= n2 such that
λn1 = λn2 , whence (n1 − n2)sλα = (n2 − n1)λβ and therefore λβ = −sλα. But
then 0 = (sξ + τ) + (sλα + λβ) = sα+ β ∈

[[[[
α, β

]]]]
.

2.25. Corollary. Let Λ be a torsion-free abelian group, and let L =
⊕

λ∈Λ Lλ
be a Λ-graded Lie algebra defined over a field k of characteristic zero such that
R = {λ ∈ Λ : Lλ 6= 0} is an affine reflection system in Λ⊗Z k.

(a) Then adx is nilpotent of class 6 4 for all x ∈ Lα, α ∈ Rre, and nilpotent
of class 6 10 for all x ∈

⊕
γ∈[[[α,β]]] Lγ , (α, β) a nilpotent pair in R with α, β ∈ Rre.

(b) If R is reduced, then (Aut(L),U ) is a group with Re(R)-commutator
relations with respect to the family U = (Uα)α∈Re(R) of subgroups defined by
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Uα = {exp adx : x ∈ Lα}, α ∈ Rre. Moreover, (Aut(L),U ) has unique factor-
ization.

Proof. As in the proof of Lemma 2.24, it is no harm to assume that R is the
extension of the root system S by the extension datum (Λξ)ξ∈S .

(a) Let α = ξ ⊕ λ ∈ Rre with ξ ∈ Sre, λ ∈ Λξ and let x ∈ Lα. For an arbitrary
γ = ζ ⊕ ν ∈ R we get (adx)n(Lγ) ⊂ L(ζ+nξ)⊕(ν+nλ). Hence (adx)(Lγ) = 0 as soon
as ζ +nξ 6∈ S, which by [10, VI, §1.3, Cor. de la Prop. 9] or [40, A.5] is always the
case for n > 4.

Let now (α, β) be a nilpotent pair in R with α, β ∈ Rre and let f : R → S be
the canonical projection. By Lemma 2.24, (f(α), f(β)) =: (ξ, τ) is a nilpotent pair
of S. We claim that (adx)11(y) = 0 for any y ∈ L. To prove this, we may assume
that y is homogeneous, say y ∈ Lγ . Let S′ = S ∩ (kα + kβ + kγ). Then S′ is a
closed subsystem of S, whence L′ =

⊕
f(δ)∈S′ Lδ is a subalgebra of L containing y

and any x ∈ L[[[α,β]]] =
⊕

δ∈[[[α,β]]] Lδ. Hence, to show that (adx)11(y) = 0, we may
without loss of generality assume that S is finite of rank 6 3.

By Proposition 1.12,
[[[[
ξ, τ
]]]]

is a strictly positive subset of S. Hence by

[40, Proposition 10.13],
[[[[
ξ, τ
]]]]

is contained in a positive system, which by [40,
Lemma 11.1] coincides with the set of non-negative roots with respect to some
root basis B of R. Let ht: Z[S] → Z be the corresponding height function, de-
fined by ht(B) = 1. For any z =

∑
δ∈R zδ ∈ L we define the level l(z) of

z by l(z) = min{ht
(
f(δ)

)
: zδ 6= 0}. Then x ∈ L[[[α,β]]] has positive level and

l([x, z]) > l(z) holds for all z ∈ L, in particular for y ∈ Lγ . Since the height and
hence the level is bounded, there exists n ∈ N such that (adx)n(y) = 0. More
precisely, it is immediate from the classification of root systems of rank 6 3 that
the maximal height in S is 5, so certainly n = 11 will do.

(b) Let R be reduced. To verify condition (iii) of Proposition 2.22, let α ∈ Rre

and n ∈ N+. We can assume nα ∈ R since otherwise Lnα = {0}. But then
nα ∈ Rre follows, whence n = 1 by definition of a reduced reflection system in
4.2. Thus condition (iii) of 2.22 holds. For % the adjoint representation the other
conditions follow from (a) and Lemma 2.24.

2.26. Example: The automorphism group of extended affine Lie al-
gebras. Let L be an affine reflection Lie algebra in the sense of [48, §6]. Hence
L contains an ad-diagonalizable (= split toral) subalgebra H 6= {0}, inducing a
decomposition L =

⊕
α∈H∗ Lα where Lα = {x ∈ L : [h, x] = α(h)x for all h ∈ H}

such that R = {α ∈ H∗ : Lα 6= 0} is an affine reflection system. Thus the assump-
tions of Corollary 2.25 are fulfilled in case R is reduced.

Any extended affine Lie algebra E [48, 6.11] is an example of an affine reflection
Lie algebra with a reduced R. Hence Aut(E) is a group with commutator relations
and unique factorization. One can also consider suitably defined classes of integrable
representations of an extended affine Lie algebra to which Proposition 2.22 applies,
in the spirit of 2.23. Details are left to the interested reader.
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§3. Categories of groups with commutator relations

3.1. The categories gcR and gc. Let (R,X) ∈ SV. We define a category
gcR as follows: its objects are pairs

(
G, (Uα)α∈R

)
consisting of a group G having

R-commutator relations with respect to the family (Uα)α∈R of subgroups, called
root groups. Its morphisms

ϕ: (G, (Uα)α∈R)→ (G′, (U ′α)α∈R)

are group homomorphisms ϕ: G → G′ preserving root groups: ϕ(Uα) ⊂ U ′α for all
α ∈ R. By abuse of notation, we often do not indicate explicitly the root groups of
an object of gcR and thus simply write G ∈ gcR etc. As in 2.2, we put r(G) = UR
(which has again R-commutator relations with the same root groups) and say G is
tight if G = r(G). The tight groups in gcR form a full coreflective subcategory. We
leave it to the ardent reader to elaborate on this theme . . .

Next, we define a category gc encompassing all gcR. The objects of gc are
triples

(
(R,X), G, (Uα)α∈R

)
where

(i) (R,X) ∈ SV,
(ii)

(
G, (Uα)α∈R)

)
∈ gcR.

A morphism from
(
(R,X), G, (Uα)α∈R

)
to
(
(S, Y ), H, (Vξ)ξ∈S

)
in gc is a pair (f, ϕ),

where f : (R,X) → (S, Y ) is a morphism of SV and ϕ: G → H is a group homo-
morphism, such that

ϕ(Uα) ⊂ Vf(α) for all α ∈ R. (1)

By our convention that U0 = {1} (cf. (2.2.1)), this means in particular that

f(α) = 0 =⇒ Uα ⊂ Ker(ϕ). (2)

It is easily verified that, together with the natural composition of morphisms, this
defines indeed a category. To improve readability we will sometimes abbreviate an
object

(
(R,X), G, (Uα)α∈R

)
of gc by (R,G, (Uα)) or even by (R,G). Likewise, we

will sometimes refer to an object (R,X) of SV simply by R, omitting the vector
space X. Thus gc is the category of all groups with R-commutator relations, for
all possible (R,X) ∈ SV. Strictly speaking, gc still depends on the choice of the
base field k, but this dependency will be suppressed in the notation.

The assignments (R,G) 7→ R and (f, ϕ) 7→ f define a covariant functor

Π : gc→ SV. (3)

For fixed R ∈ SV we may identify gcR with the fibre of Π at R, i.e., with the
subcategory of gc whose objects are of the form

(
R,G, (Uα)

)
, and whose morphisms

are the morphism (IdR, ϕ) of gc.
The category gc admits the following direct sum construction. However, even if

the index set I is finite, this construction does not have the categorical properties
of a direct product or coproduct.
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3.2. Lemma. Let I be an arbirary index set, and let Gi be groups with Ri-

commutator relations and root groups U
(i)
α , α ∈ Ri. Let G =

⊕
i∈I Gi be their

restricted direct product, i.e., the subgroup of the full direct product
∏
i∈I Gi whose

elements have only finitely many components different from 1, and let R =
⋃
i∈I Ri

be the direct sum of the Ri as in 4.3. Identify Gi with the subgroup of G obtained by
injection into the ith factor. Then G has R-commutator relations with root groups

Uα = U (i)
α

for α ∈ Ri ⊂ R. Any family of morphisms ϕi: Gi → G′i in gcRi canonically yields
a morphism

⊕
i∈I ϕi:

⊕
iGi →

⊕
iG
′
i of the category gcR.

Proof. If α
∣∣β and α 6= 0, then α and β lie in the same component of R, say

α, β ∈ Ri, so that (2.2.2) holds by definition of the root groups. To prove (2.2.3),
suppose (α, β) is a nilpotent pair, say, α ∈ Ri and β ∈ Rj . If i = j then the
commutator relation follows from the one in Gi. If i 6= j then

(((((((
α, β

)))))))
= ∅ and(((((((

Uα, Uβ
)))))))

= {1} by definition of the restricted direct product. The last statement
is evident.

3.3. Proposition. Let (G,Uα) ∈ gcR be a group with R-commutator relations
and let f : (R,X)→ (S, Y ) be a morphism of SV. For all ξ ∈ S define subsets R[ξ]
of R by

R[ξ] := R[ξ, f ] := {α ∈ R : f(α) 6= 0 and ξ
∣∣f(α)}, (1)

in particular R[0] = ∅, and define subgroups U ′ξ of G by

U ′ξ := UR[ξ]. (2)

(a) Then G has S-commutator relations with root groups U ′ξ.

(b) Let g: (S, Y )→ (T,Z) be a second morphism of SV and for τ ∈ T , define
subgroups of G by

U ′′τ :=
〈
Uα : g(f(α)) 6= 0, τ

∣∣(g ◦ f)(α)
〉

= UR[τ,g◦f ]. (3)

Then

U ′′τ =
〈
U ′ξ : g(ξ) 6= 0, τ

∣∣g(ξ)
〉

= U ′S[τ,g]. (4)

(c) The assignment (G,Uα) 7→ (G,U ′ξ) on objects and ϕ 7→ ϕ on morphisms is
a covariant functor f•: gcR → gcS.

(d) f• itself depends functorially on f ; i.e., (Id)• = Id and (g ◦ f)• = g• ◦ f•
for all morphisms g: (S, Y )→ (T,Z) of SV.
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Remark. A special case of part (a) is the construction of root groups in re-
ductive algebraic groups over arbitrary fields [6, Prop. 21.9], see Example 2.3(c).

Proof. (a) We have R[0] = ∅ by (2.1.4), so U ′0 = U∅ = {1}. Next, η
∣∣ξ implies

R[η] ⊃ R[ξ] by (2.1.5), from which the relation U ′η ⊃ U ′ξ follows. It remains to verify

the commutator relation (2.2.3). Let Xξ =
⋃
{Uα : α ∈ R[ξ]}, and note Xξ = X−1

ξ

and
〈
Xξ

〉
= U ′ξ. Hence, by Lemma 2.8 applied to the family of subgroups (U ′ξ)ξ∈S ,

it suffices to prove that (((((((
Uα, Uβ

)))))))
⊂ U ′(((((ξ,η))))), (5)

whenever (ξ, η) is a nilpotent pair in S and α ∈ R[ξ] and β ∈ R[η]. By (1.9.3), {α, β}
is prenilpotent, hence the R-commutator relations for G yield

(((((((
Uα, Uβ

)))))))
⊂ U(((((α,β))))),

and U(((((α,β))))) ⊂ U ′(((((ξ,η))))) follows from f
((((((((
α, β

))))))))
⊂
(((((((
ξ, η
)))))))

and Uγ ⊂ U ′f(γ) for f(γ) 6= 0.

This establishes (5) and completes the proof of (a).

(b) For the inclusion from left to right in (4), let α ∈ R[τ, g◦f ] and put ξ = f(α).
Then g(ξ) = g(f(α)) 6= 0 and τ

∣∣g(ξ), so ξ ∈ S[τ, g]. Obviously, α ∈ R[ξ, f ], and
hence Uα ⊂ U ′ξ.

To prove the inclusion from right to left in (4), let ξ ∈ S[τ, g]. We must show
U ′ξ ⊂ U ′′τ . By (2), U ′ξ is generated by all Uα, α ∈ R[ξ, f ], so it suffices to show that
α ∈ R[ξ, f ] and ξ ∈ S[τ, g] imply α ∈ R[τ, g ◦ f ], because then Uα ⊂ U ′′τ will follow.
Now g is linear, so f(α) = nξ 6= 0 and g(ξ) = pτ 6= 0 for suitable n, p ∈ N+ imply
g(f(α)) = ng(ξ) = npτ 6= 0, whence α ∈ R[τ, g ◦ f ], as desired.

(c) By (a) we have f•(G,Uα) ∈ gcS . Now let also H = (H, (Vα)α∈R) ∈ gcR
and let ϕ: G → H be a morphism of gcR, so that ϕ(Uα) ⊂ Vα for all α ∈ R. We
use the notations of (1) and (2) for H as well. Then ϕ(U ′ξ) ⊂ V ′ξ is clear from
the definition (2), so f•(ϕ) = ϕ: G → H is a morphism of gcS . It is immediately
verified that f•(IdG) = Idf•(G) and f•(ψ ◦ϕ) = f•(ψ) ◦ f•(ϕ), showing f• is indeed
a covariant functor.

(d) From (2) and the fact that Uβ ⊂ Uα for α
∣∣β (by (2.2.2)) it follows that

Id•(G) = G and Id•(ϕ) = ϕ for a morphism ϕ of gcR. Now let g: (S, Y )→ (T,Z) be
a morphism of SV. We must show that the functors (g◦f)• and g•◦f• have the same
effect on objects and morphisms of gcR. We have (g◦f)•(G) = (G, (U ′′τ )τ∈T ) ∈ gcT
where U ′′τ is given by (3). Hence g•(f•(G)) = (g ◦ f)•(G) follows from (4). Thus
g• ◦ f• and (g ◦ f)• agree on objects of gcR. That also g•(f•(ϕ)) = (g ◦ f)•(ϕ) for
morphisms of gcR, is then an easy consequence.

Remark. Let CAT be the meta-category of all categories, whose objects are
categories, and whose morphisms are functors between categories. Then Proposi-
tion 3.3 can be expressed by saying that there is a functor G: SV → CAT, given
by G(R) = gcR and G(f) = f•. In the terminology of [25, B1.3], G is an SVop-
indexed category. The Grothendieck construction [25, B1.3] then yields a fibred
category over SVop whose objects (but not morphisms!) are those of gc. On the
other hand, we will see that Π: gc → SV is a cofibration in a natural way. We
first recall this concept.
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3.4. Cofibrations. Let Π: C → S be a covariant functor between categories
C and S . For R ∈ S , denote by CR the subcategory of C with objects all G ∈ C
such that Π(G) = R, and morphisms those morphisms ϑ: G → G′ of C satisfying
Π(ϑ) = IdR. Objects of CR will also be called objects over R.

A morphism ϕ: G → H of C , say with Π(ϕ) = f : R = Π(G) → S = Π(H),
will be called a morphism over f : R → S. We say ϕ is cocartesian if for every
morphism χ: G→ K of C over h: R→ T = Π(K), every factorization h = g ◦ f in
S can be lifted uniquely to a factorization of χ, i.e., there exists a unique morphism
ψ: H → K of C such that χ = ψ ◦ ϕ:

G
χ //

ϕ $$IIIIII K

H
ψ

∃!
55

R

f $$IIIIII
h // T

S
g

55lllllllllll

(1)

Here a vertical line like
G∣∣
R

indicates that Π(G) = R, i.e., that G is an object over

R.

The functor Π is called a cofibration, or C is said to be cofibred over S , if
for every morphism f : R → S of S and every object G ∈ C over R, there exists
H ∈ CS and a cocartesian morphism ϕ: G→ H over f . Such ϕ and H are unique
up to unique isomorphism.

Let C be cofibred over S . For every G ∈ C and every morphism f : R→ S of S
choose a cocartesian morphism ϕ: G → H, and put f∗(G) := H and ωf (G) := ϕ.
Then for every morphism ϑ: G → G′ in the category CR there exists a unique
morphism f∗(ϑ): f∗(G)→ f∗(G

′) in CS such that the diagram

G
ϑ //

ωf (G)

��

G′

ωf (G′)

��
f∗(G)

f∗(ϑ)
// f∗(G′)

(2)

commutes. This follows by applying the diagram (1) to the case where χ = ωf (G′)◦
ϑ, K = f∗(G

′) and g = IdS . In this way, we obtain a functor f∗: CR → CS . The
choice of f∗ and ωf (G) for all f and G is called a cleavage of C over S . There are
unique isomorphisms (IdR)∗ ∼= IdCR and g∗ ◦ f∗ ∼= (g ◦ f)∗, but these are in general
not equalities, so the assignment R 7→ CR, f 7→ f∗ is merely a pseudofunctor (or
lax 2-functor) from S to CAT.
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3.5. Proposition. The functor Π: gc → SV of (3.1.3) is a cofibration. A
cleavage of Π is given as follows. For a morphism f : (R,X)→ (S, Y ) of SV and
an object G = (R,G, (Uα)α∈R) ∈ gc, let Nf be the normal subgroup of G generated
by {Uα : f(α) = 0}. Let H = G/Nf and denote can: G → H the canonical
map. For ξ ∈ S define Vξ := can(U ′ξ) where the U ′ξ are as in (3.3.2). Then

f∗(G) :=
(
S,H, (Vξ)ξ∈S

)
∈ gc, and ωf (G) := (f, can): G→ f∗(G) is cocartesian.

Proof. By Proposition 3.3(a), G has S-commutator relations with root groups
U ′ξ, so as remarked in 2.3, the homomorphic image H has S-commutator relations
with root groups Vξ, i.e., f∗(G) is an object of gc over S. It remains to show that
ωf (G) = (f, can): G→ f∗(G) is cocartesian. Explicitly, this means:

(∗) Let K =
(
T,K, (Wτ )τ∈T

)
be an object of gc over T , let (h, χ): G→ K be

a morphism of gc over h: R → T , and let h = g ◦ f be factored via a morphism
g: S → T of SV. Then there exists a unique morphism (g, ψ): f∗(G) → K in gc
over g such that χ = ψ ◦ can.

First note that ωf (G) is a morphism of gc lying over f . Indeed, can: G→ G/Nf
is a group homomorphism, and Uα ⊂ U ′f(α) obviously holds by the definition (3.3.2),

whence can(Uα) ⊂ can(U ′f(α)) = Vf(α) for all α ∈ R. Now let K =
(
T,K, (Wτ )τ∈T

)
,

let (h, χ): G → K and h = g ◦ f as in (∗). For α ∈ R with f(α) = 0 we have
h(α) = g(f(α)) = 0 and therefore Uα ⊂ Ker(χ) by (3.1.2), which implies that also
Nf ⊂ Ker(χ). Hence there exists a unique group homomorphism ψ: H → K such
that χ = ψ ◦ can, and it remains to show that ψ is a homomorphism of gc over g,
i.e., that ψ(Vξ) ⊂Wg(ξ) for all ξ ∈ S. Now Vξ = can(U ′ξ) is generated by all can(Uα)

where f(α) 6= 0 and ξ
∣∣f(α). For such α, we have ψ(can(Uα)) = χ(Uα) ⊂ Wh(α),

since χ: G → K is a morphism over h. But ξ
∣∣f(α) implies g(ξ)

∣∣h(α) (because
h = g ◦ f), and hence Wg(ξ) ⊃ Wh(α) by (2.2.2). This shows ψ(Vξ) ⊂ Wg(ξ), as
desired.

3.6. Remarks. (a) Let ϑ: G → G′ be a morphism of groups in gcR, and let
N ′f be the normal subgroup of G′ defined analogously to Nf . Then it easy to see
that ϑ(Nf ) ⊂ N ′f , and that the homomorphism f∗(ϑ): G/Nf → G′/N ′f of (3.4.2) is
the one induced from ϑ by passing to the quotient groups.

(b) Let g: S → T be a morphism of SV. The isomorphisms of functors
IdgcR

∼= (IdR)∗ and (g ◦ f)∗ ∼= g∗ ◦ f∗ mentioned in 3.4 are given on objects as
follows. For f = IdR, we have Nf = {1}, and hence (IdR)∗(G) = G/{1} ∼= G
in the obvious way. Let Ng◦f be the normal subgroup of G generated by all
Uα with g(f(α)) = 0 and let N̄g the normal subgroup of Ḡ generated by all Ūξ
with g(ξ) = 0. Then Ng◦f/Nf = N̄g, and we have an isomorphism of groups
(g ◦f)∗(G) = G/Ng◦f ∼= Ḡ/N̄g = g∗(f∗(G)) by the first isomorphism theorem. One
checks easily that this is compatible with the respective root subgroups.

(c) If f : R → S is an immersion in the sense that R ∩ Ker(f) = {0} then
Nf = {1} and therefore the underlying group of f∗(G) is the same as that of G,
although of course the root groups differ.
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3.7. Definition. A morphism ϕ: (G, (Uα)α∈R) → (G′, (U ′α)α∈R) of the cate-
gory gcR is called injective (surjective, bijective) on root groups if, for all α ∈ R,
the restriction ϕ: Uα → U ′α has the respective property. Morphisms of this type
are stable under composition, and hence define (non-full) subcategories of gcR.

If G′ is tight (generated by its root subgroups) then a morphism which is
surjective on root groups is actually surjective. An analogous result does not hold
for morphisms which are injective on root groups. However, we have a positive
result under suitable assumptions on unique factorization.

3.8. Lemma. Let ϕ: (G, (Uα)α∈R)→ (G′, (U ′α)α∈R) be a morphism of gcR.

(a) If ϕ is surjective on root groups then ϕ(UA) = U ′A for any subset A of R.

(b) Suppose ϕ is injective on root groups and G′ has unique factorization for a
finite nilpotent subset A of R, cf. 2.15. Then G has unique factorization for A as
well, and ϕ: UA → U ′A is injective.

(c) Let again ϕ be injective on root groups. If G′ has unique factorization for
all finite nilpotent subsets then so does G, and ϕ: UA → U ′A is injective, for all
(possibly infinite) nilpotent subsets A of R.

(d) If ϕ is bijective on root groups and G′ has unique factorization then G has
unique factorization, and ϕ: UA → U ′A is an isomorphism, for all nilpotent A ⊂ R.

Proof. (a) This is evident from the definitions.

(b) Enumerate Aind = {γ1, . . . , γn}. Then the diagram

Uγ1 × · · · × Uγn
µ //

��

UA

��
U ′γ1 × · · · × U

′
γn µ′

// U ′A

commutes, where the horizontal maps are the product maps of G and G′, respec-
tively, and the vertical maps are induced by ϕ. By (2.12.1) the horizontal maps are
surjective. Since ϕ is injective on root groups, the left hand map is injective, and
since G′ has unique factorization for A, the bottom map µ′ is injective. Hence µ and
the right hand map are injective as well. In particular, G has unique factorization
for A.

(c) By (b), G has unique factorization for all finite nilpotent subsets. Now let
A be an arbitrary nilpotent subset, and let u ∈ UA with ϕ(u) = 1. Then there
exists a finite subset F ⊂ A such that u ∈ UF . By Proposition 1.12, the closure F c

is finite and nilpotent, so after replacing F by F c we may assume F nilpotent. By
what we proved in the finite case, u = 1, as desired.

(d) This follows immediately from (a) – (c).
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3.9. Steinberg categories. Fix (R,X) ∈ SV. As in 3.1, we will frequently
not make explicit the root subgroups Uα of an object (G, (Uα)α∈R) of gcR and thus
write G = (G, (Uα)α∈R) if there is no danger of confusion. Let us also fix an object
Ḡ = (Ḡ, (Ūα)α∈R) ∈ gcR. We introduce a category st(Ḡ), called the Steinberg
category of Ḡ, as follows.

An object of st(Ḡ) is a morphism π: G → Ḡ of gcR with two additional prop-
erties:

(i) π is bijective on root groups, and
(ii) π: U[[[α,β]]] → Ū[[[α,β]]] is bijective, for all nilpotent pairs (α, β).

A morphism from G
π→ Ḡ to G′

π′→ Ḡ of st(Ḡ) is a morphism ϕ: G → G′ of gcR
making the diagram

G
ϕ //

π
��??????? G′

π′~~~~~~~~~~

Ḡ

(1)

commutative. Thus st(Ḡ) is a (in general non-full) subcategory of the comma-
category (gcR ↓ Ḡ), cf. [43, II.6].

Let π: G→ Ḡ be in st(Ḡ) and let r(G) and r(Ḡ) be the subgroups generated by
the respective root subgroups. Then it is clear that π: r(G)→ Ḡ belongs to st(Ḡ),
and that π: r(G)→ r(Ḡ) is in st(r(Ḡ)).

3.10. Remark. (a) The reader may wonder about the relation between (i) and
(ii). The following examples show that these conditions are in general independent.

(i) does not imply (ii): Let ε1, ε2 be the standard basis of k2 and let R =
{0, ε1, ε2} ⊂ k2. Let e1, e2 be the standard basis of Z2 and put G = Z2 with
Uεi = Z · ei. Define Ḡ = Z with Ūεi = Z and let π: G→ Ḡ be defined by π(ei) = 1.
All pairs {εi, εj} for i, j ∈ {1, 2} are nilpotent pairs. Then π is bijective on all Uα,
but π

∣∣U[[[ε1,ε2]]] is not.

(ii) does not imply (i): Let R = N ⊂ k, let G = Z (additive group), and put
U1 = G and Un = {0} for n 6= 1. Let Ḡ = {1} and let π: G → Ḡ be the only
possible map. There are no nilpotent pairs, because

[[[[
α, β

]]]]
either contains 0 (in

case α = 0 or β = 0), or it is infinite. Hence (ii) holds trivially. On the other hand,
π: U1 → Ū1 = Ḡ = {1} is not injective.

(b) However, if R satisfies the finiteness condition (F1) of (2.4.2), that is, if {α}c
is finite for all α, then (ii) implies (i). Indeed, then any pair (α, α) (for α ∈ R×) is
nilpotent, and

[[[[
α, α

]]]]
= {α}c as well as U[[[α,α]]] = Uα because of the relation (2.2.2).

In particular, this is so in the important case where R is a locally finite root system.

3.11. We note some elementary properties of the Steinberg category.

(a) Assume Ḡ has unique factorization for all nilpotent sets of the form
[[[[
α, β

]]]]
where (α, β) is a nilpotent pair. Then a morphism π: G → Ḡ of gcR is an object
of st(Ḡ) if and only if it is bijective on root groups.
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This follows immediately from Lemma 3.8.

(b) Suppose ϕ is a morphism of st(Ḡ) as in (3.9.1). Then:

(b0) ϕ: Uα → U ′α is an isomorphism, for all α ∈ R,
(b1) if G is tight then ϕ is uniquely determined,
(b2) if G′ is tight then ϕ is surjective.

Indeed, from (3.9.1) we obtain the commutative diagrams

Uα
ϕ
∣∣Uα

//

π

∼=

  AAAAAAAA U ′α

π′

∼=

~~}}}}}}}}

Ūα

(1)

which show that the restriction of ϕ to each Uα is uniquely determined and an
isomorphism onto U ′α. Hence ϕ is uniquely determined, provided the Uα generate
G. This also shows that ϕ is surjective if G′ is generated by the U ′α.

(c) A morphism ϕ: G→ G′ of st(Ḡ) can be considered as an object of st(G′).

Indeed, ϕ is bijective on root groups by (1), and ϕ: U[[[α,β]]] → U ′[[[α,β]]] is bijective, for
all nilpotent pairs, as follows from the commutative triangles

U[[[α,β]]]
ϕ //

π

∼=

##GGGGGGGGG
U ′[[[α,β]]]

π′

∼=

{{wwwwwwww

Ū[[[α,β]]]

(2)

(d) Let π: G → Ḡ be in st(Ḡ) and let K ⊂ G be a normal subgroup with
the property that K ⊂ Ker(π). Let can: G → Ġ := G/K be the canonical map,
and equip Ġ with the root groups U̇α = can(Uα) is in 2.3(b). Then π induces a
homomorphism π̇: Ġ→ Ḡ such that π = π̇ ◦ can, and π̇ ∈ st(Ḡ). Indeed, it follows
immediately from the commutative diagrams

Uα
can //

π

∼=

  AAAAAAAA U̇α

π̇~~}}}}}}}

Ūα

U[[[α,β]]]
can //

π

∼=

##GGGGGGGGG
U̇[[[α,β]]]

π̇{{wwwwwwww

Ū[[[α,β]]]

that π̇ satisfies conditions (i) and (ii) of 3.9.
Finally, it is clear that

(e) Id: Ḡ→ Ḡ is a terminal object of st(Ḡ).

Our next aim is to show that st(Ḡ) has an initial object. The proof is based on
a direct limit construction of groups with commutator relations.
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3.12. Lemma. Let (R,X) ∈ SV. For all α ∈ R× and all nilpotent pairs
(α, β) ∈ R × R, let Lα and L(α,β) be groups. For simpler notation, we write
Lαβ = L(α,β). Let

iβα: Lβ → Lα whenever α
∣∣β, and (1)

iγαβ : Lγ → Lαβ for all γ ∈
[[[[
α, β

]]]]
, (2)

be group homomorphisms satisfying

Lαβ =
〈
iγαβ(Lγ) : γ ∈

[[[[
α, β

]]]]〉
, (3)(((((((

iααβ(Lα), iβαβ(Lβ)
)))))))
⊂
〈
iγαβ(Lγ) : γ ∈

(((((((
α, β

)))))))〉
. (4)

Let L be the inductive limit of the groups Lα and Lαβ with respect to the maps iβα
and iγαβ. Denote by jα: Lα → L and jαβ : Lαβ → L the canonical maps into the
inductive limit. Then L has R-commutator relations with root groups

Y0 = {1}, Yα = jα(Lα) (α ∈ R×),

and is generated by the Yα; i.e.,
(
L, (Yα)α∈R

)
∈ gcR.

Proof. By standard facts [43, 51, 52], the inductive limit exists and has the
following properties which characterize it uniquely up to unique isomorphism: the
homomorphisms jα and jαβ , for all α ∈ R× and all nilpotent pairs (α, β), make the
inner left hand triangles of the diagrams

Lβ
jβ

''OOOOOOOOO

iβα

��

ϕβ

$$
L

∃!ϕ // H

Lα
jα

77ooooooooo
ϕα

::

Lγ
jγ

''OOOOOOOOO

iγ
αβ

��

ϕγ

$$
L

∃!ϕ // H

Lαβ
jαβ

77ooooooooo
ϕαβ

:: (5)

commutative, for all α
∣∣β and all γ ∈

[[[[
α, β

]]]]
, (α, β) nilpotent. Furthermore, given

any group H and given homomorphisms

ϕα: Lα → H, ϕαβ : Lαβ → H

making the outer triangles of (5) commute, there exists a unique homomorphism
ϕ: L→ H making the entire diagrams commute.

We first observe that
Y[[[α,β]]] = jαβ(Lαβ), (6)

for all nilpotent pairs (α, β). (Recall that, by the definition given in 2.2, for a subset
A of R, YA is the subgroup of L generated by all Yγ , γ ∈ A. This is applied here
to the subsets

[[[[
α, β

]]]]
of R.) Indeed,
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Y[[[α,β]]] =
〈
Yγ : γ ∈

[[[[
α, β

]]]]〉
=
〈
jγ(Lγ) : γ ∈

[[[[
α, β

]]]]〉
=
〈
jαβ ◦ iγαβ(Lγ) : γ ∈

[[[[
α, β

]]]]〉
(by (5))

= jαβ

〈
iγαβ(Lγ) : γ ∈

[[[[
α, β

]]]]〉
(since jαβ is a homomorphism)

= jαβ(Lαβ) (by (3)).

By uniqueness of ϕ in (5), see also [52, Chapter I, 1.1], L is generated by the
subgroups jα(Lα) = Yα, α ∈ R, and jαβ(Lαβ), (α, β) nilpotent. Now (6) shows
that L is already generated by the Yα.

Next, the relation (2.2.2) for L, i.e., Yβ ⊂ Yα if α
∣∣β, follows immediately from

the first diagram of (5) and the definition of the root groups, so it remains to verify
that L satisfies the commutator relations (2.2.3). Let (α, β) be a nilpotent pair.
Then, since α and β belong to

[[[[
α, β

]]]]
, by (5) and by (4),(((((((

Yα, Yβ
)))))))

=
(((((((
jα(Lα), jβ(Lβ)

)))))))
=
(((((((

(jαβ ◦ iααβ)(Lα), (jαβ ◦ iβαβ)(Lβ)
)))))))

= jαβ
((((((((
iααβ(Lα), iβαβ(Lβ)

))))))))
⊂ jαβ

〈
iγαβ(Lγ) : γ ∈

(((((((
α, β

)))))))〉
=
〈

(jαβ ◦ iγαβ)(Lγ) : γ ∈
(((((((
α, β

)))))))〉
=
〈
jγ(Lγ) : γ ∈

(((((((
α, β

)))))))〉
=
〈
Yγ : γ ∈

(((((((
α, β

)))))))〉
= Y(((((α,β))))).

This completes the proof.

Remark. For this computation to work it is essential that iααβ : Lα → Lαβ and

iβαβ : Lβ → Lαβ be defined. This explains why we have to allow γ ∈
[[[[
α, β

]]]]
in (2);

it would not be sufficient to require (2) only for γ ∈
(((((((
α, β

)))))))
.

The following result is inspired by [59, 3.6].

3.13. Theorem. Let
(
Ḡ, (Ūα)α∈R

)
∈ gcR. The Steinberg category st(Ḡ) has

an initial object π̂: Ĝ→ Ḡ, and the group Ĝ is generated by its root subgroups.

By standard facts, this initial object is uniquely determined up to unique iso-
morphism. We call it the Steinberg group of Ḡ and denote it by St(Ḡ). By abuse
of terminology, the group Ĝ will also be referred to as the Steinberg group of Ḡ.

Proof. We apply Lemma 3.12 to the situation where Lα := Ūα, Lαβ := Ū[[[α,β]]],

and iβα: Lβ → Lα and iγαβ : Lγ → Lαβ are the inclusion maps. Then (3.12.3) holds

by definition of Ū[[[α,β]]], and (3.12.4) follows from (2.2.3). Let L = Ĝ be the inductive
limit of the Lα and Lαβ as in Lemma 3.12.

We claim that there exists a unique homomorphism ϕ = π̂: Ĝ → Ḡ such that
π̂ ◦ jα = inc: Ūα ↪→ Ḡ for all α ∈ R, and π̂ is an object of the category st(Ḡ). For
the proof, we use the universal property of Ĝ (cf. (3.12.5)) in the case where H = Ḡ
and the ϕα: Lα → Ḡ and ϕαβ : Lαβ → Ḡ are the inclusion maps. Then the outer
triangles of the diagrams (3.12.5) obviously commute, proving the existence of π̂.
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From the first diagram of (3.12.5) we see that π̂ ◦ jα = IdŪα . By definition, the root

groups of Ĝ are Yα = jα(Lα) = jα(Ūα). Hence jα: Ūα → Yα is an isomorphism,
so π̂ is bijective on root groups. In the same way, the second diagram of (3.12.5)
shows that π̂ ◦ jαβ is the identity on Ū[[[α,β]]]. Hence π̂ satisfies condition (ii) of 3.9
as well, so π̂ is an object of st(Ḡ).

Next we show that π̂ is in fact an initial object of st(Ḡ). Thus let G =
(G, (Uα)α∈R) ∈ gcR and let π: G→ Ḡ be a morphism satisfying (i) and (ii) of 3.9,
i.e., an object of st(Ḡ). We must show that there exists a unique homomorphism
ϕ: Ĝ→ G preserving root groups and making the diagram

Ĝ
ϕ //

π̂ ��>>>>>>> G

π
����������

Ḡ

commute. We use again the universal property of the inductive limit. Define
ϕα: Ūα → G and ϕαβ : Ū[[[α,β]]] → G to be the inverses of π

∣∣Uα and π
∣∣U[[[α,β]]]. Since

π satisfies (i) and (ii) of 3.9, this makes sense. Then the outer triangles of (3.12.5)
are clearly commutative, so we have a unique ϕ: Ĝ → G making the diagrams
(3.12.5) commute. From these diagrams one sees that ϕ preserves root groups, and
uniqueness of ϕ follows from 3.9(c1). Hence π̂: Ĝ→ Ḡ is an initial object of st(Ḡ).

3.14. Remarks. The Steinberg group of a group Ḡ does not change when
replacing Ḡ by some G ∈ st(Ḡ) or by a suitable quotient of Ḡ. More precisely:

(a) Let Ḡ ∈ gcR and let π̂: Ĝ → Ḡ be its Steinberg group. Let π: G → Ḡ
be an object of st(Ḡ) and ϕ: Ĝ → G the unique morphism such that π̂ = π ◦ ϕ.
By 3.11(c), ϕ is an object of st(G), and it is in fact an initial object. Indeed, let
%: H → G be in st(G). Then π ◦ %: H → G → Ḡ belongs to st(Ḡ), so by the
universal property of Ĝ there exists a unique ϕ′: Ĝ→ H making the diagram

H
%

��????????

Ĝ

π̂ ��????????

ϕ′
??

ϕ // G

π
����������

Ḡ

commutative. Now ϕ and % ◦ϕ′ are morphisms from Ĝ to G in st(Ḡ), so ϕ = % ◦ϕ′
by 3.11(b1).

(b) Let N be a normal subgroup of Ḡ such that N ∩ Ūα = N ∩ Ū[[[α,β]]] = {1}
for all α and all nilpotent pairs (α, β) in R. Let κ: Ḡ → Ḡ/N be the canonical
homomorphism. Then Ḡ/N has commutator relations with root groups κ(Ūα) by



44 STEINBERG GROUPS FOR JORDAN PAIRS

2.4(e), and we have St(Ḡ) = St(Ḡ/N), more precisely, κ ◦ π̂: Ĝ→ Ḡ→ Ḡ/N is the
Steinberg group of Ḡ/N . Indeed, the assumptions on N imply that κ satisfies (i)
and (ii) of 3.9, so κ ∈ st(Ḡ/N). Now the claim follows from (a) (with G and Ḡ
replaced by Ḡ and Ḡ/N , respectively), and the essential uniqueness of the Steinberg
group.

The Steinberg group commutes with the direct sum construction of Lemma 3.2:

3.15. Lemma. Let Ḡi be a family of groups in gcRi and let Ḡ =
⊕
Ḡi ∈ gcR

as in Lemma 3.2. Let π̂i: Ĝi → Ḡi be the Steinberg groups of the Ḡi. Then the
Steinberg group of Ḡ is

⊕
π̂i:
⊕
Ĝi → Ḡ.

Proof. Put Ĝ =
⊕
Ĝi and π̂ =

⊕
π̂i. We show first that π̂ belongs to the

Steinberg category st(Ḡ), so we must verify the conditions (i) and (ii) of 3.9. But
this follows easily from the definition of the respective root groups in Lemma 3.2
and the fact that for α, β ∈ R =

⋃
Ri, the root interval

[[[[
α, β

]]]]
is empty unless α

and β belong to the same component of R.
Next we show that π̂ has the required universal property. Thus let π: G → Ḡ

be in st(Ḡ) and let Hi = URi be the subgroup of G generated by all Uα, α ∈ Ri.
From the R-commutator relations in G it follows that(((((((

Hi, Hj

)))))))
= {1} for i 6= j (1)

but note that Hi ∩Hj may be non-trivial. We identify Ḡi with a subgroup of Ḡ by
means of the injection into the ith factor. Then π(Hi) ⊂ Ḡi, and πi := π

∣∣Hi: Hi →
Ḡi belongs to the Steinberg category st(Ḡi). By the universal property of π̂i, there
exist unique ϕi: Ĝi → Hi making the diagrams

Ĝi
ϕi //

π̂i ��@@@@@@@
Hi

πi��~~~~~~~~

Ḡi

commutative. Now define ϕ: Ĝ→ G by

ϕ
(
(gi)i∈I

)
=
∏
i

ϕi(gi). (2)

Since only finitely many factors gi are different from 1 and the subgroups Hi of G
commute pairwise by (1), this is a well-defined group homomorphism, and it makes
the diagram

Ĝ
ϕ //

π̂ ��>>>>>>> G

π
����������

Ḡ

commutative.
It remains to show uniqueness of ϕ. Suppose also π ◦ ψ = π̂. Then ψi := ψ

∣∣Hi

satisfies πi ◦ ψi = π̂i, so we have ψi = ϕi by the universal property of π̂i, and
therefore ψ = ϕ by (2).
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3.16. Another construction of the Steinberg group. Generalizing again
[59, 3.6], we now give a more concrete (but less canonical) description of St(Ḡ) in
case Ḡ has unique factorization for nilpotent pairs, as defined in 2.15.

For every nilpotent pair (α, β) choose an ordering
(((((((
α, β

)))))))
ind = {γ1, . . . , γn}

(where n = nαβ will of course depend on α, β). Then there are well-defined
functions f iαβ : Ūα × Ūβ → Ūγi such that

(((((((
ā, b̄
)))))))

=

n∏
i=1

f iαβ(ā, b̄), (1)

for all ā ∈ Ūα, b̄ ∈ Ūβ . (The f iαβ will in general depend on the chosen ordering).

Let F be the free product of the groups Ūα, α ∈ R, and let hα: Ūα → F be the
canonical injections. Let N be the normal subgroup of F generated by all

hβ(b̄)−1 · hα(b̄), (2)(((((((
hα(ā), hβ(b̄)

)))))))−1 ·
n∏
i=1

hγi
(
f iαβ(ā, b̄)

)
, (3)

where α
∣∣β and b̄ ∈ Ūβ in the first formula, and (α, β) is nilpotent and ā ∈ Ūα,

b̄ ∈ Ūβ in the second. Let L := F/N and denote by can: F → L the canonical map.
We define kα := can ◦ hα: Ūα → L and put Yα = kα(Ūα) ⊂ L.

3.17. Theorem. Suppose (Ḡ, (Ūα)α∈R) ∈ gcR has unique factorization for
nilpotent pairs. Then, with the notations of 3.16, (L, (Yα)α∈R) belongs to gcR, and
there exists a unique homomorphism π̂: L→ Ḡ making L an initial object of s̃t(Ḡ)
(and hence L “is” the Steinberg group St(Ḡ)).

Proof. We note first that L has R-commutator relations with root groups Yα
and is generated by the Yα, i.e., (L, (Yα)) is an object in gcR. Indeed, since F is
generated by the hα(Ūα), it follows that L is generated by the Yα. Next, if α

∣∣β,
we have Yβ ⊂ Yα by applying can to the relations (3.16.2), and the commutator
relations (2.2.3) follow in the same way by applying can to (3.16.3).

Now let π: G → Ḡ be an object of st(Ḡ); in particular, G = (G, (Uα)) ∈ gcR.
Since F is the free product of the Ūα and π is bijective on root groups, there is a
homomorphism κ: F → G making all diagrams

Ūα
hα // F

κ

��
Uα

π ∼=

OO

inc
// G

(α ∈ R) (1)

commutative. We show that κ factors via F/N , i.e., that all elements of type
(3.16.2) and (3.16.3) belong to the kernel of κ. Let us first remark that
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π
(
κ(hα(ā))

)
= ā, for all ā ∈ Ūα, α ∈ R. (2)

Indeed, by (1) we have a = κ
(
hα(π(a))

)
for all a ∈ Uα. Applying π yields

π(a) = π
(
κ(hα(π(a)))

)
, and since π: Uα → Ūα is in particular surjective, (2)

follows.
Let α

∣∣β and b̄ = π(b) ∈ Ūβ . Then Ūβ ⊂ Ūα and (2) imply

π
(
κ(hβ(b̄))

)
= b̄ = π

(
κ(hα(b̄))

)
.

Since π
∣∣Uα is injective, we conclude κ(hβ(b̄)) = κ(hα(b̄)), so κ vanishes on elements

of type (3.16.2).
Next, let (α, β) be a nilpotent pair, and let ā ∈ Ūα, b̄ ∈ Ūβ . We must show that

κ
(((((((
hα(ā), hβ(b̄)

)))))))
= κ

( n∏
i=1

hγi
(
f iαβ(ā, b̄)

))
. (3)

By (1), κ(hα(ā)) ∈ Uα. Hence the left hand side is, since κ is a homomorphism and
G has R-commutator relations,

κ
(((((((
hα(ā), hβ(b̄)

)))))))
=
(((((((
κ(hα(ā)), κ(hα(b̄))

)))))))
∈
(((((((
Uα, Uβ

)))))))
⊂ U(((((α,β))))).

In the same way, one sees that the right hand side belongs to Uγ1 · · ·Uγn = U(((((α,β))))),
cf. Proposition 2.12(b). Now π satisfies (ii) of 3.9, in particular π: U(((((α,β))))) → Ū(((((α,β)))))

is injective. Hence it suffices that (3) hold after applying π. This follows now
immediately from (2) and (3.16.1): The left hand side is

π
(
κ(
(((((((
hα(ā), hβ(b̄)

)))))))
)
)

=
(((((((
ā, b̄
)))))))

=

n∏
i=1

f iαβ(āb̄),

while the right hand side is

n∏
i=1

π
(
κ
(
hγi(f

i
αβ(ā, b̄))

))
=

n∏
i=1

f iαβ(ā, b̄).

Hence also the generators of type (3.16.3) belong to the kernel of κ.
We now have a unique homomorphism ψ: F/N = L → G satisfying κ =

ψ ◦ can: F → L→ G, and from (2) it follows that

π
(
ψ(kα(ā))

)
= ā, for all ā ∈ Ūα, α ∈ R.

Since kα(Ūα) = Yα by definition of the root groups in L, we see that ψ: Yα → Uα is
an isomorphism. Since Ḡ has unique factorization for nilpotent pairs, 3.9(b) shows
that ψ satisfies condition (ii) of 3.9. Thus ψ: L→ G is an object of st(G).

By specializing π: G→ Ḡ to Id: Ḡ→ Ḡ we obtain a morphism π̂: L→ Ḡ which
satisfies (i) and (ii) of 3.9, so that L, equipped with the subgroups Yα and with π̂,
is an object of st(Ḡ). Now the above proof shows that it is in fact an initial object
of st(Ḡ). This completes the proof.
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3.18. Examples. (a) Let R = {0, 1,−1} be the root system A1 and let
Ḡ ∈ gcR. Since R contains only the nilpotent pairs (1, 1) and (−1,−1), Ḡ is
simply a group generated by two abelian subgroups Ū1 and Ū−1. It is immediately
seen that the free product of Ū1 and Ū−1 is an initial object of st(Ḡ). This applies
in particular to the projective elementary group of a Jordan pair, cf. §9.

(b) We take up Example (b) of 2.16 and let Ḡ be a group with R-commutator
relations and root groups Ui = Ūεi . Suppose that Ḡ has unique factorization for
all nilpotent pairs, i.e., that Ui ∩ Uj = {0} for i 6= j. Then it follows easily from
Theorem 3.17 that L =

⊕n
i=1 Ui, with π̂(x1 ⊕ · · · ⊕ xn) = x1 + · · · + xn, is the

Steinberg group of Ḡ. As shown in 2.16, Ḡ has unique factorization if and only if
Ḡ =

⊕n
i=1 Ui, i.e., if and only if L = Ḡ is its own Steinberg group.

(c) The linear elementary group EI(A) has unique factorization for nilpotent
pairs by Example (c) of 2.16. Hence it follows easily from Theorem 3.17 that
St(EI(A)) is the usual Steinberg group, at least when I is finite or countably infinite:

St(En(A)) = Stn(A), St(EN(A)) = St(A)

in the notation of [17, 1.4], see also 10.16 where we will relate Stn(A) to the
Steinberg group of the Jordan pair V = (Matpq(A),Matqp(A)).

(d) Similarly, the usual elementary unitary group EU2n(A,Λ) (n>3) of a form
ring (A,Λ) in the sense of [17] has Cn-commutator relations, and

St(EU2n(A,Λ)) = StU2n(A,Λ)

is the usual unitary Steinberg group.

3.19. Example: Tits’ Steinberg group. Let R = ∆re ∪ {0}, where ∆re is
the set of real roots of the partial root system associated to a generalized Cartan
matrix, see [42, Example 3.1(c)]. In [59, Prop. 1], Tits proves the existence of Z-
group schemes Uα, α ∈ ∆re, and U[[[α,β]]], (α, β) nilpotent, as well as monomorphisms

iγαβ : Uγ → U[[[α,β]]] for all γ ∈
[[[[
α, β

]]]]
such that for any order on

[[[[
α, β

]]]]
the associated

multiplication map

m:
∏

γ∈[[[α,β]]]

Uγ → U[[[α,β]]], (uγ) 7→
∏
γ

iγαβ(uγ) (1)

is an isomorphism of schemes. We note that Tits’ result actually holds for all
subsets A that are T-nilpotent [42] with respect to the standard positive system
∆re

+ . It is however only the special case A =
[[[[
α, β

]]]]
for (α, β) a T-nilpotent pair

that will be needed below. Because of [42, Cor. 3.8] the concepts of a T-nilpotent
pair with respect to ∆re

+ and of a nilpotent pair in our sense are the same.

Let now k be a commutative ring. For α ∈ R×, nilpotent pairs (α, β) ⊂ R and all
γ ∈

[[[[
α, β

]]]]
define groups Uα, U[[[α,β]]] and maps iγαβ by evaluating the corresponding

functors at k:
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Uα = Uα(k), U[[[α,β]]] = U[[[α,β]]](k) and iγαβ = iγαβ(k).

Then the assumptions of Lemma 3.12 are fulfilled. Indeed, since R is reduced we
have β

∣∣α ⇐⇒ β = α, so that there are no conditions arising from divisible roots.
The assumption (3.12.3) is immediate from (1), while (3.12.4) is shown in the proof
of Prop. 1 on [59, p. 560/1]. Thus, by Theorem 3.13, the inductive limit G = St(k)
of the Uα and U[[[α,β]]] is a group in gcR which is its own Steinberg group. We note
that this group enters into the definition of Tits’ Kac-Moody group functor.
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§4. Reflection systems

4.1. Reflection systems. We will introduce a subcategory of the category
SV of 1.5 by requiring the existence of reflections for certain roots.

Let X be a vector space over a field k of characteristic zero. Recall that a
(hyperplane) reflection is an element σ of GL(X) with σ2 = Id and fixed point
set a hyperplane. We denote by Ref(X) the union of {IdX} and all hyperplane
reflections of X, thus considering IdX as an improper reflection.

Now let (R,X) ∈ SV, and let s: R → Ref(X) be a map, written α 7→ sα. We
denote by

Rre := {α ∈ R : sα 6= Id}
the set of reflective roots. The triple (R,X, s) is called a reflection system if the
following axioms hold for all α ∈ R:

(ReS1) α ∈ Rre implies α 6= sα(α) = −α ∈ Rre;

(ReS2) sα(R) = R and sα(Rre) = Rre.

(ReS3) scα = sα whenever c ∈ k× and both α and cα belong to Rre, and

(ReS4) ssα(β) = sαsβsα for all α, β ∈ R.

By abuse of notation we will often refer to a reflection system simply by R or
(R,X) instead of (R,X, s).

Let (S, Y, s) be a second reflection system. Unless this might lead to confusion,
we will use the same letter s for the maps R → Ref(X) and S → Ref(Y ). A
morphism f : (R,X, s) → (S, Y, s) is a linear map f : X → Y such that f(R) ⊂ S
and

f(sα(β)) = sf(α)(f(β)), (1)

for all α, β ∈ R. We denote by ReS the category of reflection systems, which is
thus a subcategory of the category SV.

Note that (ReS1) and (ReS2) imply 0 6∈ Rre and Rre = −Rre. The automor-
phism group of (R,X, s) is denoted by Aut(R,X, s) or simply by Aut(R). The
condition (ReS4) is equivalent to the condition sα ∈ Aut(R) for all α ∈ Rre. The
subgroup of Aut(R) generated by all sα, α ∈ R, is called the Weyl group of R and
denoted W (R). It is a normal subgroup of Aut(R).

Let (R,X, s) be a reflection system. For every reflective root α, there exists a
unique linear form α∨ on X such that sα is given by the familiar formula

sα(x) = x− 〈x, α∨〉α. (2)

In particular, sα(α) = −α ⇐⇒ 〈α, α∨〉 = 2. For α ∈ R \ Rre we put α∨ = 0.
Then ∨: R → X∗ is a well-defined map and (2) holds for all α ∈ R and x ∈ X.
Conversely, given (R,X) ∈ SV with a map ∨: R→ X∗, taking (2) as the definition
of sα and putting Rre = {α ∈ R : α∨ 6= 0}, the axioms of a reflection system can
also be phrased in terms of (R,X, ∨), see [42, 2.3] for details.
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4.2. Elementary properties of reflection systems. Let (R,X, s) be a re-
flection system. We will say R is

(i) reduced if α ∈ Rre, c ∈ k× and cα ∈ Rre imply c = ±1;
(ii) integral if 〈R,R∨〉 ⊂ Z;

(iii) symmetric if R = −R.

For a reflection system (R,X, s) and α, β ∈ Rre we have ([42, (2.11)])

sα = sβ ⇐⇒ β ∈ k×α. (1)

Moreover, if R is integral then by [42, (2.10)],

α ∈ Rre and cα ∈ Rre for some c ∈ k× =⇒ c ∈ {± 1
2 , ±1, ±2}, (2)

and α/2 and 2α cannot both be in Rre.

4.3. Direct sums. A family (Ri, Xi)i∈I in SV has the coproduct

(R,X) =
∐
i∈I

(Ri, Xi) =
(⋃
i∈I

Ri,
⊕
i∈I

Xi

)
cf. [40, 1.2]. Following tradition, we also write R =

⊕
i∈I Ri and call R the direct

sum of the Ri.
If each Ri is a reflection system so is R. Indeed, we extend each sαi , αi ∈ Ri,

to a reflection on X by sαi
∣∣Xj = Id for i 6= j, and in this way obtain a map

s: R → Ref(X) which is easily seen to satisfy (ReS1) – (ReS4). The linear form
on X corresponding to αi ∈ Ri is just the extension by zero of α∨i . It is immediate
that Rre =

⋃
i∈I R

re
i , and W (R) ∼=

⊕
i∈IW (Ri), the restricted direct product of

the W (Ri).

4.4. Subsystems. Let R = (R,X, s) be a reflection system. A subsystem of R
is a subset R′ of R satisfying 0 ∈ R′ and sα(β) ∈ R′ for all α, β ∈ R′. Equivalently,
the inclusion (R′, span(R′)) ↪→ (R,X) is a morphism of reflection systems. It
follows from (ReS2) that

Re(R) := Rre ∪ {0}

is always a subsystem of any reflection system R. Similarly,

Rind := {α ∈ Rre :
α

2
/∈ Rre} ∪ {0}, (1)

is a subsystem. We call its elements the indivisible roots. By (4.2.2), Rind is a
reduced subsystem of any integral reflection system R.

4.5. Examples of reflection systems. The most important examples of re-
flection systems for this book are the finite or locally finite root systems. Indeed,
the usual finite root systems in the sense of [10] (augmented by 0) are precisely



4. REFLECTION SYSTEMS 51

the reflection systems which are finite, integral, and satisfy Rre = R \ {0}, and the
locally finite root systems have a similar description, see below.

Other important examples of reflection systems are: the roots of a Kac-Moody
Lie algebra with Rre being the real roots, the extended affine root systems occurring
in extended affine Lie algebras, the roots of classical Lie superalgebras, the non-
crystallographic finite root systems, or the root systems associated to the geometric
representation of Coxeter groups. The reader can find many more examples in [42,
2.10, 2.12, 3.1, and 4.3]. Moreover, this paper also introduces partial root systems
which form an important subcategory of ReS.

4.6. Locally finite root systems [40]. For the convenience of the reader we
now give a more explicit description of locally finite root systems.

A locally finite root system is a pair (R,X) consisting of a vector space X over
k and a subset R such that the following conditions hold:

(i) 0 ∈ R, and R spans X as a vector space,
(ii) for every α ∈ R× = R \ {0} there exists α∨ in the dual X∗ of X such

that 〈α, α∨〉 = 2, 〈β, α∨〉 ∈ Z for all β ∈ R, and sα(R) = R for sα(x) =
x− 〈x, α∨〉α,

(iii) R is locally finite in the sense that R ∩ Y is finite for every finite-
dimensional subspace Y of X.

As in [40] the term root system will be an abbreviation for “locally finite root
system”, and a finite root system will be a root system (R,X) with Card(R) <∞,
equivalently, dimX < ∞. The rank of a root system (R,X) is by definition the
dimension of X.

We will consider root systems as a subcategory of SV or of ReS, as required by
the context. But we note that an isomorphism between root systems in SV satisfies
(4.1.1), so that isomorphisms between root systems are the same in the categories
SV and ReS ([40, 3.6]).

A direct sum of root systems is again a root system. A nonzero root system
is called irreducible if it is not isomorphic to a direct sum of two nonzero root
systems. Any root system decomposes uniquely into a direct sum of irreducible
root subsystems, called its irreducible components [42, 3.13] which we will describe
now.

4.7. Classification of root systems. Let I be a non-empty set, let X =
spank(I) =

⊕
i∈I Rεi be the free vector space on the set I, and let Ẋ = Ker(t) ⊂ X

be the kernel of the trace form t, defined as the linear form on X taking the value
1 on each εi. We define

ȦI = {εi − εj : i, j ∈ I}, (1)

DI = ȦI ∪ {±(εi + εj) : i 6= j}, (2)

BI = DI ∪ {±εi : i ∈ I}, (3)

CI = DI ∪ {±2εi : i ∈ I} = {±εi ± εj : i, j ∈ I}, (4)

BCI = BI ∪ CI = {±εi : i ∈ I} ∪ {±εi ± εj : i, j ∈ I}. (5)
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Then ȦI is a root system in Ẋ and the others are root systems in X, with the
exception of DI for |I| = 1 where DI = {0} does not span X. The rank of ȦI is
Card(I)− 1 while the rank in the other cases is Card(I). The notation Ȧ (instead
of the traditional A) serves to indicate this fact. For a finite I, say |I| = n, we will
use the standard notation Bn = BI , Cn = CI , Dn = DI and BCn = BCI , while the
usual notation An is linked to our notation by

An = Ȧ{0,1,...,n} = Ȧn+1.

A root system R is called classical if it is isomorphic to one of the root systems (1)
– (5) for a suitable, possibly infinite, set I.

The exceptional root systems are the well-known finite irreducible root systems
of type E6,E7,E8,F4 and G2, see for example [10]. An irreducible root system is
either classical or isomorphic to an exceptional root system [40, Th. 8.4].

Recall the notion of prenilpotent subset introduced in 1.9. The following lemma
gives a detailed description of the prenilpotent two-element subsets of locally finite
root systems.

4.8. Lemma. Let (R,X) be a locally finite root system, and let {α, β} ⊂ R×.
Then

{α, β} is prenilpotent ⇐⇒ β 6∈ {−α,−2α,−α
2
}. (1)

Assume this to be the case and put Rαβ := R ∩
(
Zα+ Zβ

)
and C :=

(((((((
α, β

)))))))
. Then[[[[

α, β
]]]]

= {α}c ∪ C ∪ {β}c (2)

is nilpotent of class k65 and of cardinality 66. Moreover, CardC64, Card
(((((((
C,C

)))))))
6 1, and C 6= ∅ if and only if α+ β ∈ R.

Proof. By (1.5.2) and 1.12, {α, β} is not prenilpotent if and only if there exist
m,n ∈ N, m + n > 0, such that mα + nβ = 0. Since α, β 6= 0, this is equivalent
to mα + nβ = 0 for some m,n ∈ N+, i.e., −β is a positive rational multiple of α.
Since R is locally finite we have R× ∩ Qα ⊂ {±α,±2α,±α/2} which proves (1).
The formula (2) is a consequence of (1.6.9). The remaining assertions follow easily
from the classification of root systems of rank 6 2 in [10]. The details are left to
the reader.

Note that (2) easily implies

C 2
([[[[
α, β

]]]])
=
(
{α}c \ {α}

)
∪ C ∪

(
{β}c \ {β}

)
.

Also, {α}c = {α, 2α} or {α}c = {α} depending on whether 2α does or does not
belong to R.

We now list the cases where C 6= ∅ in more detail. It is no restriction to assume
that ‖α‖6 ‖β‖ with respect to some invariant inner product.
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Case 〈α, β∨〉 〈β, α∨〉 C =
(((((((
α, β

)))))))
k

∣∣[[[[α, β]]]]∣∣ Rαβ

1 2 2 2α 2 2 BC1

2 1 1 α+ β 2 3 G2

3 0 0 α+ β 2 3 or 5 B2 or BC2

4 −1 −1 α+ β 2 3 A2

5 −1 −1 α+ β, 2α+ β, α+ 2β 3 5 G2

6 −1 −2 α+ β, 2α+ β 3 4 B2

7 −1 −2 α+ β, 2α+ β, 2α+ 2β 4 6 BC2

8 −1 −3
α+ β, 2α+ β, 3α+ β,

3α+ 2β
5 6 G2

Remarks. We put B := {α, β}.

Case 1: Here α = β.

Case 2: α and β are two short roots of G2 whose sum is a long root.

Case 3: α and β are weakly orthogonal short roots.

Case 4: B is a root basis of A2.

Case 5: B is a root basis for the subsystem of short roots of G2.

Case 6: Rαβ = B2 and B is a root basis of B2.

Case 7: B is a root basis of BC2.

Case 8: B is a root basis of G2.
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§5. Weyl elements I

5.1. Weyl elements and Weyl triples. Let (R,X, s) ∈ ReS be a reflection
system, see 4.1, and let (G,U ) ∈ gcR be a group with R-commutator relations and
root groups Uα as in 2.2. Let α ∈ Re(R) = Rre ∪ {0} and let sα be the reflection
associated to α. An element w ∈ G is called a generalized Weyl element for α if
conjugation by w realizes the reflection sα on the root groups in the sense that

wUβ w
−1 = Usα(β) for all β ∈ R. (1)

We say w is a Weyl element for α if it is a generalized Weyl element for α and
w ∈ Uα U−α Uα. This follows the terminology of Faulkner [15]. Thus a Weyl
element for α has a representation w = u1u2u3 where u1, u3 ∈ Uα and u2 ∈ U−α.
In general, w does not determine the triple (u1, u2, u3) uniquely. Therefore, we
define: a Weyl triple for α is a triple t = (u1, u2, u3) ∈ Uα × U−α × Uα such that
µ(t) = u1u2u3 is a Weyl element for α. Here µ denotes the multiplication map.

We denote by Mα = Mα(G) the (possibly empty) set of generalized Weyl
elements for the root α, by Wα = Wα(G) the set of Weyl elements for α, and
by Tα = Tα(G) the set of Weyl triples for α. Strictly speaking, we should write
Mα(G, (Uβ)β∈R) or Mα(G,U ) etc. since the notions of (generalized) Weyl element
and Weyl triple depend of course on the family of root groups (Uβ)β∈R. But we
will use the simplified notation, hoping that the reader will keep this dependence
in mind. Thus

Wα = Mα ∩
(
UαU−αUα

)
⊂Mα and µ: Tα →Wα is surjective. (2)

Note in particular that

M0 =
⋂
β∈R

NormG(Uβ), W0 = {1}, T0 = {(1, 1, 1)}, (3)

since by our conventions, 0 ∈ Re(R), s0 = Id and U0 = {1}.
It is convenient to consider also the following sets:

Θα(G) = Uα × U−α × Uα, Θ(G) =
∐
α∈R

Θα(G) (4)

as well as
T(G) =

∐
α∈Re(R)

Tα(G). (5)

Clearly, Θα(G) and Θ(G) depend functorially on G: if ϕ: G → H is a morphism
of gcR then Θα(ϕ): Θα(G) → Θα(H) is defined component-wise by (x1, x2, x3) 7→
(ϕ(x1), ϕ(x2), ϕ(x3)). The sets Mα(G), Wα(G) and Tα(G) in general do not depend
functorially on G. However, if ϕ is surjective on root groups, then ϕ

(
Mα(G)

)
⊂

Mα(H) which is seen by applying ϕ to (1). This easily implies ϕ
(
Wα(G)

)
⊂Wα(H)

and Tα(ϕ)
(
Tα(G)

)
⊂ Tα(H) as well, where we define Tα(ϕ) = Θα(ϕ)

∣∣Tα(G).
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5.2. Example. Let G = GL2(A) where A is a (unital associative) ring. We
view G as a group with commutator relations with root system R = A1 = {0,±1}
and root groups U±1 = U± = e±(A), where e±: A→ G is defined by

e+(x) =

(
1 x
0 1

)
, e−(y) =

(
1 0
−y 1

)
.

For u, v ∈ A×, the set of units of A, we define

wu,v =

(
0 u
−v−1 0

)
∈ G, with inverse w−1

u,v =

(
0 −v
u−1 0

)
= w−v,−u.

Straightforward matrix calculations show that

M0 =
{(

a 0
0 d

)
: a, d ∈ A×

}
, M1 = {wu,v : u, v ∈ A×} = M−1. (1)

The action of wu,v on the root groups is given by

wu,v e+(x) w−1
u,v = e−(v−1xu−1), wu,v e−(y) w−1

u,v = e+(uyv). (2)

We now determine the Weyl elements for α = 1 and claim that

wu,v ∈W1 ⇐⇒ u = v.

Indeed, if u = v then by straightforward calculation,

wu,u =

(
0 u
−u−1 0

)
= e+(u) e−(u−1) e+(u) ∈ U+U−U+.

Conversely, suppose that

wu,v =

(
1 x
0 1

)(
1 0
−y 1

)(
1 z
0 1

)
∈ U+U−U+.

By working out the product on the right, we obtain

wu,v =

(
0 u
−v−1 0

)
=

(
1− xy x+ z − xyz
−y 1− yz

)
.

This shows that y ∈ A× with inverse y−1 = x = z, so x = u and y = v = x−1.
Hence the Weyl elements for α = 1 are precisely the elements

wu = wu,u =

(
0 u
−u−1 0

)
. (3)

By interchanging the roles of 1 and −1, one sees that the Weyl elements for the
root −1 are the elements
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(
1 0
−u 1

)(
1 u−1

0 1

)(
1 0
−u 1

)
=

(
0 u−1

−u 0

)
= wu−1 , u ∈ A×. (4)

Hence, the Weyl triples for α = σ1 are the elements

tσ(u) =
(
eσ(u), e−σ(u−1), eσ(u)

)
, u ∈ A×. (5)

In particular, this shows that Wα & Mα as soon as A× has at least two elements.
We also see that here the multiplication maps µ: Tα →Wα are bijective.

All this can be generalized to the group GLn(A), viewed as group with An−1-
commutator relations, see for example [17, 1.4E].

More examples of groups with (generalized) Weyl elements will be given later
in 6.7, 6.9 and 6.10. We will see that apart from the obvious inclusion Wα ⊂ Mα,
no other general relation is true.

5.3. Proposition. Let (R,X, s) ∈ ReS be a reflection system and let G be a
group with R-commutator relations.

(a) The sets Mα and Wα, α ∈ Re(R), satisfy the following relations:

Mα = M−1
α , Wα = W−1

α , (1)

Mα = Mrα if r ∈ k× and rα ∈ Re(R), (2)

Wα = W−α, Wnα ⊂Wα if n ∈ N+ and nα ∈ R, (3)

Mα = M0MαM0, Wα = (M0 ∩ Uα)Wα(M0 ∩ Uα). (4)

In particular, if w is a (generalized) Weyl element for α then so is w−1, and both
w and w−1 are (generalized) Weyl elements for −α.

(b) If Mα is not empty and mα ∈ Mα then Mα = mαM0 = M0mα is a coset
of M0, and

MαMα = M0, (5)

mαMβm
−1
α = MαMβMα = Msαβ , (6)

mαWβm
−1
α = Wsαβ , (7)

mαTβm
−1
α = Tsαβ , (8)

where β ∈ Re(R) and conjugation by mα in (8) is understood componentwise.

Proof. (a) Let m ∈ Mα. Since s2
α = Id we have m−1Uβm = m−1Us2αβm =

m−1m2Uβm
−2m = mUβm

−1 = Usαβ for all β ∈ R, whence m−1 ∈Mα. This proves

Mα = M−1
α . Furthermore, W−1

α =
(
Mα∩(UαU−αUα)

)−1
= M−1

α ∩(UαU−αUα)−1 =
Mα ∩ (UαU−αUα) = Wα. Next, (2) follows immediately from the definition of Mα

and the fact that sα = sβ whenever β = rα ∈ Re(R) for some r ∈ k×, by (ReS3)
in 4.1. Now let w ∈Wα. Then sα(±α) = ∓α implies

w = www−1 ∈ w · UαU−αUα · w−1

= wUαw
−1 · wU−αw−1 · wUαw−1 = U−αUαU−α,

and therefore w ∈ W−α. Thus Wα ⊂ W−α and then also W−α ⊂ W−(−α) = Wα.
Furthermore, if nα ∈ R then by (5.1.2) and (2.2.2), Wnα = Mnα∩(UnαU−nαUnα) ⊂
Mα ∩ (UαU−αUα) = Wα. Finally, (4) follows immediately from the definitions of
Mα and (5.1.3).
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(b) If m,m′ ∈ Mα then mm′Uβm
′−1m−1 = mUsαβm

−1 = Us2αβ = Uβ for
all β ∈ R, so mm′ ∈ M0. Furthermore, since m−1 ∈ Mα by (1), we have m′ =
m(m−1m′) = (m′m−1)m ∈ mM0 ∩M0m, so Mα = mM0 = M0m is a coset of M0,
and we also see M2

α = M0m ·mM0 = M0. If mα ∈ Mα and mβ ∈ Mβ (where now
α, β ∈ Re(R)) then, for all γ ∈ R,

mαmβm
−1
α Uγmαm

−1
β m−1

α = Usαsβsαγ = Ussαβγ

by (ReS4) in 4.1. This shows mαMβm
−1
α ⊂ Msαβ , and in fact we have equality

because from s2
α = Id and m−1

α ∈ Mα we see m−1
α Msαβmα ⊂ Ms2αβ

= Mβ .
The second equation of (6) now follows from MαMβMα = M0mαMβm

−1
α M0 =

M0MsαβM0 = Msαβ . Finally,

mαWβm
−1
α = mα(Mβ ∩ (UβU−βUβ))m−1

α

= mαMβm
−1
α ∩mα(UβU−βUβ)m−1

α

= Msαβ ∩ (UsαβU−sαβUsαβ) = Wsαβ ,

and (8) is an immediate consequence of (7) and the definitions.

5.4. An algebraic structure on the set of Weyl triples. Let G be a group
with R-commutator relations and root groups Uα and let Tα = Tα(G) be the set of
Weyl triples for α ∈ Re(R). Let T = T(G) be as in (5.1.5). We define the following
operations on T. First, let x ∈ Tα, say, x = (x1, x2, x3) ∈ Uα × U−α × Uα,
and let w = µ(x) = x1x2x3 be the corresponding Weyl element. By (5.3.1),
w−1 = x−1

3 x−1
2 x−1

1 is again a Weyl element for α. Hence, the triple

x−1 := (x−1
3 , x−1

2 , x−1
1 ) ∈ Tα. (1)

This yields a unary operation ( )−1: T → T which maps each Tα to itself and is
obviously involutive:

(x−1)−1 = x. (2)

Next, consider the triples

x] := (wx3w
−1, x1, x2), x[ := (x2, x3, w

−1x1w). (3)

Since wUα w
−1 = U−α, we see that x] and x[ are in U−α × Uα × U−α. Moreover,

µ(x]) = wx3x
−1
3 x−1

2 x−1
1 · x1x2 = w (4)

and similarly µ(x[) = w, so x] and x[ are Weyl triples for the root −α. This yields
two more unary operations on T.

Let x and w be as before, and let y = (y1, y2, y3) ∈ Tβ . Then

x • y := Int
(
µ(x)

)
· y = (wy1w

−1, wy2w
−1, wy3w

−1) ∈ Tsα(β) (5)

by (5.3.8). This defines a binary operation • on T. Finally, we let 1 = (1, 1, 1) ∈ T0

and define a projection p: T→ Re(R) by mapping the elements of Tα to α.
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Example. Let G = GL2(A) as in 5.2. Then the unary operations are

tσ(u)−1 = tσ(−u), tσ(u)] = tσ(u)[ = t−σ(u−1). (6)

This follows easily from (5.2.2). For the products • one computes

t+(u) • t−(v) = t+(uvu). (7)

From this, one obtains formulas of type tσ(u) • tτ (v) by using (5.5.2), for example
t+(u)•t+(v) = t+(u)•t−(v−1)] = (t+(u)•t−(v−1))] = t+(uv−1u)] = t−(u−1vu−1).

5.5. Lemma. (a) The operations just introduced satisfy the following rules.

x • (x−1 • y) = x−1 • (x • y) = y (1)

(x • y)−1 = x • y−1, (x • y)] = x • y], (x • y)[ = x • y[, (2)

x • (y • z) = (x • y) • (x • z), (3)

1 • x = x, x • 1 = 1, (4)

p(x • y) = sp(x)p(y), p(x−1) = p(x), p(x]) = p(x[) = −p(x), (5)

(x])[ = (x[)] = x, (6)

(x])−1 = (x−1)[, (x[)−1 = (x−1)], (7)

x]]] = x • x, x[[[ = x−1 • x. (8)

(b) Let ϕ: G→ H be a morphism of gcR which is surjective on root groups and
define T(ϕ): T(G) → T(H) by T(ϕ)

∣∣Tα = Tα(ϕ) as in 5.1. Then T(ϕ) preserves
the algebraic operations.

Proof. (a) (1) is immediate from the definition, since µ(x−1) = x−1
3 x−1

2 x−1
1 =

µ(x)−1. To prove the first formula of (2), put w = µ(x) and observe that

(x • y)−1 =
(

Intw · (y1, y2, y3)
)−1

= (wy1w
−1, wy2w

−1, wy3w
−1)−1

= (wy−1
3 w−1, wy−1

2 w−1, wy−1
1 w−1) = Int(w) · y−1 = x • y−1.

The proof of the second and third formula is similar. For (3), we compute

x • (y • z) = Intµ(x) ·
(

Intµ(y) · z
)

= Int(µ(x)µ(y)) · z
= Int(µ(x)µ(y)µ(x)−1) Int(µ(x) · z).

On the other hand,

µ(x)µ(y)µ(x)−1 = µ
(

Int(µ(x)) · y
)

= µ(x • y),

from which the assertion follows. It is obvious that (4) and (5) hold.
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For (6), observe (x])[ = (wx3w
−1, x1, x2)[ = (x1, x2, w

−1wx3w
−1w) = x, and

similarly for the second formula. The first formula of (7) follows from (x])−1 =
(wx3w

−1, x1, x2)−1 = (x−1
2 , x−1

1 , wx−1
3 w−1) = (x−1)[, and the second formula is

proved similarly. Finally, since µ(x]) = µ(x[) = µ(x) = w, we have

x]]] = (wx3w
−1, x1, x2)]] = (wx2w

−1, wx3w
−1, x1)]

= (wx1w
−1, wx2w

−1, wx3w
−1) = x • x,

and similarly for the second formula.
(b) This follows immediately from the definitions.

Note that the left multiplications Lx: y 7→ x • y are bijective, with L−1
x = Lx−1 ,

by (1). Formulas (2) and (3) say that Lx is an automorphism of T, equipped with
the algebraic structures of multiplication, inversion, ] and [. By (6), [ is just the
inverse map of ], and by (7), [ can also be defined in terms of ] and inversion as

x[ = ((x−1)])−1 and x] = ((x−1)[)−1. (9)

For example, this can be used to establish the formulas for [ in (2) and (8), once
the corresponding formula for ] has been established.

5.6. Subsystems. We say a subset S of T is closed or a subsystem if it contains
the element 1 ∈ T0 and is closed under the operations of multiplication, inversion,
and ] or, equivalently, [. If X ⊂ T is an arbitrary subset, the closure of X (or the
subsystem generated by X), denoted

〈
X
〉
, is defined as the smallest subsystem of

T containing X. Its existence and uniqueness is clear: just take the intersection of
all subsystems containing X, this set being non-empty because T belongs to it. We
now give a more explicit description of the closure of a subset X.

Example. Let G = GL2(A) as in 5.2 and let X = T1 = {t+(u) : u ∈ A×} as in
(5.2.5). Then

〈
X
〉

= T follows from (5.4.6).

5.7. Lemma. Let X ⊂ T be an arbitrary subset.

(a) The set
〈
X
〉

is obtained as follows. Let Y = X ∪ X−1 ∪ {1} and put

Ỹ :=
⋃
n∈Z

Yn],

where xn] = x]···] (n times) for n > 0 and xn] = x[···[ (n times) for n < 0. Then〈
X
〉

is the set of all finite products, with arbitrary parentheses, of elements taken

from Ỹ.

(b) If ϕ: G→ H is a morphism of gcR which is surjective on root groups, then
T(ϕ)

(〈
X
〉)

=
〈
T(ϕ)(X)

〉
.

Proof. (a) Clearly, Ỹ ⊂
〈
X
〉
. It follows from (5.5.6) and (5.5.7) that Ỹ is

stable under the unary operations ( )−1, ] and [. Let P be the set of all products of
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elements from Ỹ. Then clearly P ⊂ 〈X〉 so it suffices to show that P is a subsystem.
Evidently, P contains 1 and is closed under products. To show it is closed under
the unary operations, we use induction on the length of a product. Products of
length 1 are just the elements of Ỹ. A product of length n > 1 is of the form a • b
where a and b are products of length < n. Then (a • b)−1 = a • b−1 by (5.5.2), and
by induction b−1 ∈ P. Hence (a • b)−1 ∈ P as well. Similarly, one shows that P is
stable under ] and [, using the second and third formula of (5.5.2).

(b) This follows from Lemma 5.5(b).

5.8. Steinberg categories defined by sets of Weyl triples. Let Ḡ =
(Ḡ, Ūα) ∈ gcR and let st(Ḡ) be the corresponding Steinberg category as in 3.9.
We define full subcategories of st(Ḡ) depending on a set X̄ of Weyl triples of Ḡ as
follows.

Let π: (G,Uα) → (Ḡ, Ūα) be an object of st(Ḡ) as in 3.9 and define Θ(G) and
Θ(Ḡ) as in (5.1.4). Since π is in particular bijective on root subgroups, the induced
maps Θ(π): Θ(G) → Θ(Ḡ) sending a triple x = (x1, x2, x3) ∈ Uα × U−α × Uα to
π(x) =

(
π(x1), π(x2), π(x3)

)
, are bijective as well. By abuse of notation, we will

often simply write π instead of Θ(π) or T(π). For an element t = (t1, t2, t3) ∈ Θ(Ḡ)
we call π−1(t) ∈ Θ(G) the lift of t to G. The lift of a Weyl triple for Ḡ will in
general no longer be a Weyl triple for G. Therefore, we define the full subcategory
st(Ḡ, X̄) of st(Ḡ) by(

π: G→ Ḡ
)
∈ st(Ḡ, X̄) ⇐⇒ π−1(X̄) ⊂ T(G).

This subcategory has the following property: if π ∈ st(Ḡ, X̄) and ϕ: π → η is a mor-
phism of st(Ḡ) then also η ∈ st(Ḡ, X̄). Indeed, the morphism ϕ is a commutative
triangle

G

π
��???????
ϕ // H

η
��~~~~~~~

Ḡ

(1)

of morphisms of gcR, so ϕ is in particular bijective on root groups. Hence it induces
a commutative triangle of bijections

Θ(G)

π
##GGGGGGGG
ϕ // Θ(H)

η
{{wwwwwwwww

Θ̄(G)

which implies
ϕ(π−1(t)) = η−1(t) (2)

for all t ∈ Θ(Ḡ). Since ϕ is surjective on root groups, the image of a Weyl triple
of G under ϕ is a Weyl triple of H, as noted in 5.1. Hence η−1(X̄) = ϕ(π−1(X̄)) ⊂
ϕ(T(G)) ⊂ T(H).
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5.9. Lemma. The subcategories st(Ḡ, X̄) have the following properties.

st(Ḡ, ∅) = st(Ḡ, {1}) = st(Ḡ), (1)

X̄ ⊂ Ȳ =⇒ st(Ḡ, X̄) ⊃ st(Ḡ, Ȳ), (2)

st(Ḡ, X̄) = st(Ḡ,
〈
X̄
〉
). (3)

Proof. (1) and (2) are evident from the definition. We prove (3). Since X̄ ⊂
〈
X̄
〉
,

we have st(Ḡ, X̄) ⊃ st(Ḡ,
〈
X̄
〉
) by (2). Conversely, let π: G→ Ḡ belong to st(Ḡ, X̄),

so X := π−1(X̄) ⊂ T(G). We must show that π−1(
〈
X̄
〉
) ⊂ T(G) as well. By 5.4,〈

X
〉
⊂ T(G), so it suffices to show that π−1(

〈
X̄
〉
) =

〈
X
〉
. But this follows from

Lemma 5.7 and bijectivity of π on Θ(G): π
(〈
X
〉)

=
〈
π(X)

〉
=
〈
X̄
〉
.

5.10. Theorem. Let R be a reflection system, let Ḡ ∈ gcR be a group with
R-commutator relations and let X̄ be a set of Weyl triples for Ḡ. Then the category
st(Ḡ, X̄) is a reflective subcategory of the Steinberg category st(Ḡ): the inclusion
functor i: st(Ḡ, X̄)→ st(Ḡ) has a left adjoint ` : st(Ḡ)→ st(Ḡ, X̄).

Proof. We put X̄α = X∩Tα(Ḡ), so that X̄ =
∐
α∈Re(R) X̄α. Let π: G→ Ḡ be an

object of st(Ḡ), let t ∈ X̄α be a Weyl triple, and let w̄t = µ(t) be the corresponding
Weyl element. Also let x = π−1(t) ∈ Θ(G) be the lift of t to G. Since π is bijective
on root groups and w̄t is a Weyl element for α in Ḡ, there exists, for every β ∈ R,
a unique isomorphism fGαβ(t): Uβ → Usα(β) making the diagram

Uβ
fGαβ(t)

//

π ∼=
��

Usα(β)

∼= π

��
Ūβ

Int(w̄t)
// Ūsα(β)

(1)

commutative. It is clear that wGt := µ(x) is a Weyl element for α in G if and only
if

Int(wGt ) · u = fGαβ(t) · u, (2)

for all u ∈ Uβ and all β ∈ R. We now pass to the largest quotient of G for which
the relations (2) hold. In more detail, let K(G) be normal subgroup of G generated
by all elements

ZG(t, u, α, β) :=
(

Int(wGt ) · u
)−1(

fGαβ(t) · u
)

where α ∈ Rre, β ∈ R, t ∈ X̄α and u ∈ Uβ . Let Ġ = G/K(G) and let can: G→ Ġ

be the canonical map. By 3.11(d), π factors π = π̇ ◦ can, and Ġ with root groups
U̇α = can(Uα) and projection π̇ belongs to st(Ḡ).

It follows from the definition of K(G) that can(wGt ) = wĠt is a Weyl element
(and hence can(π−1(t)) = π̇−1(t) is a Weyl triple) for α in Ġ, for all t ∈ X̄α and all
α ∈ Rre. Hence Ġ (more precisely, π̇) belongs to st(Ḡ, X̄).
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We define the functor ` on objects by `(π) = π̇, and on morphisms as follows. Let
ϕ: π → η be a morphism of st(Ḡ), cf. (5.8.1). To have an induced homomorphism
ϕ̇: Ġ → Ḣ it suffices to show that ϕ(K(G)) ⊂ K(H). By 3.11(b0), ϕ: Uβ → Vβ is
an isomorphism, for all β ∈ R. Since ϕ is a group homomorphism we have, using
(5.8.2),

ϕ(wGt ) = ϕ(µ(π−1(t))) = µ(ϕ(π−1(t))) = µ(η−1(t)) = wHt . (3)

From (1) and the analogous diagram for H and the fact that η is bijective on root
groups it follows that

ϕ
(
fGαβ(t) · u

)
= fHαβ(t) · ϕ(u), (4)

for all u ∈ Uα. Now (3) and (4) imply

ϕ
(
ZG(t, u, α, β)

)
= ZH(t, ϕ(u), α, β) ∈ K(H).

Hence ϕ(K(G)) ⊂ K(H), so we have an induced homomorphism ϕ̇: Ġ→ Ḣ making
the diagram

G
ϕ //

can

��

π

##GGGGGGGGG H
η

{{wwwwwwwww

can

��

Ḡ

Ġ ϕ̇
//

π̇

;;xxxxxxxxxx
Ḣ

η̇

ccFFFFFFFFFF

commutative. Now a straightforward verification shows that ϕ̇ is a morphism in
st(Ḡ) and that the assignments π 7→ π̇ on objects and ϕ 7→ ϕ̇ on morphisms define
a functor `: st(Ḡ)→ st(Ḡ, X̄).

It remains to show that ` is left adjoint to the inclusion functor i, that is, to
find natural bijections

Morst(Ḡ,X̄)

(
`(π), η

) ∼= Morst(Ḡ)

(
π, i(η)

)
, (5)

for all π: G → Ḡ in st(Ḡ) and η: H → Ḡ in st(Ḡ, X̄). Thus let ψ: `(π) → η
be a morphism of st(Ḡ, X̄) and let can: G → Ġ = `(G) be the canonical map.
Then ψ ◦ can: π → i(η) is a morphism of st(Ḡ). Conversely, let ϕ: π → i(η) be a
morphism of st(Ḡ). Since H ∈ st(Ḡ, X̄), the elements ZH(t, v, α, β) generating the
normal subgroup K(H) of H (in the notation used earlier) are all trivial, so Ḣ is
canonically identified with H and therefore ϕ̇ = `(ϕ): `(π) → η is a morphism in
st(Ḡ, X̄). It is easily verified that these constructions are natural and inverses of
each other.

5.11. Corollary. Let Ḡ ∈ gcR be a group with R-commutator relations and
let X̄ be a set of Weyl triples for Ḡ. Let St(Ḡ) = π̂: Ĝ→ Ḡ be its Steinberg group
in st(Ḡ) as in Theorem 3.13. Then `

(
St(Ḡ)

)
is an initial object in st(Ḡ, X̄), called
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the Steinberg group of (Ḡ, X̄) and denoted St(Ḡ, X̄). Moreover, the Steinberg group
of (Ḡ, X̄) does not change when replacing X̄ by its closure:

St(Ḡ, X̄) = St(Ḡ,
〈
X̄
〉
). (1)

Proof. This is immediate from (5.10.5) and the fact that St(Ḡ) is an initial
object in st(Ḡ). The last statement follows from (5.9.3).

More explicitly, let π̂: Ĝ→ Ḡ be the Steinberg group of Ḡ. Then the Steinberg
group of (Ḡ, X̄) is `(π̂): Ĝ/K(Ĝ)→ Ḡ. By abuse of notation, we will also speak of
the group Ĝ/K(Ĝ) as of the Steinberg group of (Ḡ, X̄).

5.12. Example: St2(A) of a ring. Let A be a unital associative ring. Recall
that the linear Steinberg group St2(A) is the group presented by generators xσ(a),
a ∈ A, σ ∈ {+,−} and relations

xσ(a+ b) = xσ(a)xσ(b), (1)

wσ(u)x−σ(a)wσ(u)−1 = xσ(uau), (2)

where a, b ∈ A, u ∈ A× and wσ(u) := xσ(u)x−σ(u−1)xσ(u). The reader will easily
verify that this definition agrees with the one in [45, Def. 10.4], see also [17, p.
57], by setting x+(a) = x12(a) and x−(a) = x21(−a). We show that this group is
the Steinberg group of an appropriately defined (Ḡ, X̄) in the sense of 5.11. First
observe that (1) and (2) imply

wσ(u)xσ(a)wσ(u)−1 = x−σ(u−1au−1) (3)

for u ∈ A× and a ∈ A. Indeed, wσ(u)−1 = wσ(−u) by (1), whence x−σ(a) =
wσ(−u)xσ(uau)wσ(−u)−1 by (2), so that (3) follows by replacing u by −u and a
by u−1au−1.

Let R = A1 = {0,±1}. We have already noted in 2.3(a) that the objects
of the category gcR are the groups G with abelian subgroups U± = U±1. In
particular, this is so for the group Ḡ = GL2(A) of Example 5.2, with subgroups
Ū± = e±(A). It is immediately seen that the Steinberg group Ĝ = St(Ḡ), in the
sense of Theorem 3.13 can be identified with the free product Ū+ ∗ Ū−, i.e., Ĝ is
the group presented by generators xσ(a), a ∈ A, and the relations (1).

For an object π: G → Ḡ of st(Ḡ), let xσ: A → Uσ be the unique isomorphism
satisfying π(xσ(a)) = eσ(a), for all a ∈ A. Let t = tσ(u) be a Weyl triple of Ḡ as
in (5.2.5). Then

π−1(t) =
(
xσ(u), x−σ(u−1), xσ(u)

)
,

so µ(π−1(t)) = wσ(u). By specializing the relations (5.2.2) to the case where u = v
one finds that π−1(t) is a Weyl triple for G if and only if the relations (2) and (3)
hold. It follows easily that St2(A) is canonically isomorphic to the Steinberg group
St(Ḡ, X̄) where X̄ is the set of all Weyl triples of Ḡ. In view of (5.11.1) and the
example in 5.6, one obtains the same group by taking for X̄ only the set T1(Ḡ) of
all Weyl triples for the root α = 1.
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5.13. Balanced Weyl triples. We return to a group G with R-commutator
relations and root groups Uα. Recall the unary operations ] and [ on the set T of
Weyl triples from (5.4.3). We say that a Weyl triple x is balanced if x] = x[.

We now derive some properties of balanced Weyl triples. First, the following
conditions for a Weyl triple x with w = µ(x) are equivalent:

(i) x is balanced,
(ii) x1 = x3 and wx1w

−1 = x2,
(iii) x1 = x3 and wx2w

−1 = x1,
(iv) x1 = x3 and x1x2x1 = x2x1x2,

In this case, x] = x[ = (x2, x1, x2).

Indeed, let x] = x[. By (5.4.3) this means

(wx3w
−1, x1, x2) = (x2, x3, w

−1x1w),

equivalently, x1 = x3 and x2 = wx1w
−1 = w−1x1w. This proves (i) =⇒ (ii)

and (i) =⇒ (iii). Now suppose (ii) holds. Since w = x1x2x1, it follows that
x1x2x1x1 = wx1 = x2w = x2x1x2x1 whence x2x1x2 = x1x2x1, proving (iv). In the
same way, one shows (iii) =⇒ (iv). Finally, suppose (iv) holds. Then w = x1x2x1 =
x2x1x2, which implies wx3w

−1 = wx1w
−1 = x2x1x2 · x1 · x−1

1 x−1
2 x−1

1 = x2, and
w−1x1w = x−1

1 x−1
2 x−1

1 · x1 · x2x1x2 = x2. But this says x] = x[ = (x2, x1, x2) by
(5.4.3).

As a consequence of these characterizations, we note:

Let x and y be balanced, having one component in common
and satisfying w = µ(x) = µ(y). Then x = y.

(1)

Indeed, if x1 = y1 then x2 = wx1w
−1 = y2 by (ii), and if x2 = y2 then x1 = y1

follows from (iii). See also Proposition 6.5 for a similar result.

From Lemma 5.5(a), one sees immediately that the set of balanced Weyl triples
is stable under the unary operations ( )−1, ] and [, as well as under all left multi-
plications by elements of T. In particular,

the set of balanced Weyl triples is a subsystem of T, (2)

if X ⊂ T is balanced, then so is
〈
X
〉
. (3)

Example. Let G = GL2(A). Then by (5.4.6), all Weyl triples are balanced, so
a Weyl triple is uniquely determined by any one of its components (which is also
evident from the explicit formulas (5.2.3) and (5.2.5)). Moreover,

wu = µ(t+(u)) = µ(t−(u)) = e−(u−1)e+(u)e−(u−1).
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5.14. Lemma. If ϕ: G→ H is a morphism in gcR which is surjective on root
groups, then T(ϕ) preserves balanced Weyl triples, and if ϕ is bijective on root
groups, a Weyl triple x ∈ T(G) is balanced if and only if T(ϕ)(x) is balanced.

Proof. The first statement follows immediately from Lemma 5.5(b). For the
second, it suffices to remark that T(ϕ) is injective if ϕ is bijective on root groups.
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§6. Weyl elements II

6.1. Proposition. Let (R,X, s) ∈ ReS and let G be a group with R-commuta-
tor relations.

(a) The sets

S = {α ∈ Re(R) : Mα 6= ∅}, S′ = {α ∈ Re(R) : Wα 6= ∅} ⊂ S

are subsystems of Re(R), in particular, they are stable under the group W (S)
generated by all {sα : α ∈ S}. The group W (S′) is normal in W (S).

(b) Let M , M ′ and M ′0 be the subgroups of G generated by⋃
α∈S

Mα,
⋃
α∈S′

Wα,
⋃
α∈S′

W 2
α,

respectively. Then M ′, M0 and M ′0 are normal subgroups of M , and M ′0 ⊂M ′∩M0.

Proof. (a) From (5.3.6) it follows that α, β ∈ S implies sαβ ∈ S. Also, by
(5.1.3), 0 ∈ S′ ⊂ S, so S is a subsystem of Re(R). Moreover, (5.3.7) shows that
sαβ ∈ S′ for α ∈ S and β ∈ S′, whence S′ is stable under W (S). Since W (S)
and W (S′) are generated by the reflections in the roots of S and S′, respectively,
formula (ReS4) of 4.1 implies that W (S′) is normal in W (S).

(b) By (5.3.7) we have M ′ normal in M , and normality of M0 in M follows
from 5.3(b): mαM0m

−1
α = Mαm

−1
α = M0mαm

−1
α = M0, for any mα ∈ Mα.

Furthermore, W 2
α ⊂ M2

α = M0 whence M ′0 ⊂ M ′ ∩M0. That M ′0 is normal in M
follows from (5.3.7).

6.2. Proposition. Let (R,X) be a locally finite root system and let G be a
group with R-commutator relations. We use the notations introduced in 6.1.

(a) There are surjective homomorphisms ψ: W (S)→M/M0 and ψ′: W (S′)→
M ′/M ′0 such that ψ(sα) = Mα (α ∈ S) and ψ′(β) = WβM

′
0 (β ∈ S′), respectively.

If u denotes the map α 7→ Uα from R to the set U = u(R) of root subgroups of G,
then the diagram

W (S)×R //

ψ×u
��

R

u

��
(M/M0)×U // U

(1)

is commutative, where the top map is given by the natural action of W (S) on R, and
the bottom map is induced from conjugation. There is a unique surjective homomor-
phism ψ′′: W (S)/W (S′) → M/M ′M0 making the following diagram commutative
with exact rows:
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1

��

// W (S′) //

ψ′

��

W (S)

ψ

��

// W (S)/W (S′)

ψ′′

��

// 1

1 // M0 ∩M ′/M ′0 // M ′/M ′0 // M/M0
// M/M ′M0

// 1

(2)

(b) If ψ is injective (hence an isomorphism) then so are ψ′ and ψ′′, and
M ′0 = M0 ∩M ′.

(c) If u
∣∣S is injective then ψ is injective. If u

∣∣S′ is injective then ψ′ is injective,
and M ′0 = M0 ∩M ′.

Remark. The reader of the proof below will notice that it is not crucial,
though convenient, to assume that (R,X) is a locally finite root system. Rather,
all that is needed is a reflection system (R,X) for which the subsystems (S, Y )
and (S′, Y ′) have the property that the groups W (S)|Y = {w|Y : w ∈ W (S)} and
W (S′)|Y ′ = {w|Y ′ : w ∈ W (S′)} have a so-called presentation by conjugation.
For W (S)|Y this means that it is presented by generators gα, α ∈ S and relations
g2
α = 1 for α ∈ S×, gα = gβ for α, β linearly dependent and gαgβgα = gsα(β)

for α, β ∈ S×. This type of presentation exists not only in the case of a locally
finite root system (R,S), but also if, for example, W (S)|Y is a Coxeter group [18,
Prop. 4.2].

Proof. (a) By (4.2.1), sα = sβ for α, β ∈ R× if and only if α and β are linearly
dependent. Let Y be the span of S. By [40, 5.8], the restriction map W (S) →
GL(Y ) is injective. Hence (5.3.2) and (5.3.6) show that the cosets Mα ∈ M/M0

(α ∈ S×) satisfy the relations of the presentation of W (S) given in [40, Th. 5.12].
This proves the statement concerning ψ. Next, let [Wα] = WαM

′
0 be the coset

in M ′/M ′0 determined by Wα. For linearly dependent roots α = cβ the factor c
must be in {±1,±2,±(1/2)}. Hence (5.3.3) shows that [Wα] = [Wβ ] for all linearly
dependent α, β ∈ S′. By definition of M ′0 we have [Wα]2 = 1. Hence (5.3.7),
specialized to the case where mα ∈Wα, shows that [Wα][Wβ ][Wα] = [Wsαβ ] for all
α, β ∈ S′. Now the existence of ψ′ follows again from [40, Th. 5.12].

The group M acts on U by conjugation, and clearly M0 acts trivially, so that
M/M0 acts on U. For α ∈ S we have ψ(sα) = Mα, and by (5.3.6), this acts on
U via Uβ 7→ Usαβ . Hence we have commutativity of (1) on the generators sα of
W (S), which is sufficient. The rest is straightforward.

(b) Suppose ψ is injective and thus (by (a)) an isomorphism. From (2) it is
then immediate that the maps ψ′ and M ′/M ′0 →M/M0 are injective. Hence ψ′ is
an isomorphism, and M0 ∩M ′ = M ′0. Moreover, by chasing the diagram, one sees
easily that ψ′′ is injective as well, and therefore an isomorphism.

(c) Let u be injective on S. As we saw in the proof of (a), the restriction
map W (S) → GL(Y ) is injective. Hence the group W (S) acts faithfully on S by
permutations. From (1) we thus deduce the commutative diagram

W (S) //

ψ

��

Sym(S)

��
M/M0

// Sym(u(S))
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where Sym( ) denotes the symmetric group. In this diagram the top and the right
arrow are injective and bijective, respectively. Therefore ψ is injective.

Finally, let u be injective on S′. Similarly as before, we have the commutative
diagram

W (S′)

ψ′

��

// Sym(S′)

��
M ′/M ′0 //

%%KKKKKKKKK
Sym(u(S′))

M ′/M0 ∩M ′

88qqqqqqqqqq

from which the assertion readily follows.

6.3. Proposition. Let (R,X) and (S, Y ) be reflection systems, f : (R,X) →
(S, Y ) a morphism in SV and (G, (Uα)α∈R) ∈ gcR a group with R-commutator re-
lations. Recall from Proposition 3.3(a) that G then also has S-commutator relations
with root groups U ′ξ = UR[ξ], ξ ∈ S, for R[ξ] = {α ∈ R : f(α) 6= 0, ξ

∣∣f(α)}.
Let ξ ∈ S and suppose we have α1, . . . , αn ∈ R[ξ] satisfying the following

conditions:

(i)
(((((((
± αi,±αj

)))))))
= ∅ for i 6= j,

(ii) for all β ∈ R,

〈f(β), ξ∨〉 =

n∑
i=1

〈β, α∨i 〉. (1)

Then Wα1 · · · Wαn ⊂Wξ. In particular, if all Wαi 6= ∅ then G has a Weyl element
for the root ξ.

Proof. Assumption (i) and the commutator relations imply
(((((((
U±αi , U±αj

)))))))
= {1}

for i 6= j. Hence Wα1
· · · Wαn ⊂ U ′ξU ′−ξU ′ξ. Let now wi ∈Wαi , let η ∈ S× and pick

an element β ∈ R[η]. Then

(w1 · · ·wn)Uβ(w1 · · ·wn)−1 = Usα1 ···sαn (β),

because the wi are Weyl elements for the roots αi. It therefore suffices to show that

sα1 · · · sαn(β) ∈ R[sξ(η)]. (2)

For the proof of (2), let us first observe that

〈αi, α∨j 〉 = 0 for i 6= j (3)

in view of (i) and integrality of R. We also have

αi ∈ R ∩ f−1(ξ). (4)
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Indeed, we know f(αi) = miξ for some mi ∈ N+, whence by (ii) and (3), 2mi =
〈f(αi), ξ

∨〉 =
∑n
j=1〈αi, α∨j 〉 = 2, so mi = 1. Now we prove (2):

f
(
sα1 · · · sαn(β)

)
= f

(
β −

n∑
i=1

〈β, α∨i 〉αi
)

(by (3))

= f(β)−
( n∑
i=1

〈β, α∨i 〉
)
ξ (by (4))

= f(β)− 〈f(β), ξ∨〉ξ (by (1))

= sξ
(
f(β)

)
.

Since f(β) ∈ N+η, this proves f
(
sα1
· · · sαn(β)

)
∈ N+sξ(η), whence (2).

Remark. If we replace assumption (i) by (3), the proof above also shows
Mα1

· · ·Mαn ⊂Mξ.

Example. An example of a morphism f : R → S satisfying the conditions (i)
and (ii) can be constructed as follows. Let R be the root system R = CI ⊂ X =⊕

i∈I Rεi and suppose ∼ is an equivalence relation on the index set I. Denote by
I ′ = I/∼ the set of equivalence classes [i] of elements i ∈ I, put Y =

⊕
J∈I′ RεJ

and define f : X → Y by f(εi) = ε[i], cf. [40, 12.14]. Then f is a morphism from
R = CI to S = CI′ . Let J ∈ I ′ be a finite equivalence class and let ξ = 2εJ . The
reader will easily verify that (i) and (ii) hold for the roots αi = 2εi, i ∈ J .

We have seen in 5.13 that a balanced Weyl triple is uniquely determined by
any one of its components. In Proposition 6.5 we investigate this property for not
necessarily balanced Weyl triples, and begin with a lemma.

6.4. Lemma. Let R be an integral symmetric reflection system, see 4.2, and
let
(
G, (Uα)α∈R

)
be a group with R-commutator relations and unique factorization

for nilpotent pairs. Let α ∈ R and suppose that there exists a reflective root β ∈ R
with the following properties:

(i) α and β are Q-linearly independent, and both (α, β) and (−α, β) are
nilpotent pairs,

(ii)
(((((((
α, β

)))))))
= ∅,

(iii) sβ(α) 6= α,
(iv) Wβ 6= ∅.

Let M0 be as in (5.1.3) and let z ∈ M0 ∩ (UαU−αUα), say, z = z1z2z3 with
z1, z3 ∈ Uα and z2 ∈ U−α. Then z2 = z = 1.

Proof. Since (α, β) is a nilpotent pair by (i), it follows from (ii) that(((((((
z1, Uβ

)))))))
⊂
(((((((
Uα, Uβ

)))))))
⊂ U(((((α,β))))) = {1}, (1)

and in the same way
(((((((
z3, Uβ

)))))))
= {1}. By definition of M0, z normalizes all root

subgroups. It follows that, for all b ∈ Uβ ,
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Uβ 3 zbz−1 = z1z2(z3bz
−1
3 )z−1

2 z−1
1 = z1 · z2bz

−1
2 · z−1

1 .

Conjugating this relation with z−1
1 and using (1) shows

z2bz
−1
2 = zbz−1 ∈ Uβ .

Since the pair (−α, β) is nilpotent we have(((((((
z2, b

)))))))
∈
(((((((
U−α, Uβ

)))))))
⊂ U(((((−α,β))))).

Hence
(((((((
z2, b

)))))))
∈ U(((((−α,β))))) ∩ Uβ . By unique factorization and Q-linear independence

of α and β, it follows from Corollary 2.18 that this intersection is trivial, so(((((((
z2, Uβ

)))))))
= 1. (2)

The reflection sβ is given by

sβ(α) = α− 〈α, β∨〉β,

where 0 6= 〈α, β∨〉 ∈ Z by (iii) and integrality of R. Moreover, (ii) implies 〈α, β∨〉 >
0, else sβ(α) ∈

(((((((
α, β

)))))))
. Hence we have

sβ(α) ∈
(((((((
α,−β

)))))))
. (3)

Now choose a Weyl element wβ ∈ UβU−βUβ . Since
(((((((
z2, Uβ

)))))))
= {1} and

(((((((
z2, U−β

)))))))
⊂(((((((

U−α, U−β
)))))))
⊂ U(((((−α,−β))))) = U−(((((α,β))))) = {1} by symmetry of R and (ii), it follows

that z2 is fixed under conjugation with wβ . On the other hand, wβz2w
−1
β ∈ Usβ(−α),

so by (3) and unique factorization,

z2 = wβ · z2 · w−1
β ∈ U−α ∩ Usβ(−α) ⊂ U−α ∩ U(((((−α,β))))) = {1}.

It follows that z = z1z3 ∈ Uα. Since z normalizes all root subgroups, we have(((((((
z, U−β

)))))))
⊂ U−β . But also

(((((((
z, U−β

)))))))
⊂ U−β ∩

(((((((
Uα, U−β

)))))))
⊂ U−β ∩ U(((((α,−β))))) = {1},

by unique factorization for the nilpotent pair (α,−β). We have shown above that
z1 and z3 commute with Uβ , hence so does z. It follows that z commutes with wβ ,
so we have

z = wβzw
−1
β ∈ Uα ∩ Usβ(α) ⊂ Uα ∩ U(((((α,−β))))) = {1},

by unique factorization for the nilpotent pair (α,−β).
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Remarks. (a) If β has properties (i) – (iv) for α then −β has these properties
for −α. This follows from symmetry of R and Wβ = W−β (by (5.3.3)).

(b) Suppose R satisfies the condition (F2) of 2.4. Then the Q-linear indepen-
dence of α and β implies already that (α, β) and (α,−β) are nilpotent pairs.

(c) Let R be locally finite root system without irreducible components of rank
1. Then for every α ∈ R× there exists β ∈ R× satisfying (i) – (iii).

Indeed, since R has no irreducible components of rank 1, there exists a Q-linearly
independent β not orthogonal to α. Possibly after replacing β by its negative, we
may assume 〈α, β∨〉 > 0. Since sβ(α) = α− 〈α, β∨〉β, it is clear that (iii) holds for
β. Now we distinguish two cases. First suppose that α+β /∈ R. From the structure
of the commutator set of two roots given in 4.8, it follows that

(((((((
α, β

)))))))
= ∅. Hence

β has the required property (ii) as well, and condition (i) holds by (b).
Now suppose that γ := α + β ∈ R. Then we modify β as follows. First, note

that 〈γ, β∨〉 = 3. Indeed, by standard facts [40, A.2], 〈α, β∨〉 ∈ {1, 2, 3}. Hence
〈γ, β∨〉 = 〈α + β, β∨〉 = 〈α, β∨〉 + 2 ∈ {3, 4, 5}. Assuming 〈γ, β∨〉 = 4 yields, by
loc. cit., γ = 2β which implies α = β, contradicting linear independence of α and
β. The case 〈γ, β∨〉 = 5 is impossible, again by loc. cit. Now it follows from 4.8,
case 8, that B = {−β, γ} is a root basis of a subsystem of type G2, with −β the
short root. From the well-known structure of such root systems, one sees easily
that β′ = −γ = −β − α has the required properties.

6.5. Proposition. Let G and R be as in Lemma 6.4, and let x = (x1, x2, x3)
and y = (y1, y2, y3) be Weyl triples for the root α. Suppose there exists β satisfying
the conditions (i) – (iv). If x and y have one component in common then x = y.

Remark. We have seen in Remark 6.4(c) that the assumptions on R are in
particular fulfilled when R is a locally finite root system without irreducible com-
ponents of rank 1.

Proof. (a) Let µ(x) = w = x1x2x3 and µ(y) = w̃ = y1y2y3 and suppose
x1 = y1. Then z := w−1w̃ ∈M0 by (5.3.5). On the other hand,

z = x−1
3 · (x

−1
2 y2) · y3 = z1z2z3 ∈ Uα · U−α · Uα.

Let β have the properties (i)–(iv) of Lemma 6.4. Then z = 1 = x−1
2 y2, so x2 = y2

and then x3 = y3 follows from z = 1.
(b) Now let x2 = y2. Then x[ = (x2, x3, w

−1x1w) and y[ = (y2, y3, w̃
−1y1w̃)

are two Weyl triples for −α with the same first component. By Remark (a) of 6.4,
−β satisfies the assumptions of Lemma 6.4 for −α. Hence x[ = y[ by (a), and
therefore x = y by (5.5.6).

(c) Finally, suppose x3 = y3. Then x−1 and y−1 are two Weyl triples for α
with the same first component x−1

3 = y−1
3 , so x−1 = y−1 by (a) and therefore x = y

by (5.4.2).
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6.6. Definition. A rank one group is a group G together with two distinct non-
trivial nilpotent subgroups U+ and U− which generate G and satisfy the following
conditions: for each x ∈ U+∗ := U+ \{1} there exists an element y ∈ U− such that

xyU+ = U−xy, (1)

and for each y ∈ U−∗ := U− \ {1} there exists z ∈ U+ such that

yzU− = U+yz. (2)

This is an easy reformulation of the definition in [56, I, §1]. Note that the element
y in (1) is different from 1, otherwise we would have U− = xU+x−1 = U+,
contradicting U+ 6= U−. In the same way, z 6= 1 in (2). Here are some standard
properties of rank one groups, see [56, §1, §2].

(a) The normalizer of U+ in U− is trivial. Indeed, assume n ∈ U−∗ normalizes
U+. Then by (2), there exists z ∈ U+ such that nzU− = U+nz. This implies
U− = z−1n−1U+nz = z−1U+z = U+, contradicting U+ 6= U−. In the same way,
the normalizer of U− in U+ is trivial. In particular, U+ ∩ U− = {1}.

(b) For a given x ∈ U+∗ resp. y ∈ U−∗, the elements y of (1) and z of (2) are
uniquely determined. Indeed, assume xyU+ = U−xy as well as xy′U+ = U−xy′.
Then x−1U−x = yU+y−1 = y′U+(y′)−1, so n = y−1y′ ∈ U− normalizes U+ whence
n = 1. The second case follows by symmetry. Therefore, there is a well-defined
map x 7→ x∨ from U+∗ to U−∗ such that x∨ = y whenever x and y are as in (1).
Similarly, one defines y∨ = z in the situation of (2).

(c) The maps x 7→ x∨ and y 7→ y∨ are bijective. Indeed, assume x∨ = u∨ for
x, u ∈ U+∗. Then uyU+ = U−uy and (1) imply u−1U−u = yU+y−1 = x−1U−x, so
xu−1 ∈ U+ normalizes U− and therefore u = x. To show surjectivity, let y ∈ U−∗.
Then also y−1 ∈ U−∗, so by (2) there exists z ∈ U+ such that y−1zU− = U+y−1z.
Inverting this relation yields U−z−1y = z−1yU+ and shows y = (z−1)∨. Bijectivity
of the map y 7→ y∨ follows by symmetry.

(d) Let
Ω = {U+} ∪ {xU−x−1 : x ∈ U+}, (3)

so Ω is a subset of the set Σ of all subgroups of G. It follows easily from (1) and
(2) that also

Ω = {U−} ∪ {yU+y−1 : y ∈ U−}, (4)

and the unions are disjoint because U+ 6= U−. The group G acts on Σ by conju-
gation. From (3) it is clear that Ω is stable under the action of U+, and (4) shows
that it is invariant under the action of U− as well. Since G is generated by U+ and
U−, it follows that Ω is precisely the orbit of U+ (or U−) under the action of G
on Σ. Moreover, G acts doubly transitively on Ω. Indeed, by transitivity of G on
Ω, it suffices to show that, for some ω ∈ Ω, the isotropy group Gω of ω in G acts
transitively on Ω \ {ω}. Let ω = U+. Then U+ ⊂ Gω and (3) shows that U+ is
transitive on Ω \ {ω}.
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(e) If ω, η ∈ Ω with ω ∩ η 6= {1} then ω = η. Indeed, assume to the contrary
that ω 6= η. By the double transitivity of G on Ω, there exists g ∈ G such that
ω = gU+g−1 and η = gU−g−1. Hence ω ∩ η 6= {1} implies U+ ∩ U− 6= {1},
contradicting what we proved in (a).

We now characterize rank one groups in terms of Weyl triples.

6.7. Proposition. Let G be a group generated by two nilpotent subgroups U+

and U− of class 6k and 6l, respectively. Let R = {−l, . . . ,−1, 0, 1, . . . , k} ⊂ X = k
be the reflection system defined by si(j) = −j for i ∈ R× and j ∈ R. Recall from
(2.14.1) that G has R-commutator relations with root groups U±i = C i(U±); in
particular, U±1 = U±, and denote by Ti the set of Weyl triples for the root i. Then
the following conditions are equivalent:

(i) G is a rank one group,
(ii) the first projections pr1: T±1 → U± are bijections T±1 → U±∗.

In this case, the inverse of the first projection is given by x 7→ tx := (x, x∨, x∨∨).

Remark. Since the maps x 7→ x∨ are bijective, it follows that the second and
third projections pr2: T±1 → U∓∗ and pr3: T±1 → U±∗ are bijective as well.

Proof. (i) =⇒ (ii): Suppose t = (x, y, z) ∈ T1 and put w = xyz ∈ W1.
Then x 6= 1, else wU+ = yzU+ = yU+ = U−w = U−yz = U−z which implies
U+ = U+z−1 = y−1U− = U−, contradiction. We show that y = x∨. Indeed,
wU+ = xyzU+ = xyU+ = U−w = U−xyz implies xyU+ = xyU+z−1 = U−xy,
so y = x∨ by (6.6.1). Similarly, xyzU− = wU− = U+w = U+xyz = U+yz
implies yzU− = x−1U+yz = U+yz, so z = y∨ by (6.6.2). Thus the first projection
pr1: T1 → U+∗ is injective. To see that it also surjective, let x ∈ U+∗. We claim
that (x, x∨, x∨∨) ∈ T1, i.e., that w = xx∨x∨∨ is a Weyl element for the root α = 1.
Indeed, write y = x∨ and z = y∨. Then

wU+w−1 = (xy)zU+z−1(xy)−1 = xyU+(xy)−1 = U− (by (6.6.1)), and

wU−w−1 = x(yz)U−(yz)−1x−1 = xU+x−1 (by (6.6.2)) = U+.

Thus, the relation (5.1.1) holds for α = 1 and β = ±1. Since U±i = C i(U±) for
i> 1, (5.1.1) follows for all β ∈ R, so we have w ∈ W1. The statement concerning
T−1 follows by symmetry.

(ii) =⇒ (i): We first show that U+ and U− are distinct and non-trivial subgroups
of G. Assume U+ = U− = {1}. Then U+∗ = ∅ but T1 contains the element (1, 1, 1),
contradiction. Next, assume U+ 6= {1} = U−. Since U+∗ 6= ∅ there exists a Weyl
triple t = (x, y, z) ∈ T1 with x ∈ U+∗. Let w = µ(t) be the corresponding Weyl
element. Then U− = wU+w−1 6= {1}, contradiction. In the same way, one shows
that U− 6= {1} = U+ is impossible. Now both U+ and U− are non-trivial, and it
remains to show that they are different. Assume to the contrary that U+ = U−

and let x ∈ U+∗. Then t = (x, 1, 1) and t′ = (x, x, 1) are Weyl triples in T1 having
the same first component, contradicting the fact that pr1: T1 → U+∗ is injective.
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It remains to verify (6.6.1) and (6.6.2). Let x ∈ U+∗. Since pr1: T1 → U+∗

is surjective, there exists a Weyl triple tx = (x, y, z) ∈ T1. Let w = xyz be the
corresponding Weyl element. Then

wU+ = xyzU+ = U−w = U−xyz.

Since z ∈ U+, this implies xyU+ = U−xy, so condition (6.6.1) holds. Similarly,
(6.6.2) follows from surjectivity of pr1: T−1 → U−∗.

Example. Consider GL2(A) as in 5.2 and let G be the subgroup generated by
U+ and U−. Then G is a rank one group if and only if A is a division ring. In this
case expσ(u)∨ = exp−σ(u−1) for all 0 6= u ∈ A.

Indeed, if G is a rank one group then, by the proposition, every 1 6= expσ(u),
i.e., u 6= 0, is the first component of a Weyl triple. By (5.2.5), u is invertible and
expσ(u)∨ = exp−σ(u−1). Conversely, if A is a division ring then, again by (5.2.5),
every 1 6= expσ(u) is part of a Weyl triple, so that G is a rank one group.

6.8. Proposition. Let G be a rank one group with subgroups U±. For an
element x ∈ U+∗ with associated Weyl triple tx = (x, x∨, x∨∨) as in Proposition 6.7,
the following conditions are equivalent:

(i) tx is balanced,
(ii) x∨∨ = x,
(iii) x∨xU− = U+x∨x,
(iv) (x∨)−1 = (x−1)∨,
(v) xx∨x = x∨xx∨.

We leave it to the reader to formulate the analogous result for an element of U−∗.

Proof. By 5.13, a balanced Weyl triple is symmetric in the outer components,
so we have (i) =⇒ (ii).

(ii) =⇒ (iii): Let y = x∨ for simpler notation. Since w = xyx is a Weyl element
for the root α = 1, we have wU−w−1 = U+, whence xyxU− = U+xyx. This
implies yxU− = (x−1U+x)yx = U+yx.

(iii) =⇒ (i): We verify condition (iv) of 5.13 and claim first that w′ = xyx is a
Weyl element for α = 1. Indeed,

w′U+(w′)−1 = (xy)xU+x−1(xy)−1 = (xy)U+(xy)−1 = U− (by (6.6.1)),

w′U−(w′)−1 = x(yx)U−(yx)−1x−1 = xU+x−1 (by (iii)) = U+.

Now tx and (x, y, x) are Weyl triples having the same first component, so x∨∨ = x
follows from Proposition 6.7. It remains to show that xyx = yxy. From (iii) it
follows in particular that there exists v ∈ U− such that yxv = xyx, so it suffices to
have v = y. Now

xvU+ = y−1xy(xU+) = y−1xyU+ = y−1U−xy (by (6.6.1)) = U−xy = xyU+,
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whence vU+ = yU+. This implies v−1y ∈ U+ ∩ U− = {1}.

(iii) ⇐⇒ (iv): The defining property of (x−1)∨ is

x−1(x−1)∨U+ = U−x−1(x−1)∨.

Thus y−1 = (x−1)∨ is equivalent to the equation x−1y−1U+ = U−x−1y−1, which
by inversion is equivalent to (iii).

(i) =⇒ (v): This is a consequence of 5.13(iv).

(v) =⇒ (iii): From (v) we get y−1xy = xyx−1 and this element is 6= 1 because
x 6= 1. Hence the groups xU−x−1 and y−1U+y have non-trivial intersection, so
they are equal by 6.6(e). This implies (iii).

Remark. The equivalence of (iv) and (v) is [56, Lemma (2.2)].

Following [56, I, Definition (1.1)], a rank one group is called special if every
x ∈ U+∗ satisfies the equivalent conditions of Proposition 6.8. Not all rank one
groups are special. For example, the 1-dimensional affine group group over a field
with more than four elements is not special by [56, Example (1.7)].

6.9. Examples. The following three examples show that, except for the in-
clusion Wα ⊂ Mα, there is no general relation between between the set of Weyl
elements and generalized Weyl elements.

(a) Example ∅ = Wα & Mα: The group G = GL2(C) of 5.2 also has A1-
commutator relations with respect to the root groups U±1 = exp±(2Z). One easily
sees that the set M±1 of generalized Weyl elements with respect to these root groups
coincides with the set M1 = {wu,v : u, v ∈ C×} of (5.2.1). Moreover, it follows as
in 5.2 that for wu,v to lie in U1U−1U1 one would need v = u−1 for u, v ∈ 2Z, which
is impossible. Thus the set W1 of Weyl elements is empty.

(b) Example ∅ 6= Wα = Mα: For a commutative ring k we define SL2(k) = {g ∈
GL2(k) : det(g) = 1}. Then SL2(k) has A1-commutator relations with respect to
the root groups U±1 of 5.2. Moreover, it is immediate from 5.2 that ∅ 6= W±1 = M±1

for this group.

(c) Example ∅ = Wα = Mα: Let k be a commutative ring and put G = SL3(k).
This group has R-commutator relations for R = A2 = {εi − εj : 1 6 i, j 6 3} with
root groups

Uα = Id + kEij = Uij , α = εi − εj 6= 0.

Let S = A1 = {0,±(δ1−δ2)} and define a morphism f : R→ S in SV by f(ε1) = δ1
and f(ε2) = δ2 = f(ε3). By Proposition 3.3, SL3(k) has A1-commutator relations
with root groups

U ′δ1−δ2 = U12U13 and U ′δ2−δ1 = U21U31.

But G does not have generalized Weyl elements for the root ±(δ1 − δ2), as can be
seen by a straightforward matrix calculation.
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6.10. Example: PGL2(A) of a ring. The centre of the group G = GL2(A) is
Z (G) = {z · 12 : z ∈ Z(A)×} where Z(A)× is the set of invertible elements of the
centre Z(A) of A and where 12 denotes the 2× 2 identity matrix. Let

π: G→ Ḡ := PGL2(A) := G/Z (G)

be the canonical map. Then Ḡ has A1-commutator relations with respect to the root
groups Ū±1 = π(U±1). Since π is surjective on root groups, it sends (generalized)
Weyl elements of G to (generalized) Weyl elements of Ḡ. In fact, standard matrix
calculations show

π
(
M±1(G)

)
= M±1(Ḡ) and π

(
W±1(G)

)
= W±1(Ḡ). (1)

The induced map T(π) on the Weyl triples is well-defined by 5.1, injective since
Z (GL2(A)) ∩ U± = ∅ and surjective by (1), whence

T(π): T(G)→ T(Ḡ) is a bijection.

In particular it follows from 5.14 and the example in 5.13 that all Weyl triples in
PGL2(A) are balanced.

6.11. Example: Reductive algebraic groups. Let G be a connected re-
ductive algebraic group defined over a field k as in Example (c) of 2.3. We have
seen there that G has commutator relations with respect to some finite root system
R. One knows that G has generalized Weyl elements for all α ∈ R [6, 21.2]. If k
is algebraically closed, then G also has Weyl elements [54, Lemma 8.1.4], and all
Weyl triples are balanced.

For the proof, let R be the root system of G with respect to a maximal torus T ,
and let (Uα)α∈R be the corresponding family of root groups in G. For α ∈ R× let
Gα be the centralizer of the subtorus (Kerα)0 ⊂ T in G. By [6, Thm. 13.18],
Gα is a connected reductive algebraic group of semisimple rank 1. Hence [6,
Prop. 13.13] there exists an epimorphism ϕ from Gα onto PGL2(k). One knows
that Ker(ϕ) = Z (Gα) ⊂ T . The group Gα has A1-commutator relations with root
groups U±α ⊂ Gα, which are mapped isomorphically onto root groups of PGL2(k).
By conjugacy of maximal tori and hence of the associated root groups, we can
assume that ϕ(U±α) are the root groups of Example 6.10.

Let now x ∈ Tα(G) be a Weyl triple. Then x is in particular a Weyl triple of
Gα and so, by 5.1, T(ϕ)(x) is a Weyl triple of PGL2(k), hence balanced by 6.10.
But then x is balanced by Lemma 5.14.

Similarly, ifG is a Chevalley group as in Example 2.3(d), say with root system R,
then again G has balanced Weyl triples for all α ∈ R by [55, Chapter 3, Lemma 19].

6.12. Example: Moufang polygons. LetG be the group associated in 2.3(e)
to a Moufang building. There we have seen that G has R-commutator relations
with respect to root groups Uα, α ∈ R, where R is a finite irreducible root system
of rank l>2. A theorem of Tits (see for example [63, Prop. 11.22]) says that for any
α ∈ R× and 1 6= u−α ∈ U−α there exist u′α and u′′α ∈ Uα such that u′αu−αu

′′
α ∈Wα.

In particular, Wα 6= ∅.
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6.13. Example: Lie algebras. (a) Let L be a Kac-Moody Lie algebra and
%: L→ gl(V ) be an integrable representation in category O. Let R be the real (=
reflective) roots of L augmented by 0. We have seen in 2.23 that GL(V ) is a group
with R-commutator relations for a suitable definition of root groups.

Using [46, Prop. 6.1.8] it is not hard to show that GL(V ) has Weyl elements
for every root α ∈ R×. Moreover, since UαU−αUα ⊂ GL(V ) is a homomorphic
image of SL2(k) by [46, Prop. 6.1.7], it follows from 6.11 that all Weyl triples for
(GL(V ),U ) are balanced.

(b) Let Aut(E) be the automorphism group of an extended affine Lie algebra
E. We have seen in 2.26 that Aut(E) is a group with commutator relations for R =
{0} ∪ Ran where Ran is the set of anisotropic (= reflective) roots. It is a standard
result in the theory of extended affine Lie algebras, see e.g. [1, Proposition 1.27],
that for every α ∈ Ran there exists an elementary automorphism wα satisfying
wα(Lβ) = Lsα(β) for all β ∈ R, the set of all roots of E. This easily implies that
wα is a Weyl element for α ∈ Ran. By construction in loc. cit., wα = µ(tα) for tα
a balanced Weyl triple.
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CHAPTER II

GROUPS ASSOCIATED TO JORDAN PAIRS

§7. Introduction to Jordan pairs

7.1. The elementary group of a Morita context. Let us start with some-
thing very simple, namely 2× 2 matrices(

a b
c d

)
with coefficients in a ring R. Recall that the elementary group E2(R) is the
subgroup of GL2(R) generated by the elementary matrices

e+(x) =

(
1 x
0 1

)
, e−(y) =

(
1 0
−y 1

)
(x ∈ R).

More generally, one considers the elementary group En(R) ⊂ GLn(R), generated
by all 1n + xEij , i 6= j, x ∈ R. This can also be done with (formal) 2× 2 matrices
by subdividing an n × n matrix in 4 blocks, say of size p × p, p × q, q × p, q × q,
with p+ q = n. It is easy to see that En(R) is already generated by the matrices(

1p x
0 1q

)
,

(
1p 0
−y 1q

) (
x ∈ Matpq(R), y ∈ Matqp(R)

)
.

This suggests to consider right away the following situation: Replace Matn(R) by
a (unital associative) ring A with a formal block matrix decomposition, namely the
Peirce decomposition of A with respect to an idempotent e ∈ A. Putting f = 1− e,
we have

A =

(
eAe eAf
fAe fAf

)
=

(
A B
C D

)
;

in other words: M = (A,B,C,D) is a Morita context. Then one defines the
elementary group of M by

E(M) =
〈(

1A B
0 1D

)
∪
(

1A 0
C 1D

)〉
⊂ A×.

Let us now always work over an arbitrary commutative base ring k. All objects
for which this makes sense are modules over k, rings are k-algebras, and so on. If
A and M are as above, then M+ := B and M− := C are in particular k-modules
(and M+ is an (A,D)-bimodule etc.).
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The associative algebra A gives rise to a Lie algebra A− having the same un-
derlying k-module and the Lie bracket [a, b] = ab− ba. Note that A− =

⊕
i∈Z Ai is

a Z-graded Lie algebra with the definitions

A−1 =

(
0 0
M− 0

)
, A0 =

(
A 0
0 D

)
, A1 =

(
0 M+

0 0

)
,

Ai = 0 for i /∈ {−1, 0, 1}.
A Z-graded Lie algebra concentrated in degrees −1, 0, 1 is also called 3-graded.

7.2. Generalized elementary groups. This will now be generalized as fol-
lows. Let V ± ⊂M± be k-submodules and let V be the pair (V +, V −). We consider
the subgroup

E(M, V ) =
〈(

1 V +

0 1

)
∪
(

1 0
V − 1

)〉
of E(M), called the elementary group of V . Since the V ± are in particular additive

subgroups of M±, it is clear that

(
1 V +

0 1

)
and

(
1 0
V − 1

)
are multiplicative

subgroups of A×, isomorphic to the additive groups V ± under the maps x 7→ e+(x)
and y 7→ e−(y). For example, let M be the Morita context where A is Mat2n(k),
subdivided into 4 blocks of size n × n. Then E(M) = E2n(k) is the elementary
group as in 7.1. Choosing V ± = Hn(k), the n × n symmetric matrices, yields for
E(M, V ) the elementary symplectic group ESp2n(k), and choosing V ± = Altn(k),
the alternating n × n matrices, i.e., skew-symmetric with zeros on the diagonal,
E(M, V ) is the elementary orthogonal group EO2n(k), see [17, 5.3A, 5.3B].

Returning to the general situation, we define k-submodules ei of Ai by

e−1 =

(
0 0
V − 0

)
, e1 =

(
0 V +

0 0

)
,

e0 = k ·
(

1A 0
0 0

)
+ k ·

(
0 0
0 1D

)
+ [e1, e−1],

ei = {0} for i /∈ {−1, 0, 1},
and put

e(M, V ) =
⊕
i∈Z

ei = e−1 ⊕ e0 ⊕ e1.

Let us consider the following closure conditions for V :

x, z ∈ V σ, y ∈ V −σ =⇒ xyz + zyx ∈ V σ, (1)

x ∈ V σ, y ∈ V −σ =⇒ xyx ∈ V σ. (2)

Here and in the sequel the index σ always takes values in {+,−} and −σ has
the obvious meaning. Note that (2) implies (1) by linearization, since V ± is in
particular an abelian subgroup of M±:

xyz + zyx = (x+ z)y(x+ z)− xyx− zyz.
Note also that in the examples treated so far, the conditions (1) and (2) are satisfied.
Their significance is shown by the following lemma.
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7.3. Lemma. Let V = (V +, V −) be a pair of submodules of (M+,M−).

(a) V satisfies (7.2.1) ⇐⇒ e(M, V ) is a graded subalgebra of the Lie algebra
A−.

(b) V satisfies (7.2.2) ⇐⇒ e(M, V ) is stable under conjugation by elements
of E(M, V ).

Proof. (a) “=⇒”: This is shown by direct computation. For example, the rule
[e0, e1] ⊂ e1 follows from the relations

[(
1 0
0 0

)
,

(
0 x
0 0

)]
=

(
0 x
0 0

)
= −

[(
0 0
0 1

)
,

(
0 x
0 0

)]
, (1)[(

0 x
0 0

)
,

(
0 0
−y 0

)]
=

(
−xy 0

0 yx

)
, (2)[(

xy 0
0 −yx

)
,

(
0 z
0 0

)]
=

(
0 xyz + zyx
0 0

)
. (3)

Similarly, the fact that e0 is a subalgebra of A− follows from the formula

[xy, uv] = xyuv − uvxy = (xyu+ uyx)v − u(yxv + vxy).

The details are left to the reader.

“⇐=”: We know [e1, e−1] ⊂ e0 and [e0, e1] ⊂ e1, so (2) and (3) show that (7.2.1)
holds for σ = +, and the case σ = − is proved similarly.

(b) “=⇒”: Since (7.2.2) implies (7.2.1), e(M, V ) is a 3-graded Lie algebra by
(a). It follows easily from the formula(

1 x
0 1

)(
0 0
−y 0

)(
1 −x
0 1

)
=

(
−xy xyx
−y yx

)
(4)

that e(M, V ) is stable under conjugation with

(
1 V +

0 1

)
, and a similar computa-

tion shows stability under the remaining generators of E(M, V ).

“⇐=”: From (4) we see that xyx ∈ V + and similarly one has yxy ∈ V −, for all
x ∈ V +, y ∈ V −. Hence V satisfies (7.2.2).

For any pair V satsifying (7.2.2) we call e(M, V ) the elementary Lie algebra of
(M, V ).
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7.4. Definition of Jordan pairs. We will first define “concrete” Jordan pairs
as pairs of off-diagonal submodules of a Morita context satifying (7.2.2), and then,
by abstracting from their properties, Jordan pairs in general. This follows a well-
established procedure in algebra. For example, concrete Lie algebras are submod-
ules of associative algebras closed under the commutator product [a, b] = ab − ba,
abstract Lie algebras are modules equipped with an alternating product [a, b] sat-
isfying “the same” identities (in this case, the Jacobi identity) as concrete Lie
algebras.

Let M be a Morita context as above. A Jordan subpair of M is a pair of
submodules V = (V +, V −) of (M+,M−) satisfying condition (7.2.2). Thus V
comes equipped with the following somewhat unusual algebraic structure: a pair of
maps Q+: V + × V − → V + and Q−: V − × V + → V −, given by

Q+(x; y) = xyx and Q−(y;x) = yxy. (1)

Clearly, these maps are quadratic in the first and linear in the second variable.
They can also be considered as quadratic maps Q+: V + → Homk(V −, V +) and
Q−: V − → Homk(V +, V −), by defining

Q+(x) · y = Q+(x; y), Q−(y) · x = Q−(y;x).

We now come to the definition of abstract Jordan pairs. Thus we have to find the
relevant identities holding for the quadratic-linear compositions of a Jordan subpair
V as above. This turns out to be fairly complicated. To avoid a proliferation of
parentheses and indices ±, we introduce the following conventions: for x ∈ V σ and
y ∈ V −σ (where σ ∈ {+,−}), we simply write

Qσ(x)y = Qxy (= xyx in the concrete situation).

This notation does not lead to confusion as long as care is taken to ensure that in
an expression Qxy, the elements x and y are taken in different spaces: x ∈ V + and
y ∈ V −, or vice versa.

We will also need efficient notation for the linearizations of the quadratic-linear
expression Qxy. First, we denote the linearization of Qxy with respect to x in the
direction of z by

Qx,zy = Q(x, z)y = Qx+zy −Qxy −Qzy.

Next, define trilinear compositions {−, −, −}: V σ × V −σ × V σ → V σ by

{xyz} = {zyx} = Dx,yz = Qx,zy. (2)

Again, the entries in the trilinear product {xyz} have to be taken alternatingly in
V + and V −. In the concrete situation, we have

{xyz} = xyz + zyx.
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Among all the identities satisfied by the compositions of a Jordan subpair V as
above, the following three have turned out to be the essential ones:

{x, y,Qxv} = Qx{y, x, v}, (JP1)

{Qxy, y, z} = {x,Qyx, z}, (JP2)

QQxyv = QxQyQxv, (JP3)

for all x, z ∈ V σ, y, v ∈ V −σ, and σ ∈ {+,−}. Here and in the sequel, the enumer-
ation of the identities (JPx) follows the one in [34]. In the concrete situation of a
Jordan subpair of a Morita context M, (JP1) amounts to the following computation,
valid because of the associativity of A:

{x, y,Qxv} = xy(xvx) + (xvx)yx = x(yxv + vxy)x = Qx{y, v, x}.

Similarly, (JP2) and (JP3) say concretely

{Qxy, y, z} = (xyx)yz + zy(xyx) = x(yxy)z + z(yxy)x = {x,Qyx, z},
QQxyv = (xyx)v(xyx) = x(y(xvx)y)x = QxQyQxv.

Thus, the identities (JP1) – (JP3) should not be regarded as saying that V is a non-
associative algebraic system but rather as an expression of the essential associativity
of the non-linear composition xyx.

Inspection shows that (JP1) is of degree 3 in x and (JP3) is of degree 4 in x.
In turns out that one needs all (formal) linearizations of these identities to hold as
well. (For (JP2) this is automatically the case because it is only of degree 2 in x
and y). A more concise way of expressing this fact is as follows. Suppose R ∈ k-alg
is an arbitrary commutative associative unital k-algebra, and let VR = (V +

R , V
−
R ) be

the corresponding base ring extension. Since the maps Qσ: V σ ×V −σ → V σ of (1)
are of bi-degree (2, 1), they have natural extensions to maps QσR: V σR ⊗ V

−σ
R → V σR

of R-modules, again of bi-degree (2, 1).
The formal definition of an (abstract) Jordan pair is now as follows: a Jordan

pair over the commutative ring k is a pair of k-modules V = (V +, V −) equipped
with a pair Qσ: V σ ×V −σ → V σ of maps, bi-homogeneous of bi-degree (2, 1), such
that, using the notations introduced before, the identities (JP1) – (JP3) hold in all
base ring extensions.

From the definition, it is evident that Jordan pairs admit arbitrary base change:
if V is a Jordan pair over k then VR is a Jordan pair over R, for all R ∈ k-alg.

As expected, a homomorphism h: V →W of Jordan pairs is a pair (h+, h−) of
k-linear maps hσ: V σ →Wσ satisfying hσ(Qxy) = Qhσ(x)h−σ(y) for all x ∈ V σ, y ∈
V −σ. Jordan pairs then form a category admitting arbitrary base ring extensions.
The definition of isomorphisms and automorphisms is clear. For example, any unit
µ ∈ k× gives rise to an automorphism (µIdV + , µ−1IdV −) of V .

Unlike the case of rings, it makes no sense to define the opposite of a Jordan
pair by reversing the order of the factors in a product. However, it is possible to
interchange the roles of V + and V −, so we define: the opposite of V is the Jordan
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pair V op = (V −, V +) with quadratic maps Qop
x y = Qxy for x ∈ (V op)σ = V −σ and

y ∈ (V op)−σ = V σ. If V = (B,C) is the Jordan pair of a Morita context with A
and idempotents e and f as in 7.1, then V op is the Jordan pair associated with the
opposite algebra Aop since eAopf = fAe = C = V − and fAope = eAf = V +.

The reader will not be surprised to learn that a subpair of a Jordan pair V is
a pair S = (S+, S−) of submodules of V = (V +, V −) satisfying Q(Sσ)S−σ ⊂ Sσ

for σ = ±, while an ideal of V is a pair I = (I+, I−) of submodules such that
Q(Iσ)V −σ + Q(V σ)I−σ + {V σ, V −σ, Iσ} ⊂ Iσ holds for σ = ±. If I is an ideal
of V , then V/I = (V +/I+, V −/I−) is a Jordan pair with the obvious operations.
The role of one-sided ideals in ring theory is played in Jordan theory by the inner
ideals: these are the k-submodules M ⊂ V σ satisfying QMV

−σ ⊂M .

7.5. Examples, special and exceptional Jordan pairs. A natural question
arises here: is every abstract Jordan pair a subpair of some Morita context? For
Lie algebras, a positive answer to the analogous question is, at least over fields,
furnished by the Poincaré-Birkhoff-Witt theorem. For Jordan pairs, the answer
is no: there are Jordan pairs even over the complex numbers, called exceptional,
which cannot be embedded into any Morita context. This leads to the following
definition. An (abstract) Jordan pair is called special if it can be embedded into
some Moritat context M (this may be possible in many different ways). The most
important examples of special Jordan pairs are the following.

(a) Rectangular matrices Mpq(A). Let A be an arbitrary associative (not
necessarily commutative) k-algebra and put V + = Matpq(A), V − = Matqp(A).

(b) Alternating matrices An(k). Here V + = V − = Altn(k), alternating n × n
matrices over k.

(c) Symmetric matrices Hn(k). Here V + = V − = Hn(k), symmetric n × n
matrices over k.

In all three cases, we obtain special Jordan pairs with composition Qxy = xyx
(matrix product).

Examples (b) and (c) are special cases of the following more general example.

(d) Hermitian matrices over a form ring. Let (A, J, ε, Λ) be a form ring in
the sense of [17, 5.1C]. Thus A is an associative unital k-algebra, J is an anti-
automorphism of A, ε ∈ A× is a unit of A with the property that εJ = ε−1 and
aJJ = εaε−1 for all a ∈ A, and Λ is a form parameter; i.e., a k-submodule of A
with the property that

{a− aJε : a ∈ A} ⊂ Λ ⊂ {a ∈ A : a = −aJε}

and aJλa ∈ Λ for all a ∈ A and λ ∈ Λ. We extend J to an anti-automorphism of
Matn(A) by defining xJ = (xJji) for an n×n-matrix x = (xij) with entries from A.

Now put Λ+ = ε−1Λ, Λ− = Λ and define

V + = {x ∈ Matn(A) : xJ = −εx and xii ∈ Λ+ for all i},
V − = {y ∈ Matn(A) : yJ = −yε−1 and yii ∈ Λ− for all i}.
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Then V = (V +, V −) is a Jordan subpair of the Jordan pair (Matn(A),Matn(A)) of
Example (a), hence special. Observe that V − = Λn and V + = ΛJn in the notation
of [17, 5.1C].

For example, by letting A = K be a commutative associative unital k-algebra
and taking J = Id, ε = +1 and Λ = 0, we obtain the Jordan pair An(K) =
(Altn(K),Altn(K)) of alternating matrices over K, generalizing example (b) above.

Let ε = −1. Then J is an involution of A and a form parameter Λ is a k-
submodule satisfying {a + aJ : a ∈ A} ⊂ Λ ⊂ {a ∈ A : aJ = a} and aJΛa ⊂ Λ
for all a ∈ A. In this case, Λ+ = Λ = Λ− and V + = V − consists of hermitian
n × n matrices over A with diagonal entries in Λ. The corresponding Jordan pair
is denoted Hn(A, J, Λ). For A = k, J = Id and Λ = k we get the example (c) of
symmetric matrices above. Important examples of form parameters Λ are the ones
with 1 ∈ Λ, traditionally called ample subspaces. For A = Z, J = Id, Λ = 2Z is a
form parameter which is not ample.

(e) Examples of exceptional Jordan pairs are obtained by taking in (a) and
(d) an alternative instead of an associative coordinate algebra, but only for small
sizes of the respective matrices. Thus let A be an alternative k-algebra. Then
M12(A) = (Mat12(A),Mat21(A)) is still a Jordan pair with quadratic operators

Qxy = x(yx), Qyx = (yx)y,

for x ∈ Mat12(A), y ∈ Mat21(A). If A is an octonion algebra this Jordan pair
is exceptional. Similarly, there is a natural (but not so easily described) Jordan
pair structure on the 3 × 3-hermitian matrices over an octonion algebra which is
exceptional.

(f) Let q: X → k be a quadratic form on a k-module X and denote by b(x, y) =
q(x+y)−q(x)−q(y) the polar form of q. Then V = (X,X) is a Jordan pair, called
the Jordan pair of q, with quadratic operators Qxy = b(x, y)x− q(x)y.

(g) In some of the examples above, the Jordan pairs V = (V +, V −) had the
property that V + = V − and Q+ = Q−. These types of Jordan pairs are essentially
the same as Jordan triple systems, see [34, 1.13] for details.

7.6. Identities. Jordan theory requires a large amount of sometimes non-
trivial identities, all of which are consequences of the defining identities (JP1) –
(JP3). We derive some of them here and refer to [34] for a more complete list.

Let us define bilinear maps Dσ: V σ × V −σ → V σ by

Dσ(x, y) · z = {x, y, z} (= Qx,zy).

We follow the same convention as for Q and drop the index σ at D. To save
parentheses, we will often write Dx,y instead of D(x, y).

Since the right hand side of (JP1) is symmetric in y and v so must be the left
hand side. This yields {x, y,Qxv} = {x, v,Qxy} = Qx{yxv}, or in operator form:

Dx,yQx = QxDy,x = Q(x,Qxy). (JP4)
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Linearizing (JP2) with respect to x in the direction of u resp. with respect to y in
the direction of v yields

{{xyu}, y, z} = {x,Qyu, z}+ {u,Qyx, z},
{x, {yxv}, z} = {Qxy, v, z}+ {Qxv, y, z}.

Written in operator form, this becomes

D({xyu}, y) = D(x,Qyu) +D(u,Qyx), (JP7)

D(x, {yxv}) = D(Qxy, v) +D(Qxv, y), (JP8)

Dz,yDx,y = Qx,zQy +D(z,Qyx), (JP9)

Qx,zDy,x = Q(Qxy, z) +Dz,yQx. (JP10)

Similarly, linearize (JP1) with respect to x in direction z:

{x, y, {xvz}}+ {z, y,Qxv} = Qx{{yzv}+Qx,z{yxv}.

Reading this as a function of y yields

Q(x, {xvz}) +Q(z,Qxv) = QxDv,z +Qx,zDv,x.

Replace here v by y and add the result to (JP10). After switching x and z, we
obtain

Dx,yQz +QzDy,x = Q(z, {xyz}). (JP12)

Applying this to v and reading the result as a function of x yields

D(Qzv, y) +QzQy,v = Dz,vDz,y. (JP13)

Linearizing (JP13) with respect to z in the direction u and applying the result to
an element x shows

{{zvu}, y, x}+ {z, {yxv}, u} = {z, v, {uyx}}+ {u, v, {zyx}}.

By reading this as a function of z, we see

[Dx,y, Du,v] = D({xyu}, v)−D(u, {yxv}). (JP15)

The identities derived so far are all consequences of (JP1) and (JP2). The following
two identities require (JP3). For the proof, we refer to [34, 2.10].

Q({xyz}) +Q(Qxy,Qzy) = QxQyQz +QzQyQx +Qx,zQyQx,z, (JP20)

Q({xyz}) +Q(QxQyz, z) = QxQyQz +QzQyQx +Dx,yQzDy,x. (JP21)

For some applications it is useful to know that under suitable conditions on V
the identity (JP15) implies (JP1)–(JP3). For example, let 2 be a unit in k, let
V = (V +, V −) be a pair of k-modules without 3-torsion and suppose V σ × V −σ ×
V σ → V σ, (x, y, z) → {xyz} =: D(x, y)z are trilinear maps which are symmetric
in the outer variables and satisfy (JP15). Then V becomes a Jordan pair with
respect to Q(x)y = 1

2{xyx}. This can be used in the following situation. Let
L = L−1 ⊕ L0 ⊕ L1 be a 3-graded Lie algebra over a ring k in which 6 is a unit.
Then V = (L1, L−1) becomes a Jordan pair with respect to {xyz} = −[[x, y], z].
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7.7. Derivations and inner derivations. Derivations of Jordan pairs are
defined by the usual mechanism: a pair ∆ = (∆+, ∆−) of linear maps ∆σ ∈
End(V σ) is called a derivation if Id + ε∆ is an automorphism of the base ring
extension V ⊗k(ε) where k(ε) is the algebra of dual numbers. A simple computation
shows that this is equivalent to the conditions

∆σ(Qzv) = {∆σ(z), v, z}+Qz∆−σ(v), (1)

for all z ∈ V σ, v ∈ V −σ. With component-wise operations, the derivations of V
form a Lie subalgebra Der(V ) of End(V +)× End(V −).

Identity (JP12) says precisely that, for any pair (x, y) ∈ V + × V −, the pair

δ(x, y) := (Dx,y,−Dy,x) (2)

is a derivation of V . We call this the inner derivation determined by (x, y). From
(JP15) it follows that the k-linear span

Inder(V ) = span{δ(x, y) : (x, y) ∈ V } (3)

is a subalgebra of Der(V ), called the inner derivation algebra of V . In fact, by
linearizing (1), one sees easily that Inder(V ) is an ideal in Der(V ).

In any Jordan pair, we have the derivation

ζV = (IdV + ,−IdV −) (4)

which obviously belongs to the centre of Der(V ).

7.8. The Bergmann operators. For a pair (x, y) ∈ V σ × V −σ we define
B(x, y) = Bx,y ∈ EndV σ by

Bx,y = IdV σ −Dx,y +QxQy.

The name “Bergmann” comes from the fact that Jordan pairs over the complex
numbers equipped with positive hermitian involutions are in correspondence with
bounded symmetric domains. Then the determinant of Bx,y is related to the
Bergmann kernel of the domain, see [35].

The Bergmann operators play a fundamental role in the theory of Jordan pairs.
Of the many identities satisfied by them, we list only the following two and refer
to [34, 2.11] for more.

B(x, y)2 = B(2x−Qxy, y) = B(x, 2y −Qyx), (JP25)

Q(Bx,yz) = Bx,yQzBy,x. (JP26)

In our standard example of the Jordan pair (B,C) of a Morita context M =
(A,B,C,D) we have

B(x, y)z = (1− xy)z(1− yx). (1)
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7.9. The quasi-inverse. A pair (x, y) ∈ V is called quasi-invertible if the
Bergmann operator B(x, y) is invertible (as an endomorphism of V +). Then, the
quasi-inverse of (x, y) is defined as the element

xy := B(x, y)−1(x−Qxy) (1)

of V +. Quasi-invertibility and the quasi-inverse of (y, x) ∈ V op are then well-
defined, too.

Example. Let V = (B,C) be the Jordan pair of a Morita context M =
(A,B,C,D) as in 7.1. Then the following conditions are equivalent:

(a) (x, y) is quasi-invertible in V ,
(b) 1A − xy ∈ A is a unit in A,
(c) 1D − yx is a unit in D,
(d) (y, x) is quasi-invertible in V op.

In this case, the quasi-inverses are given by

xy = (1− xy)−1x = x(1− yx)−1, yx = (1− yx)−1y = y(1− xy)−1.

A proof is given in [38, 4.5]. In particular, if M is the Morita context of 2 × 2
matrices over a ring R, then the pair (x, 1R) is quasi-invertible if and only if x
is quasi-invertible in the sense of ring theory [50, p. 180]. The group-theoretic
significance of quasi-invertibility will be seen in (9.2.5) and (9.2.6).

We return to an arbitrary Jordan pair. Proofs of the following facts can be found
in [34, §3] and [38, Theorem 4.10], keeping in mind that B(x, y) = F (x, y, 0, 0) in
the notation of [38]. The following conditions on a pair (x, y) ∈ V are equivalent.

(i) (x, y) is quasi-invertible,
(ii) B(x, y) is surjective,

(iii) 2x−Qxy belongs to the image of B(x, y),
(iv) x belongs to the image of B(x, y).

In ring theory, invertibility in a ring and the opposite ring are equivalent. The
analogue for Jordan pairs is the “symmetry principle”:

(x, y) is quasi-invertible in V ⇐⇒ (y, x) is quasi-invertible in V op, (2)

and in this case, the quasi-inverses are related by the formula

xy = x+Qxy
x. (3)

Let h: V → W be a homomorphism of Jordan pairs. Condition (iii) (or
(iv)) together with (1) immediately imply: If (x, y) is quasi-invertible in V then
(h+(x), h−(y)) is quasi-invertible in W , and then

h+

(
xy
)

= h+(x)h−(y), h−(yx) = h−(y)h+(x). (4)
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An important property of the quasi-inverse, and the reason for the exponential
notation xy is the following. Suppose (x, y) is quasi-invertible and let v ∈ V −.
Then (x, y + v) is quasi-invertible if and only if (xy, v) is quasi-invertible, in which
case

(xy)v = xy+v, (y + v)x = yx +B(y, x)−1 · v(xy). (5)

We refer to [34, 3.7] for the proof.
Of the numerous identities relating the quasi-inverse and the Bergmann opera-

tors, we list the following and refer to [34, 3.6] for more. Here it is always assumed
that (x, y) is quasi-invertible, while z ∈ V + and v ∈ V − can be arbitrary.

B(x, y)B(xy, v) = B(x, y + v), (JP33)

B(z, yx)B(x, y) = B(x+ z, y), (JP34)

B(x, y)−1 = B(xy,−y) = B(−x, yx). (JP35)

7.10. Structural transformations. Besides homomorphisms, the following
types of maps between Jordan pairs play an important role. Let V = (V +, V −)
and W = (W+,W−) be Jordan pairs. A structural transformation from V to W
is a pair of k-linear maps f : V + → W+ and g: W− → V − (note the change of
direction!) such that

Qf(x) = f Qx g and Qg(y) = g Qy f,

for all x ∈ V + and y ∈W−. We write this as

(f, g): V 
W

and note that
(f, g): V 
W ⇐⇒ (g, f): W op → V op.

The basic examples are given by the quadratic operators and the Bergmann oper-
ators: for all x ∈ V +, y ∈ V −, we have the structural transformations

(Qx, Qx): V op 
 V, (Qy, Qy): V 
 V op, (Bx,y, By,x): V 
 V.

This is just another way of expressing the identities (JP3) and (JP26). We also
note that for any scalar λ ∈ k, the homotheties f(x) = λx and g(y) = λy define a
structural transformation from V to itself.

An invertible structural transformation is essentially an isomorphism; more
precisely, the following conditions are equivalent:

(i) (f, g): V 
W is a structural transformation with f and g invertible,
(ii) (f, g−1): V →W is an isomorphism.

The proof is immediate from the definitions.
In particular, let (x, y) be quasi-invertible. Then both Bx,y and By,x are invert-

ible, so
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β(x, y) := (Bx,y, B
−1
y,x)

is an automorphism of V , called the inner automorphism determined by (x, y).
The inner automorphism group Inn(V ) is the subgroup of Aut(V ) generated by all
β(x, y), (x, y) ∈ V quasi-invertible.

Structural transformations relate well to the quasi-inverse. Let (f, g): V 
 W
be structural and let x ∈ V + and y ∈W−. Then (f(x), y) is quasi-invertible in W
if and only if (x, g(y)) is quasi-invertible in V , in which case the formula

f(x)y = f
(
xg(y)

)
(1)

holds, known as the “shifting principle”.
Indeed, by linearizing the defining equations of a structural transformation, one

obtains the formulas

D(f(x), y) ◦ f = f ◦D(x, g(y)), D(g(y), x) = g ◦D(y, f(x))

and then also

B(f(x), y) ◦ f = f ◦B(x, g(y)), B(g(y), x) = g ◦B(y, f(x)),

for all x ∈ V +, y ∈ V −. Now suppose (x, g(y)) quasi-invertible. Then there exists
z ∈ V + such that x = B(x, g(y))z. Applying f to this equation and using the
above formula yields f(x) = B(f(x), y)f(z), so (f(x), y) is quasi-invertible.

Next, let (f(x), y) be quasi-invertible. By the symmetry principle, (y, f(x))
is quasi-invertible, and since (g, f) is structural, it follows that (g(y), x) is quasi-
invertible, which implies (x, g(y)) quasi-invertible, again by symmetry. Finally, we
have B(x, g(y))xg(y) = x − Qxg(y). Applying f to this (1) and using the above
formulas shows

f
(
B(x, g(y))xg(y)

)
= B(f(x), y)f

(
xg(y)

)
= f(x)− fQxg(y) = f(x)−Qf(x)y.

By applying B(f(x), y)−1 to this we obtain (1).

7.11. Inverses and Jordan algebras. An element u ∈ V σ is called invertible
if Qu: V −σ → V σ is invertible (as a linear map). In general, a Jordan pair will
not contain any invertible elements. For example, the Jordan pair of p × q and
q× matrices over a commutative ring (as in Example (a) of 7.5) contains invertible
elements if and only if p = q. If u ∈ V σ is invertible then the inverse of u is defined
by

u−1 = Q−1
u u ∈ V −σ

Recall here that Qu maps V −σ to V σ, so Q−1
u : V σ → V −σ. It follows easily from

(JP3) that
Q−1
u = Qu−1 and (u−1)−1 = u (1)

for an invertible u ∈ V σ. For the example M11(A) = (A,A) of an associative unital
k-algebra A, an element is invertible in M11(A) if and only if it is invertible in
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A. Also, care has to be taken to distinguish between x−1A , the quasi-inverse of
(x,−1A), from the inverse x−1.

We say V is a Jordan division pair if V 6= (0, 0), and if every non-zero element
of V σ is invertible. For example, the Jordan pair M11(A) = (A,A) of an associative
k-algebra is a Jordan division pair if and only if A is a division algebra.

Jordan pairs containing invertible elements are in the following relation with
(unital quadratic) Jordan algebras. First, we recall from [24] that a unital quadratic
Jordan algebra over k is a k-module J equipped with a distinguished element 1J ∈ J
and a quadratic-linear map U : J → Endk(J) such that the identities

U1J = IdJ , (QJ1)

UUxy = UxUyUx, (QJ2)

UxVy,x = Vx,yUx (QJ3)

hold in all scalar extensions. Here Vx,y ∈ Endk(J) is defined (similarly to Dx,y for
Jordan pairs) by

Vx,yz = Ux+zy − Uxy − Uzy.

Now any Jordan algebra J determines a Jordan pair (V +, V −) = (J, J) with
quadratic operators Qx = Ux (x ∈ V ±). Indeed, (JP1) is (QJ3), (JP3) is (QJ2),
and (JP2) is the identity QJ21 of [24, p. 3.10]. Conversely, let V be a Jordan
pair containing an invertible element v ∈ V −. Then the k-module V + becomes
a unital quadratic Jordan algebra J by defining 1J = v−1 and Ux = QxQv for
all x ∈ V +, and the Jordan pair (J, J) is isomorphic to V under the pair of
maps (IdV + , Qv): (J, J) → (V +, V −). The Jordan algebras arising from choosing
a different invertible element in V − are not necessarily isomorphic, but they are
isotopic. For details, we refer to [34, §1].

There is the following relation between inverse and quasi-inverse. Suppose
u ∈ V + (resp. v ∈ V −) is an invertible element of the Jordan pair V , and let
y ∈ V − (resp. x ∈ V +) be arbitrary. Then

B(u, y) = QuQ(u−1 − y), B(x, v) = Q(x− v−1)Qv. (2)

Moreover, (u, y) is quasi-invertible if and only if u−1 − y is invertible in V −, and
then the formula

uy = (u−1 − y)−1 (3)

holds, see [34, 2.12, 3.13] for a proof.

7.12. Idempotents and Peirce decomposition. Let V be a Jordan pair.
A pair e = (e+, e−) ∈ V + × V − is called an idempotent if

Qe+e− = e+ and Qe−e+ = e−.

Clearly, idempotents are mapped to idempotents under Jordan pair homomor-
phisms.
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If V is a special Jordan pair embedded in a Morita context as in 7.4 then
this means e+ = e+e−e+ and e− = e−e+e−, so e+ and e− are in particular
von Neumann regular. Also, e+e− and e−e+ are ring idempotents in A and D,
respectively.

An idempotent e of V gives rise to the important Peirce decomposition as follows.
For σ ∈ {+,−} and i ∈ {0, 1, 2} define endomorphisms Eσi of V σ by

Eσ2 = QeσQe−σ , Eσ1 = D(eσ, e−σ)− 2Eσ2 , Eσ0 = B(eσ, e−σ).

Then the Eσi are orthogonal projections whose sum is the identity on V σ, so that

V σ = V σ2 ⊕ V σ1 ⊕ V σ0 where V σi = Im(Eσi ).

This is the Peirce decomposition of V with respect to e, the Vi = V σi (e) are called
the Peirce spaces of V with respect to e. We often put Vi = (V +

i , V
−
i ) and write

the Peirce decomposition as V = V2 ⊕ V1 ⊕ V0, to be read component-wise. The
Peirce spaces can also be described by

V σ2 = {x ∈ V σ : QeσQe−σx = x} = ImQeσ ,

V σ1 = {x ∈ V σ : {eσ, e−σ, x} = x},
V σ0 = {x ∈ V σ : Qe−σx = {eσ, e−σ, x} = 0}.

In particular, for x ∈ V σ2 we have x = Eσ2 (x) and 0 = Eσ1 (x) = {eσ, e−σ, x}−Eσ2 (x),
whence {eσ, e−σ, x} = 2x.

Idempotents and Peirce decompositions behave well with respect to homomor-
phisms: suppose h: V → W is a homomorphism of Jordan pairs. Then the image
h(e) = (h+(e+), h−(e−)) of an idempotent of V is an idempotent of W , and it
follows from the definition of the Peirce spaces that h

(
V σi (e)

)
⊂ Wσ

i

(
h(e)

)
. For

h ∈ Aut(V ) we obviously have h(Pe) = Ph(e).
The Peirce spaces satisfy the following multiplication rules, where we put V σj = 0

for j /∈ {0, 1, 2} [34, Theorem 5.4]:

Q(V σi )V −σj ⊂ V σ2i−j ,
{V σi , V −σj , V σl } ⊂ V σi−j+l,
{V σ2 , V −σ0 , V σ} = {V σ0 , V −σ2 , V σ} = 0.

Let in particular u ∈ V + be invertible with inverse u−1 ∈ V −. Then e = (u, u−1) is
an idempotent with the property that V = V2(e). Conversely, if e is an idempotent
with V = V2(e) then e+ is invertible with inverse e−. In general, the +-component
e+ of an idempotent e is always invertible in the subpair V2(e), and its inverse is
e−.

Two idempotents c and d are called orthogonal if c ∈ V0(d). This is equivalent
to d ∈ V0(c), and then c+ d (defined component-wise) is again an idempotent.

Suppose e1, . . . , en is a finite family of pairwise orthogonal idempotents, and
define V σij ⊂ V σ for i, j ∈ {0, 1, . . . , n} by
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Vii = V2(ei), Vij = Vji = V1(ei) ∩ V1(ej) (i 6= j),

V00 =

n⋂
i=1

V0(ei), Vi0 = V0i = V1(ei) ∩
⋂
j 6=i

V0(ej).

Then V decomposes as

V =
⊕

06i6j6n

Vij . (1)

To formulate the multiplication rules which these spaces satisfy, we consider triples
of unordered pairs of indices (ij, lm, pq) taken from {0, 1, . . . , n}, and furthermore
identify this with (pq, lm, ij). We call such a triple connected if it is of the form
(ij, jm,mp). Then the following composition rules hold:

{V σij , V −σjm , V σmp} ⊂ V σip.

If (ij, jl, ij) is connected and ij = lm then

Q(V σij )V
−σ
jl ⊂ V

σ
im.

If (ij, lm, pq) resp. (ij, lm, ij) is not connected then

{V σij , V −σlm , V σpq} = Q(V σij )V
−σ
lm = 0.

Proofs can be found in [34, Theorem 5.14].
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§8. Peirce gradings

8.1. Peirce gradings. In this section we let V = (V +, V −) be a Jordan pair
over a unital associative and commutative ring k, see Section 7. A Z-grading of V
[36] consists of decompositions V σ =

⊕
i∈Z V

σ
i (σ ∈ {+,−}) into direct sums of

k-submodules satisfying the multiplication rules

{V σi V −σj V σl } ⊂ V σi−j+l, Q(V σi )V −σj ⊂ V σ2i−j . (1)

The convention for numbering the V −i differs from that of [36] by a sign. A
homomorphism of Z-graded Jordan pairs is a Jordan pair homomorphism h: V →
V ′ satisfying h(Vi) ⊂ V ′i . From (1) it follows immediately that Vi = (V +

i , V
−
i ) is a

subpair of V , for all i ∈ Z.
A Peirce grading P of V is a Z-grading with V σi = 0 for i /∈ {0, 1, 2} and the

additional orthogonality relations

D(V σ2 , V
−σ
0 ) = D(V σ0 , V

−σ
2 ) = 0. (2)

To simplify notation, we will usually write P : V = V2 ⊕ V1 ⊕ V0 or simply
V = V2 ⊕ V1 ⊕ V0 to specify a Peirce grading of V . If V = V2 ⊕ V1 ⊕ V0 is
already a Z-grading, formula (2) is equivalent to

{V σ2 V −σ0 V σ0 } = {V σ0 V −σ2 V σ2 } = 0. (3)

Also, (1) implies that {V σi V
−σ
j V σl } = 0 if i − j + l /∈ {0, 1, 2}. The following

properties are immediate from the definition.

V σ0 and V σ2 are inner ideals, (4)

V ∗i = V2−i is again a Peirce grading, (5)

B(V σi , V
−σ
j ) = Id for |i− j| = 2. (6)

We call the Peirce grading of (5) the reverse of P.
The automorphism group Aut(V ) acts on the set of Peirce gradings of V in the

obvious way: if f ∈ Aut(V ) and P : V = V2⊕ V1⊕ V0 is a Peirce grading, then the
Peirce grading f(P) : V = Ṽ2 ⊕ Ṽ1 ⊕ Ṽ0 is given by Ṽi = f(Vi).

8.2. Examples. For any Jordan pair V and a fixed i ∈ {0, 1, 2} there is always
the trivial Peirce grading Vi = V and Vj = 0 for j 6= i. A Peirce grading with
V1 = 0 is the same as a direct sum decomposition V = V0 ⊕ V2 of V into ideals. If
PU : U = U2 ⊕ U1 ⊕ U0 and PW : W = W2 ⊕W1 ⊕W0 are Peirce graded Jordan
pairs then the direct sum V = U ⊕W has a Peirce grading PU ⊕ PW given by
Vi = Ui ⊕Wi.
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The main examples of Peirce gradings are the ones defined by an idempotent e
of V . Indeed, from 7.12 it is clear that the the Peirce spaces Vi = Vi(e) define a
Peirce grading of V , denoted by Pe.

However, there are important examples of Peirce gradings which are not induced
by an idempotent, for instance the decomposition of the Jordan pair Mp,q(R) of
p× q and q× p matrices over a ring R given by the following block decomposition:

V + =

s︷ ︸︸ ︷ q−s︷ ︸︸ ︷
r

{
V +

2 V +
1

p−r

{
V +

1 V +
0

, V − =

r︷ ︸︸ ︷ p−r︷ ︸︸ ︷
s

{
V −2 V −1

q−s

{
V −1 V −0

. (1)

Suppose R is unital. If r = s then this Peirce grading is idempotent. Conversely, if
it comes from an idempotent, say e = (e+, e−), then e+: Rs → Rr is an R-module
isomorphism with inverse e−. Thus r = s if R is a ring with invariant basis number,
for instance, if R is commutative, local, or has stable rank 1, see e.g. [33, §1.5].

In 8.5 we will establish some multiplication rules for Jordan pairs with a Peirce
grading. These formulas hold in fact in a more general setting, which we will review
now.

8.3. Kernels and annihilators. We recall from [39] and [34, 10.3] the defi-
nition of the kernel KerX and annihilator AnnX of a subset X ⊂ V σ:

KerX = {v ∈ V −σ : QXv = QXQvX = 0},
AnnX = {v ∈ V −σ : D(v,X) = D(X, v) = QvX = QXv

= QvQX = QXQv = 0}.

Despite the nonlinear character of the defining conditions, kernel and annihilator
are in fact k-submodules, and clearly AnnX ⊂ KerX. If X = {x} consists of
a single element, we simply write Kerx and Annx. Note the symmetry in the
definition of the annihilator:

v ∈ Annx ⇐⇒ x ∈ Ann v. (1)

For example, if P is a Peirce grading of V then it follows easily from the multipli-
cation rules that

V −σ2−i ⊕ V
−σ
1 ⊂ KerV σi , V −σ2−i ⊂ AnnV σi (2)

for i ∈ {0, 2}. If P = Pe is idempotent then, by [34, 10.3], V −0 = AnnV +
2 =

Ann e+. Also, by definition of the extreme radical Extr(V ) in 9.8,

Ann(V −) = {z ∈ Extr(V +) : QV −z = 0}. (3)
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8.4. Proposition. (a) Let (x, v) ∈ V σ × V −σ and v ∈ Kerx, i.e., Qxv =
QxQvx = 0. Then (x, v) is quasi-invertible with quasi-inverses xv = x, vx =
v + Qvx. For all y ∈ V − we have {yxv} ∈ Kerx and v ∈ KerQxy, and the
following “shift formulas” hold:

D(Qxy, v) = D(x, {yxv}), D(v,Qxy) = D({yxv}, x), (1)

Q(Qxy)Qv = QxQ{yxv}, QvQ(Qxy) = Q{yxv}Qx, (2)

B(Qxy, v) = B(x, {yxv}), B(v,Qxy) = B({yxv}, x). (3)

(b) Let (x, v) ∈ V σ × V −σ and v ∈ Annx. Then (x, v) is quasi-invertible with
quasi-inverses xv = x and vx = v, and B(x, v) and B(v, x) is the identity. For all
(z, y) ∈ V σ × V −σ we have {yzv} ∈ Kerx and {xyz} ∈ Ker v, and the following
shift formulas hold:

D(x, {yzv}) = D({xyz}, v), D({yzv}, x) = D(v, {xyz}), (4)

QxQ{yzv} = QxQyQzQv = Q{xyz}Qv, (5)

QvQ{xyz} = QvQzQyQx = Q{yzv}Qx, (6)

B(x, {yzv}) = B({xyz}, v), B({yzv}, x) = B(v, {xyz}), (7)

Q{xyz}v = QxQyQzv. (8)

Proof. (a) We have Bx,vx = x−2Qxv+QxQvx = x, so (x, v) is quasi-invertible
by (iv) of 7.9 with quasi-inverse xv = x. By the symmetry principle (7.9.2) and
formula (7.9.3), we have (v, x) quasi-invertible, with vx = v +Qvx

v = v +Qvx.
From the fundamental formula (JP3) it follows easily that v ∈ KerQxy. Before

showing {yxv} ∈ Kerx, we establish the shift formulas (1)–(3). By (JP8) we have
D(Qxy, v) = −D(Qxv, y) + D(x, {yxv}) = D(x, {yxv}), proving the first formula
of (1), and the second one follows similarly from (JP7). Furthermore, the identities
(JP20), (JP3), (JP13) and (JP2) yield

QxQ{yxv} = QxQyQxQv +QxQvQxQy +QxQy,vQxQy,v −QxQ(Qvx,Qyx)

= Q(Qxy)Qv +Q(Qxv)Qy +Q(Qxy,Qxv)Qy,v −QxQ(Qvx,Qyx)

= Q(Qxy)Qv −Qx
[
D(x,Qvx)D(x,Qyx) +D(QxQvx,Qyx)

]
= Q(Qxy)Qv −QxD(Qxv, v)D(x,Qyx) = Q(Qxy)Qv.

This establishes the first formula of (2). The second formula is proved by a similar
computation. Finally, (3) is immediate from (1) and (2) and the definition of the
B-operators.

We can now show {yxv} ∈ Kerx. Indeed, Qx{yxv} = D(x, y)Qxv = 0 by (JP1),
and QxQ{yxv} = QxQy

(
QxQvx

)
= 0 by (2).

(b) From the definition of the annihilator it is clear that B(x, v) and B(v, x) are
the identity and that xv = x and vx = v. As before, we first prove the shift formulas.
Since D(x, v) = 0, (JP15) yields 0 =

[
Dz,y, Dx,v

]
= D({zyx}, v)−D(x, {yzv}), and

and similarly one shows the second formula of (4). Next, by (JP20),
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QxQ{yzv} = QxQyQzQv +QxQvQzQy +QxQy,vQzQy,v −QxQ(Qyz,Qvz).

The second term on the right vanishes by definition of the annihilator. Furthermore,
QxQy,v = D(x, v)D(x, y) − D(Qxv, y) = 0 by (JP13), and again by (JP13) and
(JP7), for any t ∈ V −σ,

QxQ(t, Qvz) = D(x,Qvz)D(x, t)−D(QxQvz, t)

=
(
−D(z,Qvx) +D({xvz}, v)

)
D(x, t) = 0.

This establishes the first formula of (5). The second one is proved similarly,
and (6) follows from annihilator symmetry (8.3.1). As before, (7) is a conse-
quence of the definition of the B-operators. For (8) we obtain from ((JP20)) that
QxQyQzv = Q{xyz}v + {Qxy, v,Qzy}. But, by ((JP8)), D(Qxy, v) = −D(Qv, y) +
D(x, {vxy}) = 0. Finally we show {yzv} ∈ Kerx which, again by annihi-
lator symmetry, also establishes {xyz} ∈ Ker v by switching the roles of x, z
and v, y. We have Qx{yzv} = −D(z, y)Qxv + {xv{zyx}} = 0 by (JP12), and
QxQ{yzv}x = QxQyQzQvx = 0 by (5).

8.5. Corollary. Let V = V0⊕V1⊕V2 be a Peirce grading of V and let subscripts
indicate membership in the corresponding Peirce space.

(a) If i 6= j then (xi, yj) is quasi-invertible with quasi-inverses

x
yj
i = xi +Q(xi)yj , yxij = yj +Q(yj)xi, (1)

where either Q(xi)yj = 0 or Q(yj)xi = 0, and

β(xi, yj)
−1 = β(xi,−yj). (2)

(b) For i ∈ {0, 2} we have the formulas

D(y, xi)D(v1, xi) = Q(y, v1)Q(xi), (3)

D(xi, v1)D(xi, z) = Q(xi)Q(v1, z), (4)

D(Qxiy, v1) = D(xi, {yxiv1}), D(v1, Qxiy) = D({v1xiy}, xi), (5)

D(xi, {yzv2−i}) = D({xiyz}, v2−i), (6)

D({v2−izy}, xi) = D(v2−i, {zyxi}), (7)

Q(Qxiy)Qv1 = QxiQ{yxiv1}, Qv1Q(Qxiy) = Q{v1xiy}Qxi , (8)

QxiQ{yzv2−i} = QxiQyQzQv2−i = Q{xiyz}Qv2−i , (9)

Qv2−iQ{zyxi} = Qv2−iQzQyQxi = Q{v2−iyz}Qxi , (10)

Q{xiyz}v2−i = QxiQyQzv2−i (11)

B(Qxiy, v1) = B(xi, {yxiv1}), B(v1, Qxiy) = B({v1xiy}, xi), (12)

B(xi, {yzv2−i}) = B({xiyz}, v2−i), (13)

B({v2−iyz}, xi) = B(v2−i, {zyxi}), (14)

β(xi, v2−i) = Id, (15)

β(Q(xi)y, v1) = β(xi, {yxiv1}), (16)

β({xiyz}, v2−i) = β(xi, {yzv2−i}). (17)
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Proof. (a) We do the case i = 2 and j = 1 and leave the other cases, which follow
a similar pattern, to the reader. By (8.3.2), y1 ∈ Ker(x2), so by Proposition 8.4(a),
we have xy12 = x2 and yx2

1 = y1 +Q(y1)x2. By (JP35), β(x2, y1)−1 = β(xy12 ,−y1) =
β(x2,−y1) which proves (2).

(b) Since Q(xi)v1 = 0, (3) follows from (JP9). Similarly, (4) follows from
(JP13) while (15) is immediate from v2−i ∈ Annxi. The remaining formulas
are all special cases of 8.4 since, by (8.3.2), V −2−i ⊕ V

−
1 ⊂ KerV +

i ⊂ Kerxi and

V −2−i ⊂ AnnV +
i ⊂ Annxi.

8.6. Corollary. Let P = Pe be the Peirce grading determined by an idempo-
tent e of V . Then in addition to the formulas of 8.5(b), we have the following
relations, where j = 0, 1 and again subscripts indicate membership in the corre-
sponding Peirce space:

D(eσ, y2) = D(Qeσy2, e
−σ), D(x2, e

−σ) = D(eσ, Qe−σx2), (1)

D(xj+1, yj) = D(eσ, {e−σxj+1yj}), D(uj , vj+1) = D({ujvj+1e
σ}, e−σ), (2)

Qxj+1
Qyj = QeσQ{e−σxj+1yj}, QujQvj+1

= Q{ujvj+1eσ}Qe−σ , (3)

B(xj+1, yj) = B(eσ, {e−σxj+1yj}), B(uj , vj+1) = B({ujvj+1e
σ}, e−σ), (4)

β(xj+1, yj) = β(eσ, {e−σxj+1yj}), β(uj , vj+1) = β({ujvj+1e
σ}, e−σ). (5)

Proof. For (1) we use the identity (JP8) and get

D(Qeσy2, e
−σ) = −D(Qeσe

−σ, y2) +D(eσ, {e−σeσy2})
= −D(eσ, y2) + 2D(eσ, y2) = D(eσ, y2).

The second formula can be proved similarly using (JP7). The remaining formulas
now all follow from 8.5(b). We will prove the first formula in (2) and leave the
proof of the rest, which follows a similar pattern, as an exercise. For j = 1 we have,
using (8.5.5) and (1), D(x2, y1) = D(QeσQe−σx2, y1) = D(eσ, {Qe−σx2, e

σ, y1}) =
D(eσ, {e−σ, x2, y1}. For j = 1 we use (8.5.6) and get D(x1, y0) = D({eσe−σx1}, y0)
= D(eσ, {e−σx1y0}).

In the following lemma we use the abbreviations {ViVjVk} =
(
{V +

i V
−
j V

+
k },

{V −i V
+
j V

−
k }
)

and QViVj =
(
Q(V +

i )V −j , Q(V −i )V +
j

)
.

8.7. Lemma. Let P : V = V2 ⊕ V1 ⊕ V0 be a Peirce grading of a Jordan pair
V .

(a) The ideal of V generated by V2 ⊕ V1 is〈
V2 ⊕ V1

〉
= V2 ⊕ V1 ⊕

(
{V1V1V0}+QV1

V2 +QV0
QV1

V2

)
. (1)

(b) If P = Pe is an idempotent Peirce grading then the ideals generated by V2,
V1 ⊕ V0 and V1 are
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〈
V2

〉
= V2 ⊕ V1 ⊕QV1

V2, (2)〈
V1 ⊕ V0

〉
=
(
{V2 V1 V1}+QV1

V0 +QV2
QV1

V0

)
⊕ V1 ⊕ V0 (3)

=
(
{e V1 V1}+QV1

V0 +QeQV1
V0

)
⊕ V1 ⊕ V0, (4)〈

V1

〉
=
(
{V2 V1 V1}+QV1

V0 +QV2
QV1

V0

)
⊕ V1 ⊕ QV1

V2 (5)

=
(
{e V1 V1}+QV1

V0 +QeQV1
V0

)
⊕ V1 ⊕ QV1

V2. (6)

In particular, if 2 ∈ k× then〈
V1

〉
=
(
{V2 V1 V1}+ {V1 V0 V1}

)
⊕ V1 ⊕ {V1 V2 V1}. (7)

Remark. (2) and (6) are due to K. McCrimmon [44, 2.13], with a different
proof. He also shows:

if V is simple then so are V2(e) and V0(e). (8)

This is still true for arbitrary Peirce gradings by [3]. On the other hand, V1(e)
need not be simple if V is, see (8.2.1) where V1 is the direct product Mr,q−s(R)×
Mp−r,s(R). For other properties of V that are inherited by V2 and V0 see [39, 4.1]
and [3, 4].

Proof. (a) Let I denote the right hand side of (1). Since obviously I ⊂
〈
V2⊕V1

〉
,

it remains to show

(i) {V V I} ⊂ I, (ii) Q(V )I ⊂ I, (iii) Q(I)V ⊂ I.

Let Ii be the Peirce components of I. Obviously only the 0-component in (i) – (iii)
is of interest.

(i) It suffices to check that {Vi Vj Il} ⊂ I0 for i− j + l = 0. Because of (8.1.2),
this leads to the condition {Vi Vi+1 V1} ⊂ I0, which holds by definition of I0, and
to {Vi Vi I0} ⊂ I0. Concerning this last condition, we have {Vi Vi {V1 V1 V0}} ⊂
{V1 V1 V0} by (JP15) and {Vi Vi Vj} ⊂ Vj . Moreover, {Vi, Vi, QV1

V2} ⊂ QV1
V2 by

(JP12). A second application of (JP12) then shows

{Vi, Vi, QV0
QV1

V2} ⊂ QV0
{Vi, Vi, QV1

V2}+ {{Vi Vi V0}, QV1
V2, V0}

⊂ QV0
QV1

V2.

(ii) It is immediate that {Vi Ij Vl} ⊂ I0 for i − j + l = 0, i 6= l. Hence it is
enough to prove QViIj ⊂ I0 for 2i = j. The case QV1V2 ⊂ I0 holds by definition,
so only QV0

I0 ⊂ I0 has to be checked, and this follows from

QV0{V1 V1 V0} = QV0Q(V1, V0) ⊂ D(V0, V1)D(V0, V0)V1

⊂ {V0 V1 V1} (by (8.5.3)),

QV0QV0QV1V2 = Q({V0 V0 V1})V2 ⊂ QV1V2 (by (8.4.8)).
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(iii) In view of (i) it suffices to verify QIiVj ⊂ I0 for 2i = j, and since QV1
V2 ⊂ I0

by definition, only the case i = 0 = j is of interest. Again by (i) it is sufficient to
check the following cases:

Q(QV1V2)V0 ⊂ QV1QV2QV1V0 ⊂ QV1V2,

Q(QV0QV1V2)V0 ⊂ QV0QV1QV2V ⊂ QV0QV1V2,

which follow from the fundamental formula (JP3), and

Q({V0 V1 V1})V0 ⊂ Q
(
QV0

QV1
V1, V1

)
V0 +QV1

QV1
QV0

V0

+QV0QV1QV1V0 + {V0, V1, QV1{V1 V0 V0}}
⊂ 0 +QV1V2 +QV0QV1V2 + {V0 V1 V1}

which follows from (JP21) and QV0
V1 = 0.

(b) Now assume Vi = Vi(e). Then {eσe−σx1} = x1 for all x1 ∈ V σ1 , whence the
ideals generated by V2 and V2 ⊕ V1 agree. Also,

{V1 V1 V0} = {V0 V1 V1} = {{V0 V1 e} e V1} ⊂ QV1
V2 (by (8.6.2)),

QV0
QV1

V2 = Q({V0 V1 e})QeV2 ⊂ QV1
V2 (by (8.6.3))

which proves (2). For the proof of (3) we apply (1) to the reverse Peirce grading
V ∗i = V2−i(e) and obtain that(

{V1V1V2}+QV1
V0 +QV2

QV1
V0

)
⊕ V1 ⊕ V0

is an ideal, whence the ideal generated by V1⊕V0. However, {V1 V1 V2} = {e V1 V1}
by (8.6.2) and QV2

QV1
V0 = QeQ({e V2 V1})V0 ⊂ QeQV1

V0 by (8.6.3). This proves
(4). The ideal (5) is the intersection of the ideals (2) and (3). Formula (6) follows
in the same way.

Finally, suppose 2 ∈ k×. Then QV1V0 = {V1V0V1} and

QV2QV1V0 = QV2QV1,V1V0 ⊂ {V2V1{V2V1V0}}( by (8.5.4)) ⊂ {V2V1V1}

by the Peirce rules. This proves (7).

8.8. Definition. Let P be a Peirce grading of V . The group of P-elementary
automorphisms of V is the subgroup

EA(V,P) =
〈
β(V +

i , V
−
j ) : i 6= j

〉
of the inner automorphism group Inn(V ). If P = Pe is an idempotent Peirce
grading, we write EA(V, e) := EA(V,Pe). It follows from (8.6.5) and (8.5.15) that

EA(V, e) =
〈
β(e+, V

−
1 ) ∪ β(V +

1 , e−)
〉
.
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§9. The projective elementary group of a Jordan pair

9.1. The Tits-Kantor-Koecher algebra. Let V be a Jordan pair over k.
We use the notation introduced in 7.7 and note that L0(V ) = k · ζV + Inder(V ) is
a subalgebra of Der(V ) and ζV is central in L0(V ) (indeed, in all of Der(V )).

In this book, the Tits-Kantor-Koecher algebra of V (or TKK-algebra for short)
is the Lie algebra

L(V ) = V + ⊕ L0(V )⊕ V − (1)

with multiplication

[V σ, V σ] = 0, [D, z] = Dσ(z), [x, y] = −δ(x, y)

for D = (D+, D−) ∈ L0(V ), z ∈ V ± and (x, y) ∈ V . This definition of a TKK-
algebra is different from the one used elsewhere, e.g. in [15, 47] (see 9.11 for a
comparison), but it is the most appropriate for our purposes.

We put g0 = L0(V ), g1 = V +, g−1 = V − and gi = {0} for i 6= 0,±1. Then

L(V ) = g =
⊕
i∈Z

gi = g−1 ⊕ g0 ⊕ g1

is a Z-graded Lie algebra: [gi, gj ] ⊂ gi+j for all i, j ∈ Z which is 3-graded because
gi = 0 if i /∈ {±1, 0}. Moreover, ad ζV is the grading derivation, i.e., [ζV , X] = iX
for X ∈ gi. From the definition, it follows easily that the derived algebra of L(V )
is

DL(V ) = [L(V ),L(V )] = V + ⊕ Inder(V )⊕ V −. (2)

We also note that L(V ) has trivial centre. Indeed, if Z = x⊕∆⊕y ∈ V +⊕g0⊕V −
is central in g then 0 = [ζ, Z] = x ⊕ 0 ⊕ (−y) shows Z = ∆ ∈ g0, and since the
adjoint representation of g0 on g1 ⊕ g−1 is faithful, it follows that Z = 0.

The TKK-algebra depends functorially on V but only with respect to surjec-
tive homomorphisms. In more detail, let f = (f+, f−): V → W be a surjective
homomorphism of Jordan pairs. Then it follows easily from the definitions that f
induces a surjective homomorphism of Lie algebras

f0: L0(V )→ L0(W ), δ(x, y) 7→ δ(f+(x), f−(y)), ζV 7→ ζW

mapping Inder(V ) onto Inder(W ), and a surjective homomorphism of the TKK-
algebras

L(f): L(V )→ L(W ), x⊕D ⊕ y 7→ f+(x)⊕ f0(D)⊕ f−(y),

which maps DL(V ) onto DL(W ).
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9.2. The projective elementary group. For any x ∈ V σ (σ ∈ {±}) one
defines an endomorphism expσ(x) of g = L(V ) (as a k-module) by

expσ(x)z = z, expσ(x)∆ = ∆+ [x,∆], expσ(x)y = y + [x, y] +Qxy, (1)

where z ∈ V σ, ∆ ∈ g0 and y ∈ V −σ. With respect to the decomposition g =
V +⊕g0⊕V −, the maps expσ are given by formal 3×3 matrices of homomorphisms.
In this identification we have, for (x, y) ∈ V ,

exp+(x) =

 1 adx Qx
0 1 adx
0 0 1

 , exp−(y) =

 1 0 0
ad y 1 0
Qy ad y 1

 . (1′)

It is known [38, 1.2] that expσ(z) is an automorphism of g and in fact

expσ: V σ → Aut(g) is an injective homomorphism. (2)

We put U± := Im(exp±) and define the projective elementary group of V as the
subgroup

G = PE(V )

of Aut(g) generated by U+ ∪U−. Since the groups U± are abelian, it is clear that
PE(V ) has A1-commutator relations with root groups U±1 = U±.

Example. Let V = Mpq(k) = (Matpq(k),Matqp(k)) be the rectangular matrix
pair of 7.5 and let M = (Matpp(k),Matpq(k),Matqp(k),Matqq(k)) be the associated
Morita context. It is immediate (see the calculation in 10.16) that the elementary
group E(M, V ) = E(M) of 7.1 and 7.2 coincides with the elementary matrix group
En(k), n = p + q. For simplicity assume from now on that k is a field. Then
En(k) = SLn(k) by [17, 2.2.6]. Since PE(V ) = E(M)/Z (E(M)) by [38, Cor. 2.12],
we have

PE(Mpq(k)) ∼= SLn(k)/Z (SLn(k)), (n = p+ q, k a field).

We note that PE(Mpq(k)) ∼= PGLn(k) = GLn(k)/Z (GLn(k)) if k contains all nth
roots of unity, e.g. if k is algebraically closed.

From the functoriality of L(V ) it follows that PE(V ) depends functorially on
V with respect to surjective homomorphisms as well, cf. [38, 1.6]. The diagonal
subgroup of G is the group

PE0(V ) = G ∩Aut(V )

where Aut(V ) is diagonally embedded in Aut(g), operating on g0 by conjugation
and on V ± in the natural way. We often write

H = PE0(V )
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for short. The subgroups U± are normalized by H; more precisely, for h =
(h+, h−) ∈ H and x ∈ V σ,

h expσ(x)h−1 = expσ(hσ(x)). (3)

The big cell of G is defined as

Ω = U−HU+.

By [38, 1.5],

the map V − ×H × V + → Ω, (y, h, x) 7→ exp−(y)h exp+(x), is bijective. (4)

By [38, 1.4],

(x, y) is quasi-invertible ⇐⇒ exp+(x) exp−(y) ∈ Ω (5)

⇐⇒ exp−(y) exp+(x) ∈ Ω−1,

and then
exp+(x) exp−(y) = exp−(yx)β(x, y) exp+(xy). (6)

In particular, this shows that the inner automorphism group Inn(V ) defined in 7.10
is contained in H.

9.3. Higher order quasi-inverses. Faulkner [16] has extended (9.2.6) to
arbitrary products. For x = (x1, . . . , x2n) ∈ V n = (V + × V −)n define

exp(x) = exp+(x1) · · · exp−(x2n) ∈ G.

Observe that every element of G is of the form exp(x) for a suitable x and n,
since one can always add trivial factors exp±(0). We put xop = (x2n, . . . , x1)
and exp(xop) = exp−(x2n) · · · exp+(x1) ∈ G. Now define generalized Bergmann
operators B(x) ∈ End(V +) and B(xop) ∈ End(V −) by

B(x)u ≡ exp(x)(u) mod g0 ⊕ V −, B(xop)v ≡ exp(xop)(v) mod g0 ⊕ V +, (1)

for (u, v) ∈ V . A recursive definition of these operators is given in [16]. The
equivalence with our definition follows from [16, Lemma 2]. The recursive definition
implies in particular

B(x) = B(−x), B(xop) = B(−xop). (2)

For example,

B(x, y, z, v) = B(x, y)B(z, v)−D(x, v) +QxQv +QxQ(y, v)

+Q(x, z)Qv −QxD(y, z)Qv. (3)
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Generalizing from the case n = 1, we call a 2n-tuple x quasi-invertible if both B(x)
and B(xop) are invertible, and then define β(x) = (B(x), B(xop)−1). Note that
(B(x), B(xop)): V 
 V is a structural transformation for all x [16, Cor. 4] and
that therefore β(x) ∈ Aut(V ) for a quasi-invertible x. By [16, Theorem 1], x is
quasi-invertible if and only if exp(x) ∈ Ω, and in this case

exp(x) = exp−
(
q(xop)

)
β(x) exp+

(
q(x)

)
. (4)

The unique elements q(x) ∈ V + and q(xop) ∈ V − appearing in this formula are
called the quasi-inverses of x and xop.

As an application of (4) we show that the diagonal subgroup H is in fact the
subgroup of G consisting of “diagonal” maps with respect to the decomposition
g = g1 ⊕ g0 ⊕ g−1:

{β(x) : x quasi-invertible} = H = {f ∈ G : f(gi) ⊂ gi for i = ±1, 0}. (5)

Indeed, by (4) we have {β(x) : x quasi-invertible} ⊂ H, while H ⊂ {f ∈ G :
f(gi) ⊂ gi for i = ±1, 0} is immediate from the definition of H. Conversely, let
g = diag(a1, a2, a3) ∈ G be diagonal and write g = exp(x) for a suitable x ∈ V n.
It follows from (1) and (2) that B(x) = a1 and B(xop) = B(−xop) = a−1

3 are
invertible. Thus g = exp−(y)h exp+(x) ∈ Ω and therefore h = β(x) by (4). We
have

g(ζ) = a2ζ = exp−(y)h(−x⊕ ζ) = exp−(y)(−h+(x)⊕ ζ)

= −h+(x)⊕ (ζ + [h+(x), y])⊕ (y −Qyh+(x)) ∈ g0.

This shows h+(x) = 0 = y and hence also x = 0, proving g = h = β(x).

9.4. The Weyl element defined by an idempotent. Let e = (e+, e−) be
an idempotent of V . We introduce the notations

θe =
(

exp+(e+), exp−(e−), exp+(e+)
)
∈ U+ × U− × U+,

ωe = µ(θe) = exp+(e+) exp−(e−) exp+(e+) ∈ G = PE(V ).

As noted in 9.2, G has A1-commutator relations with root groups U1 = U+ and
U−1 = U−, so θe ∈ Θ1(G) in the notation of (5.1.4). If e is an invertible idempotent,
cf. 7.12, then we will see in 9.7 that ωe a Weyl element and hence θe is a Weyl triple
for G. In general, this is not the case. However, it will be shown later that the
Peirce decomposition of V with respect to e gives rise to C2-commutator relations
for G (for suitably defined root groups) and then ωe is indeed a Weyl element for
one of the long roots. By abuse of language, we will therefore often refer to ωe
(resp. θe) as the Weyl element (resp. Weyl triple) defined by e.

Let V op = (V −, V +) be the opposite Jordan pair, see 7.4. We define eop =
(e−, e+) and correspondingly

θeop =
(

exp−(e−), exp+(e+), exp−(e−)
)
∈ U− × U+ × U−,

ωeop = exp−(e−) exp+(e+) exp−(e−).

Note that −e is an idempotent having the same Peirce spaces as e. Since expσ is a
group homomorphism it is evident that

ω−1
e = ω−e.
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9.5. Lemma. Let e be an idempotent of V and let V = V2 ⊕ V1 ⊕ V0 be the
associated Peirce decomposition as in 7.12. Then the action of ωe on the generators
of L(V ) is given by

ωe · x =


x if x ∈ V σ0
[eσ, x] if x ∈ V σ1
Qe−σ · x if x ∈ V σ2
x+ [e+, e−] if x = ζ

 . (1)

Proof. For the first formula, let x = xσ0 ∈ V σ0 . Then expσ(eσ) · x = x holds by
definition of exp in (9.2.1), while

exp−σ(e−σ) · xσ0 = x0 + [e−σ, x0] +Qe−σ · x0 = x0

follows from the multiplication rules for the Peirce spaces, see 7.12. Next, let
x1 ∈ V +

1 . Then exp−(e−) · x1 = x1 + [e−, x1] since Qe−x1 = 0 by the Peirce
relations, hence

ωe · x1 = exp+(e+) exp−(e−) · x1 = exp+(e+) ·
(
x1 + [e−, x1]

)
= x1 + [e−, x1] + [e+, [e−, x1]].

Here [e+, [e−, x1]] = −{e+, e−, x1} = −x1, so we have shown the case σ = + of the
second formula of (1). For the case σ = −, let y1 ∈ V −1 . Then similarly

ωe · y1 = exp+(e+) exp−(e−) ·
(
y1 + [e+, y1]

)
= exp+(e+) ·

(
y1 + [e+, y1] + [e−, [e+, y1]]

)
= exp+(e+) · [e+, y1]

= [e+, y1] + [e+, [e+, y1]] = [e+, y1],

since [e+, [e+, y1]] = {e+, y1, e+} = 2Qe+y1 = 0.
Now let x2 ∈ V +

2 . Then

ωe · x2 = exp+(e+) exp−(e−) · x2 = exp+(e+) ·
(
x2 + [e−, x2] +Qe−x2

)
= x2 +

(
[e−, x2] + [e+, [e−, x2]]

)
+
(
Qe−x2 + [e+, Qe−x2] +Qe+Qe−x2

)
.

The map Qe− : V +
2 → V −2 is bijective with inverse Qe+ : V −2 → V +

2 . Moreover,
[e+, [e−, x2]] = −{e+, e−, x2} = −2x2 and [Qe−x2, e+] = δ(e+, Qe−x2) = δ(x2, e−)
(by (8.6.1)). Hence ωe ·x2 = Qe−x2, proving the case σ = + of the third formula of
(1). The case σ = − can be done by a similar computation, or by arguing as follows:
recall that ω−e = ω−1

e and that e and −e have the same Peirce spaces, while Qx is
a quadratic function of x. Hence ω−e ·x2 = ω−1

e ·x2 = Qe−x2 or x2 = ωe ·Qe−x2 for
all x2 ∈ V +

2 . By putting y2 = Qe−x2 we see that ωe · y2 = Qe+y2 for all y2 ∈ V −2 .
It remains to compute the action of ωe on ζ. Since ad ζ is the grading derivation,

we have [e+, ζ] = −e+ and [e−, ζ] = e−. Hence

ωe · ζ = exp+(e+) exp−(e−) ·
(
ζ + [e+, ζ]

)
= exp+(e+) ·

(
(ζ + [e−, ζ])− e+ + [e−,−e+] +Qe−(−e+)

)
= exp+(e+) ·

(
− e+ + (ζ + [e+, e−])

)
= −e+ + ζ − e+ + [e+, e−] + [e+, [e+, e−]] = ζ + [e+, e−],

because Qe−e+ = e− and [e+, [e+, e−]] = 2Qe+e− = 2e+.
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9.6. Proposition. Let e ∈ V be an idempotent. Then for all ui ∈ V +
i (e),

vi ∈ V −i (e) and z0 ∈ V σ0 (e), the element ωe satisfies the conjugation formulas

ωe exp+(u2)ω−1
e = exp−

(
Qe−u2

)
, (1)

ωe exp−(v2)ω−1
e = exp+

(
Qe+v2

)
, (2)

ωe exp+(u1)ω−1
e = β(u1,−e−), (3)

ωe exp−(v1)ω−1
e = β(e+, v1), (4)

ωe expσ(z0)ωe = expσ(z0). (5)

Moreover, θe is balanced and hence ωe satisfies

ωe = ωeop . (6)

Proof. (Cf. [15, Theorem 7]) It is easier to prove (1) in the form

ωe exp+(u2) = exp−(Qe−u2)ωe, (7)

for all u2 ∈ V +
2 . Since both sides of (7) are automorphisms of the TKK-algebra

g = L(V ) which is generated by V + = g1, V − = g−1 and ζ, it suffices to show
that both sides agree when applied to the generators x = xσi ∈ V σi (e) (σ ∈ {+,−},
i ∈ {0, 1, 2}) and x = ζ. This amounts to seven cases. We do the case x = x−2 =
y2 ∈ V −2 , using (9.5.1), and leave the others to the reader:(

ωe exp+(u2)
)
· y2 = ωe ·

(
y2 + [u2, y2] +Qu2y2

)
= Qe+y2 + [ωe(u2), ωe(y2)] +Qe−Qu2

y2.

In the second step, we have used the fact that ωe is an automorphism of g. On the
other hand,(

exp−(Qe−u2)ωe
)
· y2 = exp−(Qe−u2) ·Qe+y2

= Qe+y2 + [Qe−u2, Qe+y2] +Q(Qe−u2)Qe+y2.

The second terms agree by (9.5.1), and so do the third terms by the Jordan identity
(JP3) and the fact that Qe−Qe+ is the identity on V −2 (e): Q(Qe−u2)Qe+y2 =
Qe−Qu2Qe−Qe+y2 = Qe−Qu2y2.

The relation (2) is now a consequence of the one just proved and the following
observation. Since (1) holds for all idempotents, it does so in particular for −e.
Now ω−e = ω−1

e and Q is a quadratic map, so putting u2 = Qe+v2, we have
ω−1
e exp+(Qe+v2)ωe = exp−(Q−e−Qe+v2) = exp−(v2) which is (2).

The remaining formulas (3) – (5) can be proved in the same way.

Finally, put v2 = e− in (2) and use Qe+e− = e+. Then ωe exp−(e−)ω−1
e =

exp+(e+), so θe is balanced by 5.13(ii), which implies (6) by 5.13(iv).
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9.7. Corollary. Let V be a Jordan pair with invertible elements, and let e be an
invertible idempotent of V , i.e., e+ ∈ V + is invertible with inverse e−. Consider
G = PE(V ) as a group with A1-commutator relations as in 9.2. Then θe is a
balanced Weyl triple and ωe is a Weyl element for the root α = 1 in the sense of
5.1.

Proof. We have V = V2(e), so Qe− : V + → V − is an isomorphism with inverse
Qe+ : V − → V +. Now the corollary follows from (9.6.1) and (9.6.2).

Note, however, that in general not all Weyl elements of PE(V ) are of this type;
see Proposition 10.11 for details.

9.8. The extreme radical. Recall from [34, 4.21] that the extreme radical
Extr(V ) = (E+, E−) of a Jordan pair V is

Eσ = {z ∈ V σ : Qz = D(z, V −σ) = D(V −σ, z) = 0} (σ ∈ {+,−}). (1)

The extreme radical is a characteristic ideal. From the formulas for the Bergmann
operators and the quasi-inverse in 7.8 and 7.9 it is easy to see that E+ can also be
characterized by

z ∈ E+ ⇐⇒ zy = z and β(z, y) = Id for all y ∈ V −, (2)

and similarly for E−. We note

if V has invertible elements then 2z = 0 for any z ∈ Eσ. (3)

Indeed, suppose u ∈ V + is invertible. By 7.12, e = (u, u−1) is an idempotent with
V = V2(e), so that D(z, V −σ) = 0 implies 0 = {ze−σeσ} = 2z.

We now describe the normalizer of U± and the centre Z (G) of the projective
elementary group G = PE(V ) in terms of the extreme radical.

9.9. Theorem. (a) Let N be the intersection of the normalizers of U+ and
U−. Then N is given by

N = exp−(E−) ·H · exp+(E+), (1)

where E = (E+, E−) is the extreme radical. In particular, the normalizer of U−σ

in Uσ is expσ(Eσ).

(b) An element g belongs to Z (G) if and only if g = exp−(v)h exp+(z) where
(z, v) ∈ Extr(V ) and h = (h+, h−) ∈ H is determined by v and z by means of the
formulas

h+(x) = x+Qxv, h−(y) = y +Qyz (x ∈ V +, y ∈ V −). (2)

In particular,
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Z (G) ∩H = {1}, (3)

Extr(V ) = 0 =⇒ Z (G) = 1. (4)

Proof. (a) We first show that N ⊂ Ω. Let g ∈ N and t ∈ V −. Since g
normalizes U−, there exists t′ ∈ V − such that g exp−(t) = exp−(t′)g. With respect
to the decomposition g = V + ⊕ g0 ⊕ V −, the automorphism g is given by a formal
3× 3-matrix of homomorphisms, say g = (aij). With this identification, we obtain

g exp−(t)(ζ) = g(ζ + t) = (a12ζ + a13t)⊕ · · ·
= exp−(t′)g(ζ) = exp−(t′)(a12ζ ⊕ a22ζ ⊕ a32ζ) = a12ζ ⊕ · · · .

Hence a13 = 0. An analogous computation yields, for s ∈ V +,

g exp−(t)(s) = g(s⊕ [t, s]⊕Qts) = (a11s+ a12[t, s])⊕ · · ·
= exp−(t′)g(s) = exp−(t′)(a11s⊕ · · ·) = a11s⊕ · · · .

Since (s, t) ∈ V is arbitrary, this implies a12(Inder(V )) = 0. Note that every
automorphism of g leaves the derived algebra L′(V ) (cf. (9.1.2)) invariant. For
g−1 = (bij), the g0-component of g−1(s) is b21s which, by the remark just made,
belongs to Inder(V ). It follows that a12b21 = 0. The relation gg−1 = 1 now yields
IdV + =

∑
i a1ibi1 = a11b11. By switching the roles of g and g−1 we also have

IdV + = b11a11. Hence, a11 is invertible with inverse b11. Similarly, one shows that
b33 is invertible with inverse a33 by using the fact that g normalizes U+. Letting
g = exp(x) for a suitable x ∈ V n we have a11 = B(x), b33 = B(−xop) = B(xop)
in view of (9.3.1) and (9.3.2). Thus, x is quasi-invertible so (9.3.4) shows g ∈ Ω =
U−HU+.

By (9.2.3), H normalizes Uσ and also expσ(Eσ) since the extreme radical is
stable under all automorphisms of V . Hence it remains to show that an element
g = exp−(v) exp+(z) belongs to N if and only if (z, v) ∈ Extr(V ). Now for any
y ∈ V −,

g exp−(y) g−1 = exp−(v) exp+(z) exp−(y) exp+(−z) exp−(−v) ∈ U−

if and only if exp+(z) exp−(y) ∈ U− exp+(z), which, by (9.2.5) and (9.2.6), is
equivalent to (z, y) being quasi-invertible, z = zy and β(z, y) = 1. By (9.8.2), this
is equivalent to z ∈ E+. Similarly, g normalizes U+ if and only if v ∈ E−.

(b) By (a), any g ∈ Z (G) has the form g = exp−(v)h exp+(z) with (z, v) ∈
Extr(V ). Furthermore, for all x ∈ V +,

g exp+(x) g−1 = exp−(v)h exp+(x)h−1 exp−(−v)

= exp−(v) exp+(h+(x)) exp−(−v) = exp+(x)

if and only if exp+(x) exp−(v) = exp−(v) exp+(h+(x)). By (9.2.6) and v ∈ E−

this is equivalent to h+(x) = xv = x − Qxv = x + Qxv, since 2Qxv = {xvx} = 0.
By symmetry, z ∈ E+ and h−(y) = y + Qyz for all y ∈ V −. This proves that g
belongs to the centre if and only if it has the stated form, and (3) and (4) are then
immediate consequences.
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9.10. Remarks. (i) Let g = exp−(v)h exp+(z) ∈ Z (G). In view of (9.9.2),
the maps h±− IdV ± are both linear and quadratic over k. Therefore, they must be
zero (and hence h = 1) provided V satisfies the condition

(λ− λ2)u = 0 for all λ ∈ k =⇒ u = 0, (1)

for any u ∈ V σ. In particular, this is the case if V has no 2-torsion or if there exists
an element λ ∈ k× with 1− λ ∈ k×, for example, when k is a field with at least 3
elements. On the other hand, we will give an example where h 6= 1 in 9.17.

(ii) The converse of (9.9.4) is not true, as the following example shows. Let
k be a field of characteristic 2 and let V + = V − = J where J is the quadratic
(non-special) three-dimensional Jordan algebra k1 ⊕ ka ⊕ ka3 [22, I.5, Example
(3)]. Then E± = ka3 but Z (G) = 1. Indeed, since Q1 = Id, the centre of G will
be trivial as soon as we know that the H-component of an arbitrary g ∈ Z (G) is
trivial. If k has more than two elements this is clear by (1) above. If k has two
elements we argue as follows.

In an arbitrary Jordan algebra, the powers of an element b satisfy {bmbnbp}
= 2bm+n+p [22, p. I.23]. Hence {V, V, V } = Inder(V ) = 0 because of 2k = 0. Since
V is finite-dimensional it is in particular stable [38], so that H is generated by all
β(x) where x = (x1, x2, x3, x4) ∈ V × V is quasi-invertible. Now a straightforward

computation shows that B(x) has the form

 1 0 0
0 1 0
0 ∗ 1

 with respect to the basis

1, a, a3. On the other hand, if g = exp−(v)h exp+(z) ∈ Z (G) and v 6= 0 then v = a3

and therefore, by (9.9.1) and a lengthy calculation, h+ has the form

 1 0 0
0 1 0
1 0 1

.

This contradiction shows that v = 0, and in the same way z = 0, proving g = 1.
We will see another example in 9.17.

9.11. Faulkner’s projective elementary group. J. Faulkner [15, Sect. 3]
introduced a group which is closely related to the projective elementary group
PE(V ) as defined in 9.2. We describe here the precise relation between these two
groups.

Faulkner’s Tits-Kantor-Koecher algebra is LFau(V ) = V +⊕Inder(V )⊕V − with
the multiplication

[V σ, V σ] = 0, [D, z] = Dσ(z), [x, y] = δ(x, y),

for D = (D+, D−) ∈ Inder(V ), z ∈ V σ and (x, y) ∈ V . Observe that LFau(V )
differs from our Tits-Kantor-Koecher-algebra L(V ) of 9.1 in two respects: the 0-
part of L(V ) is enlarged by the degree derivation ζV , and for (x, y) ∈ V we have
[x, y] = −δ(x, y) in g. One easily verifies that

f : LFau(V )→ DL(V ), x+ ⊕D ⊕ y− 7→ x+ ⊕D ⊕ (−y−)
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is an isomorphism.
Faulkner’s group, which we denote FPE(V ), is the subgroup of Aut(LFau(V ))

generated by automorphisms xF (V σ) as defined in [15]. For (u, v) ∈ V one checks
that

f ◦ xF (u) ◦ f−1 = exp+(u)
∣∣DL(V ), f ◦ xF (v) ◦ f−1 = exp−(−v)

∣∣DL(V ).

Hence, if we let %: PE(V )→ PE(V )
∣∣DL(V ) be the restriction map, we have

FPE(V ) ∼= %
(
PE(V )

) ∼= PE(V )/Ker(%). (1)

9.12. Proposition. Let Extr(V ) = (E+, E−) be the extreme radical of V . The
map

ϕ : E+ × E− → Ker(%), (u, v) 7→ exp−(v) exp+(u)

is a group isomorphism. In particular, Ker(%) is abelian, and if Extr(V ) = 0 then
PE(V ) ∼= FPE(V ).

Proof. It is an easy consequence of the definition of the extreme radical and the
properties of exp± that the map ϕ is an injective group homomorphism into Ker(%),
namely, (9.2.6), (9.8.2) and (9.2.4). Any g ∈ PE(V ) is of the form g = exp(x) for
a suitable x ∈ V n. If g ∈ Ker(%) we have B(x) = Id where B is the generalized
Bergmann operator introduced in 9.3. Similarly, g−1 ∈ Ker(%) implies B(xop) = Id.
Hence, by (9.3.4), x is quasi-invertible and g ∈ Ω, so that g = exp−(v)h exp+(u)
for (u, v) ∈ V and h ∈ H. Now for all x ∈ V +,

x = g(x) = exp−(v)h+(x) = h+(x)⊕ [v, h+(x)]⊕Qvh+(x)

whence h+ = Id and Qv = D(v, V +) = D(V +, v) = 0, i.e., v ∈ E−. Similarly,
h− = Id and u ∈ E+, proving that ϕ is surjective.

9.13. The projective elementary group of a subpair. Consider a subpair
V ′ = (V ′+, V ′−) of V , let g = L(V ) and define g′ ⊂ g by

g′ = V ′+ ⊕
(
k · ζV + [V ′+, V ′−]

)
⊕ V ′− = g′1 ⊕ g′0 ⊕ g′−1.

Since V ′ is a subpair, it follows from the definition of the multiplication in g that
[[V ′+, V ′−], V ′σ] ⊂ V ′σ and this implies that g′ is a (graded) subalgebra of g.
Let L(V ′) = V ′+ ⊕

(
k · ζV ′ + Inder(V ′)

)
⊕ V ′− be the TKK-algebra of V ′. It is

easily verified that there is a surjective homomorphism ϕ: g′ → L(V ′) of graded
Lie algebras given by ϕ(x′) = x′ for x′ ∈ g′±1, and on g′0 by restricting an element
D′ ∈ g′0 to V ′±. Thus we have an exact sequence of Lie algebras

0 // k // g′
ϕ // L(V ′) // 0
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with Ker(ϕ) = k ⊂ g′0, and X ∈ k if and only if [X,V ′±] = 0. This implies [k, g′] = 0,
so k is central in g′.

Now consider the projective elementary groups PE(V ) of V and PE(V ′) of V ′

with exponential maps exp± and exp′±, respectively. Let G′ ⊂ PE(V ) be the
subgroup generated by exp+(V ′+) ∪ exp−(V ′−). We claim that there is a unique
surjective group homomorphism

ψ: G′ → PE(V ′) (1)

with the property that
ψ
(

expσ(x′)
)

= exp′σ(x′), (2)

for all x′ ∈ V ′σ and σ ∈ {+,−}.
Indeed, it follows from (9.2.1) and the fact that V ′ is a subpair of V that expσ(x′)

stabilizes g′. Moreover, for X ∈ k we have expσ(x′) ·X = X + [x′, X] (by (9.2.1))
= X, so the generators of G′ fix the elements of k. Hence G′ stabilizes g′ and k,
showing there is a well-defined homomorphism ψ: G′ → GL

(
L(V ′)

)
. By applying

ϕ to (9.2.1) (with x and y now belonging to V ′) we see that the diagrams

g′

ϕ

��

expσ(x′) // g′

ϕ

��
L(V ′)

exp′σ(x′)

// L(V ′)

are commutative. Hence (2) holds so ψ maps G′ onto PE(V ′), as asserted.

9.14. The projective elementary group of a direct sum. Let V =⊕
i∈I Vi be a direct sum of ideals. Our aim is to show that there is a natural

isomorphism

PE(V ) ∼=
⊕
i∈I

PE(Vi) (1)

where the direct sum symbol on the right denotes the restricted direct product
of groups, i.e., the subgroup of the full direct product whose elements have only
finitely many components different from 1.

Clearly, the inner derivation algebra of V commutes with direct sums:

Inder(V ) ∼=
⊕
i

Inder(Vi). (2)

Recall from 9.1 that DL(V ) = V − ⊕ Inder(V ) ⊕ V + is the derived algebra of the
TKK-algebra L(V ) of V . Then (2) immediately implies that the functor DL also
commutes with direct sums:

DL(V ) ∼=
⊕
i∈I

DL(Vi). (3)



9. THE PROJECTIVE ELEMENTARY GROUP OF A JORDAN PAIR 111

The relation between the full TKK-algebra L(V ) = k · ζV + DL(V ) of V and that
of the Vi is more complicated.

Let pi: V → Vi be the projection onto the i-th factor. Since L is functorial with
respect to surjective homomorphisms by 9.1, there are induced homomorphisms
fi = L(pi): L(V )→ L(Vi), so we have a homomorphism

f : L(V )→
∏
i∈I

L(Vi)

with components fi. Explicitly, fi and f are given as follows. Let

X = x⊕ (λ · ζV + d)⊕ y ∈ L(V )

where x =
∑
xi ∈ V + =

⊕
V +
i , y =

∑
yi ∈

⊕
V −i , λ ∈ k, and d =

∑
di ∈⊕

Inder(Vi). Then

fi(X) = xi ⊕ (λζVi + di)⊕ yi, f(X) = (fi(X))i∈I = x⊕ (λξ + d)⊕ y, (4)

where we identify DL(V ) with the subalgebra of
∏
i L(Vi) determined by (3) and

the embeddings DL(Vi) ⊂ L(Vi), and ξ := (ζVi)i∈I ∈
∏

L(Vi). From (4) it is
clear that f is an isomorphism of L(V ) onto the subalgebra g := k · ξ + DL(V ) of
ĝ :=

∏
L(Vi). We will therefore identify the TKK-algebra of V with the subalgebra

g of ĝ.
Let Gi := PE(Vi) and G′ =

⊕
iGi ⊂

∏
iGi. The latter group acts on ĝ

diagonally (i.e., componentwise) by automorphisms. Then the assertion (1) is a
consequence of the following result:

9.15. Proposition. With the notations introduced above, G′ stabilizes the sub-
algebra g ∼= L(V ), and the induced homomorphism ψ: G′ → Aut(g) is an isomor-
phism of G′ onto PE(V ).

Proof. We start with the following remark. Let W be an arbitrary Jordan
pair with TKK-algebra L(W ) = k · ζW + DL(W ) and let h ∈ PE(W ). Then h
stabilizes DL(W ) (since h is an automorphism of L(W ) and the derived algebra is
a characteristic ideal). Moreover, h(ζW ) ≡ ζW (mod DL(W )). Indeed, it suffices
to check this for the generators exp±(x) of PE(W ), where exp±(x) · ζW = ζW +
[x, ζW ] = ζW ∓ x.

Now let g = (gi)i∈I ∈ G′. Then clearly g stabilizes DL(V ). Moreover, applying
the remark above to W = Vi and h = gi, we have gi(ζVi) = ζVi + Xi where
Xi ∈ DL(Vi), and since gi 6= 1 for only finitely many i, only finitely many Xi are
different from 0. Hence g(ξ) = ξ + (Xi)i∈I ∈ ξ + DL(V ) ⊂ g. This shows that g is
indeed stable under G′ and proves the existence of a group homomorphism ψ.

Next, we show that ψ is injective. If g = (gi)i∈I ∈ Ker(ψ) then gi acts like the
identity on DL(Vi), and g(ξ) = ξ implies gi(ζVi) = ζVi , for all i ∈ I, whence g = 1.

Finally, we show ψ(G′) = PE(V ). Denote the exponential maps of L(Vi) (i ∈ I)

and of L(V ) by exp
(i)
σ : V σi → Gi and expσ: V σ → Aut(g), respectively. Then one

easily verifies that the diagram
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V σi
inc //

exp(i)
σ

��

V σ

expσ

��
Gi

ψ
// Aut(g)

commutes. Since PE(V ) is generated by expσ(V σ) (σ ∈ {+,−}), and expσ(x) =

expσ(
∑
xi) =

∏
i expσ(xi) =

∏
i ψ
(

exp
(i)
σ (xi)

)
, this shows that ψ(G′) = PE(V ).

9.16. Example. In the rest of this section we will elucidate some of the con-
cepts introduced above by considering the example V = (J, J) where J = Jn is the
(Jordan algebra determined by the) unital commutative associative algebra over
k = F2, the field with two elements, generated by a nilpotent element a of index
n> 0, i.e.,

J = k[t]/(tn+1) = k1⊕ ka⊕ · · · ⊕ kan, an 6= 0.

Clearly, J is local (see [34, 1.10]) with Jacobson radical Rad(J) = ka⊕ · · · ⊕ kan.
We let a0 = 1. The Jordan product and the Bergmann operators are then given by

Qai(a
j) = a2i+j (06 i, j 6 n), Qx,y = 0,

B(x, y)z = (1− xy)z(1− yx) = z + x2y2z (1)

for x, y, z ∈ J . In particular Inder(V ) = 0, and hence g(V ) = J ⊕ kζ⊕J is a 2-step
solvable Lie algebra. The operator A = Qa is nilpotent of index m = [n2 ]. The
algebra A ⊂ End(J) generated by A is therefore

A = kId⊕ kA⊕ · · · ⊕ kAm,

and the set A× of invertible elements of A has the description

A× = Id⊕ k A⊕ · · · ⊕ kAm. (2)

For any x ∈ J we let (xi) be the coordinates of x with respect to the basis
(1, a, a2, . . . , an). Then

Qx =

m∑
i=0

xiA
i ∈ A. (3)

Hence, (1) and (3) together with (9.8.1) imply

Extr(V ) = (E,E) where E = k am+1 ⊕ · · · ⊕ kan. (4)

Thus Extr(V ) 6= 0 if n> 1. Also, (3) shows

B(x, y) = Id +QxQy = B(y, x) ≡ (1 + x0y0) mod Rad(A) (5)

for x, y ∈ J . Therefore, (x, y) ∈ V is quasi-invertible if and only if x0y0 = 0.



9. THE PROJECTIVE ELEMENTARY GROUP OF A JORDAN PAIR 113

We claim that the diagonal subgroup H of G = PE(V ) is

H = {(b, b−1) : b ∈ A×}. (6)

Indeed, for any y ∈ J we have B(a, y) = Id +
∑m
i=1 yi−1A

i = B(y, a) in view of
(3) and (5). Since β(a, y) = (B(a, y), B(y, a)−1) ∈ H this proves that (b, b−1) ∈ H
for any b ∈ A×. On the other hand, by [38, 5.3], stability of V implies that H is
generated by the generalized Bergman operators

β(x, y, z, u) = (B(x, y, z, u), B(u, z, y, x)−1)

for quasi-invertible (x, y, z, u) ∈ V × V . In our setting, formula (9.3.3) shows, for
any (x, y, z, v) ∈ V × V ,

B(x, y, z, v)s =
(
(1− xy)(1− zv)− xv

)2
s

and therefore any element of H has the form (b, b−1) for some b ∈ A×.
We note in particular that H = {1} if and only if n = 0 or 1. The centre of G

has the following description:

9.17. Lemma. Z (G) = {1} if and only if n = 0 or n is odd; |Z (G)| = 2 if
and only if n> 2 is even. In the second case, the non-trivial element of Z (G) is

exp−(an) (b, b) exp+(an), where b = Id +An/2.

Proof. By 9.9 and 9.16.6, any g ∈ Z (G) has the form

g = exp−(v) (b, b−1) exp+(z)

where v, z ∈ E and b ∈ A× satisfies

(b− Id)x = Qxv, (b−1 − Id)y = Qyz (1)

for all x, y ∈ J . It is immediate (by specializing x = y = 1) that g = 1 if b = Id;
in particular this is so when H = {1}. We can therefore assume n> 2. By (9.16.2)
there exist µi ∈ k such that b − Id =

∑m
i=1 µiA

i. Hence, condition (1) for x = 1
yields v =

∑m
i=1 µia

2i ∈ E. Then choosing x = a gives the relation

m∑
i=1

µia
2i+1 =

m∑
i=1

µia
2i+2.

For i < m we have 2i + 1 < n + 1. Since then a2i+1 6= 0 we must have µi = 0.
For i = m and n odd we obtain 2m + 1 = n and hence also µm = 0. Therefore in
this case v = 0, b = Id = b−1 and so g = 1. For n even we showed v = µma

n and
b− Id = µmA

m. For these choices, (b− Id)x = µmx0a
n = Qxv holds for all x ∈ J .

Since b = Id + µmA
m = b−1 we get z = µma

n = v. This finishes the proof of the
lemma.

Let us point out that for odd n we have Extr(V ) 6= 0 but Z (G) = 1, yielding
yet another example that the converse of the implication (9.9.4) is not true.

Next, we identify the groups Gn := PE(Jn, Jn). Denote by Symn the symmetric
group on n letters.
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9.18. Lemma. G0 = Sym3 and G1 = Sym4.

Proof. We will use the well-known fact that the group Symn+1 is presented by
generators s1, . . . , sn and relations s2

i = 1 = (sisi+1)3 = (sisj)
2 for i < j − 1. For

n = 0 we have J = k and hence G0 is generated by the two elements g1 = exp+(1)
and g2 = exp−(1) which, by characteristic 2, satisfy the relation g2

i = 1. Let
e = (1, 1). Since by (9.6.6) the Weyl element ωe is symmetric,

ωe = exp+(1) exp−(1) exp+(1) = exp−(1) exp+(1) exp−(1),

we have g1g2g1 = g2g1g2 or, equivalently, (g1g2)3 = 1. Hence there is a surjective
homomorphism ϕ: Sym3 → G0. But |G0| > |Ω| > |J |2 = 4 where Ω is the big cell
defined in 9.2, so that ϕ is an isomorphism.

We will proceed in the same manner for n = 1 where J = k1 ⊕ ka, a2 = 0, is
the algebra of dual numbers. Let us first observe that A = kId and so, by (9.16.5),
(x, y) is quasi-invertible if and only if x0y0 = 0, in which case B(x, y) = Id and
xy = x − Qxy. In particular H = {1} by (9.16.6). Thus 1a = 1 + a, (1 + a)a = 1
and ay = a for all y ∈ J . Hence, by (9.2.6), we have the following relations in G1

for σ = ±:

expσ(a) exp−σ(1) = exp−σ(1 + a) expσ(a),

expσ(a) exp−σ(a) = exp−σ(a) expσ(a),

expσ(a) exp−σ(1 + a) = exp−σ(1) expσ(a). (1)

It follows from (1) that G1 is generated by

g1 = exp+(1), g2 = exp−(1), g3 = exp+(1 + a).

As in case n = 0 we have g2
i = 1 = (g1g2)3. Since U+ is abelian also (g1g3)2 = 1

holds. We will show

(g2g3)3 = 1, (2)

equivalently, g2g3g2 = g3g2g3. Indeed, by (1) we have

g2g3 = exp−(1) exp+(1 + a) = exp−(1) exp+(a) exp+(1)

= exp+(a) exp−(a) exp−(1) exp+(1)

and hence g2g3g2 = exp+(a) exp−(a)ωe. On the other hand,

g3g2g3 = exp+(a)ωe exp+(a) = exp+(a) exp−(a)ωe

by the relation (9.6.1). This finishes the proof of (2). We have now shown that
the generators g1, g2, g3 of G1 satisfy the defining relations for Sym4. Hence there
exists a surjective homomorphism Sym4 → G1, and because |G1|> |J1|2 = 16 this
is an isomorphism.
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9.19. Proposition. Gn is a solvable group of order

|Gn| = 3 · 22n+1+[n2 ].

Proof. We denote by Xn = X(Vn) the projective space of the Jordan pair
Vn = (Jn, Jn) [37]. Since Jn is local, Proposition 9.20 below implies

|Xn| = |Jn|+ |ka⊕ · · · ⊕ kan| = 2n+1 + 2n = 3 · 2n.

Because Vn is stable, Xn = Gn/P
− where P− = U−H has order |U−| · |H| =

2n+1+m with m = [n2 ], and hence |Gn| = 3 · 22n+1+m. By Burnside’s paqb-Theorem
Gn is solvable. This can also be seen directly by induction on n. The cases n = 0
and n = 1 hold by 9.18. For n > 1, the Jordan algebra Jn contains the proper
ideal kan and Vn/(ka

n, kan) ∼= Vn−1. Hence by [38, 1.6], Gn−1
∼= Gn/K for some

normal subgroup K of Gn. Since K is a 2-group (namely of order 4 if n is odd
and of order 8 if n is even) it is solvable [2, 11, Cor. 5]. Thus, solvability of Gn−1

implies solvability of Gn.

9.20. Proposition. Let J be a local Jordan algebra and let X = X(J, J) be
the projective space determined by J . We identify J with (J : 0) ⊂ X. Then the
map a 7→ (1: 1− a) is a bijection from the set of non-units of J onto X \ J .

Proof. Since a is not invertible, (1, 1− a) is not quasi-invertible [34, 3.13]. Let

w = ωe = exp−(1) exp+(1) exp−(1)

be the Weyl element of the idempotent (1, 1). As a local Jordan algebra, J is
stable and hence w leaves X invariant and wU+ = U−w [38, 6.6, 6.4, 6.3].
Hence injectivity follows from (1: 1 − a) = exp−(−a)(1: 1) = exp−(−a)w(0: 0) =
w exp+(−a)(0: 0) = w(−a: 0). To show surjectivity, let (x: y) ∈ X \ J . Then (x, y)
is not quasi-invertible. We claim that x is invertible. Indeed, otherwise x would
belong to the radical since J is local and so (x, y) would be quasi-invertible. More-
over, because (x, y) is not quasi-invertible, a = x−1 − y is not invertible. One now
easily sees that (x: y) = (1: 1− x−1 + y) = (1: 1− a).
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§10. Groups over Jordan pairs

10.1. Groups over a Jordan pair. Let R = {0, 1,−1} be the root system
of type A1. As in Example 2.3(a), we denote the root groups of a group with
A1-commutator relations by U± = U±1.

Let us fix a Jordan pair V = (V +, V −). We will modify the notations of 9.2 for
the projective elementary group and its subgroups as follows:

Ḡ = PE(V ), Ū± = exp±(V ±), Ḡ0 = PE0(V ).

We specialize 3.9 to the present situation, cf. also Example (a) of 3.18. The
Steinberg category st(Ḡ, Ū+, Ū−) will simply be denoted by st(V ) and its objects
will be called groups over V . Thus an object of st(V ) can be considered as a
quadruple (G,U±, π) where G is a group and π: G → Ḡ is a homomorphism such
that π

∣∣Uσ: Uσ → Ūσ is an isomorphism, for σ ∈ {+,−}; in particular, Uσ is
abelian. Specializing the definition of tightness in 2.2, G is tight if and only if U+

and U− generate G. For any group (G,U±, π) over V , the subgroup r(G) generated
by U+ and U− is a tight group over V .

We define isomorphisms x±: V ±
∼=−→ U± by the commutative diagrams

V ±
x±

∼=
//

exp±

∼=

!!DDDDDDDD U±

π

∼=

}}zzzzzzzz

Ū±

(1)

Then an object of st(V ) can also be identified with a quadruple (G, x±, π) consisting
of a group G and homomorphisms x±: V ± → G and π: G→ Ḡ satisfying (1). It is
tight if and only if x+(V +)∪x−(V −) generates G. A morphism ϕ: (G, x+, x−, π)→
(G′, x′+, x

′
−, π

′) of groups over V is then the same as a group homomorphism ϕ: G→
G′ making the diagrams

V ±

x±

~~|||||||| x′±

!!CCCCCCCC

G
ϕ //

π
  BBBBBBBB G′

π′}}{{{{{{{{

Ḡ

(2)

commutative. To simplify notation, we will often denote an object of st(V ) simply
by G, and also use the same letters x± and π for different groups G in st(V ).
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Example. We note that in general groups over V are not tight. For example,
let V be the rectangular matrix pair Mpq(k) for k an algebraically closed field and
put n = p+q. We have seen in the example in 9.2 that the elementary group of this
special Jordan pair is SLn(k) and that PE(Mpq(k)) ∼= PGLn(k) = GLn(k)/k× · 1n.
It is immediate that GLn(k) is a non-tight group over V with respect to the
canonical map π: GLn(k)→ PGLn(k) and the natural subgroups U± ⊂ SLn(k).

10.2. Lemma. Let G ∈ st(V ) with root groups Uσ = xσ(V σ). Define sub-
groups G0 and N of G by

G0 := π−1(Ḡ0), N := NormG(U+) ∩NormG(U−).

Let Ω̄ = Ū− · Ḡ0 · Ū+ be the big cell of Ḡ = PE(V ) as in 9.2 and define

Ω := π−1(Ω̄).

(a) The map Φ: V − ×G0 × V + → G, (y, h, x) 7→ x−(y) · h · x+(x), is injective
(equivalently, the map µ: U− ×G0 × U+ → G given by multiplication is injective)
with image Ω.

(b) Let h ∈ G0 and let π(h) = h̄ = (h+, h−) ∈ PE0(V ). Then

h ∈ N ⇐⇒ h xσ(v)h−1 = xσ(hσ(v)) for all v ∈ V σ, σ = ±. (1)

(c) Ker(π) ⊂ G0 and N ∩Ker(π) centralizes U±. If G is tight then N ∩Ker(π)
is central in G.

(d) Let ϕ: G→ G′ be a morphism of groups over V , with subgroups Uσ, G0, N ⊂
G and U ′σ, G′0, N

′ ⊂ G′ as above. Then

(i) ϕ: Uσ → U ′σ is an isomorphism, and ϕ−1(U ′σ) = Uσ · Ker(ϕ) =
Ker(ϕ) · Uσ.

(ii) ϕ−1(G′0) = G0 and ϕ(G0) ⊂ G′0. If ϕ is surjective (for example, if G′

is tight) then ϕ(G0) = G′0.
(iii) ϕ(N) ⊂ N ′.

Proof. (a) If x−(y)hx+(x) = x−(y′)h′x+(x′) then by applying π and (9.2.4)
we obtain y = y′ and x = x′ whence also h = h′. Clearly Φ has range contained
in π−1(Ω̄). Conversely, if g ∈ π−1(Ω̄) and, say, π(g) = exp−(y)h̄ exp+(x) then
x−(−y)gx+(−x) ∈ π−1(PE0(V )) = G0 so that g is in the range of Φ.

(b) By (9.2.3) we always have π(h xσ(v)h−1) = h̄ expσ(v)h̄−1 = expσ(hσ(v))
= π(xσ(hσ(v)). The asserted equivalence then follows from injectivity of π on Uσ.

(c) Clearly Ker(π) = π−1({1}) ⊂ π−1(Ḡ0) = G0. Let h ∈ N∩Ker(π) ⊂ N∩G0.
Then π(h) = h̄ = 1 and therefore (1) shows that h centralizes the subgroups U±.

(d) For (i), we have ϕ(Uσ) = U ′σ by (10.1.2). Since π
∣∣Uσ = (π′ ◦ ϕ)

∣∣Uσ is

an isomorphism, it follows that ϕ
∣∣Uσ is injective. Next, let g ∈ ϕ−1(U ′σ), say,
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ϕ(g) = x′σ(v). Then ϕ(gxσ(−v)) = x′σ(v)x′σ(−v) = 1G′ , so g ∈ Ker(ϕ) · Uσ. Thus
ϕ−1(U ′σ) ⊂ Ker(ϕ) · Uσ, and the reverse inclusion is clear. The second formula is
proved similarly.

(ii) We have

ϕ−1(G′0) = ϕ−1(π′−1(PE0(V ))) = (π′ ◦ ϕ)−1(PE0(V )) = π−1(PE0(V )) = G0.

For the second statement, let h ∈ G0. Then π′(ϕ(h)) = π(h) ∈ G0 whence
ϕ(h) ∈ G′0. Now assume ϕ surjective, and let h′ ∈ G′0, say, h′ = ϕ(g), g ∈ G.
Then π(g) = π′(ϕ(g)) = π′(h′) ∈ Ḡ0, whence g ∈ G0.

(iii) is immediate from the definitions.

10.3. Example: Elementary groups of special Jordan pairs. Let M =
(A,B,C,D) be a Morita context, let V ⊂ (B,C) be a special Jordan pair and let
G = E(M, V ) be the elementary group of (M, V ) as in 7.2. By [38, Th. 2.8], there
is a well-defined surjective homomorphism π: G→ Ḡ = PE(V ) satisfying

π

(
1 x
0 1

)
= exp+(x), π

(
1 0
−y 1

)
= exp−(y), (1)

for all x ∈ V +, y ∈ V −. Thus G is a group over V provided we define the
homomorphisms xσ: V σ → G by

x+(x) =

(
1 x
0 1

)
, x−(y) =

(
1 0
−y 1

)
. (2)

By [38, Th. 2.8], π−1(PE0(V )) = G0 and π−1(Ω̄) = Ω ⊂ G are given by

G0 = {g ∈ G : ge1 = e1g} = G ∩
(
A× 0
0 D×

)
, Ω = U−G0U

+, (3)

and the kernel of π is central in G, more precisely,

Ker(π) = Z (G) ∩G0.

10.4. Lifting Jordan pair homomorphisms. Let V and V ′ be Jordan pairs,
and let G and G′ be groups over V and V ′, respectively. Consider a homomorphism
f : V → V ′ of Jordan pairs. We say a group homomorphism ϕf : G → G′ is a lift
of f if the diagrams

G
ϕf // G′

V ±

x±

OO

f±

// V ′±

x′±

OO

(1)
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commute. This condition determines ϕf uniquely on the subgroup
〈
U+ ∪ U−

〉
. If

f ′: V ′ → V ′′ is a second Jordan pair homomorphism with lift ϕf ′ : G
′ → G′′ then

ϕf ′ ◦ϕf is a lift of f ′ ◦ f . Note that the lifts of the identity Id: V → V are just the
morphisms of the category st(V ).

Suppose G ∈ st(V ). An automorphism a of V is said to normalize G if there
exist lifts ϕa: G→ G of a and ϕa−1 : G→ G of a−1, necessarily unique if G is tight.
Let A = Aut(V ) be the automorphism group of V and denote by NormA(G) the
set of a ∈ A normalizing G. One shows easily that NormA(G) is a subgroup of A,
and, if G is tight then the map ϕ: NormA(G) → Aut(G), a 7→ ϕa, is an injective
group homomorphism.

With the notations of 10.2 let h ∈ N ∩G0. By (10.2.1),

a = π(h) ∈ NormA(G) ∩ Ḡ0, ϕa = Inth, (2)

the inner automorphism of G determined by h, is a lift of a. Thus the diagram

G0 ∩N
Int //

π
$$IIIIIIIII Aut(G)

Ḡ0 ∩NormA(G)

ϕ

::uuuuuuuuu
(3)

is commutative.

10.5. Groups induced by subpairs. Let G be a group over V and let V ′ ⊂ V
be a subpair of V . Define U ′± = x±(V ′±) ⊂ U± and let G′ ⊂ G be the subgroup
generated by U ′+ ∪ U ′−. Then x′± := x±

∣∣V ′±: V ′± → U ′± is an isomorphism.
We claim that, with the following definition of the projection π′: G′ → PE(V ′),
the quadruple (G′, x′±, π

′) is a group over V ′ (in fact, G′ is tight), and that the
inclusion G′ ⊂ G is a lift (in the sense of 10.4) of the inclusion V ′ ⊂ V .

Let PE(V ′) be the projective elementary group of V ′ with exponential maps
exp′±, and let Ḡ′ ⊂ Ḡ = PE(V ) be the subgroup generated by exp+(V ′+) ∪
exp−(V ′−) as in 9.13. From (10.1.1), it follows that π(G′) = Ḡ′. By (9.13.1)
we have a surjective homomorphism ψ: Ḡ′ → PE(V ′) satisfying (9.13.2). Now
define π′: G′ → PE(V ′) by π′ = ψ ◦ (π

∣∣G′).
To show that (G′, x′±, π

′) ∈ st(V ′), we need to verify (10.1.1). By the definition
of π′, we must show that the diagram

V ′±
x′± //

exp′±
��

U ′±

π′

vvmmmmmmmmmmmmm

π

��
exp′±(V ′±) exp±(V ′±)

ψ
oo

is commutative and its maps are isomorphisms. But this follows readily from 9.13.
Finally, the fact that the inclusion G′ ⊂ G is a lift of the inclusion V ′ ⊂ V follows
immediately from the definition of x′±.
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10.6. The elements b(x, y). Let G be a group over V . For a quasi-invertible
pair (x, y) ∈ V we define the element b(x, y) ∈ G by the formula

x+(x) · x−(y) = x−(yx) · b(x, y) · x+(xy), (1)

equivalently, (((((((
x−(−y), x+(x)

)))))))
= x−(yx − y) · b(x, y) · x+(xy − x). (2)

Then (9.2.6) shows that

π(b(x, y)) = β(x, y); hence b(x, y) ∈ G0 = π−1(Ḡ0). (3)

One also sees immediately from the definition that

b(x, 0) = b(0, y) = 1.

If there is no risk of confusion, we will use the same letter b for different groups
over V . If f : V → V ′ is a homomorphism of Jordan pairs and ϕf : G→ G′ is a lift
of f as in 10.4 then

ϕf (b(x, y)) = b(f+(x), f−(y)). (4)

Indeed, if (x, y) is quasi-invertible then (f+(x), f−(y)) is quasi-invertible in V ′ and
f+(xy) = f+(x)f−(y) as well as f−(yx) = f−(y)f+(x), by (7.9.4). Hence

ϕf
(
x+(x) · x−(y)

)
= x+(f+(x)) · x−(f−(y))

= x−
(
(f−(y))f+(x)

)
· b(f+(x), f−(y)) · x+

(
(f+(x))f−(y)

)
= x−(f−(yx)) · b(f+(x), f−(y)) · x+(f+(xy))

and also

ϕf
(
x+(x) · x−(y)

)
= ϕf

(
x−(yx) · b(x, y) · x+(xy)

)
= x−(f−(yx)) · ϕf

(
b(x, y)

)
· x+(f+(xy)),

so that (4) follows by comparison. In particular, this applies to f = a = π(h) where
h ∈ N ∩G0, and then (10.4.2) yields the formula

h · b(x, y) · h−1 = b(a+(x), a−(y)). (5)

Example. Let G = E(M, V ) as in 10.3 and let (x, y) ∈ V . Then

(x, y) is quasi-invertible ⇐⇒ 1A − xy ∈ A× ⇐⇒ 1D − yx ∈ D×, (6)

and in this case
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xy = (1− xy)−1x = x(1− yx)−1, yx = (1− yx)−1y = y(1− xy)−1, (7)

b(x, y) = x−(−yx)x+(x)x−(y)x+(−xy) =

(
1− xy 0

0 (1− yx)−1

)
. (8)

Indeed, (6) and (7) holds for (B,C) by 7.9. Since the inclusion V ⊂ (B,C) is
a Jordan pair homomorphism and quasi-invertibility and the quasi-inverse behave
well with respect to Jordan pair homomorphisms by (7.9.4), the same is true for

V . Matrix computation shows x+(x)x−(y) =

(
1− xy x
−y 1

)
. Now let (x, y) be

quasi-invertible. Then

b(x, y) = x−(−yx)x+(x)x−(y)x+(−xy) =

(
1 0
yx 1

)(
1− xy x
−y 1

)(
1 −xy
0 1

)
=

(
1− xy x

0 1 + yxx

)(
1 −xy
0 1

)
=

(
1− xy 0

0 1 + yxx

)
=

(
1− xy 0

0 (1− yx)−1

)
,

where we used (7) and in the last step

1 + yxx = 1 + y(1− xy)−1x = 1 + yxy = 1 + yx(1− yx)−1

= (1− yx+ yx)(1− yx)−1 = (1− yx)−1.

10.7. The relations B(x, y). Let G be a group over V and let (x, y) ∈ V be
a quasi-invertible pair. We say G satisfies the relations B(x, y) if the formulas

b(x, y) · x+(z) · b(x, y)−1 = x+(B(x, y)z), (1)

b(x, y)−1 · x−(v) · b(x, y) = x−(B(y, x)v) (2)

hold for all (z, v) ∈ V + × V −. Since B(x, y)z = z − {xyz}+QxQyz, an equivalent
formulation is (((((((

b(x, y), x+(z)
)))))))

= x+

(
− {xyz}+QxQyz

)
, (3)(((((((

b(x, y)−1, x−(v)
)))))))

= x−
(
− {yxv}+QyQxv

)
, (4)

for all (z, v) ∈ V . From (10.6.3) and (10.2.1) we see that

G satisfies B(x, y) ⇐⇒ b(x, y) ∈ N. (5)

In particular, it follows from (9.2.6) that Ḡ satisfies B(x, y) for all quasi-invertible
pairs (x, y). The same is true for elementary groups of special Jordan pairs:

E(M, V ) satisfies the relations B(x, y) for all quasi-invertible (x, y) ∈ V . (6)

Indeed, this follows by a simple matrix computation from (10.6.8).
Suppose G′ is a group over a Jordan pair V ′ as well and f : V → V ′ is a surjective

homomorphism of Jordan pairs which lifts to a group homomorphism ϕf : G→ G′

as in 10.4. Then by (10.6.4) and (10.4.1),

if G satisfies B(x, y) then G′ satisfies B(f+(x), f−(y)). (7)

In particular, if G satisfies B(x, y) and a = (a+, a−) ∈ NormA(G) then G also
satisfies B(a+(x), a−(y)).
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10.8. Lemma. Let (x, y) and (u, v) be quasi-invertible and let (s, t) ∈ V with
the property that (s+x, y) and (x, y+ t) are quasi-invertible. If G satisfies B(x, y)
then the following formulas hold:

b(s+ x, y) = b(s, yx) · b(x, y), (1)

b(x, y + t) = b(x, y) · b(xy, t), (2)

b(x, y)−1 = b(−x, yx) = b(xy, −y), (3)

b(x, y) = b
(
Qxy − x, −yx

)
= b

(
− xy, Qyx− y

)
, (4)

b(x, y) · b(u, v) · b(x, y)−1 = b
(
B(x, y)u, B(y, x)−1v

)
. (5)

Proof. By (7.9.5) applied to V op, the formulas

(s+ x)y = xy +B(x, y)−1
(
s(yx)

)
, y(x+s) = (yx)s (6)

hold. From (10.6.1) we therefore obtain

x+(s+ x) · x−(y) = x−(ys+x) · b(s+ x, y) · x+((s+ x)y)

= x−(ys+x) · b(s+ x, y) · x+

(
xy +B(x, y)−1s(yx)

)
.

On the other hand, (10.7.1) shows

x+(s+ x) · x−(y) = x+(s) · x−(yx) · b(x, y) · x+(xy)

= x−((yx)s) · b(s, yx) · x+(s(yx)) · b(x, y) · x+(xy)

= x−(yx+s) · b(s, yx) · b(x, y) · x+

(
B((x, y)−1s(yx) + xy

)
so that (1) follows by comparison. Formula (2) follows similarly from (10.7.2). We
obtain (3) by setting s = −x and t = −y in (1) and (2).

To prove (4) first note that (3) shows G satisfies the relations B(−x, yx) and
B(xy,−y) since b(x, y)−1 ∈ N . Hence by (3),

b(x, y) =
(
b(x, y)−1

)−1
= b(−x, yx)−1

= b
(
(−x)(yx),−yx

)
= b(Qxy − x,−yx),

because (6) yields, for s = −x, the Hua-type relation

(−x)(yx) = −B(x, y)xy = −(x−Qxy). (7)

The second formula of (4) is proved similarly. Finally, replace (x, y) in (10.6.5) by
(u, v) and put h = b(x, y) and a = β(x, y). Then (5) follows from (10.6.5) and
(10.7.5).
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10.9. Groups over V op. Let V op = (V −, V +) be the opposite of a Jordan
pair V and let G be a group over V . Then G can and will be considered as a group
over V op by switching the roles of U+ and U−, i.e., by setting

xop
σ (v) = x−σ(v) (v ∈ V −σ, σ ∈ {+,−}); (1)

more precisely,

(G, x+, x−, π)op = (G, xop
+ , xop

− , π
op) = (G, x−, x+, π)

in the notation of 10.1. In particular, this applies to the projective elementary
group of V and provides an identification of PE(V ) and PE(V op), cf. [38, 1.3].
The assignment (G, x+, x−, π) 7→ (G, x−, x+, π) from st(V ) to st(V op) is then an
isomorphism of categories.

Let (x, y) be quasi-invertible in V . By the symmetry principle (7.9.2), this is
equivalent to (y, x) being quasi-invertible in V op. Invert (10.6.1), replace (x, y) by
(−x,−y) and use the fact that (−IdV + ,−IdV −) is an automorphism of V . The
result is

x−(y) · x+(x) = x+(xy) · b(−x,−y)−1 · x−(yx) (2)

which, when read in (G, x+, x−, π)op, says

bop(y, x) = b(−x,−y)−1. (3)

With the aim of achieving greater symmetry in formulas, we will often use the
notation

b+(x, y) = b(x, y), b−(y, x) = bop(y, x). (4)

Then (3) implies
bσ(x, y)−1 = b−σ(−y,−x), (5)

and (10.6.1) and (2) can be subsumed into the single formula

xσ(x) · x−σ(y) = x−σ(yx) · bσ(x, y) · xσ(xy). (6)

or the equivalent commutator formula(((((((
x−σ(−y), xσ(x)

)))))))
= x−σ(yx − y) · bσ(x, y) · xσ(xy − x). (7)

10.10. The elements te and we. Let e = (e+, e−) ∈ V be an idempotent and
consider a group G over V . In analogy to 9.4, we introduce the notations

te =
(
x+(e+), x−(e−), x+(e+)

)
∈ U+ × U− × U+, (1)

we = x+(e+) · x−(e−) · x+(e+) ∈ G. (2)

Again as in 9.4, we put
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teop =
(
x−(e−), x+(e+), x−(e−)

)
, (3)

weop = x−(e−) · x+(e+) · x−(e−). (4)

Since −e = (−e+,−e−) is an idempotent as well, we have the following formula for
the inverse:

w−1
e = w−e. (5)

Clearly, π(te) = θe and π(we) = ωe are the elements defined in 9.4. However,
even when V has invertible elements and hence θe is a Weyl triple for Ḡ considered
as a group with A1-commutator relations (see 9.7), this is in general no longer the
case for G. We now discuss this question in more detail.

10.11. Proposition. Let V be a Jordan pair and let G be a group over V ,
considered as a group with A1-commutator relations and root subgroups U±1 = U±.

(a) Suppose t ∈ U+×U−×U+ is a Weyl triple for the root α = 1. Then t has
the form

t =
(
x+(z + u), x−(u−1), x+(u+ z′)

)
(1)

where u ∈ V + is invertible and z, z′ ∈ Extr(V +).

(b) Conversely, if G = PE(V ) then any triple(
exp+(z + u), exp−(u−1), exp+(u+ z′)

)
,

where u ∈ V + is invertible and z, z′ ∈ Extr(V +), is a Weyl triple for α = 1.

Proof. (a) Let w = µ(t) be the Weyl element determined by t. Since π is
surjective on root groups, ω := π(w) is a Weyl element for α = 1 in PE(V ). Hence

ω · exp+(x) · ω−1 = exp−
(
f(x)

)
(2)

for all x ∈ V +, where f : V + → V − is an isomorphism of additive groups. Write
t =

(
x+(a), x−(v), x+(a′)

)
where a, a′ ∈ V + and v ∈ V −. Then

ω = exp+(a) exp−(v) exp+(a′), (3)

and equation (2) is equivalent to

exp−(v) · exp+(x) · exp−(−v) · exp+(−a) = exp+(−a) · exp−(f(x)). (4)

By applying both sides of (4) to the element ζ ∈ L0(V ) of the Tits-Kantor-Koecher
algebra and comparing the terms in V − we obtain, by a lengthy but straightforward
computation using (JP4), the formula

f(x) = Qv
(
x−Qx(v −Qva)

)
. (5)

Since f is surjective, this shows that Qv: V
+ → V − is surjective. In particular,

there exists u ∈ V + such that v = Qvu. But Qv is injective as well: indeed,
Qvx = 0 and (5) imply
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f(x) = −QvQxv +QvQxQva = QvQxQv(−u+ a) = Q(Qvx)(a− u) = 0,

and therefore x = 0, because f is a group isomorphism. Thus Qv is invertible. It
follows that v is an invertible element with inverse u := v−1 = Q(v)−1v. We put
z := a− u and z′ := a′ − u and show that z and z′ belong to the extreme radical.

By 7.12, e = (u, u−1) is an idempotent with V = V2(e), and from (3) and 9.4
we see that ω = exp+(z)ωe exp+(z′). By 9.7, ωe is a Weyl element for α = 1 as
well. Put n = exp+(z) and n′ = exp+(z′). Then n = ω (n′)−1 ω−1

e which implies

nŪ−n−1 = ω(n′)−1ω−1
e Ū−ωen

′ω−1

= ω(n′)−1Ū+n′ω−1 = ωŪ+ω−1 = Ū−,

so n normalizes Ū−. Similarly, one shows that n′ normalizes Ū−. Thus z, z′ ∈
Extr(V +) by 9.9(a).

(b) This follows easily from the fact that ωe is a Weyl element in PE(V ) by
9.7, and that exp+(Extr(V +)) normalizes Ū−, by Theorem 9.9(a).

10.12. Corollary. The following conditions on a Jordan pair V are equivalent.

(i) V is a Jordan division pair,

(ii) PE(V ) is a rank one group.

In this case, PE(V ) is a special rank one group.

Proof. We write G = PE(V ) and U± instead of Ū± for simpler notation.

(i) =⇒ (ii): First observe that a Jordan division pair has trivial extreme radical.
Indeed, if 0 6= z ∈ Extr(V +) then Qz = 0 and Qz: V

− → V + is an isomorphism of
k-modules whence V ± = 0, contradiction. Now Proposition 10.11 shows that the set
T1 of Weyl triples for α = 1 is precisely the set of all

(
exp+(u), exp−(u−1), exp+(u)

)
where 0 6= u ∈ V +. Hence pr1: T1 → U+∗ = U+ \ {1} is bijective. By passing to
V op, one sees that pr1: T−1 → U−∗ is bijective as well, so G is a rank one group
by Proposition 6.7. Since the Weyl triples θe are balanced by 9.7, G is special by
Proposition 6.8.

(ii) =⇒ (i): By Proposition 6.7, pr1: T1 → U+∗ is bijective. Hence, every
1 6= x ∈ U+ is the first component of a Weyl triple. By Proposition 10.11 this
shows that every element 0 6= a ∈ V + has the form a = z + u where z ∈ Extr(V +)
and u ∈ V + is invertible. From the definition of the extreme radical in 9.8 we have
{z, V −, V +} = 0, whence Q(z, V +) = 0. Hence Qa = Qz + Qz,u + Qu = Qu is
invertible. Also, U+ 6= {1} is part of the definition of a rank one group. Hence
V ± 6= 0, so V is a Jordan division pair.

If G is the elementary group of a special Jordan pair, we have the following
more precise description of the Weyl elements and Weyl triples. Note that this
generalizes 5.2.
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10.13. Proposition. Let V be a special Jordan pair, embedded in a Morita
context M = (A,B,C,D), and let G = E(M, V ) be the corresponding elementary
group as in 10.3. We consider G as a group with A1-commutator relations and
root groups U±1 = U±. Then G has Weyl elements for α = 1 if and only if V has
invertible elements. In this case, the Weyl triples and Weyl elements are given by

tu =
(
x+(u), x−(u−1), x+(u)

)
, (1)

wu = µ(tu) =

(
1A − uu−1 u
−u−1 1D − u−1u

)
, (2)

where x± is defined in (10.3.2) and u ∈ V + is invertible in V with inverse u−1 ∈ V −.
In particular, every Weyl triple is balanced and the multiplication map µ: T1 →W1

is bijective.
We emphasize that u−1 in (1) and (2) is the inverse in the Jordan pair V . It is

in general not true that uu−1 = 1A or u−1u = 1D.

Proof. Let u, u′ ∈ V + and v ∈ V − and consider the element

w = w(u, v, u′) = x+(u)x−(v)x+(u′) =

(
1− uv u+ u′ − uvu′
−v 1− vu′

)
(3)

of G. A matrix computation shows that

w

(
1 x
0 1

)
w−1 =

(
1 + (1− uv)xv (1− uv)x(1− vu)

−vxv 1− vx(1− vu)

)
, (4)

for all x ∈ V +.
First suppose that v is invertible in V with inverse v−1 = u = u′ and abbreviate

wu := w(u, u−1, u). Then u = uvu so (3) shows that wu has the form claimed in
(2). Also, since Qu: V − → V + is bijective, we have x = Quy = uyu for a unique
y ∈ V −. Hence

(1− uv)x = x− uv(uyu) = x− (uvu)yu = x− uyu = 0, (5)

and similarly
x(1− vu) = 0 (6)

for all x ∈ V +, so (4) yields

wu

(
1 x
0 1

)
w−1
u =

(
1 0
−vxv 1

)
whence wuU

+w−1
u = U−. By a similar computation as before we have

wu

(
1 0
−y 1

)
w−1
u =

(
1 uyu
0 1

)
.
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This proves that wu is indeed a Weyl element and hence tu is a Weyl triple for
α = 1. It is balanced since one easily sees by direct computation that also wu =
x−(u−1)x+(u)x−(u−1).

Conversely, suppose that w as in (3) is a Weyl element for α = 1. Then in
particular wU+w−1 = U−. Hence (4) shows that Qv: V

+ → V −, x 7→ vxv, is
bijective (i.e., v is invertible in V ) and, for all x ∈ V +,

(1− uv)xv = 0 = vx(1− vu), (7)

(1− uv)x(1− vu) = 0. (8)

From (7) we obtain, for x = u, that uv = uvuv and hence Qvu = vuv = vuvuv =
QvQuv. By injectivity of Qv this implies u = Quv. From (8) and the fact that
B(u, v)x = (1 − uv)x(1 − vu) (cf. (7.8.1)) we conclude with (7.11.2) that 0 =
B(u, v) = Q(u − v−1)Qv and therefore Q(u − v−1) = 0. This implies 0 = Q(u −
v−1)v = Quv− {uvv−1}+Q(v−1)v = u− 2u+ v−1 whence u = v−1. It remains to

show that u′ = u. Let z = u′ − u and n =

(
1 z
0 1

)
= w−1

u · w. Then (!!) both w

and wu are Weyl elements for α = 1 so n ∈ W−1
1 ·W1 ⊂ M1M1 ⊂ M0 (by (5.3.1)

and (5.3.5)) normalizes U−. It now follows from (3) that

n ·
(

1 0
−v 1

)
· n−1 = w(z, v,−z) =

(
1− zv zvz
−v 1 + vz

)
,

and this belongs to U− if and only if zv = vz = zvz = 0. Hence vzv = Qvz = 0
and therefore z = 0 because Qv is invertible.

10.14. Lemma. Let e ∈ V be an idempotent with Peirce spaces V σi = V σi (e).
Let G be a group over V and define Uσi = xσ

(
V σi (e)

)
, for i = 0, 1, 2 and σ ∈ {+,−}.

Consider the following conditions:

we xσ(z2) w−1
e = x−σ

(
Qe−σz2

)
(z ∈ V σ2 , σ ∈ {+,−}), (1)

weop xσ(z2) (weop)−1 = x−σ
(
Qe−σz2

)
(z ∈ V σ2 , σ ∈ {+,−}), (2)

we U
σ
2 w−1

e = U−σ2 (σ ∈ {+,−}), (3)

weop U
σ
2 (weop)−1 = U−σ2 (σ ∈ {+,−}), (4)

we = weop . (5)

Then (1) – (4) are all equivalent and imply (5).

Proof. In the presence of (5), it is clear that (1)⇐⇒ (2). Hence the equivalence
of (1) and (2) will follow once we have shown (1) =⇒ (5) ⇐= (2). By putting
z2 = eσ in (1) and using Qe−σeσ = e−σ we see

we xσ(eσ) w−1
e = x−σ(e−σ).

This implies we weop w−1
e = we and therefore (5), as required. A similar argument

shows (2) =⇒ (5).
Evidently, (1) implies (3). Conversely, if (3) holds and z2 ∈ V σ2 (e) then

we xσ(z2) w−1
e = x−σ(v2) for some v2 ∈ V −σ2 (e). Applying π to this relation and

comparing with (9.6.1) and (9.6.2) yields v2 = Q(e−σ)z2, so we have (1). In the
same way, one proves the equivalence of (2) and (4).
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10.15. The Weyl relations. Let G be a group over V and let e ∈ V be an
idempotent. We say G satisfies the Weyl relations W(e) if the equivalent conditions
(10.14.1) – (10.14.4) of Lemma 10.14 hold. Clearly, by that lemma, W(e) and
W(eop) are equivalent and imply we = weop .

By Proposition 9.6, the projective elementary group satisfies these relations.
Also, the elementary group G = E(M, V ) of a special Jordan pair satisfies the Weyl
relations. Indeed, since we = w(e+, e−, e+) as in (10.13.3) one obtains

we =

(
1A − e+e− e+

−e− 1D − e−e+

)
.

Now let x2 ∈ V +
2 (e), so x2 = Qe+Qe−x2 = e+e−x2e−e+. Since e+e− is an

idempotent in A, this implies

(1− e+e−)x2 = (1− e+e−)e+e−x2e−e+ = 0.

We also have e−x2 = e−(e+e−x2e−e+) = e−x2e−e+. Now (10.13.4) shows that
(10.14.1) holds for σ = +, and the case σ = − follows similarly. On the other hand,
the Weyl relations do not hold in all groups over V . For example, the free product
F (V ) = V + ∗V − of the additive groups V + and V − is a group over V , namely the
Steinberg group of Ḡ = PE(V ), cf. 3.18(a). The relation (10.14.5) is not satisfied
in F (V ).

For an automorphism h ∈ NormA(G) we have:

if G satisfies W(e) then G also satisfies W(h(e)). (1)

Indeed, let e′ = h(e). Then for u ∈ V σ2 (e′),

we′xσ(u)w−1
e′ = ϕh(wexσ(h−1

σ (u))w−1
e ) = ϕh

(
x−σ(Q(e−σ)h−1

σ (u))
)

= x−σ
(
Q(e′−σ)u

)
,

i.e., W(h(e)) holds in G.

10.16. The Steinberg groups Stn(R). Let R be an associative unital k-
algebra, let n = p + q > 3 where p > 1, q > 1, and consider the Morita context
M = (A,B,C,D) of matrices of size p × p, p × q, q × p and q × q over R as in

7.1, with associated algebra A =

(
A B
C D

)
= Matn(R). Then V = (B,C) =

(Matpq(R),Matqp(R)) = Mpq(R) is the Jordan pair of p× q matrices over R. It is
easy to see that the group E(M, V ) is indeed the usual elementary group En(R) in
the sense of [17, 1.2C], cf. Example 2.16(c).

Recall [45, 17] that the Steinberg group Stn(R) is the group presented by
generators xij(r) (r ∈ R, i 6= j, i, j ∈ {1, . . . , n}) and relations
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xij(r)xij(s) = xij(r + s), (1)(((((((
xij(r), xjl(s)

)))))))
= xil(rs) for i 6= l, (2)(((((((

xij(r), xkl(s)
)))))))

= 1 for j 6= k, i 6= l, (3)

where r, s ∈ R. To see that Stn(R) is indeed a group over V in the sense of 10.1,
define xσ: V σ → Stn(R) by

x+(u) =
∏

16i6p
16j6q

xi,p+j(uij), x−(v) =
∏

16i6p
16j6q

xp+j,i(−vji), (4)

for u = (uij) ∈ V + und v = (vji) ∈ V −. From the defining relations of Stn(R) it
follows easily that the order of the factors in (4) is immaterial, and that xσ is in
fact a homomorphism of the additive group V σ into Stn(R).

It is well known [17, 1.4C] that there is a homomorphism ψ: Stn(R)→ En(R) =
E(M, V ) satisfying ψ(xij(r)) = 1n+rEij . Combining this with the map π: E(M, V )
→ PE(V ) of 10.3, we have a homomorphism π̃ = π ◦ψ: Stn(R)→ PE(V ) satisfying
π̃ ◦ xσ = expσ. Hence Stn(R) is a group over V . Moreover, Stn(R) is already
generated by x+(V +)∪x−(V −). Indeed, the generators of Stn(R) not contained in
this set are the xij(r) where i, j belongs to {1, . . . , p} or to {p + 1, . . . , p + q}. In
the first case we have, by (2),

xij(r) =
(((((((

xin(r), xnj(1)
)))))))

=
(((((((

x+(rEiq), x−(−Eqj)
)))))))
.

The missing generators of the second type are recovered similarly.
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[5] N. Bardy, Définition abstraite d’un système de racines dans le cas symétrisable, J. Algebra
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