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On Canonical Forms for Two-person Zero-sum Limit Average

Payoff Stochastic Games ∗

Endre Boros† Khaled Elbassioni‡ Vladimir Gurvich§ Kazuhisa Makino¶

Abstract

We consider two-person zero-sum mean payoff undiscounted stochastic games. We give a
sufficient condition for the existence of a saddle point in uniformly optimal stationary strategies.
Namely, we obtain sufficient conditions that enable us to to bring the game, by applying potential
transformations to a canonical form in which locally optimal strategies are globally optimal,
and hence the value for every initial position and the optimal strategies of both players can be
obtained by playing the local game at each state. We show that this condition is satisfied by
the class of additive transition games, that is, the special case when the transitions at each state
can be decomposed into two parts, each controlled completely by one of the two players.

An important special case of additive games is the so-called BWR-games which are played
by two players on a directed graph with positions of three types: Black, White and Random.
We given an independent proof for the existence of canonical form in such games, and use this
to derive the existence of canonical form (and hence of a saddle point in uniformly optimal
stationary strategies) in a wide class of games, which includes stochastic games with perfect
information, switching controller games and additive rewards, additive transition games.

1 Definitions and Notations

1.1 Matrix Games

Given a real matrix M ∈ RI×J , where I and J are sets labeling the rows and columns, respectively,
we consider the corresponding zero-sum matrix game in which M is the payoff matrix. We view
the sets I and J as sets of possible actions (and conveniently also, vectors of pure strategies) of
the players. We consider the row player (player 1, or White) as the maximizer and the column
player (player 2, or Black) as the minimizer, and the matrix entry (M)i,j represents the payoff
what player 1 receives from player 2 if i ∈ I and j ∈ J are the chosen actions. Of course, players
can randomize, and use mixed strategies. Let us denote by

∆(I) = {α ∈ RI |
∑
i∈I

αi = 1, αi ≥ 0 for i ∈ I}

the set of mixed strategies corresponding to the action set I, and denote by

Val (M) = max
α∈∆(I)

min
β∈∆(J)

αMβ = min
β∈∆(J)

max
α∈∆(I)

αMβ
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the value of the game (which always exists and can be computed via linear programming, see von
Neumann [vN28]).

For subsets Q ⊆ ∆(I) and R ⊆ ∆(J) we define the ”restricted” matrix M [Q,R] ∈ RQ×R by

(M [Q,R])α,β = αMβ for all α ∈ Q and β ∈ R,

and introduce
Val
Q×R

(M) = Val (M [Q,R]) .

We call M [Q,R] a restriction of M because we have ∆(Q)I ⊆ ∆(I) and ∆(R)J ⊆ ∆(J), and

max
λ∈∆(Q)

min
δ∈∆(R)

λM [Q,R]δ = max
α∈∆(Q)I

min
β∈∆(R)J

αMβ,

where, for sets S ⊆ ∆(Q) and T ⊆ ∆(R), we use the notation SI = {
∑
α∈Q λαα | λ ∈ S} and

TJ = {
∑
β∈R δββ | δ ∈ T}.

Let us note that this operation is additive, that is if M,M ′ ∈ RI×J and λ, µ ∈ R, then we have

(λM + µM ′) [Q,R] = λ (M [Q,R]) + µ (M ′[Q,R]) . (1)

Let us denote by Ω = Ω(M) ⊆ ∆(I) and by Λ = Λ(M) ⊆ ∆(J) the extremal optimal mixed
strategies of the row player and column player, respectively, in the matrix game with payoff matrix
M . By Shapley and Snow [SS50] we know that both sets Ω and Λ are vertices of bounded polyhedra,
and hence both sets are finite.

Remark 1 The following equalities are well known, and easy to derive:

Val (M) = Val
Ω×Λ

(M) = Val
Ω×J

(M) = Val
I×Λ

(M). (2)

In fact, M [Ω,Λ] is a constant matrix having Val (M) in all its entries, and we have the equalities

Ω(M) = Ω(M [Ω,Λ])I = Ω(M [Ω, J ])I and

Λ(M) = Λ(M [Ω,Λ])J = Λ(M [I,Λ])J .

Remark 2 Let us finally note a few basic properties of matrix games (see []).

• If M ≤ M ′ ∈ RI×J are matrices, λ, δ ∈ R reals, λ ≥ 0, and E ∈ RI×J is the matrix in which
all entries are one, then we have

Val (M) ≤ Val (M ′) and Val (λM + δE) = λ Val (M) + δ. (3)

• Val (M) is a Lipschitz-continuous function in its coefficients.

1.2 Stochastic Games

Stochastic games were introduced in 1953 by Shapley [Sha53] for the discounted case, and extended to
the undiscounted case by Gillette [Gil57]. Each such game Γ = (pvuk` , r

vu
k` | k ∈ Kv, ` ∈ Lv, u, v ∈ V )

is played by two players on a finite set of vertices (states) V ; Kv and Lv for v ∈ V are finite sets of
actions (pure strategies) of the players, rvuk` is the reward player 1 (White) receives from player 2
(Black) if k and ` are the chosen actions and the game moves from state v to state u, and pvuk` is
the transition probability from state v to state u if players chose actions k ∈ Kv and ` ∈ Lv at state
v ∈ V . We assume that the game is non-stopping1, that is∑

u∈V
pvuk` = 1 (4)

1Shapley’s original stochastic games were assumed to have positive stopping probabilities, i.e., at each state v,∑
u∈V pk`vu < 1, and with probability 1−

∑
u∈V pk`vu, the game stops at state v if actions k and ` are selected by the

players.
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for all states v ∈ V and for all choices of actions k ∈ Kv and ` ∈ Lv. To simplify later expressions, let
us denote by P vu ∈ RKv×Lv the transition matrix, the elements of which are the pvuk` probabilities.

We associate in Γ a reward matrix Av to every state v ∈ V defined by

(Av)k` = rvk` :=
∑
u∈V

pvuk` r
vu
k` . (5)

When the game Γ is not clear from the context, we shall write rvuk` (Γ), pvuk` (Γ), Av(Γ), etc.

In the game Γ players first agree on an initial vertex v0 = w ∈ V to start. Then, in a general
step j = 0, 1, ..., when the game arrives to state v = vj ∈ V , they choose strategies αvj ∈ ∆(Kv)
and βvj ∈ ∆(Lv), player 1 receives the amount of

bj = αvjAvβ̄vj

from player 2, and the game moves to the next state u = vj+1 chosen according to the transition
probabilities

pvu(α, β) = αvjP vuβvj . (6)

The undiscounted limit average effective payoff (for player 1), when players play according to
strategies α and β, is the Cesáro average

gw(Γ, α, β) = lim inf
N→∞

1

N + 1

∞∑
j=0

E[bj ], (7)

where the expectation is taken over the random choices made (according to mixed strategies and
transition probabilities) up to step j of the play. (When Γ is clear from the context, we shall simply
write gw(α, β).)

Let δ ∈ [0, 1) be a constant called the discount factor. In the discounted version, the payoff is
discounted by a factor δi at step i of the play, and the δ-discounted payoff is given by the so-called
Abel-sum

gwδ (Γ, α, β) = (1− δ)
∞∑
j=0

δjE[bj ]. (8)

It is well-known that gw(Γ, α, β) = limδ→1 g
w
δ (Γ, α, β) (since the sequence {E[bj ]}∞j=0 is bounded;

see, e.g., [HL31]) .
In both cases, the purpose of player 1 is to maximize gw(Γ, α, β) (respectively, gwδ (Γ, α, β)),

while player 2 would like to minimize it. For brevity in what follows, we will sometimes assume that
δ ∈ [0.1], in which case we use δ = 1 to denote the undiscounted case (for instance, g1(α, β) = g(α, β),
etc). Unless stated explicitly otherwise, we will be considering undsicounted games.

1.3 Stationary Strategies

The strategy of the players is a sequence of mixed strategies, the selection of which may depend
on the history, that is, all previous steps. More precisely, denoting by αvj and βvj the (mixed)
strategies chosen by players 1 and 2 respectively, for j = 0, 1, . . . , i− 1, the strategies αvi and βvi at
the ith step are functions of the sequence v0, α

v0 , βv0 , v1, α
v1 , βv1 , vi−1, α

vi−1 , βvi−1 , vi.
In 1981, Mertens and Neymann in their seminal paper [MN81] proved that every undiscounted

stochastic game has value from any initial position in terms of history-dependent strategies. More
precisely, they showed that for any ε > 0, there exists a pair of (history-dependent) strategies
α(ε), β(ε), such that α(ε) guarantees player 1 a value of at least gv − ε from the starting position v,
while α(ε) guarantees player 2 a value of at most gv + ε from v. This common value gv is called the
value of the game starting from position v. If all the values are equal gv = c for all v ∈ V and some
constant c, we will say that the game is ergodic.

When αvi and βvi depend only on vi, but not on the time or on the preceding positions or moves,
they are called stationary strategies (if they depend only on the time and position, but not on the
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history, they are called Markovian). Let us denote by K(Γ) and L(Γ) the sets of stationary strategies
of White and Black, respectively, that is

K(Γ) =
⊗
v∈V

∆(Kv) and L(Γ) =
⊗
v∈V

∆(Lv). (9)

In this paper we will be concerned mainly with stationary strategies. For this case the mechanism
of the game can be described in a simpler way. To a pair of stationary strategies α = (αv|v ∈ V ) ∈
K(Γ) and β = (βv|v ∈ V ) ∈ L(Γ) we associate a Markov chain M(Γ, α, β) on states in V , defined
by the transition probability matrix P (α, β) = (pvu(α, β))v,u∈V = (αvP vuβv))v,u∈V . Then, this
Markov chain has unique limiting probability distributions Q(α, β) = (qvu(α, β)| u ∈ V ), where
qvu(α, β) is the probability of staying in state u ∈ V when the initial vertex is v ∈ V . Then the
undiscounted and discounted rewards of player 1 starting from vertex v ∈ V can be computed,
repsectively, as

g(α, β) = Q(α, β)a(α, β), (10)

gδ(α, β) = (1− δ)(I − δP (α, β))−1a(α, β), (11)

where gδ(α, β) = (gvδ (α, β))v∈V , a(α, β) = (αuAuβu)u∈V , and I is the |V | × |V | identity matrix.
It is well-known that

lim
δ→1−

(1− δ)(I − δP (α, β))−1 = Q(α, β) (12)

see, e.g., [How60, Bla62, MO70]. Thus, it follows that limδ→1− gδ(α, β) = g(α, β).
The purpose of the (discounted/undiscounted) game now can be formulated as to find stationary

strategies α(v) ∈ K(Γ) and β(v) ∈ L(Γ) for all initial states v ∈ V such that

gvδ (α(v), β(v)) = max
α∈K(Γ)

gvδ (α, β(v)) = min
β∈L(Γ)

gvδ (α(v), β). (13)

We shall denote by gvδ (Γ), v ∈ V , the above optimum values, when exist. The existence of such
values for the discounted case, δ ∈ [0, 1), was shown by Shapley [Sha53].

Let us note that the values gvδ , v ∈ V depend on the entire game, not only on the local parameters.
Typically gvδ (Γ) 6= Val (Av) for all states v ∈ V .

Let us remark that for some (undiscounted) stochastic games we may not have the second
equality in (13), in other words, max min and min max may be different. Furthermore, the function
gv(α, β) as a function of stationary strategies may not be continuous, and and even if the value
sup inf = inf sup exists, we may not have stationary strategies to realize it.

We include here two well known examples to demonstrate some of these difficulties.

Example 1.1 Gilette [Gil57] introduced the so called Big Match game, see Figure 1, to illustrate
that the value in stationary strategies from some initial state may not exist in a stochastic game. In
this game both (1, 0) and (0, 1) in state 1 are optimal stationary strategies for player 1, guaranteeing
0 for him, i.e., 0 = max min. However player 2 can only guarantee 1/2 by choosing (1/2, 1/2) as his
strategy in state 1, implying 1/2 = min max.

Example 1.2 Vrieze [Vri80, Chapter 8] showed an example, see Figure 2, for a stochastic game
which has values, but in which only one of the players has optimal stationary strategies. It is easy
to verify that this game has values g1 = 0 and g2 = 0, and the maximizer has optimal stationary
strategies {(1, 0), (0, 1)}, while the minimizer (player 2) has no optimal stationary strategies. In fact
for every 0 < ε ≤ 1 the strategy (1 − ε, ε) ∈ ∆(L1) guarantees at most ε for the minimizer. In
the limit, if ε → 0 however white can respond by (1, 0) ∈ ∆(K1) providing a value of 1. Thus, the
min max value does not exist in this game, and the minimizer can only guarantee with an appropriate
stationary strategy at most ε for any ε > 0, but not 0.

4



1

0 0

0

0 1

State 1 State 2State 3

Figure 1: This game (Big Match) has three states V = {1, 2, 3}, and zero-one transition probabil-
ities. State 1 has a 2 × 2 payoff matrix, the other two states are absorbing with payoffs equal to 1
and 0, respectively. Arrows in the picture indicate the nonzero transitions, e.g., if player 1 chooses
the first row in state 1, and player 2 chooses the second column, then player 1 earns a local payoff
of 0 and then the game returns to state 1; while if player 1 chooses the second row and player 2
chooses the first column then player 1 earns 0 and then the game moves to state 3, where it gets
stuck forever, providing an effective payoff of 0 for player 1.

1

0 1

2 0

state 1 state 2

Figure 2: In this example we have |K1| = |L1| = 2, and |K2| = |L2| = 1. As before, arcs in the
picture indicate the nonzero transitions, and all transition probabilities are zero or one. This game
has values g = (0, 0) and the maximizer has uniformly optimal stationary strategies. However the
minimizer cannot guarantee 0 with a stationary strategy.

1.4 Potential Transformations

We shall consider a special family of transformations of stochastic games, called potential transfor-
mations. Such a transformed game is looking quite different from the original game in the sense
that the reward matrices of the games at each state are different. However each of these trans-
formed games remain completely equivalent with the original game. Namely, the transformed game
has values if an only if the original one has; it has the same set of stationary (and non-stationary)
strategies, and the values, as defined in (10), remain the same for all pairs of strategies (α, β).

To every vector x ∈ RV , and a discount factor δ ∈ (0, 1], we can associate a potential transfor-
mation by defining new local rewards as

rvuk` (x) = rvuk` + xv − δxu (14)

for all v, u ∈ V , k ∈ Kv, and ` ∈ Lv. This transformation is called discounted if δ < 1 and
undiscounted if δ = 1. Undiscounted trasnsforms were first introduced in 1958 by Gallai [Gal58],
then applied to stochastic games in 1966 by Hoffman and Karp [HK66] and to minimum cycle means
in digraphs in 1978 by Karp [Kar78]. Discounted transforms were first mentioned in [GKK88] (page
87) and then considered in more detail in [ZP96].

Unless otherwise stated, we will be mainly dealing with undiscounted transformations. To indi-
cate this role of the real vector x, we shall call it sometimes a potential vector. We denote by Γδ(x)
the stochastic game which the same transition probabilities as Γ and which has its local rewards
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defined by (14). We can also define the local payoff matrix for Γδ(x) by

(Av(x))k` =
∑
u∈V

pvuk` r
vu
k` (x) =

∑
u∈V

pvuk` (rvuk` + xv − δxu).

In other words, we have

Av(x) = Av + xvJ − δ
∑
u∈V

xuP vu, (15)

where J stands for an all-ones matrix of size |Kv| × |Lv|. Then, given any pair of strategies for the
players, the one step expected payoff amount changes to E[bj(x)] = E[bj ] +E[xvj ]− δE[xvj+1 ], where
vj ∈ V is the (random) position at step j. However, the limit average payoff remains the same for
all finite potentials:

gv0(Γ(x)) = gv0(Γ) + lim
N→∞

1

N + 1
E[xv0 − xvN+1 ] = gv0(Γ) (16)

gv0δ (Γδ(x)) = gv0δ (Γ) + (1− δ)
∞∑
j=0

(δjE[xvj ]− δj+1E[xvj+1 ]) = gv0δ (Γ) + (1− δ)xv0 . (17)

Thus, the transformed game Γδ(x) remains equivalent with the original one.

Remark 3 Note that the equalities (16) and (17) are valid for any pair of history-dependent strate-
gies. In the case of stationary strategies, we can also see directly that potential transformations
do not change the game. Indeed, let us observe that K(Γδ(x)) = K(Γ), L(Γδ(x)) = L(Γ), and for
any pair of stationary strategies (α, β) we get the same Markov chain M(α, β) = M(Γ, α, β) =
M(Γδ(x), α, β) in both games. Consequently, we get the same limiting probability distributions
qvu(α, β) = qvu(Γ, α, β) = qvu(Γ(x), α, β). Thus, writing a(x) = (αvAv(x)βv)v∈V , we get a(x) = a+
(I − δP (α, β))x, and according to (10), the vector of values g(α, β) in Γ(x) can be written as

g(Γ(x), α, β) = Q(α, β)a(x) = Q(α, β) (a+ (I − P (α, β))x)

= Q(α, β)a+Q(α, β)x−QP (α, β)x = Q(α, β)a = g(Γ, α, β).

The fourth equality follows by the fact that Q(α, β) is the limiting distribution. Similarly, for the
discounted case, we have by (11)

gδ(Γ(x), α, β) = (1− δ)(I − P (α, β))−1a(x)

= (1− δ)(I − P (α, β))−1 (a+ (I − P (α, β))x)

= gδ(Γ, α, β) + (1− δ)x.

Thus, the above shows that, indeed, in Γ and Γ(x) we have the same undiscounted values associated
to any pair of strategies, while the discounted values in Γ and Γδ(x) differ by a constant that depends
only on the potential vector but is independent of the strategies.

Given a stochastic game Γ and subsets of strategies Q = {Qv ⊆ ∆(Kv) | v ∈ V } and R = {Rv ⊆
∆(Lv) | v ∈ V }, we define the restriction Γ[Q,R] as the stochastic game with reward matrices
Av[Qv, Rv] and transition probabilities P vu[Qv, Rv], u ∈ V , for all states v ∈ V .

Remark 4 Let x ∈ RV be a potential vector, and let Q and R be subsets of strategies as above.
Then, (1) and (15) imply

Γ(x)[Q,R] ≡ Γ[Q,R](x).
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1.5 Uniformly Best Response

Given a stationary strategy, e.g., of the maximizer α ∈ K(Γ) in a stochastic game Γ, we can compute
for each initial state v ∈ V a best response β(α, v) ∈ L(Γ) of the minimizer, i.e., for which we have

gv(α, β(α, v)) = min
β∈L(Γ)

gv(α, β).

We call β(α) ∈ L(Γ) a uniformly best response of the minimizer, if the equalities

gv(α, β(α)) = min
β∈L(Γ)

gv(α, β)

hold simultaneously for all states v ∈ V . Of course, we can interchange the roles of maximizer and
minimizer, and define analogously the best response of the maximizer.

The following claims are well known. For completeness, we include the proofs in Appendix B.

Lemma 1 In a stochastic game Γ there exists a uniformly best response for every stationary strategy.
In fact this best response can be chosen as a pure strategy at every state.

Let us denote by β(α) and α(β) some arbitrarily chosen uniformly best responses to α ∈ K(Γ)
of the minimizer and to β ∈ L(Γ) of the maximizer, respectively.

Lemma 2 Given a stochastic game Γ and two stationary strategies of the maximizer α, α′ ∈ K(Γ)
there exists a third strategy α′′ ∈ K(Γ) such that

gv(α′′, β(α′′)) ≥ max{gv(α, β(α)), gv(α′, β(α′))} for all v ∈ V.

Analogously, for any two strategies β, β′ ∈ L(Γ) of the minimizer there exists a third strategy β′′ ∈
L(Γ) such that

gv(α(β′′), β′′) ≤ min{gv(α(β), β), gv(α(β′), β′)} for all v ∈ V.

Corollary 1 If in a stochastic game Γ we have max-min strategies α(v) ∈ K(Γ) for all initial states
v ∈ V , then there exists a uniform max-min strategy ᾱ ∈ K(Γ), i.e., for which

min
β∈L(Γ)

gv(ᾱ, β) = max
α∈K(Γ)

min
β∈L(Γ)

gv(α, β) (18)

holds for all states v ∈ V simultaneously. Analogously, if in Γ we have min-max strategies β(v) ∈
L(Γ) for all initial vertices v ∈ V , then there exists a uniform min-max strategy β̄ ∈ L(Γ), i.e., for
which

max
α∈K(Γ)

gv(α, β̄) = min
β∈L(Γ)

max
α∈K(Γ)

gv(α, β) (19)

holds simultaneously for all states v ∈ V .

Proof It is enough to prove the statement for the maximizer, since the claim is symmetric. By
applying Lemma 2 repeatedly, we can derive the existence of a strategy ᾱ ∈ K(Γ) such that

gv(ᾱ, β(ᾱ)) ≥ max{gv(α(u), β(α(u))) | u ∈ V } = gv(α(v), β(α(v)))

holds for all v ∈ V . Since α(v) is a max-min strategy for initial state v, we must have equalities in
the above relations for all states v ∈ V . In other words, ᾱ provides the best value for the maximizer
in all states simultaneously, and hence it is a uniform max-min strategy. �

The following claim states that if a pair of stationary strategies have the property that each
player is playing optimally against the opponent’s stationary strategies, then it remains optimal,
even if each the opponent is given the full power of playing history-dependent strategies.
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Corollary 2 Suppose that for some state v and for a pair of stationary strategies (ᾱ, β̄) ∈ K(Γ)×
L(Γ), it holds that

max
α∈K(Γ))

gv(Γ, α, β̄) = min
β∈L(Γ)

gv(Γ, ᾱ, β) = gv(Γ, ᾱ, β̄).

Then (ᾱ, β̄) are optimal strategies and gv(Γ, ᾱ, β̄) is the value of the game starting from state v.

Proof This follows from the fact that if we fix one player’s strategy, say ᾱ, then we obtain a Markov
decision process, in which there is an optimal stationary strategy. In other words, minβ g

v(Γ, ᾱ, β) =
minβ∈L(Γ) g

v(Γ, ᾱ, β), where the first minimum is over history-dependent strategies (See Appendix
B.) �

1.6 Uniformly Optimal Strategies

A stochastic game is called subgame perfect, if it has stationary strategies ᾱ ∈ K(Γ) and β̄ ∈ L(Γ)
for which

gv(ᾱ, β̄) = max
α∈K(Γ)

gv(α, β̄) = min
β∈L(Γ)

gv(ᾱ, β) (20)

holds simultaneously for all states v ∈ V . Such stationary strategies are called uniformly optimal.
The following claim is well known.

Corollary 3 If in a stochastic game Γ we have both max-min and min-max strategies and they
provide the same gv value for all initial states v ∈ V , then Γ is subgame perfect.

Proof By Corollary 1 we have stationary strategies ᾱ and β̄ satisfying (18) and (19). If we
additionally assume that the the max-min and min-max values are the same gv for every state
v ∈ V then we must have gv = gv(ᾱ, β̄) for all states v ∈ V , implying that these strategies are
uniformly optimal. �

The main focus of this paper is to prove the existence of a canonical form (which will be defined
in Section 2) for some classes of stochastic games. We know that the existence of the canonical form
for a stochastic game Γ implies by a theorem of Vrieze [Vri80, Theorem 8.1.8] that Γ is subgame
perfect (for an independent proof see Theorem 1 below). Therefore, we may restrict our attention,
without any loss of generality to subgame perfect games, that is, to games satisfying the condition

(A1) Γ has values g ∈ RV and uniformly optimal stationary strategies ᾱ ∈ K(Γ) and β̄ ∈ L(Γ) for
the maximizer and minimizer, respectively.

1.7 Special Cases

The following classes of stochastic games are known to be solvable in uniformly optimal stationary
strategies:

• Stochastic games with perfect information (PI-games): in this class, introduced by Gillette
[Gil57], the set of states is partitioned in two sets V = VW ∪ VB ; VW is controlled by White,
and VB is controlled by Black. It is assumed that |Lv| = 1 for all v ∈ VW and |Kv| = 1 for
all v ∈ VB . The fact that a saddle point exists in pure positional strategies, in this class of
games, was proved by Gillette [Gil57] and Liggett and Lippman [LL69]. If one of the sets VB
or VW is empty, we obtain a Markov decision process; see, for example, [MO70], and if both
are empty VB = VW = ∅, we get a weighted Markov chain.
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• BWR-games: In [BEGM09], we considered another special class of games, which was first
suggested in [GKK88], and recently considered under the name of Stochastic Mean payoff
games in [CH08], and which is (polynomially)equivalent with the class of PI-games. Each
such game, which we call a BWR-game, is played by two players, White and Black, on an
arc-weighted directed graph G = (V = VB ∪ VW ∪ VR, E), with given local rewards r ∈ RE
and 3 types of vertices: Black VB , controlled by Black; White VW , controlled by White; and
Random VR, controlled by nature. When the play is at a white (black) vertex, White (resp.,
Black) selects a outgoing arc and Black pays White the reward on that arc. When the play
is at a random vertex v, a vertex u is picked with specified probability pvu and again Black
pays White the value rvu on the arc (v, u). The play continues forever, and White aims to
maximize (Black aims to minimize) the limiting average payoff, defined as in (7). The special
case when there are no random nodes, is known as cyclic games or mean payoff games (or BW-
games), which were initially considered for complete bipartite digraphs in [Mou76b, Mou76a],
for all (not necessarily complete) bipartite digraphs in [EM79], and for arbitrary digraphs in
[GKK88]. A further special case of this was considered extensively in the literature under the
name of parity games [BV01a, BV01b, CJH04, Hal07, Jur98, JPZ06], and later generalized
also to include random nodes in [CH08]. The game is reduced to the minimum mean cycle
problem in case VW = VR = ∅, see for example [Kar78]. In the special case of a BWR-game
when all rewards are zero except at a single node t called the terminal, at which there is a
self-loop with reward 1, we obtain the so-called simple stochastic games (SS-game), introduced
by Condon [Con92]. In these games, the objective of White is to maximize the probability of
reaching the terminal while Black wants to minimize this probability.

• Switching controller games (SC-games): in this class, suggested first by Maschler (see Filar
[Fil81]), the set of states is partitioned in two sets VW , VB : it is assumed that pvuk` = ψvuk for
all v ∈ VW and pvuk` = γvu` for all v ∈ VB , that is, the transition probabilities at VW and VB are
controlled by White, and Black, respectively. The existence of a saddle point in uniformly
optimal stationary strategies was shown by Filar [Fil81] and Bewley and Kohlberg [BK78].
Clearly this class includes the class of PI-games.

• Additive rewards, additive transition probabilities (ARAT-games): this is the case when, for
all v ∈ V , rvk` = qvk + sv` , and pk`vu = λvψvuk + (1− λv)γvu` , for some constants 0 ≤ λv ≤ 1, that
is, both the rewards and transition probabilities are separable into two parts, one controlled
by White, and the other controlled by Black. The existence of a saddle point in uniformly
optimal stationary strategies was shown by Raghavan, Tijs and Vrieze [RTV85]. This class
also includes the class of PI-games.

• Additive transition probabilities (AT-games): in this case, only the transition probabilities are
separable, that is, for all v ∈ V , pk`vu = λvψvuk + (1 − λv)γvu` , for some constants 0 ≤ λv ≤ 1.
This class generalizes both SC-games and ARAT-games. The fact that saddle point exists in
uniformly optimal stationary strategies was only shown quite recently by Flesch, Thuijsman
and Vrieze [FTV07].

A class of stochastic games is said to possess the ordered field property if for any game in the class,
with rational rewards and transition probabilities, there exists a rational pair of optimal strategies.
Among the above classes, only SC-games (and hence PI- and BWR-games), and ARAT-games are
known to have this property. On the other hand, for AT-games, there exists an example showing
that this property does not hold [RTV85]. The interest in the ordered filed property stems from the
fact that the accuracy ε needed to solve the game is bounded exponentially in the input size, and
hence any algorithm that runs in time polynomial in log 1

ε (and the other input parameters) and
approximates the game value within ε will be weakly polynomial.

1.8 Value Vectors in Stochastic Games

In the sequel we shall assume that the stochastic game Γ has values in stationary strategies. Then,
we can associate to every state v ∈ V its value gv. In the sequel our main focus will be on determining
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these values, or for a given vector g ∈ RV to verify if that is indeed the vector of values of the given
game. To emphasize this role of the vector g, we shall call it sometimes a value vector.

To a stochastic game Γ and a value vector g ∈ RV , we associate the value matrices Gv(g) ∈
RKv×Lv for all states v ∈ V , defined as follows:

(Gv(g))k` =
∑
u∈V

pvuk` g
u. (21)

If the value vector g is indeed the vector of values of Γ, then we shall also refer to Gv(g) as Gv(Γ),
or simply Gv when it is not ambiguous.

To an arbitrary value vector g ∈ RV let us associate K̄v = K̄v(g) = K̄v(g,Γ) = Ω(Gv(g)) ⊆
∆(Kv) and L̄v = L̄v(g) = L̄v(g,Γ) = Λ(Gv(g)) ⊆ ∆(Lv), the sets of extremal optimal mixed
strategies, for all states v ∈ V as defined in Subsection 1.1. It is easy to see that a necessary
condition for g to be the vector of values, in stationary strategies ᾱ ∈ K(Γ) and β̄ ∈ L(Γ), is that

gv = Val (Gv(g)), and αv ∈ K̄v and βv ∈ L̄v for all states v ∈ V . (22)

It was shown by Federgruen [Fed80] (see also Vrieze [Vri80, Lemma 8.1.3]) that every ergodic
stochastic game satisfying condition (A1) has a potential transformation such that the local value
becomes equal to the global value at each state. We will need a slightly reformulated version, thus
for the sake of completeness, we restate this claim and provide a short proof in the appendix.

Lemma 3 Assume that a stochastic game Γ satisfies condition (A1) and let g = g(Γ) ∈ RV be its
value vector. Then, there exists a potential vector x ∈ RV satisfying

gv = Val (Av(x)) for all states v ∈ V. (23)

Proof See Appendix C. �

Let us note that equalities (23) does not imply the existence of a canonical form, in general.
Though such a potential transformation is helpful in the sense that the local matrix game values
are equal with the global values achievable from the given state, it may still be very difficult to
verify if those values are indeed the global game values, and finding the optimal stationary strategy
remains also difficult. The following example demonstrates that despite the above equalities, the
locally (unique) optimal strategies may still be far from being globally optimal.

Example 1.3 In Figure 3 we show a small BW game which satisfies the value equalities in (23)
with the zero potential, and in which the locally optimal (unique) strategies are not globally optimal.

1 32 21
0

10

-10

0
-1

Figure 3: In this BW game we have 4 states, white nodes representing states controlled by the
maximizer and black (gray) states are controlled by the minimizer. All transitions are zero or one.
Local rewards are indicated along the arcs. In this example with x = 0 ∈ R4 we have the equalities
(23) hold with values g = (1, 0, 0,−1) for the states. Thick arcs in the picture indicate the locally
optimal strategies, which are however not globally optimal, since they provide e.g., for states 2 and
3 the incorrect values of 1 and −1, respectively. The optimal strategies are in fact the thin arcs
(2, 3) and (3, 2) from these states, guaranteeing the correct 0 value for them.

Remark 5 For discounted stochastic games, a saddle point always exists in uniformly optimal
strategies, and the vector of values gδ satsifies the so-called Shapley equations [Sha53]:

gvδ = Val ((1− δ)Av + δGv(gδ)), for all v ∈ V . (24)
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2 Canonical Form

Let Γ = (pvuk` , r
vu
k` | k ∈ Kv, ` ∈ Lv, v, u ∈ V ) be a stochastic game. We will consider the following

properties:

(B1) There is a potential transformation x ∈ RV such that every locally optimal pair of strategies
in Γ(x) is also globally optimal, and the local and global values are equal at each state, that
is, ∀ᾱ, β̄ ∈ K(Γ)× L(Γ):(

max
αv∈∆(Kv)

αvAv(x)β̄v = min
βv∈∆(Lv)

ᾱvAv(x)βv = ᾱvAv(x)β̄v ∀v ∈ V
)
⇒(

max
α∈K(Γ)

gv(Γ, α, β̄) = min
β∈L(Γ)

gv(Γ, ᾱ, β) = gv(Γ, ᾱ, β̄) = ᾱvAv(x)β̄v ∀v ∈ V
)
.

(B2) There exist g ∈ RV and two potential vectors x, y ∈ RV such that for all v ∈ V, there is an
optimal pair of strategies for Gv that guarantees White and Black, respectively, a value of
gv = Val(Gv(g)) in the transformed games Av(x) and Av(y):

∀v ∈ V : gv = Val
Kv×Lv

(Gv(g)) = Val
K̄v(g)×Lv

(Av(x)) = Val
Kv×L̄v(g)

(Av(y)). (25)

(B3) There exist g ∈ RV and a potential vector x ∈ RV such that (B2) is satisfied with x = y, that
is, for all v ∈ V, there is an optimal pair of strategies for Gv, which is also optimal for the
transformed matrix game Av(x), and gv is the value of both matrix games:

∀v ∈ V : gv = Val
Kv×Lv

(Gv(g)) = Val
K̄v(g)×Lv

(Av(x)) = Val
Kv×L̄v(g)

(Av(x)).

(B4) There exist g ∈ RV and a potential vector x ∈ RV such that for all v ∈ V, every optimal pair
of strategies for Av(x) is also optimal for Gv(g), and gv is the value of both matrix games:

(B4-i) ∀v ∈ V : gv = Val
Kv×Lv

(Gv(g)) = Val
Kv×Lv

(Av(x)),

(B4-ii) ∀v ∈ V : Ω(Av(x))× Λ(Av(x)) ⊆ Ω(Gv(g))× Λ(Gv(g)).

(B5) There exist g ∈ RV , a potential vector x ∈ RV , and a pair of strategies (ᾱ, β̄) ∈ Ω(Gv(g)) ×
Λ(Gv(g)), such that

∀v ∈ V : gv = Val
Kv×Lv

(Gv(g)) = Val
{ᾱv}×L̂v

(Av(x)) = Val
K̂v×{β̄v}

(Av(x)),

where K̂v = {k ∈ Kv : (Gv(g)β̄v)k = gv} and L̂v = {` ∈ Lv : (ᾱvGv(g))` = gv}.

(B6) There exists a potential vector x ∈ RV such that

∀v ∈ V : gv(Γ) = Val
Kv×Lv

(Av(x)).

Theorem 1 The following implications hold for any stochastic game Γ:

[I1]: (A1) ⇔ (B2) [I2]: (B3) ⇒ (A1) [I3]: (B4) ⇒ (B3)
[I4]: (B1) ⇔ (B4) [I5]: (B5) ⇒ (B3) [I6]: (A1) ⇒ (B6)

Proof of [I1]. This is Theorem 8.1.8 in [Vri80]. We give an elementary proof of the implication
(B2)⇒ (A1) in the appendix.

Proof of [I2]. It follows immediately from [I1] by setting x = y in (B2).
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Proof of [I3]. This follows immediately since (B4-ii) implies

Val
Kv×Lv

(Av(x)) = Val
K̄v×Lv

(Av(x)) = Val
Kv×L̄v

(Av(x)).

Proof of [I4]. Suppose that (B1) holds. Then there exist g, x ∈ RV such that for all ᾱ ∈ K(Γ),
β̄ ∈ L(Γ), and all states v ∈ V , if ᾱvAv(x)βv ≥ gv for all βv ∈ ∆(Lv) and αvAv(x)β̄v ≥ gv for
all αv ∈ ∆(Kv), then gv(Γ) = gv(Γ, ᾱ, β̄) = gv. In view of (22), the latter statement implies that
gv = Val (Gv(g)) and (ᾱ, β̄) is an optimal pair of strategies in the matrix game Gv(g). Thus, we
get (B4).

Suppose on the other hand that (B4) holds. Let us choose for every state v ∈ V , an arbi-
trary pair of locally optimal strategies (ᾱv, β̄v) in the matrix game Av(x). By the implications
(B4)⇒(B3)⇒(B2)⇒(A1) (and the proof of (B2)⇒(A1)), it follows that (ᾱ, β̄) is a globally optimal
strategy guaranteeing the vector of values g in Γ .

Proof of [I5]. Note that the g, x, ᾱ, β̄ satisfy

(ᾱvGv(g))` ≥ gv for all ` ∈ Lv, and (Gv(g)β̄v)k ≤ gv for all k ∈ Kv, (26)

(ᾱvAv(x))` ≥ gv for all ` ∈ L̂v, and (Av(x)β̄v)k ≤ gv for all k ∈ K̂v. (27)

In order to satisfy (B3), we modify the vector of potentials x into x̂ = x − C · g, where C ≥ 0
is chosen sufficiently large. Clearly, it is enough to show that (ᾱvA

v(x̂))` ≥ gv for all ` ∈ Lv and
(Av(x̂)β̄v)k ≤ gv for all k ∈ Kv. We show the first set of inequalities; the second set can be shown
similarly.

Consider any ` ∈ Lv; then (ᾱvAv(x̂))` = (ᾱvAv(x))`−C(gv − (ᾱvGv(g))`). Thus, if ` ∈ L̂v, then
(ᾱvAv(x̂))` = (ᾱvAv(x))` and hence (27) already implies the claim. On the other hand, if ` 6∈ L̂v,
then (26) implies that gv − (ᾱvGv(g))` < 0, and hence the statement follows if we choose C ≥ 0
sufficiently large.

Proof of [I6]. This is just Lemma 3 above. �

The central definition of this paper is the following.

Definition 1 We say that a stochastic game Γ admits a canonical form if satisfies property (B1)
(or equivalently(B4)).

It is known that for cyclic games (the case of BWR-games when VR = ∅), there exists such
a transformation such that, in the transformed game, the locally optimal strategies are globally
optimal, and hence, the value and optimal strategies become obvious [GKK88]. For the special
case of Markov decision processes (the case of PI-games when VB or VW is empty), the potentials
mentioned in the theorem correspond to the dual variables in the standard linear programming
formulation; see e.g. [MO70] and also Appendix B.

As illustrated in Example 1.3, property (B6) is not sufficient to imply (B1). In the ergodic case,
i.e., when all the values are equal, it becomes sufficient. This suggests the following defintion.

Definition 2 We say that a discounted/undiscounted stochastic game Γ admits an ergodic canonical
form if there exist a constant c ∈ R and a potential vector x ∈ RV such that

∀v ∈ V : c = Val
Kv×Lv

(Av(x)). (28)

If game admits an ergodic canonical form, then it easy to see that property (B1) holds.

Proposition 1 If a discounted/undiscounted stochastic Γ game admits an ergodic canonical form
(28) then (i) every locally optimal strategy is globally optimal and (ii) If δ = 1, the game is ergodic:
c is its value for every initial position v0 ∈ V .
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Proof Let us apply the potential transformation x that brings Γ to ergodic canonical form (28).
Now consider the game Γδ(x). If White (Black) applies a locally optimal strategy then after
every own move (s)he will get (pay) an expected value of c, while for each move of the opponent the
expected local reward will be at least (at most) c. Thus, if both players choose their locally optimal
strategies then the expected local reward bi equals c for every step i. Hence, the δ-discounted value
is (1− δ)

∑∞
i=0 cδ

i = c for each δ ∈ [0, 1) and its limit, as δ → 1−, which is the undiscounted value
equals c, too. The statements then follow from (16) and (17). �

In Section 5 we will give an algorithmic proof for the existence of canonical form for the discounted
case.

Theorem 2 Given a stochastic game Γ and discount factor δ < 1, there is a discounted potential
transformation (14) reducing Γ to an ergodic canonical form.

The existence of canonical form may give rise to new algorithms for solving stochastic games.
For instance, in the absence of random positions in a BWR-game (that is, for a BW-game), a
pseudo-polynomial algorithm reducing the game to canonical form was given in [GKK88], see also
[Pis99]. For BWR-games with constant number of random nodes, a pseudo-polynomial algorithm
was given in [BEGM10b] to reduce any ergodic BWR-game to canonical form, and this algorithm has
been extended in [BEGM11] to general ergodic stochastic games (whenever they admit a canonical
form). We note these algorithms do not go through discounting, and thus yield direct algorithmic
proofs of the existence of canonical form in the ergodic case. Obtaining a similar direct result and
a corresponding algorithm in the general case remains a challenging open problem.

Remark 6 Canonical forms can also be motivated by the so-called certifying algorithms (see e.g.
[KMMS03]). For instance, if the game satisfies (B1) then the potential x can be used as a certificate
for optimality: to do this, we transform the game and then compute, at each state v, a locally optimal
pair of strategies (αv, βv). This gives a vector of values g, with gv being the value of the local game
at state v. Once, we have g and a pair of strategies (α, β), we can verify optimality by solving two
Markov decision processes. If a game satisfies (B2) (or (B3)), then to certify optimality one needs,
in addition to the potential vectors x and y, the global vector of values g, and a pair of locally optimal
strategies (α, β).

Remark 7 It is worth noting that the decision problem of checking if a game Γ satisfies (B2) is
in NP, since given x, y, g ∈ RV , we can verify (25) by solving a pair of linear programs. A similar
remark holds for checking (B4-i), given x, g ∈ RV . Checking (B4-ii) requires checking if the polytopes
Ω(Av(x)) and Λ(Av(x)) (given by their facet descriptions) are subsets of Ω(Gv(g)) and Λ(Gv(g)),
respectively. This can be done by solving a number of O(|Kv|+ |Lv|) linear programs.

3 A Sufficient Condition for the Existence of Canonical Form
in Stochastic Games

In this section we provide a sufficient condition for the existence of the canonical form in subgame
perfect stochastic games.

Let us assume now that Γ satisfies condition (A1), and consider the value vector g = g(Γ),
the corresponding value matrices Gv = Gv(Γ), and strategy sets K̄v = K̄v(Γ) = Ω(Gv(Γ)) and
L̄v = L̄v(Γ) = Λ(Gv(Γ)) for all states v ∈ V .

We shall show in this section that Γ can be brought to its canonical form by a suitable potential
transformation if, in addition to (A1), one of the following condition holds:

(A2) There exists an ε > 0, such that for all states v ∈ V and for all strategies ᾱv ∈ K̄v, β̄v ∈ L̄v
we have

(ᾱvGv(g))` ≥ gv + ε for all ` ∈ Lv \ L̄v, and(
Gv(g)β̄v

)
k
≤ gv − ε for all k ∈ Kv \ K̄v.
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Let us remark that given a value vector g ∈ RV condition (A2) can be tested efficiently by using
linear programming (and by using a rational approximation of the potentially irrational gv values).

We are ready now to state the main result of this section.

Theorem 3 If a stochastic game Γ satisfies conditions (A1) and (A2), then it admits a canonical
form (in short, (A1)∧(A2)⇒(B1)).

In the rest of this section, we give a proof of Theorem 3, an use it in the next section to show that
AT-games admit a canonical form. In Section 5, we show that every discounted stochastic game can
be brought into canonical form by a potential transformation, and use this fact in Section 6 to give
an independent proof (which does not use the result in [FTV07]) that AT-games satisfy condition
(A1)) that undiscounted BWR-games also admit a canonical form. We shall then use this result
to give an independent proof that PI-games, SC-games, and ARAT-games (which satisfy condition
(A2)) admit a canonical form.

Proof of Theorem 3. Let us first consider the strategy sets K∗ = {K̄v(Γ) | v ∈ V } and L∗ =
{L̄v(Γ) | v ∈ V }, and define the restricted game Γ∗ = Γ[K∗,L∗] as in Section 1.4.

Let us then note by (22) that Γ∗ has the same vector of values g as Γ and has the same set of
optimal stationary strategies. Consequently, any uniformly optimal strategy of Γ is also uniformly
optimal for Γ∗. Thus, since Γ satisfies condition (A1), so does Γ∗. Therefore, we can apply Lemma
3 for the stochastic game Γ∗ and obtain a potential vector x ∈ RV satisfying

gv = Val (Av[K∗,L∗](x)) = Val (Av(x)[K∗,L∗]) for all states v ∈ V, (29)

where the second equation follows by Remark 4.
Let us next apply a special potential transformation, modifying the potential vector by

x̂ = x − Cg

for a suitably large constant C ≥ 0.
We claim that for all ᾱv ∈ K̄v(g) and β̄v ∈ L̄v(g) and suitably large C we have

(ᾱvAv(x̂))` > gv for all ` ∈ Lv \ L̄v(g) and(
Av(x̂)β̄v

)
k

< gv for all k ∈ Kv \ K̄v(g).
(30)

for all states v ∈ V .
To see these, let us note that for αv ∈ K̄v(g) ∪Kv and βv ∈ L̄v(g) ∪ Lv we have the equality

(αAv(x̂)β) = (αAv(x)β)− C (gv − (αGv(g)β)) (31)

by the above definition of x̂. Thus, condition (A2) implies that the last term above can be made
positive for (α, β) = (ᾱ, `) and negative for (α, β) = (k, β̄). Thus, since we have only finitely many
such pairs, with a suitably large constant C, we can insure that inequalities (30) are satisfied.

Let us remark that (30) (together with (29)) means that the maximizer cannot locally gain by
using a pure strategy k ∈ Kv \ K̄v(g) with some positive weight αk > 0 in a mixed strategy α, and
similarly the minimizer cannot locally gain form using strategies ` ∈ Lv \ L̄v(g). In other words, for
all ᾱv ∈ K̄v(g), β̄v ∈ L̄v(g), αv ∈ ∆(Kv) \ K̄v(g) and βv ∈ ∆(Lv) \ L̄v(g) we have(

αvAv(x̂)β̄v
)
< gv and (ᾱvAv(x̂)βv) > gv. (32)

This implies that both conditions of (B4) hold, and hence by [I4], the potential transformation with
x̂ provides a canonical form for Γ. �

Corollary 4 If a stochastic game satisfies conditions (B3) and (A2), then it has a canonical form
(that is, (B3)∧(A2)⇒(B1)).
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Proof The proof of Theorem 3 actually shows that from the conditions of (B3) with the same
arguments we can derive the validity of (32), and hence proving the existence of a canonical form.
(It also immediately follows from Theorem 3 and the implication [I2].) �

Example 3.1 Vrieze [Vri80, Chapter 8] showed an example, see Figure 4, for a stochastic game
which has values and uniformly optimal stationary strategies, and which has no canonical form. We
can see that condition (A2) is violated. In this game we have V = {1, 2, 3}, states 2 and 3 are
absorbing with |K2| = |K3| = |L2| = |L3| = 1, while in state 1 we have |K1| = |L1| = 3. The reward
matrix of state one is shown in Figure 4 together with the transition probabilities which are all zero
or one.

This game has values, g = (0,−1, 1), and unique uniformly optimal stationary strategies, namely
α1 = ( 1

2 ,
1
2 , 0) and β1 = ( 1

2 ,
1
2 , 0), and the trivial strategies in states 2 and 3. We have

G1 =

 0 0 1
0 0 −1
1 −1 0

 .

For a potential vector x ∈ RV we can assume w.l.o.g. that x1 = 0, and thus we have

A1(x) =

 1 −1 −1− x3

−1 1 −1− x2

1− x3 1− x2 0

 .

Here K̄1 = {( 1
2 ,

1
2 , 0), (1, 0, 0)}, L̄1 = {( 1

2 ,
1
2 , 0), (0, 1, 0)}, and only the first vectors are optimal in the

matrix game with payoffs A1(x) (for any potential transformation), and thus α1 and β1 given above
are the unique optimal strategies. For the canonical form for some potential vector x ∈ RV (x1 = 0)
we would need the inequalities that α1A1(x) ≥ 0 and A1(x)β1 ≤ 0, implying that −1 − x2+x3

2 ≥ 0
and 1− x2+x3

2 ≤ 0, leading to a contradiction. Consequently, this example does not have a canonical
form.

4 Stochastic Games with Additive Transitions

Recall that is this case, each player controls a part of the transition probabilities. More precisely, let
Γ be a stochastic game, and assume that for each possible transition (v, u) ∈ V there are probability
distributions ψvu ∈ [0, 1]K

v

and γvu ∈ [0, 1]L
v

such that

pvuk` = λvψvuk + (1− λv)γvu` (33)

holds for all strategies k ∈ Kv and ` ∈ Lv with some constants 0 ≤ λv ≤ 1, for all states v ∈ V .
Recently Flesch, Thuijsman and Vrieze [FTV07] showed that AT games satisfy condition (A1).

We are going to show here that they also satisfy condition (A2), and hence admit a canonical form.

Lemma 4 AT games satisfy condition (A2).

Proof Let us consider an AT game Γ with transition probabilities as in (33), and denote by g = g(Γ)
its value vector. Let us fixe a state v ∈ V and define vectors d ∈ RKv

and f ∈ RLv by

dk =
∑
u∈V

ψvuk gu and f` =
∑
u∈V

γvu` gu

for all k ∈ Kv and ` ∈ Lv. Let us then observe that for any strategies αv ∈ ∆(Kv) and βv ∈ ∆(Lv)
we have the equation

αvGvβv = λvαvd + (1− λv)fβv.
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state 1 state 2 state 3

1

-1

1

-1

1

1

-1

-1

0

-1

1

Figure 4: In this game Γ we have |V | = 3 states, |K1| = |L1| = 3, |K2| = |L2| = 1, and |K3| =
|L3| = 1. The numbers in the state matrices are the local rewards. All transition probabilities are
zero or one, and arcs in the picture indicate the probability 1 transitions. The thick arc in the
picture indicates that for pairs of strategies from the top left 2× 2 area in state 1 the game remains
in state 1 with probability 1. This game has values and uniformly optimal stationary strategies, but
it does not have a canonical form.

Let dmax = maxk∈Kv dk and fmin = min`∈Lv f`, set Iv = {k ∈ Kv | dmax = dk} and Jv = {` ∈ Lv |
fmin = f`} Then we have K̄v = ∆(Iv) and L̄v = ∆(Jv), for all states v ∈ V . Furthermore, if we
choose ε > 0 such that it satisfies the inequalities

ε ≤ dmax − dk and ε ≤ f` − fmin

for all indices k ∈ Kv \ Iv and ` ∈ Lv \ Jv and for all states v ∈ V , then (A2) follows. �

Corollary 5 AT games admit a canonical form.

Proof Immediate by Theorems 3 and 4. �

Let us also note that computing the values and the canonical form of an AT-game looks even
more difficult than for the other known classes when canonical form exists. The main reason is
that AT-games may have irrational values, irrational potentials and irrational coefficients in the
uniformly optimal strategies.

Example 4.1 Rhagavan, Tijs and Vrieze [RTV85] showed an example, see Figure 5, for an AT
game in which the optimal values and strategies are irrational. This example is ergodic, with states
V = {1, 2} and values g1 = g2 = −(6 −

√
30)2. The vector x = (0, 22 − 4

√
30) is a potential

transformation providing the canonical form for this example. We have K1 = K2 = L1 = L2 =

{1, 2}, and the strategies α1 = β1 = (−4+
√

30
2 , 6−

√
30

2 ), and α2 = β2 = (−9+2
√

30
3 , 12−2

√
30

3 ) are the
uniformly optimal stationary strategies.
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State 1 State 2

0

1 0

-1
1
2

1
2

-1
1
2

1
2

2

0 1

0

1 0

-1
1
2

1
2

-1
1
2

1
2

1

0 1

Figure 5: This example has two states with |K1| = |L1| = |K2| = |L2| = 2. In each cell in the figure
we have the reward in the top left corner, while the transition probabilities to states 1 and 2 (in
this order) are in bottom right area. This is an ergodic AT-game with irrational values and optimal
strategies.

5 Canonical Form for Discounted Games: An Algorithmic
Proof

Let us note that the existence of canonical form for the discounted case follows immediately from the
fact that the vector of values gβ satisfies the Shapley equations (5). Indeed, let us use the potentials
x = −gδ

1−δ in (40). Then it follows from (3), (15) and (24) that

Val [Av(x)] = Val [Av − gvδ
1− δ

J +
δ

1− δ
Gv(gδ)]

=
1

1− δ
Val [(1− δ)Av + δGv(gδ)]−

gvδ
1− δ

= 0.

Thus, after the transformation, all the local values are equal to c = 0, and a locally optimal strategy
at each position achieves this local value. Proposition 1 implies that the transformed game is in
canonical form.

In the rest of this section, we give a pseudo-polynomial-time algorithm, that brings any δ-
discounted game which satisfies the ordered field property into canonical form by repeatedly applying
potential transformations. More precisely, the running time of the algorithm is polynomial in the
total number of bits needed to represent the rewards and the transition probabilities, 1

1−δ , and log 1ε,
where ε is the necessary accuracy at which we can guarantee that function mx(v) := Val [Av(x)] is
constant for all v.

Given a δ-discounted stochastic game Γ = (pvuk` , r
vu
k` | k ∈ Kv, ` ∈ Lv, u, v ∈ V ), let [r] = [r− :

r+] denote the range of the local rewards, that is, r+ = max{rvuk` | v, u ∈ V, k ∈ Kv, ` ∈ Lv} and
r− = min{rvuk` | v, u ∈ V, k ∈ Kv, ` ∈ Lv}, Similarly, let [mx] = [m−x : m+

x ] denote the range of
the function m. We will find a potential x such that function mx : V → R is constant, that is,
m−x = m+

x .

The following simple procedure reduces |[mx]| def
= m+

x −m−x to within an arbitrary accuracy ε.

Algorithm 1 Pumping algorithm

Input: a δ-discounted game Γ, an accuracy ε, and two parameters a, b ∈ [0, 1].
Output: a potential x : V → R s.t. |mx(v)−mx(u)| ≤ ε for all u, v ∈ V

initialize x = 0
while |[mx]| ≥ ε do

for all v s.t. xv ≥ m−x + a|[mx]| do
xv := xv − b|[mx]|

end for
end while
return x
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Lemma 5 When run with a = b = 1
2 , the above procedure terminates in N = log |[r]|−log ε

1−log(1+β) iterations.

Proof We show that the range of m decreases in each iteration by a factor

c =
1 + δ

2
= 1− 1− δ

2
. (34)

In fact, a, b will be chosen such that this is the maximum possible decrease in one iteration. Without
loss of generality, we can assume that [m0] = [0, 1] is the unit interval. Indeed, if [m0] is just one
point then the game is already in an ergodic canonical form and the problem is solved; otherwise,
there is a unique (bijective) linear map of [m0] onto [0, 1], that can be applied to the local rewards
without changing the set of locally optimal strategies.

Given two parameters a, b ∈ [0, 1], let us define potential x = xa,b as follows: xv = −b for a
vertex v ∈ V whenever m0(v) ≥ a and xv = 0 otherwise. We will show that the optimal choice
a = b = 1

2 results in [mx] = [0, c], where c is given by (34).

Indeed, it is easy to verify using (3) that

(1− δ)b ≤ m0(v)−mx(v) ≤ b if m0(v) ≥ a, while

0 ≤ mx(v)−m0(v) ≤ δb if m0(v) < a.

Clearly, a ≥ b should hold, since otherwise mx(v) could become negative for a vertex v such
that m0(v) = a. On the other hand, to get the largest decrease in range, we have to minimize c
subject to mx(v) 6∈ [c, 1] for all v ∈ V . Hence, c ≥ a+ δb and c ≥ 1− (1− δ)b. To optimize, we set
a+ δb = 1− (1− δ)b which results in a+ b = 1.

Finally, we have to minimize c = a+δb subject to 0 ≤ b ≤ a, a+b = 1, and 0 ≤ δ ≤ 1. Obviously,
the optimal c is given by (34) when a = b = 1

2 .

Thus, in one iteration the range [m0] is reduced at least by the factor (34). Using [m0] ⊆ [r], we
must have, after N iterations,

|[mx]| ≤ |[r]|
(

1 + β

2

)N
≤ ε, (35)

by our choice of N . �

Clearly, the above procedure converges to a canonical form as ε→ 0. Furthermore, for games with
the ordered field property, such as BWR-games, an ARAT-games, and SC-games, we can use (11)
to estimate the necessary accuracy at which we can guarantee that function mx is constant. For
instance given a BWR-game, let us assume that (i) β = 1−B′/B ∈ [0, 1) is a rational number; (ii)
all local rewards, are integral in the range [−R,R]; (iii) probabilities pvuk` are rational numbers with

the least common denominator D. Then it is enough to take ε = (1/(DBB′))O(n4) · (1/R)O(nh) for
the BWR-case, where h = |E| is the number of edges of the graph G and n = |V | is the number of
states (see, e.g., [BEGM09]).

Let us remark, however, that the constant 1−log(1+δ) in the running time tends to 0, as δ → 1−.
More precisely, if y = 1−δ → 0+ then 1− log(1+δ) = 1− log(2−y) ∼ y/(2 ln 2), and thus we obtain

for the number of iterations N ∼ 2 ln 2 (logR−log ε)
(1−δ) . There are examples [Con92, BEGM10a, Mil11]

which shows that δ > 1− 2−n might be needed for a “sufficiently good” approximation.
On the other hand, Andersson and Miltersen [AM09] showed that, for PI-games, it is enough to

take δ = 1− ((n!)222n+3M2n2

)−1, so that the an optimal pair of strategies in the discounted game
remains optimal the undiscounted one. Thus, for the undiscounted BWR-games the limit transition
δ → 1− provides a finite but exponential in the worst case algorithm. Note, however, that this is not
yet enough to prove the existence of canonical form for PI-games, since the canonical form obtained
through discounting will contain a factor δ < 1 in it. In the next section, we overcome this problem
by taking δ to the limit.
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6 BWR-games

Recall that a BWR-game is defined by the quadruple Γ = (G, {pvu, rvu}v,u∈V ), where G = (V =
VW ∪VB ∪VR, E) is a digraph on n vertices that may have loops and multiple arcs, but no terminal
vertices2, i.e., vertices of out-degree 0; {pvu} is the set of probability distributions for all v ∈ VR
specifying the probability pvu of a move form v to u; and (rvu)(v,u)∈E ∈ RE is a local reward vector.
As usual, we assume that

∑
u | (v,u)∈E p

vu = 1 ∀v ∈ VR. For convenience we will assume that pvu > 0

whenever (v, u) ∈ E and v ∈ VR, and set pvu = 0 for (v, u) 6∈ E.
In this case, it will be enough to consider pure stationary strategies. In particular, we define a

strategy α ∈ K(Γ) (respectively, β ∈ L(Γ)) as a mapping that assigns a move (v, u) ∈ E to each
position v ∈ VW (respectively, v ∈ VB). A pair of strategies s = (α, β) is called a situation.

In Section 6.2 we will prove our main result for the undiscounted case.

Theorem 4 Any BWR-game can be brought by a potential transformation to canonical form.

Overview of the technique. Our proof of Theorem 4 proceeds in the spirit of [Gil57, LL69] (see
also [MO70], Chapter 4): First, we consider the discounted BWR-game and consider the function
m : V → R, where m(v) := Val (Av) is the maximum (minimum, or average) local reward for
v ∈ VW (resp., v ∈ VB , or v ∈ VR). Starting form 0 potentials, and changing the potentials by a very
simple iterative procedure, we can show that the function m can be made constant, in a number of
iterations proportional to (1− δ)−1. (However, such approach requires exponential time in general,
since one must choose δ > 1 − ε/2n to approximate the value of an undiscounted BWR-game
within accuracy ε; see, e.g., [Con92, BEGM09].) We then reduce the undiscounted BWR-games to
canonical form by just taking the limit δ → 1−. However, in doing so we face one difficulty: some of
the potentials tend to ∞ as δ → 1−. We overcome this by modifying the potentials somehow, and
then using a convergence result of Blackwell [Bla62] to finish the proof.

6.1 Canonical Form for BWR-games

For BWR-games, the canonical form admits a simpler interpretation. Specifically, let us use the
following notation throughout this section: Given a vector f ∈ RV×V and subset of edges E′ ⊆ E,
we write M̄E′ [f

vu] to symbolically mean

M̄E′ [f
vu] ≡


maxu|(v,u)∈E′ f

vu, for v ∈ VW ,
minu|(v,u)∈E′ f

vu, for v ∈ VB ,∑
u|(v,u)∈E′ p

vu fvu, for v ∈ VR.

When E′ = E, we will write M̄E′ [f
vu] as M̄ [fvu].

Note that for BWR-games, condition (A2) is trivially satisfied. Thus by Corollary 4, it is enough
for proving the existence of canonical to show that (B3) holds. With the the above notation,
condition (B3) can now be re-written as follows in the BWR-case:

(B3′) There exist g ∈ RV and a potential vector x ∈ RV such that (i) for all v ∈ V, gv = M̄ [gu] =
M̄ [rvu(x)] and, moreover, (ii) for every v ∈ VW ∪ VB there is a move (v, u) ∈ E such that
gv = gu = rvu(x), or in other words, move (v, u) is locally optimal and it respects the value of
vector g.

6.2 Proof of Theorem 4

In deriving Theorem 4 from Theorem 2, we face one difficulty: some of the potentials tend to ∞
as β → 1−. We overcome this by modifying the potentials somehow, and then using a convergence
result of Blackwell [Bla62]. By implication [I5] of Theorem 1, it is enough to show that (B5) is
satisfied, that is,

2This assumption is without loss of generality since one can add a loop to each terminal vertex
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(B5′) there exist g ∈ RV and a potential vector x ∈ RV such that (i) for all v ∈ V, gv = M̄ [gu], and
gv = M̄Ext(g)[r

vu(x)], and (iii) for every v ∈ VW ∪ VB , there is a move (v, u) ∈ E such that
gv = gu = rvu(x),

where
Ext(g) = {(v, u) ∈ E | gu = gv, v ∈ VW ∪ VB} ∪ {(v, u) ∈ E | v ∈ VR},

is the subset of extremal edges with respect to g.

From Theorem 2, we know that, for any 0 ≤ δ < 1, there exist cδ ∈ R and x = xδ ∈ RV such
that

cδ = M̄ [rvu + xvδ − δxuδ ] for all v ∈ V . (36)

Furthermore, from (17), we know that the value of the game when started at vertex v ∈ V is

gvδ = cδ − (1− δ)xvδ = M̄ [rvu + δ(xvδ − xuδ )]. (37)

Note that the values gvδ satisfy the Shapley equations (5):

gvδ = M̄ [(1− δ)rvu + δguβ ], (38)

for all v ∈ V . (Indeed, using (37), we have

M̄ [(1− δ)rvu + δguδ ] = M̄ [(1− δ)rvu + δ(cδ − (1− δ)xuδ )]

= (1− δ)M̄ [rvu − δxuδ ] + δcδ

= (1− δ)M̄ [rvu + δ(xvδ − xuδ )] + δ(cδ − (1− δ)xvδ)
= (1− δ)gvδ + δgvδ = gvδ .)

By Theorem 2, for each δ ∈ [0, 1), there exists an optimal situation sδ in the δ-discounted BWR-
game, and potential xδ satisfying (36) and (37). Let us consider all such situations as δ → 1−.
Among this infinite sequence of situations, one situation s appears infinitely many times, since
the total number of possible strategies is finite. Let us fix such a situation s and consider the
corresponding infinite subsequence {δi}∞i=0 for which s is optimal in the corresponding game. Then
limi→∞ δi = 1 and (36), (37) and (38) hold for every δ ∈ {δi}∞i=0. For v ∈ V , let gv = limi→∞ gδi(v)
and note that this limit exists (by (12)). Furthermore, since (38) is satisfied for all δi, it is also
satisfied in the limit as i→∞, i.e.,

gv = M̄ [gu]. (39)

Note that, in the non-ergodic case, as δ → 1−, (37) implies that |xvδ | → ∞, for some vertices
v ∈ V ; otherwise all the values gv are equal to limδ→1 cδ, independent of the starting position. We
will modify the potentials, in this case, to guarantee that they become finite, without affecting the
value of the game.

Consider any δ ∈ {δi}∞i=0. From (37), we can express the potential at v ∈ V as follows

xvδ =
cδ − gvδ
1− δ

. (40)

Define, for v ∈ V , the new potential:

yvδ = xvδ −
cδ − gv

1− δ
=
gv − gvδ
1− δ

. (41)

In particular, substituting yvδ − yuδ = xvδ − xuδ + gv−gu
1−δ , we have by (37) and (39),

gvδ = M̄Ext(g)[r
vu + δ(yvδ − yuδ )]. (42)

Let P (α, β) be the transition matrix obtained by extending P by setting the entries corresponding
to s = (α, β) to 1, Q(α, β) and a(α, β) be the corresponding limiting transition matrix and expected
local reward vector, respectively. Recall that gδ = (1− δ)

∑∞
i=0 δ

iP (α, β)ia(α, β), g = limδ→1 gδ =
Q(α, β)a(α, β); see Equations (16) and (17).
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Rewriting Q(α, β)a(α, β) = (1− δ)
∑∞
i=0 δ

iQ(α, β)a(α, β), for any δ ∈ (0, 1), we obtain

y = lim
i→∞

yδi = lim
δ→1

yδ = lim
δ→1

(1− δ)−1(g − gδ)

= lim
δ→1

∞∑
i=0

δi(Q(α, β)− P (α, β)i)a(α, β) = −[(I − (P (α, β)−Qa(α, β)))−1 −Q(α, β)]a(α, β),

where the last equality follows by (63) in Appendix A. So y exists in the limit and it satisfies (42)
with δ = 1. In other words, y, g ∈ RV satisfy the conditions stated in (B5′).

7 Canonical forms for SC- and ARAT-games

Let Γ be an additive stochastic games (that is, P vu = λvψvueT + (1− λv)eγvu, for some λv ∈ [0, 1],
ψvu ∈ [0, 1]K

v

, γvu ∈ [0, 1]L
v

, where e is the vector of all ones). It will be convenient to consider the
following generalization of SC and ARAT-games [KaR10, Sin89]:

(A3) For each v ∈ V , if λv ∈ (0, 1) then Av = qveT + esv, for some qv ∈ RKv

and sv ∈ RLv .

We note that any additive game satisfying (A3) enjoys the following further property:

(A4) For every v ∈ V , if λv > 0 (resp., if λv < 1), then there exists a finite set ∆v
W ⊆ ∆(Kv) (resp.,

∆v
B ⊆ ∆(Lv)) such that, for all x ∈ RV , Ω(Av(x)) ⊆ ∆v

W (resp., Λ(Av(x)) ⊆ ∆v
B .

Indeed, let Γ be a game satisfying (A3). Then, for λv = 1, the claim follows from the following
lemma, which can be derived from results of Shapley and Snow [SS50], and Parthasarathy and
Raghavan [PR81].

Lemma 6 ([PR81]) Let Av > 0 for all v. If αv ∈ Ω(Av(x)) (resp., βv ∈ Λ(Av(x))) for some

x ∈ RV , then there exists a non-singular submatrix Āv of Av such that αv = eT (Āv)−1

eT (Āv)−1e
(resp.,

αv = (Āv)−1e
eT (Āv)−1e

).

Clearly, we may assume without loss of generality (by adding a sufficiently large finite constant
C ≥ 0 to every entry rvuk` ) that Av > 0, for all v. Thus Lemma 6, and its symmetric version for
λv = 0, imply that if we take

∆v
W =

{
eT (Āv)−1

eT (Āv)−1e
: Āvis a non-singular submatrix of A

}
∩∆v(Kv) if λv > 0, and

∆v
B =

{
(Āv)−1e

eT (Āv)−1e
: Āvis a non-singular submatrix of A

}
∩∆v(Lv), if λv < 1,

we would satisfy (A4) for any v such that λv ∈ {0, 1}.
Let us now consider a state v such that λv ∈ (0, 1). Then, for any x ∈ RV , the extremum

locally optimal strategies for Av(x) are pure [RTV85], and hence it is enough to take ∆v
W = Kv

and ∆v
B = Lv. (To see this, consider the LP formulation for solving the local matrix game Av(x):

max{gv : αvAv(x) ≥ gveT , αve = 1, αv ≥ 0}. It is easy to see that this equivalent to finding

max
αv: αve=1,αv≥0

αv(qv − λv
∑
u∈V

xuψvu) + min
`∈Lv

(
sv` − (1− λv)

∑
u∈V

xuγvu`

)
+ xv,

which is attainted at a pure strategy αv ∈ Kv. A symmetric argument shows that the optimal is
also attained at a pure strategy βv ∈ Lv.)

Theorem 5 If an additive stochastic game Γ satisfies condition (A3), then it is equivalent to a
BWR-game on

∑
v∈V (3 + |∆v

W | + |∆v
B |) states, where ∆v

W and ∆v
B are the finite sets strategies

guaranteed by (A4).
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Proof Let Γ = (pk`vu, r
k`
vu| k ∈ Kv, ` ∈ Lv, v, u ∈ V ) be a game satisfying (A3). We assume without

loss of generality that, for all v ∈ V ∆v
W ⊇ Kv and ∆v

B ⊇ Lv (otherwise we can extend the sets
∆v
W and ∆v

B with all pure strategies without obviously violating condition (A4)). We construct a
BWR-game Γ̃ = (G = (Ṽ = ṼW ∪ ṼB ∪ ṼR, E), {p̃vu, r̃vu}v,u∈Ṽ ) as follows. For every state v ∈ V ,

we have a random node v ∈ ṼR. If λv > 0, then we have a white node vW ∈ ṼW , and a set of |∆v
W |

random nodes {(αv) : αv ∈ ∆v
W } ⊆ ṼR. Similarly if λv < 1, we have a black node vB ∈ ṼB , and

a set of |∆v
B | random nodes {(βv) : βv ∈ ∆v

B} ⊆ ṼR. The arcs are defined as follows. We have
arcs (v, vW ) and (v, vB) with local rewards 0 and transition probabilities λv and 1−λv, respectively.
For αv ∈ ∆v

W and u ∈ V , we have arcs ((αv), u) of local reward 0, (vW , (α
v)) of local reward

m(αv) := minβv∈∆(Lv) α
vAvβv if λv = 1, and of local reward m(αv) := αvqv

λv , if λv ∈ (0, 1). At the
random node (αv), the probability on arc ((αv), u) is set to αvψvu. Similarly, for βv ∈ ∆v

B and u ∈ V ,
we have arcs ((βv), u) of local reward 0, (vB , (β

v)) of local reward m(βv) := maxαv∈∆(Kv) α
vAvβv if

λv = 0, and of local reward m(βv) := svβv

1−λv if λv ∈ (0, 1). At the random node (βv), the probability
on arc ((βv), u) is set to γvuβv.

By the equivalence [I4] of Theorem 1, It is enough to show that Γ satisfies (B4). By the same

equivalence and Theorem 4, applied to Γ̃, there exist vectors g̃, x̃ ∈ RṼ such that for every v ∈ V
the following holds:

•

g̃v = λv g̃vW + (1− λv)g̃vB (43)

g̃v = x̃v − λvx̃vW − (1− λv)x̃vB ; (44)

• there exists ᾱv ∈ ∆v
W , such that

g̃vW = g̃(ᾱv) = max
αv∈∆v

W

g̃(αv), (45)

g̃vW = m(ᾱv) + x̃vW − x̃(ᾱv) = max
αv∈∆v

W

(m(αv) + x̃vW − x̃(αv)), (46)

g̃vW > m(αv) + x̃vvW − x̃(αv) for all αv ∈ ∆v
W such that g̃(αv) < g̃(ᾱv); (47)

• for every αv ∈ ∆v
W

g̃(αv) =
∑
u∈V

αvψvug̃u (48)

= x̃(αv) −
∑
u∈V

αvψvux̃u; (49)

• there exists β̄v ∈ ∆v
B , such that

g̃vB = g̃(β̄v) = min
βv∈∆v

B

g̃(βv), (50)

g̃vB = m(β̄v) + x̃vB − x̃(β̄v) = min
βv∈∆v

B

(m(βv) + x̃vB − x̃(βv)), (51)

g̃vB < m(βv) + x̃vB − x̃(βv) for all βv ∈ ∆v
B such that g̃(βv) > g̃(β̄v); (52)

• for every βv ∈ ∆v
B

g̃(βv) =
∑
u∈V

γvuβv g̃u (53)

= x̃(βv) −
∑
u∈V

γvuβvx̃u. (54)

22



We claim that the vectors x, g defined by gv = 3g̃v and xv = x̃v, for all v ∈ V , satisfy (B4) in Γ.
Indeed, for any v ∈ V , (43), (45), (48), (50) and (53) imply that

gv = λv max
αv∈∆v

W

∑
u∈V

αvψvugu + (1− λv) min
βv∈∆v

B

∑
u∈V

γvuβvgu = Val
Kv×Lv

(Gv(g)), (55)

where the last equality follows from the assumption that ∆v
W ⊇ Kv and ∆v

B ⊇ Lv.
On the other hand, (46), (49), (51) and (54) imply that

2g̃vW = max
αv∈∆v

W

(
m(αv) + x̃vW −

∑
u∈V

αvψvuxu

)
, (56)

2g̃vB = min
βv∈∆v

B

(
m(βv) + x̃vB −

∑
u∈V

γvuβvxu

)
, (57)

with the further implications, following by (47) and (52), that

if αv is a maximizer in (56) then αv is a maximizer in the first term in (55), (58)

if βv is a minimizer in (57) then βv is a minimizer in the second term in (55). (59)

Multiplying (58) and (59) respectively by λv and 1− λv, summing and using (43) and (44), we
obtain

gv = λv max
αv∈∆v

W

(
m(αv) + xv −

∑
u∈V

αvψvuxu

)
+ (1− λv) min

βv∈∆v
B

(
m(βv) + xv −

∑
u∈V

γvuβvxu

)
(60)

If λv = 1, then (60) gives

gv = max
αv∈∆v

W

min
βv∈∆(Lv)

(αvAvβv + xv −
∑
u∈V

αvψvuxu) = Val
Kv×Lv

Av(x), (61)

where the last equation follows from (A4). Furthermore, (58) implies that, if (αv, βv) are locally
optimal for Av(x) then they are also optimal for Gv(g). A similar conclusion can be made when
λv = 0.

Suppose now that λv ∈ (0, 1). Then (60) gives

gv = max
αv∈∆v

W

(
αvqv − λv

∑
u∈V

αvψvuxu

)
+ min
βv∈∆v

B

(
svβv −

∑
u∈V

γvuβvxu

)
+ xv

= max
αv∈∆v

W

min
βv∈∆v

B

(αvAvβv + xv −
∑
u∈V

αvψvuxu) = Val
Kv×Lv

Av(x), (62)

where the last equation follows from (A4). Furthermore, (58) and (59) imply that, if (αv, βv) are
locally optimal for Av(x) then they are also optimal for Gv(g). This together with (61) (and the
similar equation for λv = 0) and (50) imply (B4). �

Remark 8 From an algorithmic point of view, we note that the above reduction (in Theorem 5),
in general, can yield only the global value vector g and the potential vector x that brings the game
to canonical form. This is because the constructed BWR-game, in its canonical form, might have
exponentially many locally optimal strategies, and an arbitrary one of them might only be a max-min
or a min-max strategy. However, having the vectors g and x we can find the optimal strategies by
solving the local matrix games.

Corollary 6 Every PI-game, SC-game, or ARAT game admits a canonical form.
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Corollary 7 BWR-games, ARAT-games and PI-games are polynomial-time equivalent.

Proof Obviously, a BWR-game Γ = (G = (V = VW ∪ VB ∪ VR, E), {pvu, rvu}v,u∈V ) can be written

as a PI-game Γ̃ = (Ṽ = ṼW ∪ ṼB , {p̃vu, r̃vu}v,u∈Ṽ )., where:

• ṼW = VW ∪ VR, ṼB = VB ;

• for all v ∈ VW , Kv = {u ∈ V : (v, u) ∈ E}, r̃vuu1 = rvu, p̃vuu1 = 1, and r̃vuu′1 = p̃vuu′1 = 0, for all
u′ 6= u;

• for all v ∈ VB , Lv = {u ∈ V : (v, u) ∈ E}, r̃vu1u = rvu, p̃vu1u = 1, and r̃vu1u′ = p̃vu1u′ = 0, for all
u′ 6= u;

• for all v ∈ VR, |Lv| = |Kv| = 1, and r̃vu11 = rvu, and p̃vu11 = pvu.

Obviously also every PI-game is an ARAT-game.
Conversely, Theorem 5 and the fact that an ARAT-game satisfies (A4) with |∆v

W | = |Kv| and
|∆v

B | = |Lv| implies that any ARAT-game can be reduced to a polynomial-size BWR-game. �

7.1 BWR-, PI-, and ARAT-games are solvable in subexponential time

Zwick and Paterson [ZP96] observed that undiscounted BW-games are polynomial-time reducible
to the discounted ones. In fact, it is enough to choose any δ > 1 − 1/(4n3R), when rewards are
integral with maximum absolute value R; see [ZP96], Theorem 5.2. Furthermore, they showed that
the discounted BW-games are polynomial-time reducible to SS-Games; see [ZP96] Theorem 6.1.
Andersson and Miltersen [AM09] has recently modified this reduction in [ZP96] to show that any
discounted PI-game can be represented as an SS-game, where the probabilities are bilinear in δ,
the original transition probabilities, and original rewards. Furthermore, he also showed that any
undiscounted PI-game is reduced to a discounted one with δ = 1 − ((n!)222n+3M2n2

)−1, when
the rewards and transition probabilities are assumed to be rational with integral numerators and
denominators of maximum absolute value M .

Halman [Hal07] showed that any SS-game with m = |VB | + |VW | deterministic nodes can be

solved in randomized strongly subexponential-time 2O(
√
m logm) poly(|VR|). We observe further that

the reduction in [AM09] can only increase the number of random nodes. Thus we obtain the following
result.

Corollary 8 Any BWR-game, PI-game, or ARAT-game on n states is solvable in strongly 2O(
√
n logn)

poly(n) expected time.
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A Related Results from Theory of Markov Chains

Given a n × n transition matrix P , the Cesáro partial sums 1
k+1

∑k
i=1 P

i converge, as k → ∞, to
the limit Markov matrix Q such that:

(i) PQ = QP = QQ = Q; (ii) rank(I − P ) + rankQ = n;

(iii) For each n-vector c system Px = x, Qx = c has a unique solution.

(iv) matrix I − (P −Q) is non-singular and

H(δ) =

∞∑
i=0

δi(P i −Q)→ H = (I − (P −Q))−1 −Q as δ → 1−; (63)

(v)
H(δ)Q = QH(δ) = HQ = QH = 0 and (I − P )H = H(I − P ) = I −Q.

Claim (iv) (which is used in Section 6.2 was proved in 1962 by Blackwell, [Bla62], while for the
remaining four claims, he cited the text-book in finite Markov chains by Kemeny and Snell [KS63]
(that was published, in fact, one year later, in 1963).

B Stochastic Games and Linear Programming

It is well known that the one-player variant of a stochastic game is a Markovian decision process,
and can be solved via linear programming (see e.g., [MO70]). In this section for completeness we
recall some of the related results and models using our terminology and notation. We provide here
a completely elementary proof based only on the theory of linear programming.

Let us consider a game Γ, and an arbitrary strategy of the maximizer α = (αv | v ∈ V ) ∈ K(Γ).
We shall associate to the pair (Γ, α) a linear programming problem LP (α), having the values gv and
potentials xv for v ∈ V as its variables:

∑
v∈V

gv → max

∑
u∈V

(αvP vu)` g
u ≥ gv ∀v ∈ V and ` ∈ Lv (64)

(αvAv)` + xv −
∑
u∈V

(αvP vu)` x
u ≥ gv ∀v ∈ V and ` ∈ Lv. (65)

Let us note that conditions (64) and (65) imply that for any β = (βv | v ∈ V ) ∈ L(Γ) we have

αvGv(g)βv ≥ gv and αvAv(x)βv ≥ gv (66)

for all states v ∈ V , where Gv(g) is the matrix defined in (21). We shall show that for some optimal
solution x, g ∈ RV of LP (α) there exists a strategy β for which the inequalities in (66) are equations
for all states v ∈ V simultaneously. We prove that such a β(α) = β is a uniform best response to α.
Furthermore, we can also show that β can be chosen to be a pure strategy at each of the states.

To this end let us first recall some remarkable properties of this LP. Let us refer to the inequalities
of the above LP as (64)(v, `) and (65)(v, `) for all v ∈ V and ` ∈ Lv.

Let us start by showing that LP (α) is feasible and bounded, that is, it has a finite optimum.

Lemma 7 Problem LP (α) has a finite optimum.
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Proof For feasibility let us observe that (64) is satisfied with gv = D, v ∈ V for any constant D.
Thus, choosing D ≤ minv∈V,`∈Lv (αvAv)` and xv = 0, v ∈ V , all constraints (65) are satisfied, too.

To see the boundedness, let us recall from the theory of linear programming that LP (α) is
unbounded if and only if the corresponding homogenized system of inequalities has a feasible solution
with positive objective function value, that is, if there are vectors (y, f) such that

∑
v∈V

fv = 1 (67)

∑
u∈V

(αvP vu)` f
u ≥ fv ∀v ∈ V and ` ∈ Lv (68)

yv −
∑
u∈V

(αvP vu)` y
u ≥ fv ∀v ∈ V and ` ∈ Lv. (69)

Let us then define f∗ = maxv∈V f
v, set M = {v ∈ V | fv = f∗}, and let w ∈M be a state in M for

which yw ≤ yv for all v ∈M .
Then, inequalities (68)(v, `) require that fv for v ∈ M is not larger than a convex combination

of the fu values, u ∈ V , implying that (αvP vu)` = 0 for all v ∈ M , u 6∈ M , and ` ∈ Lv. Since
(67) implies f∗ > 0, inequalities (69)(w, `) for ` ∈ Lw imply that yw is strictly larger (by f∗ > 0)
than a convex combination of the values yv, v ∈ M , which is impossible by the choice of w. This
contradiction proves that the system (67)-(69) is infeasible, proving that LP (α) is bounded. �

Let us next show that a simple family of linear transformations of potentials does not change the
feasibility in LP (α). To simplify notations, let us introduce λ(g, v, `) to denote the left hand side
value in inequality (64)(v, `), and let µ(x, v, `) denote the left hand side value in (65)(v, `).

Lemma 8 If (x, g) is feasible in LP (α), C,D ∈ R are constants, C ≥ 0, and

yv = xv +D − Cgv

for all states v ∈ V , then (y, g) is also feasible in LP (α).

Proof The left hand sides λ(g, v, `) do not change by the above operation, and for (65)(v, `) we
have

µ(y, v, `) = µ(x, v, `) + C (λ(g, v, `)− gv) ≥ gv (70)

for all states v ∈ V and ` ∈ Lv by the feasibility of (x, g) and by the fact that
∑
u∈V (αvP vu)` = 1.

�

For a feasible solution (x, g) let us define Iv = Iv(g) ⊆ Lv to be the set of pure strategies ` ∈ Lv
for which (64)(v, `) is tight, that is for which λ(g, v, `) = gv.

Lemma 9 For any optimal solution (x, g) of LP (α) we have Iv(g) 6= ∅ for all states v ∈ V .

Proof Assume indirectly that
λ(g, v, `) > gv (71)

for all ` ∈ Lv for some state v ∈ V . Let us then consider the potential vector y as defined in Lemma
8 with D = 0 and C > 0. Then (y, g) is again feasible by Lemma 8, and has the same objective
function value as (x, g), thus it is again optimal. Furthermore, by (70) and (71) we have

µ(y, v, `) = µ(x, v, `) + C (λ(g, v, `)− gv) > gv

for all ` ∈ Lv. Thus, increasing gv by a small positive quantity will not change the feasibility of
(y, g), since on the right hand side gv is involved only in strict inequalities. This contradicts the
optimality (y, g), proving our claim. �

For a feasible solution (x, g) let us define Jv = Jv(x, g) ⊆ Lv to be the set of pure strategies
` ∈ Lv for which (65)(v, `) is tight, that is, for which µ(x, v, `) = gv.

28



Lemma 10 For any optimal solution (x, g) of LP (α), there exists a potential y ∈ RV such that
(y, g) is also optimal in LP (α) and that

∅ 6= Jv(y, g) ⊆ Iv(g) (72)

holds for all states v ∈ V .

Proof By Lemma 9 we can assume that Iv(g) 6= ∅ for all states v ∈ V . It is enough to show that
there exists a potential y ∈ RV such that (y, g) is optimal in LP (α) and Jv(y, g) ∩ Iv(g) 6= ∅ for all
v ∈ V , since we can then apply Lemma 8 and modify the potential y to satistfy (72).

Let us now fix the value vector g, and denote by

Y (g) = {y ∈ RV | (αvAv)` + yv −
∑
u∈V

(αvP vu)` y
u ≥ gv ∀v ∈ V and ` ∈ Iv(g)}.

Clearly, Y (g) is a closed and convex non-empty set in RV (since x ∈ Y (g)). Let us further denote by
Ỹ (g) the set of potentials y ∈ Y (g) such that (y, g) is feasible for LP (α) and satisfies Jv(y, g) ⊆ Iv(g)
(possibly, Jv(y, g) = ∅), for all states v ∈ V . By Lemma 8, every y ∈ Y (g) can be transformed into
a vector of potentials in Ỹ (g), by choosing a sufficiently large but finite C; for each y ∈ Y (g), we
will fix an arbitrary such vector in Ỹ (g) and denote it by ỹ(g). Let us define

εv(y) = min
`∈Iv(g)

µ(y, v, `)− gv ≥ 0

for all states v ∈ V and potentials y ∈ Y (g), and call a state v ∈ V tight with respect to (y, g) if
εv(y) = 0. Finally, let us denote by T (y) ⊆ V the subset of tight states with respect to a given
y ∈ Y (g).

Let us first note that for all y ∈ Y (g) and for all subsets S ⊆ V \ T (y) we must have a v ∈ S, a
u 6∈ S and an ` ∈ Iv(g) such that (αP vu)` > 0 holds, since otherwise we would have (ỹ(g̃), g̃) feasible
in LP (α) for some small enough ε > 0, where

g̃u =

{
gu + ε if u ∈ S
gu otherwise,

contradicting the optimality of (x, g). Let us call this property (*). This property implies, in
particular, that we must have T (y) 6= ∅ for all y ∈ Y (g) (since no positive probability arc leaves the
set S = V ).

Let us next note that T (λy + (1− λ)y′) ⊆ T (y) ∩ T (y′) holds for all y, y′ ∈ Y (g) and 0 < λ < 1.
Consequently, we must have U = {v ∈ V | v ∈ T (y) ∀ y ∈ Y (g)} 6= ∅, since otherwise, if for all
v ∈ V there is a potential vector yv ∈ Y (g) such that v 6∈ T (yv), then by the previous observation
we would have T ( 1

|V |
∑
v∈V y

v) = ∅, contradicting the above consequence of property (*). This also

implies, in particular, that if U 6= V , then the vector ȳ = 1
|V |
∑
v 6∈U y

v satsifies T (ȳ) = U .

Let us also note that for any y ∈ Y (g) and any state u 6∈ T (y), decreasing yu by a small positive
quantity keeps y ∈ Y (g), since yu is involved with a positive coefficient only in non-tight inequalities.
Let us call this property (**).

Let us now introduce variables zv for v ∈ S = V \ U , define

y(z)u =

{
ȳu − zu if u ∈ S,
ȳu otherwise,

and consider the linear programming problem LPZ:

max{
∑
u∈S

zu | y(z) ∈ Y (g), z ≥ 0}.

We claim that this LP is feasible, bounded, and hence has a finite optimum z̃. Then we must
have T (y(z̃)) = V , since otherwise by property (**) we could slightly increase the value of z̃u for a
u ∈ V \ T (y(z̃)), contradicting the optimality of z̃ (note that all the states in U remain tight, by
defintion of U).
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To complete the proof, we only need to show that LPZ is feasible and bounded. Since z = 0
yields y(z) = ȳ ∈ Y (g), feasibility of LPZ follows. For the boundedness let us recall again from
the theory of linear programming that LPZ is not bounded only if the homogenized system of
inequalities has a solution with a strictly positive objective function value. Assume indirectly that
z is such a solution and let Z > 0 be the largest component of z (which then must be positive,
since the sum of the components is positive by our indirect assumption). Let us further denote by
M = {v ∈ S | zv = Z} the set of states with this maximal zv value. Let us also extend in our mind
the vector z with zero coefficients for states u ∈ U . Then the homogeneous inequality for v ∈ M
and ` ∈ Iv(g) states that a convex combination of the zu, u ∈ V values is at least as large as Z,
which of course is possible only if (αP vu)` = 0 for all v ∈M , u 6∈M and ` ∈ Iv(g). In this case we
could add the same sufficiently small ε > 0 to all gv, v ∈ M components, and get another feasible
solution (ỹ(g̃), g̃), contradicting the optimality of (x, g) in LP (α).

Finally, note that the pair (ỹ, g) satisfy the statement of the lemma, where y = y(z̃). �

Corollary 9 Let x̄, ḡ be an optimal solution in LP (α). Then there exists a (pure) strategy β ∈ L(Γ)
for which we have equalities in (66), for all states v ∈ V simultaneously.

Proof By Lemma 10 we can assume that ∅ 6= Jv(x̄, ḡ) ⊆ Iv(ḡ) for all states v ∈ V . Let us then
choose β

v ∈ ∆(J(x̄, ḡ)) (possibly a pure strategy) for all states v ∈ V . �

Lemma 11 Let α1, α2 ∈ K(Γ) be two strategies of the maximizer. Let us further assume that (xi, gi)
is a feasible solution in LP (αi) for i = 1, 2. Let us then define α3 and g3 as the maxima of the two,
that is, for each state v ∈ V we set αv3 = αv1 and gv3 = gv1 if gv1 ≥ gv2 , and set αv3 = αv2 and gv3 = gv2
if gv1 < gv2 . Then there exists a potential vector x3 ∈ RV such that (x3, g3) is feasible in LP (α3).

Proof
Let us next define S1 = {v ∈ V | gv1 ≥ gv2}, and set S2 = V \ S1. Then, for any v ∈ Si, i = 1, 2

we have ∑
u∈V

(αv3P
vu)` g

u
3 =

∑
u∈V

(αvi P
vu)` max(gui , g

u
3−i) ≥

∑
u∈V

(αvi P
vu)` g

u
i ≥ gvi

by the feasibility of (xi, gi) in LP (αi) showing the feasibility of g3 in (64) of LP (α3).
Let us next define yv = xvi for all v ∈ Si, i = 1, 2, and set xv3 = yv − Cgv3 for an appropriately

large positive constant C, and consider a state v ∈ Si:

µ(x3, v, `) = µ(xi, v, `) + C (λ(gi, v, `)− gvi )

+
∑

u∈S3−i

(αvi P
vu)`

(
C(gu3−i − gui ) + xui − xu3−i

)
≥ µ(xi, v, `) ≥ gvi = gv3 ,

since we have λ(gi, v, `) ≥ gvi by the feasibility of (xi, gi) in LP (αi), and gu3−i ≥ gui for all u ∈ S3−i
by the definition of S3−i. It follows that (x3, g3) is feasible in LP (α3). �

Corollary 10 Let x̄, ḡ be an optimal solution and let (x, g) be an arbitrary feasible solution in
LP (α). Then we have ḡv ≥ gv for all states v ∈ V .

Proof Otherwise, we could construct a new feasible solution (x̂, ĝ), ĝv = max(ḡv, gv), v ∈ V by
Lemma 11 (applied with α1 = α2 = α), which has a strictly larger objective functions value, a
contradiction with the optimality of g. �

Proof of Lemma 1. We can view the problem of computing the best response of the minimizer
as a special stochastic game Γ̃ in which the action sets are K̃v = {α} and L̃v = Lv(Γ) for all
states v ∈ V , the rewards are r̃vuα` =

∑
k∈Kv(Γ) α

v
kr
vu
k` (Γ) and the transition probabilities are p̃vuα` =
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∑
k∈Kv(Γ) α

v
kp
vu
k` (Γ) for all states v, u ∈ V and actions ` ∈ L̃v. Let us denote by Ãv, v ∈ V the

reward matrices of Γ̃.
Let us now consider an optimal solution (x̃, g̃) to LP (α). By Lemma 10 we can assume that

∅ 6= Jv(x̃, g̃) ⊆ Iv(g̃) holds for all v ∈ V . Thus, the existence of β by Corollary 9 and the inequalities

(64) and (65) for (x̃, g̃) proves that for Γ̃ we have

Val (Gv(g̃)) = g̃v and Val
(
Ãv(x̃)

)
= g̃v for all states v ∈ V.

Furthermore, we have L̄v = Λ(Gv(g̃)) = ∆(Iv(g̃)) and K̄v = Ω(Gv(g̃)) = K̃v since we have a 1×|L̃v|
matrix game in state v ∈ V . Thus, by ∅ 6= Jv(x̃, g̃) ⊆ Iv(g̃), for all states v ∈ V we get

Val
K̃v×L̄v

(
Ãv(x̃)

)
= Val

K̄v×L̃v

(
Ãv(x̃)

)
= Val

(
Ãv(x̃)

)
= g̃v

for all states v ∈ V . Hence, (x̃, g̃) transforms Γ̃ into a weak canonical form (B2). by te implication

(B2) ⇒ (A1) in Theorem 1 (whose elementary proof is given in Appendix C), Γ̃ has values g̃ that
can be realized by a uniformly optimal stationary strategy. In fact, by Corollary 9, the strategy β
is such a uniform optimum in Γ̃ (and it can be chosen to be a pure strategy at each of the states).
Hence β(α) = β is a (pure) uniform best response strategy. �

Proof of Lemma 2. Let α1 = α and α2 = α′ and denote by (xi, gi) an optimal solution of LP (αi)
for i = 1, 2. Then by Lemma 11 we can define α3 and g3 (such that gv3 = max(gv1 , g

v
2)) and derive

the existence of x3 such that (x3, g3) is feasible in LP (α3). Then, α′′ = α3 proves the claim. �

C Proof of Lemma 3

Let us first fix the strategy β̄ of the minimizer, and compute the uniformly best response by the
maximizer by solving a controlled Markov chain problem by linear programming (see Appendix B).
This LP provides us with a potential vector y ∈ RV such that

gv ≥ Val (Av(y)) (73)

holds for all states v ∈ V , according to Corollary 9. Let us next fix ᾱ and compute similarly the
best response of the minimizer, providing analogously a potential vector z ∈ RV satisfying

gv ≤ Val (Av(z)) (74)

for all states v ∈ V . Since adding a constant to a potential vector does not change the potential
transformation and the value matrices, we can assume w.l.o.g. that

y ≤ z. (75)

Let us define a matrix valued mapping Bv(d) for all states v ∈ V and vectors d ∈ RV by

Bv(d) = Av(d)− dvJ|Kv|×|Lv|.

Then we have by (75) that Bv(z) ≤ Bv(y) (componentwise), and since the value function of matrix
games is monotone we can conclude by (73) and (74), and by the fact that changing the payoff
matrix by a constant changes the value of the game by the same constant that

gv − zv ≤ Val (Bv(z)) ≤ Val (Bv(y)) ≤ gv − yv, (76)

for all states v ∈ V . Note that if g − z ≤ g − d ≤ g − y, then we have Bv(z) ≤ Bv(d) ≤ Bv(y) for
all v ∈ V , and hence by the above cited properties of the value function and by (76)

Val (Bv(z)) ≤ Val (Bv(d)) ≤ Val (Bv(y)) for all states v ∈ V. (77)
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Since the mapping F : g − d 7→ Val (B(d)) (where Val (B(d)) = ( Val (Bv(d)) : v ∈ V )) is
Lipschitz-continuous and since by property (77) and (76) it maps the compact box [g− z, g− y] into
a subset of itself, we can conclude by Brouwer’s theorem that F has a fixed point, that is there exists
a potential vector x ∈ [y, z] (i.e. g − x ∈ [g − z, g − y]) for which g − x = F (g − x) = Val (B(x)).
This implies that g = Val (A(x)), completing our proof. �

D Proof of the Implication (B2)⇒ (A1)

Let g, x, y ∈ RV be the vectors satisfying condition (B2). Then there exist strategies ᾱ ∈ K(Γ) and
β̄ ∈ L(Γ) such that, for all states v ∈ V , the following hold: (1) ᾱvGv(g)β ≥ gv and ᾱvAv(x)β ≥ gv
for all β ∈ ∆(Lv), and (2) αvGv(g)β̄v ≤ gv and αvAv(y)β̄v ≤ gv for all α ∈ ∆(Kv).

Fix a starting position v0 = w. It is enough to show that player 1 can guarantee at least gw

while player 2 can guarantee at most gw. We only show the former statement since the latter can be
shown similarly. At time i, we will let player 1 play his/her locally optimal (stationary) strategy ᾱv

whenever (s)he is at position vi = v, while player 2 chooses an arbitrary, not necessarily stationary,
strategy βH, where H ∈ Hi(v) is the history of the play leading to vi = v and Hi(v) is the set of
all such histories. Let us note that

∑
H∈Hi(v) Pr[H| vi = v] = 1 and denote by βv,i ∈ ∆(Lv) the

Markovian strategy given by
∑
H∈Hi(v) β

H Pr[H| vi = v].

Consider a play w = v0, v1, v2, . . . (where each vi is a random variable). By (7) and the fact that
potential transformations do not change the Cesáro sum (Section 1.4), it is enough to show that
E[bi(x)] ≥ gw for all i. Note that

E[bi(x)] =
∑
v

∑
H∈Hi(v)

E[bi(x)| vi = v, H] · Pr[H| vi = v] · Pr[vi = v]

=
∑
v

∑
H∈Hi(v)

ᾱvAv(x)βH Pr[H| vi = v] · Pr[vi = v]

=
∑
v

ᾱvAv(x)βv,i · Pr[vi = v]

≥
∑
v

gv · Pr[vi = v]. (78)

We prove by induction on i = 0, 1, 2, . . . , that
∑
v g

v · Pr[vi = v] ≥ gw, which will imply the lemma
by (78). Indeed, the statement is trivially true for i = 0. For any i, we have∑
v

gv · Pr[vi = v] =
∑
v

gv ·
∑
u

∑
H∈Hi−1(u)

Pr[vi = v|vi−1 = u, H] · Pr[H| vi−1 = u] · Pr[vi−1 = u]

=
∑
v

gv ·
∑
u

∑
H∈Hi−1(u)

ᾱuPuvβH · Pr[H| vi−1 = u] · Pr[vi−1 = u]

=
∑
v

gv ·
∑
u

ᾱuPuvβu,i−1 · Pr[vi−1 = u]

=
∑
u

ᾱu · (
∑
v

Puvgv)βu,i−1 · Pr[vi−1 = u]

=
∑
u

ᾱu ·Gu(g)βu,i−1 · Pr[vi−1 = u]

≥
∑
u

gu · Pr[vi−1 = u]

and the latter is at least gw by the induction hypothesis. �
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