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Strongly consistent density estimation of regression residualI

László Györfia,∗, Harro Walkb

aDepartment of Computer Science and Information Theory, Budapest University of Technology and
Economics, 1521 Stoczek u. 2, Budapest, Hungary

bDepartment of Mathematics, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany

Abstract

Consider the regression problem with a response variable Y and with a d-dimensional
feature vector X. For the regression function m(x) = E{Y |X = x}, this paper investi-
gates methods for estimating the density of the residual Y −m(X) from independent and
identically distributed data. For heteroscedastic regression, we prove the strong universal
(density-free) L1-consistency of a recursive and a nonrecursive kernel density estimate
based on a regression estimate.

Keywords: Regression residual, nonparametric kernel density estimation,
nonparametric regression estimation, heteroscedastic regression.
2000 MSC: primary 62G07, secondary 62G20

1. Introduction

Let Y be a real valued random variable and let X = (X(1), . . . , X(d)) be a d-
dimensional random vector. The coordinates of X may have different types of distri-
butions, some of them may be discrete (for example binary), others may be absolutely
continuous. In the sequel we do not assume anything about the distribution of X. The
task of regression analysis is to estimate Y given X, i.e., one aims to find a function
F defined on the range of X such that F (X) is “close” to Y . Typically, closeness is
measured in terms of the mean squared error of F ,

E{(F (X)− Y )2}.

It is well-known that the mean squared error is minimized by the regression function m
with

m(x) = E{Y | X = x}, (1)

since, for each measurable function F , the mean squared error can be decomposed into

E{(F (X)− Y )2} = E{(m(X)− Y )2}+

∫
Rd

(m(x)− F (x))2µ(dx),
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where µ denotes the distribution of X. The second term on the right hand side is called
excess error or integrated squared error of the function F . Clearly, the mean squared
error of F is close to its minimum if and only if the excess error

∫
Rd(m(x)−F (x))2µ(dx)

is close to zero.
The regression function cannot be calculated as long as the distribution of (X,Y ) is

unknown. Assume, however, that we observed data

Dn = {(X1, Y1), . . . , (Xn, Yn)} (2)

consisting of independent and identically distributed copies of (X,Y ). Dn can be used to
produce an estimate mn = mn(·, Dn) of the regression function m. Since m arises from
L2 considerations, it is natural to study L2(µ) convergence of the regression estimate
mn to m. In particular, the estimator mn is called strongly universally consistent if its
excess error satisfies ∫

Rd

(m(x)−mn(x))2µ(dx)→ 0 a.s.

for all distributions of (X,Y ) with E|Y |2 <∞. (Cf. Györfi et al. [13].)

It is of great importance to be able to estimate the various characteristics of the
residual

Y −m(X).

In this paper we deal with the problem how to estimate the density f of the residual
Y −m(X), assuming that the density f exists. Our aim is to estimate f from i.i.d. data
(2).

Under some smoothness conditions on the density f , Ahmad [1], Cheng [4], [3], Efro-
movich [9], [10], Akritas and Van Keilegom [2], Neumeyer and Van Keilgom [14] studied
the estimate the density of the residual. In the model of independent measurement error
Z one has

Y = m(X) + Z (3)

such that E{Z} = 0, and X and Z are independent. Sometimes it is called additive noise
model or homeoscedastic regression model. Under the additive noise model (3), Devroye
et al. [7] introduced a density estimate of the residual, and proved its universal (density
free) strong consistency in L1.

2. A recursive kernel estimate

In this paper we extend the result of Devroye et al. [7] such that don’t assume
the additive noise model (3), i.e., consider heteroscedastic regression problem. We only
assume that, for given X = x, the conditional density of the residual Y −m(X) exists.
This conditional density is denoted by f(z | x). Then

f(z) =

∫
Rd

f(z | x)µ(dx).

Suppose that based on the data (X1, Y1), . . . , (Xn, Yn), we are given a strongly uni-
versally consistent regression estimate mn. We introduce a recursive density estimate
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of the residual, which is a slight modification of the recursive kernel density estimate
proposed by Wolverton and Wagner [17] and Yamato [16] for observable i.i.d. random
variables Yi − m(Xi). Let K be a density on R, called kernel, {hi} is the bandwidth
sequence. For a bandwidth h > 0, introduce the notation

Kh(z) =
1

h
K(z/h).

Then the recursive kernel estimate is defined by

fn(z) :=
1

n

n∑
i=1

Khi(z − Zi), (4)

where in the i-th term we plug-in the approximation of the i-th residual

Zi := Yi −mi−1(Xi).

Notice that the estimate fn defined by (4) can be calculated sequentially: Put f0 = 0
and m0 = 0, then for n ≥ 1, we have that

fn(z) =

(
1− 1

n

)
fn−1(z) +

1

n
Khn (z − (Yn −mn−1(Xn))) .

Theorem 1. Assume that Y is square integrable. Suppose that we are given a strongly
universally consistent regression estimate mn, i.e.,∫

Rd

(m(x)−mn(x))2µ(dx)→ 0 a.s.

and for given X = x, the conditional density of the residual Y −m(X) exists. Assume
that the kernel function K is a square integrable density, and

lim
n→∞

hn = 0 and

∞∑
n=1

1

n2hn
<∞. (5)

Then

lim
n→∞

∫
R
|fn(z)− f(z)|dz = 0

a.s.

Proof For given X = x and for given (X1, Y1), . . . , (Xn, Yn), the approximate residual

Y −mn(X) = Y −m(X) +m(X)−mn(X)

has the conditional density f(z+mn(x)−m(x) | x) and so the density gn(z) of Y −mn(X)
can be calculated as follows:

gn(z) =

∫
Rd

f(z +mn(x)−m(x) | x)µ(dx).

Next we show that

lim
n→∞

∫
R
|gn(z)− f(z)|dz = 0 (6)
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a.s. For δ > 0, introduce the notation

∆x(δ) := sup
|u|≤δ

∫
R
|f(z + u | x)− f(z | x)|dz.

Thus, ∫
R
|gn(z)− f(z)|dz

=

∫
R
|
∫
Rd

f(z +mn(x)−m(x) | x)µ(dx)−
∫
Rd

f(z | x)µ(dx)|dz

≤
∫
Rd

(∫
R
|f(z +mn(x)−m(x) | x)− f(z | x)|dz

)
µ(dx)

=

∫
Rd

(∫
R
|f(z +mn(x)−m(x) | x)− f(z | x)|dz

)
I{|mn(x)−m(x)|≤δ}µ(dx)

+

∫
Rd

(∫
R
|f(z +mn(x)−m(x) | x)− f(z | x)|dz

)
I{|mn(x)−m(x)|>δ}µ(dx)

≤
∫
Rd

∆x(δ)µ(dx) + 2P{|m(X)−mn(X)| > δ | (X1, Y1), . . . , (Xn, Yn)}

=

∫
Rd

∆x(δ)µ(dx) + 2

∫
Rd(m(x)−mn(x))2µ(dx)

δ2

→
∫
Rd

∆x(δ)µ(dx)

a.s. as n → ∞. ∆x(δ) ≤ 2 and for any fixed x, ∆x(δ) → 0 as δ → 0 (cf. the proof of
Theorem 2.1 in Devroye and Györfi [8]), therefore the dominated convergence theorem
implies that ∫

Rd

∆x(δ)µ(dx)→ 0

as δ → 0, which yields (6). Apply the decomposition

fn(z)− f(z) = Vn(z) +Bn(z),

where the variation term is

Vn(z) =
1

n

n∑
i=1

[Khi(z − Zi)− E {Khi(z − Zi) | (X1, Y1), . . . , (Xi−1, Yi−1)}] ,

while the (conditional) bias term is

Bn(z) =
1

n

n∑
i=1

E {Khi
(z − Zi) | (X1, Y1), . . . , (Xi−1, Yi−1)} − f(z).

Concerning the bias term, limn→∞ hn = 0 and (6) imply that∫
R
|Bn(z)|dz =

∫
R

∣∣∣∣∣ 1n
n∑
i=1

∫
R
Khi(z − u)gi−1(u)du− f(z)

∣∣∣∣∣ dz
4



≤
∫
R

∣∣∣∣∣ 1n
n∑
i=1

∫
R
Khi(z − u)f(u)du− f(z)

∣∣∣∣∣ dz
+

∫
R

1

n

n∑
i=1

∫
R
Khi(z − u)|gi−1(u)− f(u)|dudz

≤
∫
R

∣∣∣∣∣ 1n
n∑
i=1

∫
R
Khi

(z − u)f(u)du− f(z)

∣∣∣∣∣ dz +
1

n

n∑
i=1

∫
R
|gi−1(u)− f(u)|du

→ 0

a.s., because of the Toeplitz lemma and Theorem 2.1 in Devroye and Györfi [8]. Vn(·)
is an average of L2-valued sequence of martingale differences. We apply the generalized
Chow theorem [5]: let Un, n = 1, 2, . . . be an L2-valued sequence of martingale differences
such that

∞∑
n=1

E{‖Un‖22}
n2

<∞

where ‖ · ‖2 denotes the L2 norm. Then

lim
n→∞

∥∥∥∥∥ 1

n

n∑
i=1

Ui

∥∥∥∥∥
2

= 0

a.s. (cf. Györfi, Györfi and Vajda [11]). One has to verify the condition of the generalized
Chow theorem:

∞∑
n=1

E
{
‖Khn

(· − Zn)− E {Khn
(· − Zn) | (X1, Y1), . . . , (Xn−1, Yn−1)}‖22

}
n2

≤
∞∑
n=1

E
{
‖Khn

(· − Zn)‖22
}

n2
≤
∞∑
n=1

‖K‖22
n2hn

<∞,

by the condition of the theorem, and so

‖Vn‖2 → 0

a.s. Put

f̂n(z) :=
1

n

n∑
i=1

E {Khi
(z − Zi) | (X1, Y1), . . . , (Xi−1, Yi−1)} .

then we proved that
‖f̂n − f‖1 = ‖Bn‖1 → 0

a.s., where ‖ · ‖1 denotes the L1 norm, and

‖f̂n − fn‖2 = ‖Vn‖2 → 0

a.s. From Lemma 3.1 in Györfi, Masry [12] we get that these two limit relations imply

‖fn − f‖1 → 0

a.s.
�
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3. A non-recursive kernel estimate

Next we introduce a data splitting scheme. Assume that we are given two independent
samples:

Dn = {(X1, Y1), . . . , (Xn, Yn)}

and
D′n = {(X ′1, Y ′1), . . . , (X ′n, Y

′
n)}.

From sample Dn we generate a strongly universally consistent regression estimate mn.
Then the non-recursive kernel estimate is defined by

fn(z) :=
1

n

n∑
i=1

Khn(z − Zi), (7)

where in the i-th term we plug-in the approximation of the i-th residual

Zi := Y ′i −mn(X ′i).

Given Dn, the common density of Zi’s is gn.
Under the additive noise model (3), Devroye et al. [7] proved the universal strong

consistency of fn defined by (7).

Theorem 2. Suppose that we are given a strongly universally consistent regression es-
timate mn, i.e., ∫

Rd

(m(x)−mn(x))2µ(dx)→ 0 a.s.

and for given X = x, the conditional density of the residual Y −m(X) exists. Assume
that the kernel function K is a square integrable density, and

lim
n→∞

hn = 0 and lim
n→∞

nhn =∞. (8)

Then

lim
n→∞

∫
R
|fn(z)− f(z)|dz = 0

a.s.

Proof. Applying the argument in Devroye [6] we get that

P
{∣∣∣ ∫

R
|fn − f | − E

{∫
R
|fn − f | | Dn

} ∣∣∣ ≥ ε | Dn

}
≤ 2e−nε

2/2,

therefore one has to prove that

E
{∫

R
|fn − f | | Dn

}
→ 0
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a.s. Concerning the conditional bias term, we have that∫
R
|E{fn(z) | Dn} − f(z)|dz

=

∫
R

∣∣∣ ∫
R
Khn

(z − u)gn(u)du− f(z)
∣∣∣dz

≤
∫
R

∣∣∣ ∫
R
Khn(z − u)f(u)du− f(z)

∣∣∣dz +

∫
R

∫
R
Khn(z − u)|gn(u)− f(u)|dudz

≤
∫
R

∣∣∣ ∫
R
Khn

(z − u)f(u)du− f(z)
∣∣∣dz +

∫
R
|gn(u)− f(u)|du

→ 0

a.s., because of Theorem 2.1 in Devroye, Györfi [8] and (6). For the conditional variation
term, let I be an arbitrary interval, then we have that

E
{∫

R
|E{fn(z) | Dn} − fn(z)|dz | Dn

}
≤

∫
I

E {|E{fn(z) | Dn} − fn(z)| | Dn} dz + 2

∫
Ic

E{fn(z) | Dn}dz

≤
∫
I

√
E {|E{fn(z) | Dn} − fn(z)|2 | Dn}dz

+2

∫
R
|E{fn(z) | Dn} − f(z)|dz + 2

∫
Ic
f(z)dz.

For ε > 0, with probability one choose I and n such that

2

∫
R
|E{fn(z) | Dn} − f(z)|dz + 2

∫
Ic
f(z)dz < ε.

Thus,

E
{∫

R
|E{fn(z) | Dn} − fn(z)|dz | Dn

}
≤

∫
I

√
E {|E{Khn

(z − Z1) | Dn} −Khn
(z − Z1)|2 | Dn}

n
dz + ε

≤
∫
I

√
E {Khn

(z − Z1)2 | Dn}
n

dz + ε

≤

√
‖K‖22|I|
nhn

+ ε

→ ε

a.s., where |I| denotes the length of the interval I. �
Remark 1. Using a tricky counter example, Devroye et al. [7] showed that the condition
of the existence of conditional densities of the residual cannot be weakened, if for the
regression estimate merely strong universal consistency is assumed. The example is
follows: Choose X uniformly distributed on [0, 1], let U be independent of X take on
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values 1 and −1 with probability 1/2, resp., and set Y = U · X. Then Y is uniformly
distributed on [−1, 1] and has a density, the regression function is 0. However, Y =
Y −m(X) is conditioned on the value of X = x concentrated on −x and x and has no
density. Then they constructed an approximation mn of the regression function such
that maxx |mn(x)| ≤

√
hn → 0 and

lim inf
n

∫
R
|fn(z)− f(z)|dz ≥ 1

a.s., where the kernel K is the window kernel.
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