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Summary: Consider the regression problem with a response variable Y and with a d-dimensional
feature vector X . For the regression function m(x) = E{Y |X = x}, this paper investigates
methods for estimating the density of the residual Y − m(X) from independent and identically
distributed data. If the density is twice differentiable and has compact support then we bound the
rate of convergence of the kernel density estimate. It turns out that for d ≤ 3 and for partitioning
regression estimates, the regression estimation error has no influence in the rate of convergence of
the density estimate.

1 Introduction
Let Y be a real valued random variable and letX = (X(1), . . . , X(d)) be a d-dimensional
random vector. The coordinates of X may have different types of distributions, some of
them may be discrete (for example binary), others may be absolutely continuous. In the
sequel we do not assume anything about the distribution of X . The task of regression
analysis is to estimate Y givenX , i.e., one aims to find a function F defined on the range
of X such that F (X) is “close” to Y . Typically, closeness is measured in terms of the
mean squared error of F ,

E{(F (X)− Y )2}.
It is well-known that the mean squared error is minimized by the regression function m
with

m(x) = E{Y | X = x} (1.1)

and a minimum mean squared error is

L∗ := E{(Y −m(X))2} = min
F

E{(Y − F (X))2},

since, for each measurable function F , the mean squared error can be decomposed into

E{(F (X)− Y )2} = E{(m(X)− Y )2}+

∫
Rd

(m(x)− F (x))2µ(dx),

AMS 2000 subject classifications. Primary: 62G08; Secondary: 62G09.
Key words and phrases: regression residual, kernel density estimation, partitioning, kernel and nearest neighbor
regression estimation, rate of convergence.
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where µ denotes the distribution of X . The second term on the right hand side is called
excess error or integrated squared error of the function F . Clearly, the mean squared error
of F is close to its minimum if and only if the excess error

∫
Rd(m(x)− F (x))2µ(dx) is

close to zero.
The regression function cannot be calculated as long as the distribution of (X,Y ) is

unknown. Assume, however, that we observed data

Dn = {(X1, Y1), . . . , (Xn, Yn)} (1.2)

consisting of independent and identically distributed copies of (X,Y ). Dn can be used to
produce an estimate mn = mn(·, Dn) of the regression function m. Since m arises from
L2 considerations, it is natural to study L2(µ) convergence of the regression estimatemn

to m.
It is of great importance to be able to estimate the various characteristics of the resid-

ual
Y −m(X).

For nonparametric estimates of the minimum mean squared errorL∗ = E{(Y−m(X))2}
see, e.g., Dudoit and van der Laan [12], Kohler [18], Liitiäinen et al. [19], [20], Li-
itiäinen et al. [21], Müller and Stadtmüller [22], Neumann [24], Pelckmans et al. [26],
Stadtmüller and Tsybakov [28] and the literature cited there. Devroye et al. [9] proved
that without any tail and smoothness condition L∗ cannot be estimated with guaranteed
rate of convergence, and showed a first nearest neighbor based estimate, which for Lips-
chitz continuous m has faster rate of convergence than that of the usual plug-in estima-
tors. Müller, Schick and Wefelmeyer [23] estimated L∗ as the variance of an independent
measurement error Z in the model

Y = m(X) + Z (1.3)

such that E{Z} = 0, andX and Z are independent. Sometimes it is called additive noise
model or homeoscedastic regression model.

2 The rate of convergence of the kernel density estimate
In this paper we deal with the problem how to estimate the density f of the residual
Y −m(X) assuming that the density f exists. Our aim is to estimate f from i.i.d. data
(1.2).

Under some smoothness conditions on the density f , Ahmad [1], Cheng [3], [4],
Efromovich [13], [14], Akritas and Van Keilegom [2], Neumeyer and Van Keilgom [25]
studied the estimate the density of the residual. Under the additive noise model (1.3),
Devroye et al. [5] introduced a density estimate of the residual, and proved its universal
(density free) strong consistency in L1.

Next we introduce a data splitting scheme. Assume that we are given two independent
samples:

Dn = {(X1, Y1), . . . , (Xn, Yn)}
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and
D′n = {(X ′1, Y ′1), . . . , (X ′n, Y

′
n)}.

From sample Dn we generate a strongly universally consistent regression estimate mn.
Let K be a density on R, called kernel. For a bandwidth h > 0, introduce the notation

Kh(z) =
1

h
K(z/h).

Then the kernel density estimate is defined by

fn(z) :=
1

n

n∑
i=1

Khn(z − Zi), (2.1)

where in the i-th term we plug-in the approximation of the i-th residual

Zi := Y ′i −mn(X ′i),

and {hn} is a bandwidth sequence. Given Dn, the common density of Zi’s is gn.
Under the additive noise model (1.3), Devroye et al. [5] proved the density-free

strong consistency of fn.
An important problem is to bound the rate of convergence of

E
{∫

R
|fn(z)− f(z)|dz

}
,

where fn is the kernel estimate (2.1). The main question is the size of degradation with
respect to the case when using an oracle that Yi − m(Xi) is available, i.e., what is the
influence of the regression estimate in the rate of convergence of the density estimate.

Theorem 2.1 Under the model of additive noise (1.3), assume that the density f is twice
differentiable and has a compact support contained in the interval I . Moreover, suppose
that the kernel K is symmetric (K(x) = K(−x)), bounded and has compact support.
Then

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c1h

2
n +

c2√
nhn

+c3E
{∣∣∣ ∫

Rd
mn(x)µ(dx)− E{m(X)}

∣∣∣}
+c4E

{∫
Rd

(mn(x)−m(x))2µ(dx)

}
. (2.2)

PROOF. For given X = x and for given (X1, Y1), . . . , (Xn, Yn), the approximate resid-
ual

Y −mn(X) = Y −m(X) +m(X)−mn(X)

has the conditional density f(z+mn(x)−m(x)) and so the density gn(z) of Y −mn(X)
can be calculated as follows:

gn(z) =

∫
Rd
f(z +mn(x)−m(x))µ(dx).
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The triangle inequality implies that∫
R
|fn(z)− f(z)|dz

≤
∫
R
|E{fn(z) | Dn} − f(z)|dz +

∫
R
|E{fn(z) | Dn} − fn(z)|dz.

Concerning the conditional bias term, we have that∫
R
|E{fn(z) | Dn} − f(z)|dz

=

∫
R

∣∣∣ ∫
R
Khn(z − u)gn(u)du− f(z)

∣∣∣dz
≤
∫
R

∣∣∣ ∫
R
Khn(z − u)f(u)du− f(z)

∣∣∣dz +

∫
R

∫
R
Khn(z − u)|gn(u)− f(u)|dudz

=

∫
R

∣∣∣ ∫
R
Khn(z − u)f(u)du− f(z)

∣∣∣dz +

∫
R
|gn(u)− f(u)|du.

For the conditional variation term, we get that

E
{∫

R
|E{fn(z) | Dn} − fn(z)|dz | Dn

}
≤
∫
I

E {|E{fn(z) | Dn} − fn(z)| | Dn} dz + 2

∫
Ic

E{fn(z) | Dn}dz

≤
∫
I

√
E {|E{fn(z) | Dn} − fn(z)|2 | Dn}dz

+2

∫
R
|E{fn(z) | Dn} − f(z)|dz + 2

∫
Ic
f(z)dz

≤
‖K‖2

√
|I|√

nhn
+ 2

∫
R
|E{fn(z) | Dn} − f(z)|dz.

Thus,

E
{∫

R
|fn(z)− f(z)|dz

}
≤ E

{∫
R
|E{fn(z) | Dn} − f(z)|dz

}
+ E

{∫
R
|E{fn(z) | Dn} − fn(z)|dz

}
≤ 3

∫
R

∣∣∣ ∫
R
Khn(z − u)f(u)du− f(z)

∣∣∣dz + 3E
{∫

R
|gn(z)− f(z)|dz

}
+
‖K‖2

√
|I|√

nhn

≤ c1h
2
n +

c2√
nhn

+ 3E
{∫

R
|gn(z)− f(z)|dz

}
,

where we applied Lemma 5.4 in Devroye, Györfi [7]. The sum of the first and the second
term in the right hand side is the same as that of the rate of convergence of the standard
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kernel estimate (cf. Theorem 5.1 in Devroye, Györfi [7]), so the influence of the excess
error can be bounded by E

{∫
R |gn(z)− f(z)|dz

}
. For twice differentiable density f ,

let’s calculate the second order Taylor expansion of f(z +mn(x)−m(x)) at z:

f(z +mn(x)−m(x)) = f(z) + f ′(z)(mn(x)−m(x)) +
f ′′(zn,x)

2
(mn(x)−m(x))2

with some zn,x. Then∫
R
|gn(z)− f(z)|dz

=

∫
R

∣∣∣ ∫
Rd
f(z +mn(x)−m(x))µ(dx)− f(z)

∣∣∣dz
=

∫
R

∣∣∣ ∫
Rd

(f ′(z)(mn(x)−m(x)) +
f ′′(zn,x)

2
(mn(x)−m(x))2)µ(dx)

∣∣∣dz
≤ |I|max

z
|f ′(z)|

∣∣∣ ∫
Rd

(mn(x)−m(x))µ(dx)
∣∣∣

+|I|max
z
|f ′′(z)|

∫
Rd

(mn(x)−m(x))2µ(dx)

= c3

∣∣∣ ∫
Rd
mn(x)µ(dx)− E{m(X)}

∣∣∣+ c4

∫
Rd

(mn(x)−m(x))2µ(dx).

2

If hn = c5n
−1/5 then

c1h
2
n +

c2√
nhn

= c6n
−2/5.

If the regression function m is Lipschitz continuous and X and Y are bounded then the
partitioning, the kernel and the nearest neighbor regression estimates have the rate of
convergence

E
{∫

Rd
(mn(x)−m(x))2µ(dx)

}
≤ c7n−2/(d+2), (2.3)

(cf. Chapters 4, 5, 6 in Györfi et al [17]). Next we show that under some situations,

E
{∣∣∣ ∫

Rd
mn(x)µ(dx)− E{m(X)}

∣∣∣} ≤ c8n−2/(d+2) + c9n
−1/2, (2.4)

which would imply that

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c6n−2/5 + c7n

−2/(d+2),

and so for d ≤ 3 the rate of convergence is the same as that of standard kernel estimate. It
means that for d ≤ 3 and for partitioning regression estimates, the regression estimation
error has no influence in the rate of convergence of the density estimate.
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3 Application for partitioning regression estimation
Stone [29] first pointed out that there exist universally consistent estimators. He consid-
ered local averaging estimates, i.e., estimates of the form

mn(x) =

n∑
i=1

Wni(x;X1, . . . , Xn)Yi =

n∑
i=1

Wni(x)Yi,

where Wni(x) are the data-dependent weights governing the local averaging about x.
For local averaging regression estimates,∫

Rd
mn(x)µ(dx) =

n∑
i=1

∫
Rd
Wni(x)µ(dx)Yi =:

n∑
i=1

VniYi

such that Vni ≥ 0, i = 1, . . . , n and
∑n
i=1 Vni = 1. Noticing

E

{
n∑
i=1

VniYi

}
= E

{
n∑
i=1

Vnim(Xi)

}
,

we may apply the decomposition∫
Rd
mn(x)µ(dx)− E{m(X)}

=

(
n∑
i=1

VniYi − E

{
n∑
i=1

VniYi

})
+

(
E

{
n∑
i=1

Vnim(Xi)

}
− E{m(X)}

)
,

so in order to show (2.4) we prove that

E

{∣∣∣ n∑
i=1

VniYi − E

{
n∑
i=1

VniYi

}∣∣∣} ≤
√√√√Var

( n∑
i=1

VniYi

)
≤ c10√

n
(3.1)

and ∣∣∣E{ n∑
i=1

Vnim(Xi)

}
− E{m(X)}

∣∣∣ ≤ c11n−2/(d+2). (3.2)

The partitioning regression estimate is defined by a partition Pn = {An,1, An,2 . . . }
of Rd and

mn(x) =

∑n
i=1 YiI{Xi∈An(x)}∑n
i=1 I{Xi∈An(x)}

,

whereAn(x) denotes the cellAn,j into which x falls, and 0/0 = 0, by definition. Results
on universal consistency can be found in Devroye and Györfi [6], Györfi [16] and Walk
[30].



Residual density estimation 7

For partitioning estimate we have that

Vni =

∫
Rd

I{Xi∈An(x)}∑n
j=1 I{Xj∈An(x)}

µ(dx)

=

∫
Rd

I{x∈An(Xi)}∑n
j=1 I{Xj∈An(Xi)}

µ(dx)

=
µ(An(Xi))

nµn(An(Xi))
,

where µn denotes the empirical distribution for the samples X1, . . . , Xn. One can check
that

∑n
i=1 Vni = 1.

Corollary 3.1 For the kernel density estimate fn defined by (2.1), choose hn = c5n
−1/5.

Let the regression estimate mn be the partitioning regression estimate. In addition to the
conditions of Theorem 2.1, assume that the partition is cubic with side length

h′n = c13n
−1/(d+2),

Y and X are bounded, and m satisfies the Lipschitz condition:

|m(x)−m(z) ≤ C‖x− z‖. (3.3)

Then

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c6n−2/5 + c7n

−2/(d+2).

PROOF. Theorem 4.3 in Györfi et al [17] implies (2.3), so because of Theorem 2.1, we
have to show (3.1) and (3.2). Let L denote a bound of |Y |. In view of (3.2) we have∣∣∣E{ n∑

i=1

Vnim(Xi)

}
− E{m(X)}

∣∣∣
=
∣∣∣nE {Vn1m(X1)} − E{m(X)}

∣∣∣
=
∣∣∣E{ nµ(An(X1))

nµn(An(X1))
m(X1)

}
− E{m(X)}

∣∣∣
=
∣∣∣ ∑
A∈Pn

∫
A

m(x)µ(dx)E
{

nµ(A)∑n
i=2 I{Xi∈A} + 1

}
−
∑
A∈Pn

∫
A

m(x)µ(dx)
∣∣∣

≤ L
∑
A∈Pn

µ(A)
∣∣∣E{ nµ(A)∑n

i=2 I{Xi∈A} + 1

}
− 1
∣∣∣

= L
∑
A∈Pn

µ(A)(1− µ(A))n

≤ Le−1|Pn|
n

≤ c14

nh′dn
= c10n

−2/(d+2).
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For (3.1), we set
Uni = VniYi.

We have to show that

Var

(
n∑
i=1

Uni

)
≤ c∗

n
. (3.4)

Apply the Efron-Stein inequality ([15]). By symmetry, it suffices to use i.i.d. random
vectors (X1, Y1), (X ′1, Y

′
1), (X2, Y2), . . . , (Xn, Yn) and U ′ni obtained from Uni by re-

placement of (X1, Y1) by (X ′1, Y
′
1). The Efron-Stein inequality yields

Var

(
n∑
i=1

Uni

)
≤ n

2
E


(

n∑
i=1

Uni −
n∑
i=1

U ′ni

)2
 .

Thus,

Var

(
n∑
i=1

Uni

)
≤ 3n

2

E
{
U2
n1

}
+ E

{
U ′

2
n1

}
+ E


(

n∑
i=2

(Uni − U ′ni)

)2



= 3nE
{
U2
n1

}
+

3n

2
E


(

n∑
i=2

(Uni − U ′ni)

)2
 .

For a binomial-(n, p)-distributed random variable B (0 < p ≤ 1), we notice

E
{

1

(1 +B)r

}
≤ r!

(n+ 1)rpr

(r ∈ N). Thus, by independence

E
{
U2
n1

}
≤ L2

∫
Rd
µ(An(s))2E

{
1

(1 +
∑n
i=2 I{Xi∈An(s)})

2

}
µ(ds) ≤ c15

n2
.

Further, with
Ni` =

∑
j∈{2,...,n}\{i}

I{Xj∈An(X`)}

(i = 2, . . . , n, ` ∈ {1, i}), we have

n∑
i=2

(Uni − U ′ni)

=

n∑
i=2

µ(An(Xi))Yi
I{X′

1∈An(Xi)} − I{X1∈An(Xi)}

(1 + I{X1∈An(Xi)} +Nii)(1 + I{X′
1∈An(Xi)} +Nii)

,



Residual density estimation 9

therefore

E


(

n∑
i=2

(Uni − U ′ni)

)2


≤ 4L2E


(

n∑
i=2

µ(An(Xi))I{X1∈An(Xi)}

(1 +Nii)2

)2


= 4L2E

{
n∑
i=2

µ(An(Xi))
2I{X1∈An(Xi)}

(1 +Nii)4

}

+4L2E

 ∑
i,`=2,...,n, i 6=`

µ(An(Xi))µ(An(X`))I{X1∈An(Xi)}I{X1∈An(X`)}

(1 +Nii)2(1 +N``)2

 .

The identity I{X1∈An(Xi)} = I{Xi∈An(X1)} implies that

E


(

n∑
i=2

(Uni − U ′ni)

)2


≤ 4L2E

{
n∑
i=2

µ(An(X1))2I{Xi∈An(X1)}

(1 +Ni1)4

}

+4L2E

 ∑
i,`=2,...,n, i 6=`

µ(An(X1))2I{Xi∈An(X1)}I{X`∈An(X1)}

(1 +Ni1)2(1 +N`1)2


≤ 4L2(n− 1)E

{
µ(An(X1))2I{X2∈An(X1)}

(1 +
∑n
j=3 I{Xj∈An(X1)})

3

}

+4L2(n− 1)(n− 2)E

{
µ(An(X1))2I{X2∈An(X1)}I{X3∈An(X1)}

(1 +
∑n
j=4 I{Xj∈An(X1)})

4

}

= 4L2(n− 1)

∫
Rd
µ(An(s))3E

{
1

(1 +
∑n
j=3 I{Xj∈An(s)})

3

}
µ(ds)

+4L2(n− 1)(n− 2)

∫
Rd
µ(An(s))4E

{
1

(1 +
∑n
j=4 I{Xj∈An(s)})

4

}
µ(ds)

≤ c16
n2
.

Thus, (3.4) is obtained, and the proof of the corollary is complete. 2
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4 Application for kernel regression estimation
The kernel regression estimate is given by

mn(x) =

∑n
i=1 YiK

′
h′
n
(x−Xi)∑n

i=1K
′
h′
n
(x−Xi)

,

where h′n > 0 is a smoothing factor depending upon n, K ′ is an absolutely integrable
function (the kernel), and K ′h′

n
(x) = K ′(x/h′n). Under some additional conditions on

the kernel and under the conditions

h′n → 0, nh′dn →∞

Devroye and Wagner [11], Spiegelman and Sacks [27], Devroye and Krzyżak [10] and
Walk [30], [31] proved consistency theorems for the kernel estimate.

For kernel estimate we have that

Vni =

∫
Rd

K ′h′
n
(x−Xi)∑n

j=1K
′
h′
n
(x−Xj)

µ(dx).

Obviously,
∑n
i=1 Vni ≤ 1. In the special case of window kernel K ′(x) = I{‖x‖≤1}, one

has

Vni =

∫
Rd

I{‖x−Xi‖≤h′
n}∑n

j=1 I{‖x−Xj‖≤h′
n}
µ(dx).

Corollary 4.1 For the kernel density estimate fn defined by (2.1), choose hn = c5n
−1/5.

Let the regression estimate mn be the kernel regression estimate with window kernel. In
addition to the conditions of Theorem 2.1, assume that

h′n = c17n
−1/(d+2),

Y and X are bounded, and m satisfies the Lipschitz condition (3.3). Put

m̄h(x) :=

∫
Sx,h

m(s)µ(ds)

µ(Sx,h)
,

where Sx,h stands for the sphere centered at x and radius h. Then

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c6n

−2/5 + c7n
−2/(d+2)

+

∣∣∣∣∫
Rd
m̄h′

n
(x)µ(dx)−

∫
Rd
m(x)µ(dx)

∣∣∣∣ .
PROOF. Theorem 5.2 in Györfi et al [17] implies (2.3), so because of Theorem 2.1,
we have to show (3.1) and (3.2) such that E{m(X)} =

∫
Rd m(x)µ(dx) is replaced by
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∫
Rd m̄h′

n
(x)µ(dx). (3.1) has been proved in Lemma 3.10, a) of Walk [31]. Concerning

(3.2), we have that

E

{
n∑
i=1

Vnim(Xi)

}
= nE {Vn1m(X1)}

= nE

{∫
Rd

I{X1∈Sx,h′n}

1 +
∑n
j=2 I{Xj∈Sx,h′n}

m(X1)µ(dx)

}
.

Because of independence, we get that

E

{
n∑
i=1

Vnim(Xi)

}
=

∫
Rd

∫
Sx,h′n

m(s)µ(ds)E

{
n

1 +
∑n
j=2 I{Xj∈Sx,h′n}

}
µ(dx)

=

∫
Rd
m̄h′

n
(x)E

{
nµ(Sx,h′

n
)

1 +
∑n
j=2 I{Xj∈Sx,h′n}

}
µ(dx)

=

∫
Rd
m̄h′

n
(x)
(
1− (1− µ(Sx,h′

n
))n
)
µ(dx),

therefore∣∣∣∣∣E
{

n∑
i=1

Vnim(Xi)

}
−
∫
Rd
m(x)µ(dx)

∣∣∣∣∣
≤
∣∣∣∣∫

Rd
m̄h′

n
(x)µ(dx)−

∫
Rd
m(x)µ(dx)

∣∣∣∣+

∣∣∣∣∫
Rd
m̄h′

n
(x)(1− µ(Sx,h′

n
))nµ(dx)

∣∣∣∣
≤
∣∣∣∣∫

Rd
m̄h′

n
(x)µ(dx)−

∫
Rd
m(x)µ(dx)

∣∣∣∣+ L

∫
Rd

(1− µ(Sx,h′
n
))nµ(dx).

The compact support of X can be covered by Mn = c · h′−dn many balls, with translates
of S0,h′

n/2
and with centers x1, . . . , xMn

. Thus,∫
Rd

(1− µ(Sx,h′
n
))nµ(dx) ≤

Mn∑
j=1

∫
Sxj,h′n/2

(1− µ(Sx,h′
n
))nµ(dx)

≤
Mn∑
j=1

∫
Sxj,h′n/2

(1− µ(Sxj ,h′
n/2

))nµ(dx)

=

Mn∑
j=1

µ(Sxj ,h′
n/2

)(1− µ(Sxj ,h′
n/2

))n

≤ Mne
−1

n

≤ ce−1

nh′dn

= c11n
−2/(d+2).

2
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5 Application for nearest neighbor regression estimation
For the k-nearest neighbor regression estimate, Wni(x;X1, . . . , Xn) is chosen to be
1/kn if Xi is one of the kn nearest neighbors of x among X1, . . . , Xn, and zero oth-
erwise. More formally, we fix x ∈ Rd, and reorder the data (X1, Y1), . . . , (Xn, Yn)
according to increasing values of ‖Xi − x‖. The reordered data sequence is denoted by

(X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x)).

X(k,n)(x) is called the kth nearest neighbor (k-NN) of x. In the sequel we assume that
this ordering is unique almost surely for µ almost all x, i.e., tie occurs with probability
zero. The kn-NN regression function estimate is defined by

mn(x) =
1

kn

kn∑
i=1

Y(i,n)(x).

If
kn →∞, kn/n→ 0

then the consistency of the k-nearest neighbor regression estimate was established by
Stone [29] and by Devroye et al. [8].

Let the set An,i consists of those x’s, for which Xi is one of the kn nearest neighbors
of x among X1, . . . , Xn. Then

Vni =
µ(An,i)

kn
.

Obviously,
∑n
i=1 Vni = 1.

Corollary 5.1 For the kernel density estimate fn defined by (2.1), choose hn = c5n
−1/5.

Let the regression estimate mn be the kn-nearest neighbor estimate. In addition to the
conditions of Theorem 2.1, assume that

kn = c15n
2/(d+2),

Y and X are bounded, tie occurs with probability zero, and m satisfies the Lipschitz
condition (3.3). Put

m̃n(x) =
1

kn

∫
Sx,ρn(x)

m(s)µ(ds),

where ρn(x) is the solution of the equation

kn
n

= µ(Sx,ρn(x)).

Then, for d ≥ 2,

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c6n

−2/5 + c7n
−2/(d+2)

+

∣∣∣∣∫
Rd
m̃n(x)µ(dx)−

∫
Rd
m(x)µ(dx)

∣∣∣∣ .
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PROOF. For d ≥ 2, Theorem 6.2 in Györfi et al. [17] and Theorem 3.2 in Liitiäinen
et al. [20], which generalizes Lemma 6.4 in Györfi et al. [17] from d ≥ 3 to d ≥ 2,
imply (2.3). So because of Theorem 2.1, we shall show (2.4). For this, we use arguments
of Devroye et al. [8] (or from Section 23.3 in Györfi et al. [17]). Define the auxiliary
estimate

m∗n(x) =
1

kn

n∑
i=1

YiI{Xi∈Sx,ρn(x)}.

Denoting
Rn(x) = ‖X(kn,n)(x)− x‖,

we have that ∣∣∣∣∫
Rd

(m∗n(x)−mn(x))µ(dx)

∣∣∣∣
=

1

kn

∣∣∣∣∣
n∑
i=1

Yi

∫
Rd

(I{Xi∈Sx,ρn(x)} − I{Xi∈Sx,Rn(x)})µ(dx)

∣∣∣∣∣
≤ L

kn

n∑
i=1

∣∣∣∣∫
Rd

(I{Xi∈Sx,ρn(x)} − I{Xi∈Sx,Rn(x)})µ(dx)

∣∣∣∣ .
By considering the cases ρn(x) ≤ Rn(x) and ρn(x) > Rn(x) we obtain that at a

change of i, for each x the sign of

I{Xi∈Sx,ρn(x)} − I{Xi∈Sx,Rn(x)}

and thus the sign of ∫
Rd

(I{Xi∈Sx,ρn(x)} − I{Xi∈Sx,Rn(x)})µ(dx)

remains unaltered. Therefore∣∣∣∣∫
Rd

(m∗n(x)−mn(x))µ(dx)

∣∣∣∣
≤ L

∣∣∣∣∣ 1

kn

n∑
i=1

∫
Rd

(I{Xi∈Sx,ρn(x)} − I{Xi∈Sx,Rn(x)})µ(dx)

∣∣∣∣∣
= L

∣∣∣∣∫
Rd
M∗n(x)µ(dx)−

∫
Rd

1µ(dx)

∣∣∣∣ ,
where M∗n is defined as m∗n with Yi replaced by constant 1. Then∣∣∣∣∫

Rd
(mn(x)−m(x))µ(dx)

∣∣∣∣
≤
∣∣∣∣∫

Rd
(m∗n(x)−mn(x))µ(dx)

∣∣∣∣+

∣∣∣∣∫
Rd

(m∗n(x)−m(x))µ(dx)

∣∣∣∣
≤ L

∣∣∣∣∫
Rd
M∗n(x)µ(dx)−

∫
Rd

1µ(dx)

∣∣∣∣+

∣∣∣∣∫
Rd

(m∗n(x)−m(x))µ(dx)

∣∣∣∣ .
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Therefore obviously it suffices to show (2.4) for m∗n instead of mn, where we now have

Vni =
1

kn

∫
Rd
I{Xi∈Sx,ρn(x)}µ(dx).

It is now enough to show (3.1) and (3.2), where E{m(X)} is replaced by E{m̃n(X)}.
But then apparently (3.2) is fulfilled which vanishing right hand side. (3.1) means

Var
(∫

Rd
m∗n(x)µ(dx)

)
≤ c210

n
.

Apply the Efron-Stein inequality ([15]). By symmetry, it suffices to use i.i.d. ran-
dom vectors (X1, Y1), (X ′1, Y

′
1), (X2, Y2), . . . , (Xn, Yn) and m′∗n obtained from m∗n by

replacement of (X1, Y1) by (X ′1, Y
′
1). The Efron-Stein inequality yields

Var
(∫

Rd
m∗n(x)µ(dx)

)
≤ n

2
E

{(∫
Rd
m∗n(x)µ(dx)−

∫
Rd
m′∗n (x)µ(dx)

)2
}
.

There exist cones C1, . . . , Cγd , each with top 0 and with angle π/3 such that

∪γdj=1Cj = Rd.

Now we argue as in Devroye et al. [8]. m∗n(x)−m′∗n (x) is absolutely bounded by 2L/kn
and can differ from zero if X1 ∈ Sx,ρn(x) or X ′1 ∈ Sx,ρn(x). One has X1 ∈ Sx,ρn(x)
or X ′1 ∈ Sx,ρn(x) if and only if µ(Sx,‖x−X1‖) ≤ kn/n or µ(Sx,‖x−X′

1‖) ≤ kn/n. But
the µ-measure of the random set of such x’s is bounded by 2γdkn/n (cf. Lemma 6.2 in
Györfi et al. [17]). Therefore∣∣∣∣∫

Rd
(m∗n(x)−m′∗n (x))µ(dx)

∣∣∣∣ ≤ 2L

kn

2γdkn
n

=
4Lγd
n

.

Thus

Var
(∫

Rd
m∗n(x)µ(dx)

)
≤ 8L2γ2d

n
.
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[7] Devroye, L. and Györfi, L. Nonparametric Density Estimation: The L1 View. John
Wiley, New York, 1985.
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