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Abstract

For a finite group G, we introduce a multiplication on the Q-vector space with basis SG×G, the
set of subgroups of G × G. The resulting Q-algebra Ã can be considered as a ghost algebra for the
double Burnside ring B(G,G) in the sense that the mark homomorphism from B(G,G) to Ã is a ring
homomorphism. Our approach interprets QB(G,G) as an algebra eAe, where A is a twisted monoid
algebra and e is an idempotent in A. The monoid underlying the algebra A is again equal to SG×G

with multiplication given by composition of relations (when a subgroup of G×G is interpreted as a
relation between G and G). The algebras A and Ã are isomorphic via Möbius inversion in the poset
SG×G. As an application we improve results by Bouc on the parametrization of simple modules
of QB(G,G) and also of simple biset functors, by using results by Linckelmann and Stolorz on the
parametrization of simple modules of finite category algebras. Finally, in the case where G is a cyclic
group of order n, we give an explicit isomorphism between QB(G,G) and a direct product of matrix
rings over group algebras of the automorphism groups of cyclic groups of order k, where k divides n.

1 Introduction

The main goal of this paper is to find a ghost ring for the double Burnside ring B(G,G) of a finite group
G, as an analogue of the classical ghost ring of the usual Burnside ring B(G), and as a generalization
of the results in [BD], where this was achieved for the subring B⊳(G,G) of B(G,G), which is additively
generated by the classes of left-free (G,G)-bisets. This goal is achieved over the field Q of rational
numbers.

Recall that the Burnside ring B(G), the Grothendieck ring of the category of finite left G-sets with
respect to disjoint unions and direct products, is embedded via the mark homomorphism ρG : B(G) →

∗MR Subject Classification: 19A22, 20C20. Keywords: Burnside ring, double Burnside ring, mark homomorphism,

ghost ring, Schur functor, biset, biset functor, twisted category algebra
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∏
U6G Z, [X ] 7→ |XU |, into a direct product of copies of Z, also called the ghost ring of B(G), a ring with

a considerably simpler structure than B(G) itself. Here, X denotes a left G-set, [X ] denotes its image
in B(G), and XU denotes the set of U -fixed points of X , for a subgroup U of G. Every element in the
image of ρG is constant on conjugacy classes of subgroups of G. After tensoring with Q one obtains a
Q-algebra isomorphism

ρG : QB(G)
∼
−→ (

∏

U6G

Q)G ⊆
∏

U6G

Q

onto the subalgebra of G-fixed points under the conjugation action. This isomorphism has become one of
the main tools to obtain answers to questions related to the ring structure of B(G): for instance, Dress
determined the primitive idempotents of B(G), cf. [D], and Yoshida determined the unit group of B(G),
cf. [Y], using the mark homomorphism.

The double Burnside ring B(G,G) is the Grothendieck ring of the category of finite (G,G)-bisets
with respect to disjoint unions and the tensor product of bisets over G. In contrast to B(G), it is not
commutative when G 6= 1. The Burnside ring and the double Burnside ring are linked through a natural
embedding B(G) → B(G,G). The double Burnside ring and related constructions have led to the theory
of biset functors, initiated by Bouc in [Bc1], see also the more recent book [Bc3]. This theory was
the main tool in the determination of the Dade group, an invariant of a p-group that is important in
the modular representation theory of finite groups. It was achieved in a sequence of papers by various
authors, including Bouc, Thévenaz and Carlson, cf. [BT1] and [T]. Another application of biset functors
was the complete determination of the unit group of B(P ) for a p-group P , cf. [Bc2]. Bisets also led
to surprising and interesting invariants, called stabilizing bisets, of representations of finite groups over
arbitrary commutative base rings, cf. [BT2]. Moreover, there is a connection of the double Burnside ring
with algebraic topology, cf. [MP], and fusion systems, cf. [BLO], [RS], although these connections only
use the subring B⊳(G,G) of B(G,G).

Given the renewed interest in the double Burnside ring, the potential for applications, and the use-
fulness of the ghost ring of B(G), it seems desirable to determine a ghost algebra of B(G,G) in the
following sense. The double Burnside ring can, as an abelian group, be canonically identified with the
Burnside group B(G ×G), and this way one has the usual additive embedding via the mark homomor-
phism ρG,G : B(G,G) → ZSG×G into the free Z-module over the set SG×G of subgroups of G × G, so
that one obtains an isomorphism of Q-vector spaces,

ρG,G : QB(G,G)
∼
−→ (QSG×G)

G×G ⊆ QSG×G ,

onto the subspace of G×G-fixed points under the conjugation action of G×G on the set of its subgroups,
SG×G. The multiplication on QB(G,G) induces a unique algebra structure on the fixed point set that
turns ρG,G into a Q-algebra isomorphism. It is natural to ask what this multiplication on (QSG×G)

G×G

looks like. One can also ask whether there is a ‘natural’ Q-algebra structure on the bigger vector space
QSG×G extending the multiplication on the fixed points. Of course, such an extension might not be
unique. Using the (single) Burnside ring B(G) and its mark homomorphism as a model, one would also
hope that such a Q-algebra structure on QSG×G should be simpler than the one of QB(G,G) itself.
Also, it is reasonable to expect that this multiplication should involve the construction of ‘composition’,
L ∗M , of two subgroups L and M of G×G, given by

L ∗M := {(x, y) ∈ G×G | ∃g ∈ G : (x, g) ∈ L, (g, y) ∈M} ,

which is used in the explicit description of the multiplication in QB(G,G) by a Theorem of Bouc,
cf. Proposition 2.4.
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The key observation leading to answers to the above questions is that the additive map
αG,G : QB(G,G) → QSG×G, [X ] 7→

∑
x∈X stabG×G(x), is almost multiplicative when QSG×G is viewed

as monoid algebra over the monoid (SG×G, ∗). This map is multiplicative if one introduces a 2-cocycle
on the monoid SG×G and uses the twisted monoid algebra structure on QSG×G. For the purpose of this
introduction, we denote this algebra by A. The map αG,G has the effect to ‘straighten out’ the Mackey-
type formula for the multiplication in B(G,G), by omitting the summation over double cosets. Moreover,
αG,G is injective with image eAe for a certain idempotent e of A. Thus, the double Burnside algebra
and its representation theory can be viewed as the result of a Schur functor applied to a twisted monoid
algebra. The Q-linear isomorphism ζG,G : QSG×G

∼
−→ QSG×G, L 7→

∑
L′6L L

′, transports the twisted

monoid algebra structure A on QSG×G to another algebra structure, which we denote by Ã on the same
Q-vector space. It turns out that the composition ζG,G ◦αG,G is equal to the mark homomorphism ρG,G
and we obtain a commutative diagram (omitting the indices of the maps)

QB(G,G) α
qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq (QSG×G)
G×G = eAe ⊆ QSG×G = A

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

ρ

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

ζ

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

ζ

(QSG×G)
G×G = ẽÃẽ ⊆ QSG×G = Ã

of algebra isomorphisms, with ẽ := ζ(e).

The first part of the paper is arranged as follows. Section 2 recalls the basic notions related to
bisets and the double Burnside ring, Section 3 establishes the properties related to the above diagram,
and Section 4 explicitly determines the multiplication formula for the basis elements L and M in Ã,
cf. Theorem 4.1. It turns out that, in general, the product of L and M is an alternating sum of very
few subgroups N of G ×G; and if the image of the right projection of L to G and the image of the left
projection of M to G are different then the product is equal to 0.

The rest of the paper is dedicated to applications of the approach to view QB(G,G) as a Schur algebra
eAe of the twisted monoid algebra A. The first application is the study of simple QB(G,G)-modules
(and also simple biset functors) by first determining the simple A-modules and then using Green’s theory,
cf. [Gr2, Section 6.2]. Recall that, by Green’s theory, every simple eAe-module is of the form eS, where
S is a simple A-module. This way, there is a natural injective map from the set of isomorphism classes of
simple eAe-modules into the set of isomorphism classes of simple A-modules. The class of S is contained
in the image of this embedding if and only if e ·S 6= {0}, a condition that often cannot be checked easily.
Section 5 recalls Green’s theory and also results on the parametrization of simple modules of twisted
category algebras due to Linckelmann–Stolorz ([LS]), and on the structure of inverse category algebras
due to Linckelmann ([L]). This is used in Section 6 to obtain a parametrization of the simple A-modules
of A (cf. Theorem 6.5). In Section 7 we give an explicit criterion when a simple A-module S satisfies
e ·S 6= {0}, cf. Theorem 7.1. This leads to improvements, but only in characteristic 0, of results by Bouc,
as given in [Bc3], on the parametrization of simple QB(G,G)-modules, cf. Theorem 7.5, and simple biset
functors, cf. Theorem 7.8. By Bouc’s results, the simple QB(G,G)-modules are parametrized by pairs
(H,W ), where H is a subquotient of G and W is a simple QOut(H)-module. But not all simple modules
W occur in this parametrization. We give a purely representation-theoretic necessary condition for W to
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occur in this parametrization. Finally, in Section 8, we prove that the algebra Ã is the category algebra
of an inverse category when G is cyclic. In this case we can use the results from Section 5 to determine
an explicit isomorphism between Ã and a product of matrix rings over group algebras, cf. Theorem 8.11.

For simplicity we have, so far, only given an account of the results in the setting where one considers
a single finite group G. Throughout the paper we develop a more general theory with respect to double
Burnside groups RB(G,H), where R is an appropriate commutative ring and B(G,H) is the double
Burnside group of two finite groups G and H . Only this more general setting leads to a description of the
category of biset functors as a category of modules over a Schur algebra of a twisted category algebra,
cf. Example 5.15(c). This is where one really needs category algebras and not only monoid algebras. Our
setup of the underlying category on which biset functors are defined is slightly more general than the one
used in [Bc3] by using Condition (16) in Section 6, which avoids to require that all group isomorphisms
are present in the category. For results on simple biset functors see also [BST].

Unless specified otherwise, all groups occurring in this paper will be finite, and R will always denote
an associative commutative unitary ring.

Acknowledgement. The authors’ research on this project was supported through a Marie Curie
Intra-European Fellowship (grant PIEF-GA-2008-219543), a ‘Rückkehrstipendium’ of the German Aca-
demic Exchange Service (grant D/11/05654), and a ‘Research in Pairs’ Grant from the Mathematisches
Forschungsinstitut Oberwolfach (MFO) in February 2012. It is a pleasure to thank the Universities of
Oxford, Jena and Kaiserslautern as well as the MFO, where part of this paper was written, for their kind
hospitality.

2 Preliminaries

Throughout this section, let G, H , and K be finite groups. We begin by fixing some general notation,
and summarize some basic results that will be essential for this paper. More details can be found in [Bc3,
Part I].

2.1 Subgroups and sections. (a) For every subgroup U of G and every g ∈ G, we set Ug := g−1Ug
and gU := gUg−1. Moreover, we denote by cg the automorphism G→ G : h 7→ ghg−1.

The set of all subgroups of G will be denoted by SG, and S̃G ⊆ SG will denote a transversal for
the conjugacy classes of subgroups of G. For U 6 G, we denote its G-conjugacy class by [U ]G and its
isomorphism class by [U ].

(b) By a section of G we understand a pair (U, V ) such that V P U 6 G. The group G acts on the set
of all its section via conjugation: if (U, V ) is a section of G and if g ∈ G then we set g(U, V ) := (gU, gV )
and (U, V )g := (Ug, V g).

(c) We denote the canonical projections G×H → G and G×H → H by p1 and p2, respectively, and
for every L 6 G×H we further set

k1(L) := {g ∈ G | (g, 1) ∈ L} and k2(L) := {h ∈ H | (1, h) ∈ L} .

Note that, for i = 1, 2, we have ki(L) P pi(L) and pi induces a group isomorphism p̄i : L/(k1(L)×k2(L)) →
pi(L)/ki(L). Thus one has a group isomorphism

ηL := p̄1 ◦ p̄
−1
2 : p2(L)/k2(L)

∼
→ p1(L)/k1(L)
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with ηL(hk2(L)) = gk1(L), for (g, h) ∈ L. In this way one obtains a bijection between the set SG×H

and the set of quintuples (B,A, η,D,C), where (B,A) is a section of G, (D,C) is a section of H , and
η : D/C

∼
→ B/A is a group isomorphism; the inverse of this bijection maps a quintuple (B,A, η,D,C) to

the group {(g, h) ∈ B ×D | η(hC) = gA}. Since L/(k1(L)× k2(L)) ∼= pi(L)/ki(L), for i = 1, 2, one has

|L| = |p1(L)| · |k2(L)| = |k1(L)| · |p2(L)| . (1)

In the sequel we will freely identify every subgroup L 6 G × H with its corresponding quintu-
ple (p1(L), k1(L), ηL, p2(L), k2(L)). The common isomorphism class of the groups p1(L)/k1(L) and
p2(L)/k2(L) will be denoted by q(L). If α is an automorphism of G then we abbreviate the group
(G, 1, α,G, 1) 6 G × G by ∆α(G); if α = cg for some g ∈ G then we just set ∆g(G) := ∆α(G), and if
g = 1 then we set ∆(G) := ∆1(G).

(d) For subgroups L 6 G×H and M 6 H ×K, we set

L ∗M := {(g, k) ∈ G×K | ∃h ∈ H : (g, h) ∈ L, (h, k) ∈M},

which is a subgroup of G×K.

2.2 Bisets and tensor products. (a) By a (G,H)-biset we will always understand a finite set,
equipped with a left G-action and a right H-action that commute with each other. The (G,H)-bisets
form a category whose morphisms are the (G,H)-equivariant set maps. As usual, we will freely identify
(G,H)-bisets with left G×H-sets, by setting

(g, h)x := gxh−1 and gyh := (g, h−1)y,

for every (G,H)-biset X , every left G×H-set Y , g ∈ G, h ∈ H , x ∈ X , y ∈ Y . In particular, for every
(G,H)-biset X and every L 6 G×H , one can define the L-fixed points XL of X .

(b) For every (G,H)-biset X , we denote by X◦ its opposite biset, which an (H,G)-biset: as a set X◦

equals X , and the biset structure on X◦ is given by hx◦g := (g−1xh−1), where g ∈ G, h ∈ H , x ∈ X ,
and x◦ is x viewed as an element in X◦. Note that X = (X◦)◦ as (G,H)-bisets.

On the other hand, one defines, for every subgroup L 6 G×H , its opposite group

L◦ := {(h, g) ∈ H ×G | (g, h) ∈ L} ,

which is clearly a subgroup of H ×G. If M 6 H ×K then (L ∗M)◦ = M◦ ∗ L◦. Moreover, one has an
isomorphism of (H,G)-bisets

(H ×G)/L◦ → (G×H/L)◦, (h, g)L◦ 7→ ((g, h)L)◦.

(c) Suppose thatX is a (G,H)-biset and that Y is an (H,K)-biset. Then their cartesian productX×Y
becomes a (G,K)-biset in the obvious way. Moreover, X×Y is also a left H-set via h(x, y) := (xh−1, hy),
for h ∈ H , x ∈ X , y ∈ Y . This H-action commutes with the G × K-action, and the set X ×H Y of
H-orbits on X × Y inherits the (G,K)-biset structure. We call X ×H Y the tensor product of X and Y
and denote the H-orbit of an element (x, y) ∈ X × Y by x×H y ∈ X ×H Y .

2.3 (Double) Burnside rings. (a) The Burnside ring B(G) of a finite group G is the Grothendieck
ring of the category of finite left G-sets with respect to disjoint unions and direct products. The element
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in B(G) associated to a finite left G-set X will be denoted by [X ]. Thus, if S̃G ⊆ SG is a set of
representatives of the conjugacy classes of subgroups of G then the elements [G/U ], U ∈ S̃G, form a
Z-basis of B(G), the standard basis of B(G).

(b) The Grothendieck group of the category of (G,H)-bisets will be denoted by B(G,H), and is called
the double Burnside group of G and H . Identifying (G,H)-bisets with left G×H-sets as in 2.2(a), we may
also identify B(G,H) with the classical Burnside group B(G×H). As in Part (a), for every (G,H)-biset
X , the image of its isomorphism class in B(G,H) will be denoted by [X ], and if S̃G×H ⊆ SG×H denotes
a transversal for the conjugacy classes of subgroup of G ×H then the elements [G ×H/L], L ∈ S̃G×H ,
form a Z-basis of B(G,H).

(c) The tensor product of bisets gives rise to a Z-bilinear map

− ·H − : B(G,H)×B(H,K) → B(G,K), ([X ], [Y ]) 7→ [X ×H Y ],

where X is a (G,H)-biset and Y is an (H,K)-biset. In the case where G = H = K this defines a
multiplication turning B(G,G) into a ring with identity element [G] = [G × G/∆(G)]; we call B(G,G)
the double Burnside ring of G.

(d) Sending each (G,H)-biset to its opposite biset induces a group isomorphism

−◦ : B(G,H) → B(H,G), [X ] 7→ [X◦]

with
([X ] ·H [Y ])◦ = [Y ]◦ ·H [X ]◦ ∈ B(K,G) and ([X ]◦)◦ = [X ] ∈ B(G,H),

where X is a (G,H)-biset and Y is an (H,K)-biset. Thus, in the case where G = H = K, this defines
an anti-involution of the ring B(G,G).

The following Mackey-type formula shows how to express the tensor product of a standard basis
element of B(G,H) and a standard basis element of B(H,K) as a sum of standard basis elements of
B(G,K).

2.4 Proposition ([Bc3], 2.3.34) For L 6 G×H and M 6 H ×K, one has

[G×H/L] ·H [H ×K/M ] =
∑

h∈[p2(L)\H/p1(M)]

[G×K/(L ∗ (h,1)M)] ∈ B(G,K),

where [p2(L)\H/p1(M)] ⊆ H denotes a set of double coset representatives.

In order to analyze the map −·H− : B(G,H)×B(H,K) → B(G,K) in more detail, it will, therefore,
be important to examine the ∗-product of subgroups of G×H with subgroups of H ×K.

The first of the following two lemmas is a classical result due to Zassenhaus. The second one is most
likely well known to experts; however, we have not been able to find a suitable reference, and therefore
include a proof for the reader’s convenience.

2.5 Lemma (Butterfly Lemma, [Hup] Hilfssatz I.11.3) Let (B,A) and (D,C) be two sections of
G. Then there exists a canonical isomorphism

β(B′, A′;D′, C′) : D′/C → B′/A′ ,

6



where A 6 A′ P B′ 6 B and C 6 C′ P D′ 6 D are defined as

B′ := (B ∩D)A , A′ := (B ∩C)A , D′ := (D ∩B)C , and C′ := (D ∩ A)C .

The isomorphism β(B′, A′;D′, C′) is uniquely determined by the property that it maps xC′ to xA′ for
every x ∈ B ∩D.

The following definition is due to Bouc, cf. [Bc3, Definition 4.3.12].

2.6 Definition Sections (B,A) and (D,C) of G are called linked if

D ∩ A = C ∩B, (D ∩B)C = D, and (D ∩B)A = B;

in this case we write (D,C)� (B,A).

2.7 Lemma Let L = (P1,K1, φ, P2,K2) 6 G×H and M = (P3,K3, ψ, P4,K4) 6 H ×K. Then

L ∗M = (P ′
1,K

′
1, φ̄ ◦ β(P ′

2,K
′
2;P

′
3,K

′
3) ◦ ψ̄, P

′
4,K

′
4) ,

where

• K2 6 K ′
2 6 P ′

2 6 P2 and K3 6 K ′
3 6 P ′

3 6 P3 are determined by the Butterfly Lemma applied to
the sections (P2,K2) and (P3,K3) of H ;

• K1 6 K ′
1 6 P ′

1 6 P1 and K4 6 K ′
4 6 P ′

4 6 P4 are determined by

P ′
1/K1 = φ(P ′

2/K2) , K ′
1/K1 = φ(K ′

2/K2) ,

P ′
4/K4 = ψ−1(P ′

3/K3) , K ′
4/K4 = ψ−1(K ′

3/K3) ;

• the isomorphisms φ̄ : P ′
2/K

′
2 → P ′

1/K
′
1 and ψ̄ : P ′

4/K
′
4 → P ′

3/K
′
3 are induced by the isomorphisms

φ and ψ.

In particular,
(i) if P2 = P3 then (P ′

2,K
′
2) = (P2,K2K3) = (P ′

3,K
′
3) and

L ∗M = (P1,K
′
1, φ̄ ◦ ψ̄, P4,K

′
4),

where K ′
1 and K ′

4 are such that K ′
1/K1 = φ(K2K3/K2) and K

′
4/K4 = ψ−1(K2K3/K3);

(ii) if (P2,K2) = (P3,K3) then

L ∗M = (P1,K1, φ ◦ ψ, P4,K4).

The following diagram illustrates the result of the lemma:
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•

•

G

1

•

•

P1

K1

φ

•

•

P ′

1

K′

1

φ̄

•

•

H

1

•

•

P2

K2

•

•

P ′

2

K′

2

β

•

•

H

1

•

•

P3

K3

•

•

P ′

3

K′

3

ψ̄

ψ

•

•

K

1

•

•

P4

K4

•

•

P ′

4

K′

4

Proof For g ∈ G one has

g ∈ p1(L ∗M) ⇐⇒ ∃h ∈ H, k ∈ K : (g, h) ∈ L, (h, k) ∈M

⇐⇒ ∃h ∈ P2 ∩ P3 : (g, h) ∈ L

⇐⇒ gK1 ∈ φ((P2 ∩ P3)K2/K2) .

This implies that p1(L ∗M) = P ′
1. Similarly one shows that p2(L ∗M) = P ′

4. Next, for g ∈ G one has

g ∈ k1(L ∗M) ⇐⇒ ∃h ∈ H : (g, h) ∈ L, (h, 1) ∈M

⇐⇒ ∃h ∈ k1(M) : (g, h) ∈ L

⇐⇒ gK1 ∈ φ((K3 ∩ P2)K2/K2) .

This implies that k1(L ∗M) = K ′
1. Similarly one shows that k2(L ∗M) = K ′

4. Finally, for (g, k) ∈ G×K
one has

(g, k) ∈ L ∗M ⇐⇒ ∃h ∈ H : (g, h) ∈ L, (h, k) ∈M

⇐⇒ ∃h ∈ P2 ∩ P3 : gK1 = φ(hK2), hK3 = ψ(kK4)

=⇒ ∃h ∈ P2 ∩ P3 : gK ′
1 = φ̄(hK ′

2), hK
′
3 = ψ̄(kK ′

4)

=⇒ gK ′
1 =

(
φ̄ ◦ β(P ′

2,K
′
2;P

′
3,K

′
3) ◦ ψ̄

)
(kK ′

4) .

This implies that the isomorphism ηL∗M : p2(L ∗ M)/k2(L ∗ M) → p1(L ∗ M)/k1(L ∗ M) is equal to
φ̄ ◦ β(P ′

2,K
′
2;P

′
3,K

′
3) ◦ ψ̄.

3 Natural embeddings of the (double) Burnside ring

Recall from 2.1 that, for every finite group G, we denote by SG the set of subgroups of G, and by
S̃G ⊆ SG a transversal for the conjugacy classes of SG. Moreover, for U 6 G, we denote by [U ]G
the G-conjugacy class of U . If R is a commutative ring then we denote by [U ]+G ∈ RSG the sum of
the elements in [U ]G; here, RSG denotes the free R-module with basis SG. Since G acts on SG by
conjugation, we can view RSG as a permutation RG-module. Its fixed points are denoted by (RSG)

G.
We use the same notation XG for the set of G-fixed points on any G-set X .
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3.1 Definition We define additive maps

αG : B(G) → ZSG , [X ] 7→
∑

x∈X

stabG(x) ,

ρG : B(G) → ZSG , [X ] 7→
∑

U6G

|XU | · U ,

ζG : ZSG → ZSG , U 7→
∑

U ′6U

U ′ .

The map ρG is the well-studied classical mark homomorphism. Clearly, ζG is an isomorphism with inverse
µG given by µG(U) =

∑
U ′6U µU ′,U · U ′, where µU ′,U denotes the Möbius function with respect to the

poset SG. Extending scalars from Z to R one obtains R-module homomorphisms αG : RB(G) → RSG,
ζG : RSG → RSG and ρG : RB(G) → RSG. Then ζG : RSG → RSG is an isomorphism of RG-modules
and induces an isomorphism

ζG : (RSG)
G → (RSG)

G .

3.2 Proposition Let G be a finite group and let R be a commutative ring.

(a) For U 6 G, one has αG([G/U ]) = [NG(U) : U ] · [U ]+G. In particular, αG : RB(G) → RSG is
injective.

(b) One has ζG ◦ αG = ρG.

(c) The images of αG and ρG are contained in (RSG)
G. In particular, one obtains a commutative

diagram

RB(G)
αG

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq (RSG)
G ⊆ RSG

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

ρG

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

ζG

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

ζG

(RSG)
G ⊆ RSG

of injective R-module homomorphisms in which both vertical maps ζG are isomorphisms. If |G| is
invertible in R then also αG and ρG in the above diagram are isomorphisms. For R = Z one has

[(ZSG)
G : αG(B(G))] =

∏

U∈S̃G

[NG(U) : U ] = [(ZSG)
G : ρG(B(G))].

Proof (a) The stabilizer subgroup of gU is equal to gU and it occurs as the stabilizer of precisely
[NG(U) : U ] elements in G/U , namely the elements gnU for n ∈ NG(U).

(b) For any finite G-set X one has

ζG(αG([X ])) =
∑

x∈X

∑

K6stabG(x)

K =
∑

(K,x)∈SG×X

x∈XK

K =
∑

K6G

|XK | ·K = ρG([X ]) .
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(c) By Part (a), the image of αG is contained in (RSG)
G and, since ζG is an isomorphism of RG-

modules, Part (b) implies that ρG(RB(G)) ⊆ (RSG)
G. The last two statements follow from Part (a)

and the fact that the elements [U ]+G, U ∈ S̃G, form an R-basis of (RSG)
G.

3.3 Remark Let G and H be finite groups and let R be a commutative ring.
(a) Although we will not make use of the following fact in this paper it seems worth to point it out.

One can endow ZSG with two ring structures. The first multiplication is given by (U, V ) 7→ U ∩ V
and the second one by (U, V ) 7→ δU,V U , for U, V ∈ SG. Extending scalars to R we obtain two R-
algebra structures on RSG. It is easy to verify that the G-fixed points (RSG)

G form a subalgebra for
both R-algebra structures. Moreover, it is easy to verify that all maps in the commutative diagram
in Proposition 3.2(c) are R-algebra homomorphisms if one endows RB(G) with the usual multiplication
coming from the ring structure of the Burnside ring B(G), and if one endows RSG in the top and bottom
row with the first and second multiplication, respectively.

(b) From Proposition 3.2(c) we obtain a commutative diagram

RB(G,H)
αG,H

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq (RSG×H)G×H ⊆ RSG×H

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

ρG,H

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

ζG,H

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

ζG,H

(RSG×H)G×H ⊆ RSG×H

by replacing G with G × H and slightly renaming the maps. If also K is a finite group we will next
define a multiplication map RSG×H × RSH×K → RSG×K that is compatible with the tensor product
construction RB(G,H)×RB(H,K) → RB(G,K) via the embedding α.

3.4 Definition Let G, H , and K be finite groups, and let R be a commutative ring such that |H | is
invertible in R. For L 6 G×H and M 6 H ×K we set

κ(L,M) :=
|k2(L) ∩ k1(M)|

|H |

and we define the R-bilinear map

− ∗κH − : RSG×H ×RSH×K → RSG×K

by
L ∗κH M := κ(L,M) · (L ∗M) .

3.5 Proposition Let G, H , K, and I be finite groups, and let R be a commutative ring such that |H |
and |K| are invertible in R. For any L 6 G×H , M 6 H ×K, and N 6 K × I, the 2-cocycle relation

κ(L,M)κ(L ∗M,N) = κ(L,M ∗N)κ(M,N)
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holds in R×. In particular, the bilinear maps defined in Definition 3.4 behave associatively:

(L ∗κH M) ∗κK N = L ∗κH (M ∗κK N) .

Moreover, if |G| is invertible in R then the R-module RSG×G together with the multiplication ∗κG is an
R-algebra with identity element |G| ·∆(G).

Proof It suffices to show that

|k2(L) ∩ k1(M)| · |k2(L ∗M) ∩ k1(N)| = |k2(L) ∩ k1(M ∗N)| · |k2(M) ∩ k1(N)|

holds in Z. To show this it suffices to show that one has a group isomorphism

k2(L) ∩ k1(M ∗N)

k2(L) ∩ k1(M)
∼=
k2(L ∗M) ∩ k1(N)

k2(M) ∩ k1(N)
.

In order to construct a homomorphism between these two groups, let h ∈ k2(L) ∩ k1(M ∗ N). Then
(1, h) ∈ L and (h, 1) ∈M ∗N . This implies that there exists k ∈ K such that (h, k) ∈M and (k, 1) ∈ N .
Thus, k ∈ k2(L ∗M) ∩ k1(N). If also k′ ∈ k1(N) is such that (h, k′) ∈ M then k−1k′ ∈ k2(M) ∩ k1(N).
Therefore we have a well-defined function that maps the class of h to the class of k, with (h, k) ∈M and
(k, 1) ∈ N . Symmetrically, one has a well-defined function in the other direction that maps the class of
an element k ∈ k2(L ∗M) ∩ k1(N) to the class of h, where (h, k) ∈M and (1, h) ∈ L. Clearly these two
functions are inverses of each other. It is also easy to see that they are group homomorphisms.

The last two statements are immediate consequences of the 2-cocycle relation.

3.6 Proposition Let G, H , and K be finite groups, and let R be a commutative ring such that |H | is
invertible in R. Moreover let a ∈ RB(G,H) and b ∈ RB(H,K). Then

αG,K(a ·H b) = αG,H(a) ∗
κ
H αH,K(b) .

Proof We may assume that a = [X ] and b = [Y ] for a finite (G,H)-biset X and a finite (H,K)-biset Y .
Then we have

αG,K([X ] ·H [Y ]) = αG,K([X ×H Y ]) =
∑

x×Hy∈X×HY

stabG×K(x ×H y)

=
∑

x×H y∈X×HY

stabG×H(x) ∗ stabH×K(y)

=
∑

(x,y)∈X×Y

|k2(stabG×H(x)) ∩ k1(stabH×K(y))|

|H |
· stabG×H(x) ∗ stabH×K(y)

= αG,H([X ]) ∗κH αH,K([Y ]) .

For any finite group G and any commutative ring R we set

eG :=
∑

g∈G

∆g(G) = |Z(G)| ·
∑

c∈Inn(G)

∆c(G) ∈ RSG×G .

In the case where |G| is invertible in R it follows immediately from the definition of the bilinear map
− ∗κH − in Definition 3.4 that eG is an idempotent in the R-algebra (RSG×G, ∗κG).

11



3.7 Proposition Let R be a commutative ring, and let G and H be finite groups whose orders are
invertible in R.

(a) One has
αG,H(RB(G,H)) = (RSG×H)G×H = eG ∗κG (RSG×H) ∗κH eH .

(b) The double Burnside algebra RB(G,G) is isomorphic to eG ∗κG (RSG×G) ∗κG eG.

Proof (a) The first equation was already proved in Proposition 3.2(c). For the proof of the second
equation note that, for g ∈ G, h ∈ H and L 6 G×H , one has

∆g(G) ∗ L ∗∆h(H) = (g,h−1)L ,

by Lemma 2.7. This implies that

eG ∗κG L ∗κH eH =
|NG×H(L)|

|G×H |
· [L]+G×H .

Now the second equation is immediate.

(b) This is an immediate consequence of Proposition 3.6 and Part (a), since αG,G is injective.

Finally, we will show in the next proposition that the bilinear map − ∗κH − from Definition 3.4 is
translated via the isomorphism ζ into the following bilinear map.

3.8 Definition Let G, H , and K be finite groups, and let R be a commutative ring such that |H | is
invertible in R. We define the R-bilinear map

−∗̃κH− : RSG×H ×RSH×K → RSG×K , (L,M) 7→
∑

N6G×K

aNL,M ·N ,

where

aNL,M :=
1

|H |

∑

(L′,M ′)6(L,M)
N6L′∗M ′

µ
SG×H×SH×K

(L′,M ′),(L,M) · |k2(L
′) ∩ k1(M

′)|

=
∑

(L′,M ′)6(L,M)
N6L′∗M ′

µ
SG×H×SH×K

(L′,M ′),(L,M) · κ(L′,M ′) .

Here, µ
SG×H×SH×K

(L′,M ′),(L,M) denotes the Möbius function on the poset SG×H ×SH×K equipped with the direct

product partial order on SG×H×SH×K , i.e., (L′,M ′) 6 (L,M) if and only if L′ 6 L andM ′ 6M . Note
that aN

◦

M◦,L◦ = aNL,M and (a∗̃κHb)
◦ = b◦∗̃κHa

◦ for a ∈ RSG×H and b ∈ RSH×K . Here, −◦ : RSG×H →
RSH×G is defined as the R-linear extension of the map SG×H → SH×G, L 7→ L◦.

3.9 Proposition Let G, H , and K be finite groups, and let R be a commutative ring such that |H | is
invertible in R.

(a) For all a ∈ RSG×H and b ∈ RSH×K one has ζG,K(a ∗κH b) = ζG,H(a) ∗̃
κ
H ζH,K(b).
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(b) If |G| is invertible in R then the map ρG,G defines an isomorphism between the double Burnside
R-algebra RB(G,G) and the subring

(RSG×G)
G×G = ẽG ∗̃κG RSG×G ∗̃κG ẽG

of (RSG×G, ∗̃
κ
G), where ẽG := ζG(eG) is an idempotent in (RSG×G, ∗̃

κ
G).

Proof (a) Recalling from Definition 3.1 that the maps ζ are isomorphisms with inverse µ, it suffices to
prove the equation for a = µG,H(L) and b = µH,K(M) with L 6 G ×H and M 6 H ×K. In this case
we have

ζG,K(a ∗κH b) =
∑

L′6L

∑

M ′6M

µL′,L · µM ′,M · ζG,K(L′ ∗κH M ′)

=
∑

(L′,M ′)6(L,M)

µ
SG×H×SH×K

(L′,M ′),(L,M) · κ(L′,M ′) ·
∑

N6L′∗M ′

N

=
∑

N6G×K

( ∑

(L′,M ′)6(L,M)

N6L′∗M ′

µ
SG×H×SH×K

(L′,M ′),(L,M) · κ(L′,M ′)
)
·N

=
∑

N6G×K

aNL,M ·N = L∗̃κHM = ζG×H(a) ∗̃κH ζH×K(b) .

(b) This follows immediately from Part (a) and Proposition 3.7.

4 Simplifying the coefficient aNL,M

Throughout this section, G, H , and K denote finite groups, and R denotes a commutative ring such that
|H | is invertible in R. Moreover, we fix subgroups L 6 G×H , M 6 H×K, and N 6 G×K. The goal of
this section is a simplification of the formula for aNL,M in Definition 3.8. For this we will need to consider
chains

σ =
(
(L0,M0) < · · · < (Ln,Mn)

)
(2)

in the partially ordered set SG×H×SH×K endowed with the direct product poset structure of SG×H and
SH×K , i.e., (L′,M ′) 6 (L,M) if and only if L′ 6 L andM ′ 6M , for L′, L ∈ SG×H andM ′,M ∈ SH×K .
We define the set

X = XN
L,M := {(L′,M ′) ∈ SG×H × SH×K | (L′,M ′) 6 (L,M) and N 6 L′ ∗M ′} .

Note that for every (L′,M ′) ∈ X we have

p1(N) 6 p1(L
′ ∗M ′) 6 p1(L

′) 6 p1(L) and p2(N) 6 p2(L
′ ∗M ′) 6 p2(M

′) 6 p2(M) . (3)

Next, we define the set
C = CNL,M
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of chains σ as in (2) with (Li,Mi) ∈ X , for i = 0 . . . , n, satisfying the extra condition that (Ln,Mn) =
(L,M). In particular, C = ∅ if (L,M) /∈ X . For a chain σ as in (2), its length |σ| is defined by |σ| = n,
and we set

κ(σ) := κ(L0,M0) =
|k2(L0) ∩ k1(M0)|

|H |
∈ R .

With this notation we can rewrite aNL,M from Definition 3.8 as

aNL,M =
∑

σ∈C

(−1)|σ|κ(σ) . (4)

We aim to show that the above expression for aNL,M can be simplified as follows: we define the subset

Z = ZN
L,M of XN

L,M as the set of pairs (L′,M ′) ∈ XN
L,M satisfying

p1(N) = p1(L
′), p2(L

′) = p1(M
′), and p2(M

′) = p2(N) . (5)

Note that Z = ∅ unless N 6 L ∗M , since L′ ∗M ′ 6 L ∗M for (L′,M ′) 6 (L,M). We further define the
set

E = ENL,M

as the set of all chains σ as in (2) with (Li,Mi) ∈ Z, for i = 0, . . . , n, satisfying the extra condition
(Ln,Mn) = (L,M). Thus, Z ⊆ X and E ⊆ C. Moreover, Z = ∅ and E = ∅ unless (L,M) itself satisfies
the conditions in (5) and N 6 L ∗M .

The following theorem states that we may replace C with E in the formula (4).

4.1 Theorem One has
aNL,M =

∑

σ∈E

(−1)|σ|κ(σ) .

In particular, L ∗̃κH M is a linear combination of subgroups N 6 G × K satisfying p1(N) = p1(L),
p2(N) = p2(M), and N 6 L ∗M . Moreover, if p2(L) 6= p1(M) then L ∗̃κH M = 0.

Proof We prove the theorem in two steps.

Step 1. Recall from (3) that, for every (L′,M ′) ∈ X , we have p1(N) 6 p1(L
′) and p2(N) 6 p2(M

′).
We define Y = YNL,M as the set of all pairs (L′,M ′) ∈ X satisfying p1(L

′) = p1(N) and p2(M
′) = p2(N).

Moreover, we define D as the set of chains σ as in (2) with (Li,Mi) ∈ Y, for i = 0, . . . , n, satisfying the
extra condition that (Ln,Mn) = (L,M). Then E ⊆ D ⊆ C. Next we define a function

φ : C rD → C rD

as follows. Let σ ∈ CrD be as in (2). Since σ /∈ D, there exists a minimal index i ∈ {0, . . . , n} such that
p1(N) < p1(Li) or p2(N) < p2(Mi). We set

L′
i := (p1(N)× p2(Li)) ∩ Li and M ′

i := (p1(Mi)× p2(N)) ∩Mi .

Then it is easy to verify that

p1(L
′
i) = p1(N) , p2(M

′
i) = p2(N) , k2(L

′
i) = k2(Li) , k1(M

′
i) = k1(Mi) ,

(L′
i,M

′
i) < (Li,Mi) , and N 6 L′

i ∗M
′
i .
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Moreover, if i > 1 then one also has

(Li−1,Mi−1) 6 (L′
i,M

′
i) .

Now, if i > 1 and (Li−1,Mi−1) = (L′
i,M

′
i) then we define φ(σ) as the chain obtained from σ by removing

(Li−1,Mi−1), and if i = 0 or if i > 1 and (Li−1,Mi−1) < (L′
i,M

′
i) then we define φ(σ) as the chain

obtained from σ by inserting (L′
i,M

′
i). Using the above properties of L′

i and M ′
i it is easy to see that

φ(σ) ∈ C rD and that

φ ◦ φ = id , |φ(σ)| − |σ| ∈ {±1} , and κ(φ(σ)) = κ(σ) . (6)

This implies immediately that ∑

σ∈C

(−1)|σ|κ(σ) =
∑

σ∈D

(−1)|σ|κ(σ) . (7)

Step 2. Similarly we will construct a function

φ : D r E → D r E

such that the three conditions in (6) hold. This immediately implies that

∑

σ∈D

(−1)|σ|κ(σ) =
∑

σ∈E

(−1)|σ|κ(σ) , (8)

and the combination of Equations (7) and (8) yields the desired result.
In order to define φ, let σ ∈ DrE be as in (2). Since σ /∈ E , there exists a minimal index i ∈ {0, . . . , n}

such that p2(Li) 6= p1(Mi). We set

L′
i := Li ∩

(
p1(Li)× (p2(Li) ∩ p1(Mi))

)
and M ′

i :=Mi ∩
(
(p2(Li) ∩ p1(Mi))× p2(Mi)

)
,

and claim that

(i) p2(L
′
i) = p2(Li) ∩ p1(Mi) = p1(M

′
i) , (ii) (L′

i,M
′
i) < (Li,Mi) ,

(iii) κ(L′
i,M

′
i) = κ(Li,Mi) , (iv) N 6 L′

i ∗M
′
i , (v) p1(L

′
i) = p1(N) ,

(vi) p2(M
′
i) = p2(N) , (vii) (Li−1,Mi−1) 6 (L′

i,M
′
i) if i > 1 ,

For the first claim, note that p2(L
′
i) 6 p2(Li) ∩ p1(Mi) by construction, and if h ∈ p2(Li) ∩ p1(Mi) then

there exists g ∈ p1(Li) such that (g, h) ∈ Li. This implies that (g, h) ∈ L′
i. Similarly, one shows that

p1(M
′
i) = p2(Li) ∩ p1(Mi).

For the second claim, note that (L′
i,M

′
i) 6 (Li,Mi). Moreover, p2(L

′
i) = p2(Li) ∩ p1(Mi) = p1(M

′
i)

is a proper subgroup of p2(L) or of p1(M). This implies L′
i < Li or M

′
i < Mi and, therefore, (L

′
i,M

′
i) <

(Li,Mi).
Concerning the third claim, note first that k2(L

′
i) ∩ k1(M

′
i) 6 k2(Mi) ∩ k1(Li), since L

′
i 6 Li and

M ′
i 6Mi. For the reverse inclusion let h ∈ k2(Mi) ∩ k1(Li). Then clearly (1, h) ∈ L′

i and (h, 1) ∈M ′
i , so

that h ∈ k2(L
′
i) ∩ k1(M

′
i).

To prove the fourth claim, let (g, k) ∈ N . Then there exists h ∈ H such that (g, h) ∈ Li and
(h, k) ∈Mi. This implies h ∈ p2(L) ∩ p1(M) and, therefore, (g, h) ∈ L′

i and (h, k) ∈M ′
i .
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In order to prove the fifth claim, note that p1(N) 6 p1(L
′
i ∗M

′
i) 6 p1(L

′
i) 6 p1(Li) = p1(N) which

implies equality everywhere. Similarly the sixth claim follows.
Finally, for the seventh claim, assume that i > 1. If (g, h) ∈ Li−1 then (g, h) ∈ Li, g ∈ p1(Li), and

h ∈ p2(Li−1) = p1(Mi−1) 6 p2(Li) ∩ p1(Mi). Similarly, we have Mi−1 6M ′
i .

Now, if i > 1 and (Li−1,Mi−1) = (L′
i,M

′
i) then we define φ(σ) as the chain obtained from σ by

removing (Li−1,Mi−1), and if i = 0 or if i > 1 and (Li−1,Mi−1) < (L′
i,M

′
i) then we define φ(σ) as

the chain obtained from σ by inserting the pair (L′
i,M

′
i) in front of (Li,Mi). The seven claims imply

immediately that φ(σ) ∈ Dr E and that φ satisfies the three conditions in (6). This completes the proof
of the theorem.

4.2 Proposition Assume that k1(L) = 1 and k1(M) = 1 (or that k2(L) = 1 and k2(M) = 1). Then

L∗̃κHM =

{
1

|H| · L ∗M if p2(L) = p1(M),

0 if p2(L) 6= p1(M) .

Proof We only prove the statement under the assumption k1(L) = 1 and k1(M) = 1. In the other
case the result can be derived from the first one by applying −◦. By Theorem 4.1 we may assume that
p2(L) = p1(M), since otherwise the product is 0. It suffices to show for arbitrary N 6 G×K that

ENL,M 6= ∅ implies N = L ∗M , and that ZL∗M
L,M = {(L,M)} . (9)

Assume that ENL,M 6= ∅. Then (L,M) ∈ ZN
L,M and therefore p2(N) = p2(M). Note that Lemma 2.7(i)

implies that p2(M) = p2(L ∗M) and 1 = k1(L) = k1(L ∗M). Thus, p2(N) = p2(L ∗M), and N 6 L ∗M
implies k1(N) = 1. Equation (1) yields

|N | = |k1(N)| · |p2(N)| = |k1(L ∗M)| · |p2(L ∗M)| = |L ∗M |,

and with N 6 L ∗M we obtain N = L ∗M . This shows the first part of (9).
Assume now that (L′,M ′) ∈ ZL∗M

L,M . Then L ∗M 6 L′ ∗M ′ 6 L ∗M and we obtain L ∗M = L′ ∗M ′.
Moreover, since p2(L

′) = p1(M
′) and p2(L) = p1(M), Lemma 2.7(i) implies p2(M) = p2(L∗M) = p2(L

′ ∗
M ′) = p2(M

′). Further, k1(M
′) 6 k1(M) = 1 implies k1(M

′) = 1. Now Equation (1) yields M ′ = M ,
and we obtain p2(L

′) = p1(M
′) = p1(M) = p2(L). Finally, Lemma 2.7(i) and k1(M) = k1(M

′) = 1 imply
k1(L ∗M) = k1(L) and k1(L

′ ∗M ′) = k1(L
′). Thus k1(L) = k1(L

′), and Equation (1) implies L′ = L.

4.3 Remark (a) Proposition 4.2 allows us to recover Theorem 4.7 in [BD], where a ghost ring for the
left-free double Burnside ring B⊳(G,G) was introduced. This is the Z-span of the standard basis elements
[(G×G)/L] of B(G,G), with L 6 G×G satisfying k1(L) = 1. Warning: in [BD] the mark homomorphism
ρG,G was defined differently, with an additional scaling factor.

(b) Note that in [BD] it was possible to define an integral version for the ghost ring of B⊳(G,G),
cf. [BD, Lemma 4.5(c)]. In order to generalize this result to our situation one would have to find non-zero
rational numbers bL, for L ∈ SG×G, such that the product

(
bL · [L]+G×G

)
∗̃κG

(
bM · [M ]+G×G)

is contained in the Z-span of the elements bN · [N ]+G×G, N ∈ SG×G. We do not know whether this is
possible.
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5 Twisted category algebras

Throughout this section, R denotes a commutative ring and C denotes a category whose objects form a
set, denoted by Ob(C). We denote by Mor(C) the set of morphisms of C.

The main purpose of this section is to recall basic notions associated with Green’s theory of idempotent
condensation (also called Schur functor) and with twisted category algebras. We will mostly be concerned
with the case where C is a finite category, that is, where Mor(C) (and consequently Ob(C)) is a finite set.
Category algebras generalize the concept of monoid algebras: see [Gr1], [St], [L], [LS] for the development
of these topics. In Sections 6, 7 and 8 we will apply Green’s theory, Theorem 5.8 (by Linckelmann and
Stolorz, cf. [LS]) and Theorem 5.13 (by Linckelmann, cf. [L]) to algebras related to the category of biset
functors, which in turn are related to the double Burnside algebra by specializing to categories C with
just one object.

Two morphisms s : X → Y and t : Y ′ → Z are called composable if Y = Y ′. In this case we also say
that t ◦ s exists.

5.1 Definition (a) The category algebra RC is the R-algebra defined as follows: the underlying R-
module is free with basis Mor(C). The product ts of two morphisms s and t is defined as t ◦ s if t ◦ s
exists, and it is defined to be 0 if t ◦ s does not exist.

(b) A 2-cocycle of C with values in the unit group R× is a function α that assigns to any two morphisms
s and t such that t◦s exists an element α(t, s) ∈ R× with the following property: for any three morphisms
s, t, u of C such that t◦ s and u ◦ t exist, one has α(u ◦ t, s)α(u, t) = α(u, t◦ s)α(t, s). The twisted category

algebra RαC is the free R-module with R-basis Mor(C), and with multiplication defined by

t · s :=

{
α(t, s) · t ◦ s if t ◦ s exists,

0 otherwise.

5.2 Remark If C has finitely many objects then the sum of the identity morphisms is an identity element
of RC, and also RαC has an identity element as we will see. If C has infinitely many objects then neither
of the R-algebras RC and RαC has an identity element.

5.3 Idempotent morphisms in categories. We recall several notions from [LS].

(a) The set of idempotent endomorphisms in Mor(C) carries a poset structure: if e, f ∈ EndC(X) are
idempotent morphisms of the same object X of C then we set

e 6 f :⇐⇒ e = e ◦ f = f ◦ e .

If e and f are idempotent morphisms of different objects then they are not comparable.

(b) For any object X of C and any idempotent e ∈ EndC(X), the group of invertible elements in
e ◦ EndC(X) ◦ e is denoted by Γe, and we set Je := e ◦ EndC(X) ◦ er Γe.

(c) Let X and Y be objects of C, and let e ∈ EndC(X) and f ∈ EndC(Y ) be idempotents. We call e
and f equivalent if there exist morphisms s ∈ f ◦ HomC(X,Y ) ◦ e and t ∈ e ◦ HomC(Y,X) ◦ f such that
t ◦ s = e and s ◦ t = f ; in this case, the morphisms s and t induce mutually inverse group isomorphisms

Γe → Γf , u 7→ s ◦ u ◦ t; Γf → Γe, v 7→ t ◦ v ◦ s .
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We remark that in [L], for instance, the idempotents e and f are called isomorphic rather than equivalent.
We will later consider categories whose morphisms are finite groups, and it will then be important to not
confuse isomorphisms between groups with equivalence of morphisms in the relevant category, whence
the different terminology.

(d) Assume now that C is finite. Let X and Y be objects of C and let e ∈ EndC(X) and f ∈ EndC(Y )
be idempotents. The 2-cocycle α restricts to 2-cocycles on the groups Γe and Γf , and we may consider
the twisted group algebras RαΓe and RαΓf as subrings of RαC. Let T be a simple RαΓe-module and let
T ′ be a simple RαΓf -module. The pairs (e, T ) and (f, T ′) are called isomorphic if there exist s and t as
in (c) such that t ◦ s = e and s ◦ t = f , and such that the isomorphism classes of T and T ′ correspond to
each other under the R-algebra isomorphism RαΓe ∼= RαΓf induced by s and t, cf. [LS, Proposition 5.2]
for a precise definition of this isomorphism. For different choices of s and t the different isomorphisms
differ only by inner automorphisms, cf. [LS, Proposition 5.4]. Thus, the definition of (e, T ) and (f, T ′)
being isomorphic does not depend on the choice of s and t.

5.4 Condensation functors. We recall Green’s theory of idempotent condensation, cf. [Gr2, Sec-
tion 6.2].

Suppose that A is any ring with identity and that e ∈ A is an idempotent. Then eAe is a ring with
identity e and one has an exact functor

A-Mod → eAe-Mod, V 7→ eV , (10)

which is often called the Schur functor or condensation functor with respect to e.
One also has a functor

eAe-Mod → A-Mod, W 7→ Ae⊗eAeW ; (11)

this functor is in general not exact.
Whenever S is a simple A-module, the eAe-module eS is either 0 or again simple, and every simple eAe-

module occurs in this way. The construction S 7→ eS induces a bijection between the isomorphism classes
of simple A-modules that are not annihilated by e and the isomorphism classes of simple eAe-modules.
Its inverse can be described as follows: for every simple eAe-module T , the A-module M := Ae ⊗eAe T
has a unique simple quotient S, and eS ∼= T as eAe-modules. Thus, S = Hd(M) := M/Rad(M), the
head ofM , where Rad(M) denotes the radical of the A-module M , i.e., the intersection of all its maximal
submodules.

With this notation, one also has the following basic statements.

5.5 Proposition Let A be a unitary ring, let e ∈ A be an idempotent, and let T be a simple eAe-module.
Moreover, set M := Ae⊗eAe T and S :=M/Rad(M) = Hd(M). Then:

(a) eM ∼= T as eAe-modules;

(b) eRad(M) = {0};

(c) AeM =M .

Proof Since eS ∼= T as eAe-modules, Parts (a) and (b) are equivalent. Moreover, Part (a) is proved
in [Gr2, Section 6.2]. As for (c), recall that either AeM = M or AeM ⊆ Rad(M), since AeM is an A-
submodule of M . If AeM ⊆ Rad(M) then {0} = eAeM = (eAe) · eM , by (b), thus {0} = (eAe) · T = T ,
by (a), which is impossible, whence (c).
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In Section 7 we will have to compare the annihilator of the simple A-module S with the annihilator of
the simple eAe-module T . The assertion of the following lemma is probably well known; we do, however,
include a proof for the reader’s convenience.

5.6 Lemma Let A be a unitary ring, let e ∈ A be an idempotent, let T be a simple eAe-module, and
let S be the simple head of the A-module Ae⊗eAe T . Then, for x ∈ A, one has

xS = {0} if and only if (eAxAe)T = {0} .

Proof Again we set M := Ae ⊗eAe T . Since S = M/Rad(M), we infer that aS = {0} if and only if
xM ⊆ Rad(M), which in turn is equivalent to AxM ⊆ Rad(M), since Rad(M) is an A-submodule of
M . Since AxM is an A-submodule of M , it is either equal to M or is contained in Rad(M). Thus,
by Proposition 5.5 (b), AxM ⊆ Rad(M) if and only if eAxM = {0}. By Proposition 5.5 (c), we have
eAxM = eAxAeM = (eAxAe)eM , and by Proposition 5.5 (a), eM ∼= T as eAe-modules. This now
implies that eAxM = {0} if and only if (eAxAe) · T = {0}, and the proof of the lemma is complete.

5.7 Condensation functors and twisted category algebras. Now consider the case where A =
RαC, for a finite category C and a 2-cocycle α of C with coefficients in R×. Theorem 5.8 below is due
to Linckelmann–Stolorz and describes how the simple A-modules can be constructed via the functor in
(11). In order to state the theorem, we fix some further notation: let e ∈ EndC(X) be an idempotent
endomorphism in C. Then

e′ := α(e, e)−1e

is an idempotent in RαC, and we also have e′ · RαC · e′ = Rα(e ◦ EndC(X) ◦ e). One has an R-module
decomposition

Rα(e ◦ EndC(X) ◦ e) = RαΓe ⊕RJe , (12)

where the second summand denotes the R-span of Je. Note that RJe is an ideal and that RαΓe is a
unitary R-subalgebra of e′ · RαC · e′. For every RαC-module V , the condensed module e′V becomes an
RαΓe-module by restriction from Rα(e ◦ EndC(X) ◦ e) to RαΓe. Conversely, given an RαΓe-module W ,
we obtain the RαC-module RαCe

′⊗e′RαCe′ W̃ , where W̃ denotes the inflation ofW from RαΓe to e
′RαCe

′

with respect to the decomposition (12).

With this notation one has the following theorem, due to Linckelmann and Stolorz.

5.8 Theorem ([LS], Theorem 1.2) Let C be a finite category, and let α be a 2-cocycle of C with
coefficients in R×. There is a bijection between the set of isomorphism classes of simple RαC-modules
and the set of isomorphism classes of pairs (e, T ), where e is an idempotent endomorphism in C and T is
a simple RαΓe-module; the isomorphism class of a simple RαC-module S is sent to the isomorphism class
of the pair (e, e′S), where e is an idempotent endomorphism that is minimal with the property e′S 6= {0}.
Conversely, the isomorphism class of a pair (e, T ) is sent to the isomorphism class of the RαC-module
Hd(RαCe

′ ⊗e′RαCe′ T̃ ).

5.9 Definition ([Ka]) The category C is called an inverse category if, for every X,Y ∈ Ob(C) and every
s ∈ HomC(X,Y ), there is a unique ŝ ∈ HomC(Y,X) such that

s ◦ ŝ ◦ s = s and ŝ ◦ s ◦ ŝ = ŝ .
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5.10 Category algebras of inverse categories. From now on, let C be a finite inverse category.
Note that if s is a morphism in C then ˆ̂s = s and the morphisms ŝ◦s and s◦ ŝ are idempotent morphisms.
We recall several constructions from [L], which are based on constructions in [St] for inverse monoids.

(a) One can extend the poset structure on the set of idempotent morphisms of Mor(C) from 5.3(a)
to the set Mor(C) of all morphisms: for X,Y ∈ Ob(C) and s, t ∈ HomC(X,Y ), one defines

s 6 t :⇐⇒ s = t ◦ e, for some idempotent e ∈ EndC(X) .

If s and t are morphisms with different domain or codomain then they are incomparable. For s ∈ Mor(C)
we consider the element

s :=
∑

t6s

µt,st ∈ RC

where µt,s denotes the Möbius function with respect to the partial order on Mor(C). Note that the
elements in {s | s ∈ Mor(C)} form an R-basis of RC.

(b) Let X and Y be objects of C and let e ∈ EndC(X) and f ∈ EndC(Y ) be idempotent endomor-
phisms. Then 5.3(c) and Definition 5.9 show that e and f are equivalent if and only if there exists some
s ∈ f ◦HomC(X,Y ) ◦ e such that ŝ ◦ s = e and s ◦ ŝ = f . Moreover, the group Γe then consists of those
endomorphisms u ∈ EndC(X) with û ◦ u = e = u ◦ û.

(c) From the inverse category C one can construct another finite category G(C) as follows:

(i) the objects in G(C) are the pairs (X, e), where X ∈ Ob(C) and e is an idempotent in EndC(X);
(ii) the morphisms in G(C) are triples (f, s, e) : (X, e) → (Y, f), where s ∈ f ◦ HomC(X,Y ) ◦ e is

such that ŝ ◦ s = e and s ◦ ŝ = f ; in particular, e and f are equivalent endomorphisms in C;
(iii) if (f, s, e) : (X, e) → (Y, f) and (g, t, f) : (Y, f) → (Z, g) are morphisms in G(C) then their

composition (X, e) → (Z, g) is defined as (g, t, f) ◦ (f, s, e) := (g, t ◦ f ◦ s, e).

Note that G(C) is a groupoid, i.e., a category in which every morphism is an isomorphism.

5.11 Lemma ([L], Theorem 4.1; [St], Theorem 4.2) Let C be a finite inverse category. Then the
category algebras RC and RG(C) are isomorphic. More precisely, the maps

RG(C) → RC , (f, s, e) 7→ s , and RC → RG(C) , s 7→
∑

t6s

(t ◦ t̂, t, t̂ ◦ t) ,

define mutually inverse R-algebra isomorphisms.

5.12 Remark It is well known that the category algebra RD of a finite groupoid D is isomorphic to a
direct product of matrix algebras over group algebras. More precisely, let E be a set of representatives
of the isomorphism classes of objects e of D, and for each e ∈ E let n(e) denote the number of objects
isomorphic to e. Since D is a groupoid, every endomorphism of e ∈ E is an automorphism of e, and ide
is the unique idempotent in EndD(e); in particular, we have Γide

= EndD(e). For convenience we may
thus denote EndD(e) by Γe.

Note that, in the case where D = G(C) for some finite inverse category C, this is consistent with
5.3(b): if (X, e) ∈ G(C) then EndG(C)((X, e)) = {(e, s, e) | s ∈ e ◦ EndC(X) ◦ e, ŝ ◦ s = e = s ◦ ŝ}, and
{s ∈ e ◦EndC(X) ◦ e | ŝ ◦ s = e = s ◦ ŝ} is the set of invertible elements in e ◦EndC(X) ◦ e, thus equal to
Γe as defined in 5.3(b).
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Suppose again that D is an arbitrary finite groupoid. Then there exists an R-algebra isomorphism

ǫ : RD →×
e∈E

Matn(e)(RΓe), (13)

which can be defined as follows: we fix e ∈ E, denote by e = e1, . . . , en(e) the objects that lie in the
isomorphism class of e, and choose an isomorphism si : e → ei for every i ∈ {1, . . . , n(e)}. Let s be a
morphism in D. If the domain of s is not isomorphic to e then the matrix in the e-component of ǫ(s) is
defined to be 0. If the domain of s is isomorphic to e then there exist unique elements i, j ∈ {1, . . . , n(e)}
such that s : ej → ei. In this case the e-component of ǫ(s) is the matrix all of whose entries are equal
to 0 except the (i, j)-entry, which is equal to s−1

i ◦ s ◦ sj . The isomorphism ǫ depends on the ordering
of the elements in an isomorphism class and on the choices of the isomorphisms si. However, any two
isomorphisms defined as above differ only by an inner automorphism.

Combining the two isomorphisms in Lemma 5.11 and Remark 5.12 one obtains the following theorem,
due to Linckelmann, cf. [L, Corollary 4.2].

5.13 Theorem Let C be a finite inverse category. Let E be a set of representatives of the equivalence
classes of idempotents in Mor(C) and, for e ∈ E, let n(e) denote the cardinality of the equivalence class
of e. Then there exists an R-algebra isomorphism

ω : RC →×
e∈E

Matn(e)(RΓe) . (14)

5.14 Remark (a) Using the explicit description of the isomorphism ǫ in Remark 5.12 we obtain the
following description of the e-component of the isomorphism ω in Theorem 5.13: let e = e1, . . . , en(e)
denote the idempotent morphisms of C that are equivalent to e and for every i ∈ {1, . . . , n(e)} let si be
a morphism such that ŝi ◦ si = e and si ◦ ŝi = ei. For every morphism s of C, the e-component of ω(s) is
defined to be 0 if the idempotent ŝ ◦ s is not equivalent to e, and if it is equivalent to e then there exist
unique elements i, j ∈ {1, . . . , n(e)} such that ŝ ◦ s = ej and s ◦ ŝ = ei. In this case the e-component of
ω(s) is the matrix all of whose entries are equal to 0 except the (i, j)-entry, which is equal to si ◦ s ◦ ŝj .

(b) It follows immediately from (a) that the central idempotent of RC corresponding to the identity
matrix in the e-component, for e ∈ E and with the notation introduced in (a), is equal to

ẽ :=

n(e)∑

i=1

ei ∈ RC .

This element is independent of the choices made when constructing the isomorphism ω. Moreover, the
e-th component Matn(e)(RΓe) in (14) corresponds to a two-sided ideal Ie = RC · ẽ, which is independent
of the choices involved in the definition of ω, and one has RC =

⊕
e∈E Ie. By (a), the elements s ∈ RC,

where s runs through all morphisms in C such that the idempotent ŝ◦s is equivalent to e, form an R-basis
of Ie.

We will use Theorems 5.8 and 5.13 on category algebras in two situations. The following example
describes the first one; it will be used in Sections 6 and 7.
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5.15 Example (a) We denote by B a category with the following properties: its objects form a set of
finite groups such that every isomorphism type of finite group is represented in Ob(B). The morphisms
in B are defined by

HomB(H,G) := SG×H ,

for G,H ∈ Ob(B), and the composition is defined by

L ◦M := L ∗M ,

for L ∈ SG×H , M ∈ SH×K , with G,H,K ∈ Ob(B). The identity element of the object G of B is equal
to ∆(G).

(b) In the sequel we assume that C is a subcategory of B. For G,H ∈ Ob(C), we set CG,H :=
HomC(H,G). For completeness we also set CG,H := ∅ if G ∈ Ob(B)rOb(C) or H ∈ Ob(B)rOb(C). Let
R be a commutative ring such that |G| ∈ R× for all G ∈ Ob(C). Then, by Proposition 3.5, the function
κ defined by

κ(L,M) :=
|k2(L) ∩ k1(M)|

|H |
∈ R× ,

with L ∈ CG,H , M ∈ CH,K , for G,H,K ∈ Ob(C), defines a 2-cocycle on C. We obtain a twisted category
algebra RκC, which we will denote by Aκ

C,R.

(c) Recall from [W, Page 105] that biset functors over R, for an arbitrary commutative ring R,
can be considered as modules for the algebra

⊕
G,H∈Ob(B)RB(G,H), where the multiplication on two

components RB(G,H) and RB(H ′,K) is induced by the tensor product of bisets over H if H = H ′, and
is defined to be 0 if H 6= H ′. Note that this algebra has no identity element, since Ob(B) is infinite. If C
is a subcategory of B and if CG,H ⊆ SG×H is closed under G×H-conjugation then we define

RBC(G,H) := 〈[(G ×H)/L] | L ∈ CG,H〉R ⊆ RB(G,H) ,

the R-span of the elements [G×H/L] with L ∈ CG,H . If C is finite then the corresponding R-subalgebra⊕
G,H∈Ob(C)RB

C(G,H) of
⊕

G,H∈Ob(B)RB(G,H) has an identity element. If, moreover, |G| ∈ R× for

every G ∈ Ob(C) then the maps αG,H , G,H ∈ Ob(C), yield an R-algebra isomorphism

⊕

G,H∈Ob(C)

RBC(G,H) ∼= eCA
κ
C,ReC , (15)

where
eC :=

∑

G∈Ob(C)

eG

is an idempotent in Aκ
C,R, cf. Proposition 3.7 and the paragraph preceding it. Recall that eG :=∑

g∈G∆g(G), for G ∈ Ob(C). Many considerations about biset functors on the category of all finite
groups can be reduced to the case of finitely many groups. Thus, the algebra Aκ

C,R through its condensed
algebra (15) can be used to study biset functors over R.

We will study the simple modules of Aκ
C,R and eCA

κ
C,ReC in Sections 6 and 7, respectively, for appro-

priate choices of C and R.
We will see in Section 8 that, in special cases, the multiplication ∗̃κH from Definition 3.8 can be related

to the following construction.
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For the remainder of this section we fix a set D of finite groups. We will introduce an inverse category
C̃ = C̃(D) related to this set D . Later, in Section 8, we will see that in the case where the groups in D are
cyclic we obtain an R-algebra isomorphism between the category algebra RC̃ and

⊕
G,H∈D

RB(G,H).
There, R will denote a commutative ring such that |G| and |Aut(G)| are units in R, for all G ∈ D .

5.16 Definition For finite groups G and H and a subgroup L 6 G×H , we set

P(L) := {L′
6 L | p1(L

′) = p1(L) and p2(L
′) = p2(L)} .

Given the set D of finite groups, we define a category C̃ = C̃(D) as follows:
(i) Ob(C̃) = {(G,G′) | G ∈ D , G′ 6 G};
(ii) for (G,G′), (H,H ′) ∈ Ob(C̃), we set Hom

C̃
((H,H ′), (G,G′)) := P(G′ ×H ′);

(iii) for (G,G′), (H,H ′), (K,K ′) ∈ Ob(C̃), GLH ∈ Hom
C̃
((H,H ′), (G,G′)), and HMK ∈

Hom
C̃
((K,K ′), (H,H ′)), we define the composition GLH ◦ HMK := GLH ∗ HMK .

Here, we use the notation GLH , since every morphism needs to determine its source and target objects.
While G′ = p1(L) and H

′ = p2(L) are determined by the notation L, G and H are not.

With this notation, we have the following proposition.

5.17 Proposition (a) Let (G,G′), (H,H ′) ∈ Ob(C̃), and let GLH ∈ Hom
C̃
((H,H ′), (G,G′)). Then

(GLH)◦ is the unique element HMG ∈ Hom
C̃
((G,G′), (H,H ′)) such that

GLH ∗ HMG ∗ GLH = GLH and HMG ∗ GLH ∗ HMG = HMG ;

in particular, C̃ is an inverse category.

(b) The idempotent endomorphisms in C̃ are precisely the endomorphisms of the form

G(P,K, id, P,K)G (K P P 6 G ∈ D) .

Moreover, two idempotent endomorphisms e := G(P,K, id, P,K)G and f := H(P ′,K ′, id, P ′,K ′)H in C̃

are equivalent if and only if P/K ∼= P ′/K ′.

(c) If e := G(P,K, id, P,K)G is an idempotent endomorphism in C̃ then one has Γe =
{G(P,K, α, P,K)G | α ∈ Aut(P/K)}; in particular, Γe ∼= Aut(P/K), by Lemma 2.7(ii).

Proof (a) It follows immediately from Lemma 2.7 that HMG := (GLH)◦ has the desired property.
Conversely, suppose that HMG ∈ Hom

C̃
((G,G′), (H,H ′)) satisfies L ∗M ∗ L = L and M ∗ L ∗M = M .

By Lemma 2.7(i), this forces k2(L) = k1(M) as well as k1(L) = k2(M). Note that p2(L) = H ′ = p1(M)
and p1(L) = G′ = p2(M) by definition. Now, L ∗ M ∗ L = L and Lemma 2.7(i) again force that
ηL ◦ ηM ◦ ηL = ηL. This implies ηL = η−1

M and M = L◦.

Assertions (b) and (c) are now easy consequences of (a) and 5.10.

5.18 Remark Proposition 5.17 thus shows, in particular, that the equivalence classes of idempotent
endomorphisms in C̃ are in bijection with the isomorphism classes of groups occurring as subquotients of
groups in D .

23



6 The simple Aκ
C,R-modules

Throughout this section, let B be a category as in Example 5.15(a) and let C be a finite subcategory of
B. Moreover, let R be a commutative ring such that |G| is invertible in R for each G ∈ Ob(C). In this
section we will use Theorem 5.8 to construct the simple modules of the twisted category R-algebra Aκ

C,R

introduced in 5.15(b). This is in preparation for Section 7, where we determine the simple modules of the
R-algebra eCA

κ
C,ReC, which is related to the category of biset functors. Note that all the results apply, in

particular, to the case where the category C has only one object G and CG,G = SG×G.

We say that a finite group Q is realized (by a morphism) in C if there exist G,H ∈ Ob(C) and
L ∈ CG,H = HomC(H,G) such that q(L) = [Q], the isomorphism class of Q; recall that q(L) denotes the
isomorphism class of p1(L)/k1(L). Note that, in particular, each object G of C is realized in C by the
identity morphism ∆(G) ∈ HomC(G,G).

Throughout this section, we will assume that C satisfies the following property:

If Q is a finite group that is realized in C, if G and H are objects in C, and if
(P1,K1) and (P2,K2) are sections of G and H , respectively, such that P1/K1

∼=
Q ∼= P2/K2, then there exists an isomorphism α : P2/K2

∼
→ P1/K1 such that

(P1,K1, α, P2,K2) ∈ CG,H .

(16)

We first derive two consequences from Condition (16). For a section (P,K) of a group G we set

e(P,K) := (P,K, idP/K , P,K) ∈ SG×G ;

note that, by Lemma 2.7(ii), the element eP,K is an idempotent in the monoid (SG×G, ∗).

6.1 Lemma Let Q be a finite group that is realized by a morphism in C. Let G be an object of C and
let (P,K) be a section of G such that P/K ∼= Q. Then the idempotent e(P,K) belongs to CG,G.

Proof Since C satisfies (16), there exists an automorphism α ∈ Aut(P/K) such that (P,K, α, P,K) ∈
CG,G. By Lemma 2.7(ii), the |Aut(P/K)|-th power of (P,K, α, P,K) is equal to e(P,K), showing that

e(P,K) belongs to CG,G.

For a section (P,K) of an object G of C with e(P,K) ∈ CG,G, we set

AutC(P/K) := {α ∈ Aut(P/K) | (P,K, α, P,K) ∈ CG,G} .

Clearly, this is a subgroup of Aut(P/K). The following lemma shows that the isomorphism type of
AutC(P/K) does in fact only depend on the isomorphism type of the group P/K (not on the actual
section (P,K)). We omit the straightforward proof.

6.2 Lemma Assume that G and G′ are objects of C and that (P,K) and (P ′,K ′) are sections of G and
G′, respectively, such that e(P,K) ∈ CG,G, e(P ′,K′) ∈ CG′,G′ and P/K ∼= P ′/K ′. Let γ : P ′/K ′ ∼

→ P/K be
an isomorphism such that (P,K, γ, P ′,K ′) ∈ CG,G′ (which exists by (16)). Then the map

cγ : AutC(P
′/K ′) → AutC(P/K) , α 7→ γαγ−1 ,

is a group isomorphism, and if also δ : P ′/K ′ ∼
→ P/K is an isomorphism with (P,K, δ, P ′,K ′) ∈ CG,G′

then cδ = cα ◦ cγ , where α := δ ◦ γ−1 ∈ AutC(P/K).
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Recall from 5.3(c) that two idempotents e ∈ CG,G and f ∈ CH,H are called equivalent if there exist
elements s ∈ f ∗ CH,G ∗ e and t ∈ e ∗ CG,H ∗ f such that t ∗ s = e and s ∗ t = f .

6.3 Proposition Let G and H be objects in C.

(a) A morphism L = (P1,K1, α, P2,K2) ∈ CG,G is an idempotent if and only if (P1,K1) and (P2,K2)
are linked and α = β(P1,K1;P2,K2).

(b) If L = (P1,K1, α, P2,K2) ∈ CG,G is an idempotent morphism then L is equivalent to e(Pi,Ki), for
i = 1, 2.

(c) Two idempotent morphisms L ∈ CG,G and M ∈ CH,H are equivalent if and only if q(L) = q(M).

Proof (a) By Lemma 2.7, we have L ∗ L = L if and only if (P2,K2) and (P1,K1) are linked and α =
α◦β(P2,K2;P1,K1)◦α. But the last equality is equivalent to the equality β(P2,K2;P1,K1)◦α = idP2/K2

.
Since β(P2,K2;P1,K1)

−1 = β(P1,K1;P2,K2), the result follows.

(b) Suppose that L ∗ L = L. By Part (a), the sections (P1,K1) and (P2,K2) are linked and α =
β(P1,K1;P2,K2). By Lemma 6.1, the morphisms Mi := e(Pi,Ki) belong to CG,G, for i = 1, 2. Moreover,
Lemma 2.7 implies that

L =M1 ∗ L , M1 = L ∗M1 , L = L ∗M2 , and M2 =M2 ∗ L .

Thus, L and Mi are equivalent for i = 1, 2.

(c) If L and M are equivalent then there exist S ∈ CH,G and T ∈ CG,H such that L = T ∗S and M =
S∗T . This implies L = L∗L = T ∗S∗T ∗S = T ∗M ∗S andM =M ∗M = S∗T ∗S∗T = S∗L∗T . Therefore,
p1(L)/k1(L) is isomorphic to a subquotient of p1(M)/k1(M) and also p1(M)/k1(M) is isomorphic to
a subquotient of p1(L)/k1(L). This implies q(L) = q(M). Conversely, assume that q(L) = q(M).
By Lemma 6.1 and Part (b), we may assume that L = e(P1,K1) ∈ CG,G and M = e(P2,K2) ∈ CH,H

for a section (P1,K1) of G and a section (P2,K2) of H , with P1/K1
∼= P2/K2. By (16), there exist

isomorphisms α : P1/K1
∼
→ P2/K2 and β : P2/K2

∼
→ P1/K1 such that S := (P2,K2, α, P1,K1) ∈ CH,G

and T := (P1,K1, β, P2,K2) ∈ CG,H . For T ′ := T ∗ (S ∗ T )|Aut(P2/K2)|−1 ∈ CG,H we then obtain
S ∗ T ′ = e(P2,K2) and T

′ ∗ S = e(P1,K1), and the proof is complete.

Recall from Section 5 that, for an idempotent morphism e in CG,G, we denote by Γe the group of
invertible elements of the monoid e ∗ CG,G ∗ e. The identity element of Γe is equal to e.

6.4 Proposition Let G be an object of C, and let (P,K) be a section of G such that e := e(P,K) belongs
to CG,G.

(a) One has
Γe = {(P,K, α, P,K) | α ∈ AutC(P/K)},

and the map α 7→ (P,K, α, P,K) defines a group isomorphism AutC(P/K) → Γe.

(b) The 2-cocycle κ on the monoid (CG,G, ∗) restricted to the subgroup Γe is the constant function
with value [G : K]−1, and the map α 7→ [G : K] · (P,K, α, P,K) defines an R-algebra isomorphism
between the group algebra RAutC(P/K) and the twisted group algebra RκΓe.

Proof (a) Let α, β ∈ AutC(P/K). Then Lα := (P,K, α, P,K) ∈ CG,G satisfies Lα = e ∗ Lα ∗ e and
Lα ∗ Lβ = Lα◦β , by Lemma 2.7. Thus, Lα ∈ Γe for all α ∈ AutC(P/K) and we obtain an injective
group homomorphism AutC(P/K) → Γe. Conversely, for L ∈ Γe we have L = e ∗ L ∗ e and there exists
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M = e ∗M ∗ e ∈ CG,G with M ∗ L = L ∗M = e. Since L = e ∗ L ∗ e, we have pi(L) 6 pi(e) = P and
ki(L) > ki(e) = K for i = 1, 2. Since L ∗M = e, we also have P = p1(e) 6 p1(L) and K = k1(e) > k1(L).
Similarly, M ∗L = e implies P 6 p2(L) and K > k2(L). Altogether we obtain pi(L) = P and ki(L) = K
for i = 1, 2. This implies that L = (P,K, α, P,K) for some α ∈ AutC(P/K).

(b) Writing again Lα := (P,K, α, P,K) for α ∈ AutC(P/K), we have κ(Lα, Lβ) = |K ∩K|/|G| = [G :
K]−1, for α, β ∈ AutC(P/K). The remaining statement is an easy verification.

We call a section (P1,K1) of a group G and a section (P2,K2) of a group G′ isomorphic if P1/K1
∼=

P2/K2. In this case we write (P1,K1) ∼= (P2,K2). For an object G of C and a section (P,K) of G with
e(P,K) ∈ CG,G we set e′(P,K) := [G : K] · e(P,K), which is the corresponding idempotent in RκCG,G, cf. 5.7.

It is also the identity in RκΓe(P,K)
. As in 5.3(b) we write Je(P,K)

= (e(P,K) ∗ CG,G ∗ e(P,K)) r Γe(P,K)
.

Let A := Aκ
C,R. Recall from 5.7 that the R-span RJe(P,K)

is an ideal of the R-algebra e′(P,K)Ae
′
(P,K) =

e′(P,K)RκCG,Ge
′
(P,K), and that we have

e′(P,K)Ae
′
(P,K) = RκΓe(P,K)

⊕RJe(P,K)
. (17)

The following theorem is now an immediate consequence of Theorem 5.8 and Propositions 6.3 and
6.4.

6.5 Theorem Let S be a set of representatives of the isomorphism classes of sections (P,K) of groups
G ∈ Ob(C) with eP,K ∈ CG,G, and for each (P,K) ∈ S let T(P,K) denote a set of representatives of the
isomorphism classes of simple left R[AutC(P/K)]-modules. Moreover, set A := Aκ

C,R. Then the map

((P,K), T ) 7→ Hd
(
Ae′(P,K) ⊗e′(P,K)

Ae′
(P,K)

Inf
e′(P,K)Ae

′

(P,K)

RκΓe(P,K)
(T )

)

induces a bijection between the set of pairs ((P,K), T ), where (P,K) ∈ S and T ∈ T(P,K), and the set of
isomorphism classes of simple left A-modules. Here, the simple R[AutC(P/K)]-module T is viewed as an
RκΓe(P,K)

-module via the isomorphism from Proposition 6.4(b) and is inflated via the decomposition in
(17).

7 Simple eCA
κ
C,ReC-modules in characteristic 0

Throughout this section we assume that R is a field of characteristic 0, that B is a category as in
Example 5.15(a) and that C is a subcategory of B satisfying the condition in (16). We also assume
throughout this section that, for any two objects G and H of C, the set CG,H is closed under G × H-
conjugation. However, we do not assume at this point that C is finite, but will do so in some parts of
this section. Using Theorem 6.5 and the condensation results of Green, cf. 5.4, we will first determine
the simple eCA

κ
C,ReC-modules when C is finite, cf. Theorem 7.1. The remainder of this secton is devoted

to several consequences of Theorem 7.1.
One consequence, presented at the end of the section, will be on simple biset functors: recall from

Proposition 3.7 and Example 5.15(c) that, when C is finite, the maps αG,H , G,H ∈ Ob(C), induce an
isomorphism

αC :
⊕

G,H∈Ob(C)

RBC(G,H)
∼
−→ eCA

κ
C,ReC
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of R-algebras. Thus, the simple biset functors for C over R are parametrized by the simple Aκ
C,R-modules

S with the property that eC · S 6= {0}, cf. 5.4. In Theorem 7.8 we use the Schur functor approach
to determine the simple biset functors on B, or on any subcategory C of B that satisfies the general
assumptions in this section and is closed under taking subquotients in a sense defined in Corollary 7.6.

Recall from Theorem 6.5 that, in the case where C is finite, the simple Aκ
C,R-modules are described as

S(P,K),T := Hd(Ae′(P,K) ⊗e′(P,K)
Ae′

(P,K)
T̃ ) ,

where A = Aκ
C,R, (P,K) is a section of some G ∈ Ob(C), T is a simple RAutC(P/K)-module and

T̃ is the same R-module as T but viewed as an e′(P,K)Ae
′
(P,K)-module via the canonical isomorphism

RκΓe(P,K)
∼= RAutC(P/K) and the inflation from RκΓe(P,K)

to e′(P,K)Ae
′
(P,K).

In the case where C has only one object G we will obtain results on simple modules of RBC(G,G) and,
in particular, on simple modules of RB(G,G). In [Bc3, Section 6.1], Bouc shows that the isomorphism
classes of simple RB(G,G)-modules can be parametrized by pairs consisting of an isomorphism class of
a section (P,K) of G and an isomorphism class of a simple ROut(P/K)-module T , where Out(P/K)
denotes the outer automorphism group of P/K. More precisely, there exists an injective map from the
set of isomorphism classes of simple RB(G,G)-modules S to the set of such pairs. In this section we give
a necessary condition for such a pair to belong to the image of the parametrization, i.e., we bound the
image of this map from above, cf. Theorem 7.5.

7.1 Theorem Assume that the category C is finite, that it satisfies Condition (16), and assume that for
any two objects G and H of C, the morphism set CG,H is closed under G × H-conjugation. Let G be
an object of C, let (P,K) be a section of G such that e(P,K) ∈ CG,G, let T be a simple RAutC(P/K)-
module, let S(P,K),T be the corresponding simple Aκ

C,R-module from Theorem 6.5, and let χ denote the
character of T . Then, eC · S(P,K),T 6= {0} if and only if there exist an object H of C and a morphism
L = (P ′′,K ′′, τ, P ′,K ′) ∈ CH,H with q(L) = [P/K] such that

∑

h∈H

(P ′,K′)� h
(P ′′,K′′)

|K ′ ∩ hK ′′| · χ′′(τ ◦ β(P ′,K ′;
h
P ′′,

h
K ′′) ◦ c̄h) 6= 0 (18)

in the field R. Here χ′′ is the character of the simple RAutC(P
′′/K ′′)-module T ′′ corresponding to T

(cf. Lemma 6.2) and c̄h : P
′′/K ′′ ∼

−→ hP ′′/ hK ′′ is the isomorphism induced by conjugation with h.

Before we prove the theorem, note that the argument τ ◦β(P ′,K ′;
h
P ′′,

h
K ′′) ◦ c̄h of χ′′ is actually an

element of AutC(P
′′/K ′′), since it is the isomorphism ηM for the group M := L ∗ (h,1)e(P ′′,K′′) ∈ CH,H .

Proof We set e := e(P,K) and e′ := [G : K]e. By Lemma 5.6, we have eC · S 6= {0} if and only if

(e′AeCAe
′) · T̃ 6= {0}, and the latter is equivalent to the existence of an object H of C and morphisms

L ∈ CG,H and M ∈ CH,G such that

e′LeHMe′ · T̃ 6= {0} . (19)

Let π : e′Ae′ = RκΓe ⊕ RJe → RκΓe denote the canonical projection. Since RJe annihilates T̃ , the
condition in (19) is equivalent to the condition π(e′LeHMe′) · T 6= {0}. This in turn is equivalent to

eχ · π(e′LeHMe′) 6= 0
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in RΓe, where

eχ :=
∑

σ∈AutC(P/K)

χ(σ−1) · Lσ , with Lσ = (P,K, σ, P,K),

which is (up to a unit in R) the primitive central idempotent of RκΓe corresponding to T . Replacing, if
necessary, L by e ∗ L and M by M ∗ e, we may assume that

K 6 k1(L) 6 p1(L) 6 P and K 6 k2(M) 6 p2(M) 6 P .

Further, using Lemma 2.7, we may assume that K = k1(L) = k2(M) and P = p1(L) = p2(M), since
otherwise π(e′LeHMe′) = 0. Altogether, since e′ = [G : K]e, we obtain that eC · S 6= {0} if and only if
there exist an object H ∈ Ob(C) and morphisms L ∈ CG,H and M ∈ CH,G satisfying

k1(L) = K = k2(M) , p1(L) = P = p2(M) , (20)

and
eχ · π(e′LeHMe′) 6= 0 in RκΓe. (21)

Setting (P ′,K ′) := (p2(L), k2(L)), (P
′′,K ′′) := (p1(M), k1(M)), φ := ηL : P

′/K ′ ∼
−→ P/K, and ψ :=

ηM : P/K
∼
−→ P ′′/K ′′, and assuming the conditions in (20), we obtain, by Lemma 2.7, that

π(e′LeHMe′) =
∑

h∈H

π(e′L∆h(H)Me′)

=
∑

h∈H

(P ′,K′)� h
(P ′′,K′′)

|K ′ ∩ hK ′′|

|H |2
· (P,K, φ ◦ β(P ′,K ′;

h
P ′′,

h
K ′′) ◦ c̄h ◦ ψ, P,K),

where c̄h : P
′′/K ′′ ∼

−→ h
P ′′/

g
K ′′ is induced by the conjugation map ch. Thus the condition in (21) is

equivalent to
∑

σ∈AutC(P/K)

∑

h∈H

(P ′,K′)� h
(P ′′,K′′)

ah · χ(σ
−1) ·

(
σ ◦ φ ◦ β(P ′,K ′;

h
P ′′,

h
K ′′) ◦ c̄h ◦ ψ

)
6= 0

in RAutC(P/K), where

ah = |K ′ ∩ hK ′′| ·
|K|

|H |2 · |G|
(for h ∈ H and (P ′,K ′)� h

(P ′′,K ′′)) .

Applying the isomorphism cψ : AutC(P/K)
∼
−→ AutC(P

′′/K ′′), σ 7→ ψ ◦ σ ◦ ψ−1 := σ′′ and switching the
summation translates the last condition into

∑

h∈H

(P ′,K′)� h
(P ′′,K′′)

∑

σ′′∈AutC(P ′′/K′′)

|K ′ ∩ hK ′′| · χ′′((σ′′)−1) ·
(
σ′′ ◦ ψ ◦ φ ◦ β(P ′,K ′;

h
P ′′,

h
K ′′) ◦ c̄h

)
6= 0

in RAutC(P
′′/K ′′), where χ′′ is the character of the simple RAutC(P

′′/K ′′)-module T ′′ arising from T

via cψ. Substituting σ′′ ◦ ψ ◦ φ ◦ β(P ′,K ′′; hP ′′, hK ′′) ◦ c̄h with θ′′ and then switching the summation
again, one obtains the equivalent condition

∑

θ′′∈AutC(P ′′/K′′)

∑

h∈H

(P ′,K′)� h
(P ′′,K′′)

|K ′ ∩ hK ′′| · χ′′
(
(θ′′)−1 ◦ ψ ◦ φ ◦ β(P ′,K ′;

h
P ′′,

h
K ′′) ◦ c̄h

)
· θ′′ 6= 0
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in RAutC(P
′′/K ′′); note that here we used the fact that χ′′ is a class function. Thus, eC · S 6= {0} if and

only if there exist an object H of C, sections (P ′,K ′) and (P ′′,K ′′) of H that are isomorphic to (P,K),
and an isomorphism τ : P ′/K ′ → P ′′/K ′′ with (P ′′,K ′′, τ, P ′,K ′) ∈ CH,H such that

∑

h∈H

(P ′,K′)� h
(P ′′,K′′)

|K ′ ∩ hK ′′| · χ′′
(
τ ◦ β(P ′,K ′′;

h
P ′′,

h
K ′′) ◦ c̄h

)
6= 0

in R. This completes the proof of the theorem.

The derive an immediate corollary of the previous theorem.

7.2 Corollary Assume that C satisfies the same hypotheses as in Theorem 7.1, that G is an object of
C, (P,K) is a section of G such that eP,K ∈ CG,G, that T is a simple RAutC(P/K)-module, and that
S := S(P,K),T is the corresponding simple Aκ

C,R-module.

(a) If there exists an object H of C such that H and P/K are isomorphic as groups and if Inn(P/K)
acts trivially on T then eC · S 6= {0}.

(b) If P/K is abelian then eC · S 6= {0}.

Proof (a) The condition in (18) is satisfied for H and L = ∆(H) ∈ CH,H : in fact, the left-hand side of
(18) is equal to

∑
c∈Inn(H) χ

′′(c). This element is non-zero if and only if Inn(H) acts trivially on T ′′. But

this is equivalent to Inn(P/K) acting trivially on T . Now the result follows.

(b) The condition in (18) is satisfied for H = G, (P ′,K ′) = (P ′′,K ′′) = (P,K), and τ = idP/K . In

fact, the left-hand side is equal to |G| · |K| · χ′′(idP/K), which is clearly non-zero.

Before we can derive further consequences from Theorem 7.1 we need first an auxiliary result. Let G
be a finite group, let χ be the character of a finite-dimensional RG-module, and let X ⊆ G be a subset.
We set X+ :=

∑
x∈X x ∈ RG and χ(X+) :=

∑
x∈X χ(x). Note that if H is a subgroup of G then χ(H+)

is a non-zero multiple of the Schur inner product of the trivial character of H and the restriction of χ to
H . With this notation the following lemma holds. Its proof will appear in [BK]. We repeat it here for
the convenience of the reader.

7.3 Lemma Let χ be the character of a finite-dimensional RG-module and assume that g ∈ G and
H 6 G satisfy χ((gH)+) 6= 0. Then also χ(H+) 6= 0 and, in particular, the restriction of χ to H contains
the trivial character of H as a constituent.

Proof Let ∆: RG→ Matn(R) be a representation affording the character χ and assume that χ(H+) = 0.
Then also χ(eH) = 0, where eH = 1

|H|H
+ is an idempotent in RG. Since eH is an idempotent, the matrix

∆(eH) is diagonalizable and its only eigenvalues are 0 and 1. Since 0 = χ(eH) = tr(∆(eH)), we obtain
∆(eH) = 0. Thus, ∆(RG · eH) = 0. This finally implies that χ((gH)+) = |H | ·χ(geH) = 0, and the proof
of the lemma is complete.

For any section (P,K) of a finite group G we set NG(P,K) := NG(P ) ∩NG(K) and define

AutG(P/K) := {c̄g | g ∈ NG(P,K)} .
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Note that Inn(P/K) 6 AutG(P/K) 6 Aut(P/K). For each G ∈ Ob(C) and each section (P,K) of
G with e(P,K) ∈ CG,G, one has AutG(P/K) 6 AutC(P/K). In fact, for each g ∈ NG(P,K) one has
(g,1)e(P,K) = (P,K, c̄g, P,K) ∈ CG,G. Thus, we obtain

Inn(P/K) 6 AutG(P/K) 6 AutC(P/K) 6 Aut(P/K) .

If also H ∈ Ob(C) and if (P ′,K ′) is a section of H with P ′/K ′ ∼= P/K then there exists an isomorphism
τ : P/K

∼
→ P ′/K ′ such that (P,K, τ, P ′,K ′) ∈ CG,H , since C satisfies (16). Conjugation by τ induces an

isomorphism AutC(P
′/K ′) → AutC(P/K) that maps AutH(P ′/K ′) to a subgroup τAutH(P ′/K ′)τ−1 of

AutC(P/K) that also contains Inn(P/K). Different choices of τ yield conjugate subgroups of AutC(P/K).
We denote by AC(P/K) the set of subgroups of AutC(P/K) that arise this way. Thus, AC(P/K) is a
collection of subgroups of AutC(P/K) that is closed under AutC(P/K)-conjugation and all of whose
elements contain Inn(P/K).

7.4 Corollary Assume that C is a finite subcategory of B that satisfies Condition (16), and assume
that for any two objects G and H of C, the morphism set CG,H is closed under G × H-conjugation.
Furthermore, let G be an object of C, let (P,K) be a section of G such that e(P,K) ∈ CG,G, let T
be a simple RAutC(P/K)-module, and let S = S(P,K),T be the corresponding simple Aκ

C,R-module,
cf. Theorem 6.5. If eC ·S 6= {0} then there exists a subgroup B of AutC(P/K) that belongs to AC(P/K)
such that the restriction of T to B has the trivial module as constituent. In particular, Inn(P/K) acts
trivially on T .

Proof By Theorem 7.1, there exist H ∈ Ob(C) and sections (P ′,K ′) and (P ′′,K ′′) of H , both isomor-
phic to (P,K), and an isomorphism τ : P ′/K ′ ∼

→ P ′′/K ′′ satisfying (18). Note that if h ∈ H satisfies

(P ′,K ′)� h
(P ′′,K ′′) then every element in the coset hNH(P

′′,K ′′) satisfies this condition. Thus, the
condition in (18) implies

χ′′
(
(σ′′ ◦AutH(P ′′/K ′′))+

)
6= 0

for some σ′′ ∈ AutC(P
′′/K ′′). Lemma 7.3 implies that χ′′(AutH(P ′′/K ′′)+) 6= 0. Here, χ denotes the

character of T and χ′′ denotes the corresponding character of the group AutC(P
′′/K ′′). The last condition

implies that χ(B+) 6= 0 for some B ∈ AC(P/K). Thus, the restriction of χ to B contains the trivial
character as a constituent. Since Inn(P/K) 6 B, this also holds for χ restricted to Inn(P/K). Finally,
since χ is the character of a simple RAut(P/K)-module and since Inn(P/K) is normal in Aut(P/K),
this implies that Inn(P/K) acts trivially on T .

If C has only one object G then we obtain results on the simple RBC(G,G)-modules. Let S denote a
set of representatives for the isomorphism classes of sections (P,K) of G satisfying e(P,K) ∈ C, and for each
(P,K) ∈ S, let T(P,K) denote a set of representatives for the isomorphism classes of simple RAutC(P/K)-

modules. The simple RBC(G,G)-modules are parametrized by pairs ((P,K), T ) with (P,K) ∈ S and
T ∈ T(P,K) such that there exist sections (P ′,K ′) and (P ′′,K ′′) of G and an isomorphism τ : P ′′/K ′′ ∼

−→
P ′/K ′ with (P ′,K ′, τ, P ′′,K ′′) such that the condition (18) is satisfied. In this case we say that ((P,K), T )
parametrizes a simple RBC(G,G)-module.

The following theorem improves the results in [Bc3, Chapter 6] on the parametrization of simple
RB(G,G)-modules in the case that R is a field of characteristic 0. It follows immediately from Corol-
lary 7.4 and Corollary 7.2(b).
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7.5 Theorem Assume that G is a finite group and that C is a submonoid of (SG×G, ∗) satisfying the
condition in (16) and that C is closed under G × G-conjugation, and assume the notation from above.
Let (P,K) ∈ S and T ∈ TP,K .

(a) If ((P,K), T ) parametrizes a simple RBC(G,G)-module then the restriction of T to a subgroup
B of AutC(P/K) contains the trivial RB-module as a constituent; in particular, Inn(P/K) acts trivially
on T .

(b) If P/K is abelian then ((P,K), T ) parametrizes a simple RBC(G,G)-module.

The following corollary is also a consequence of Corollary 7.2(a) and Corollary 7.4.

7.6 Corollary Assume that C satisfies Condition (16) and that for any two objects G and H of C the
set CG,H is closed under G ×H-conjugation. Assume further that C is finite and that the objects of C
are closed under taking subquotients in the following sense: for any object G of C and any section (P,K)
of G with e(P,K) ∈ CG,G there exists an object H of C with H ∼= P/K.

Then the isomorphism classes of simple eCA
κ
C,ReC-modules are parametrized by pairs (G, T ), where

G runs through a set S of representatives of the isomorphism classes of groups G occurring as objects
of C and, for each G ∈ S, T runs through a set of representatives for the isomorphism classes of simple
ROutC(G)-modules. Here, OutC(G) is defined as AutC(G)/Inn(G).

Proof First note that, since C is closed under taking subquotients, the set S (in Theorem 6.5) of
representatives for the isomorphism classes of sections (P,K) of objects G of C satisfying e(P,K) ∈ CG,G

can be chosen such that P = G and K = 1. Next assume that if T is a simple RAutC(G)-module. If
eC · S = {0} for the corresponding simple Aκ

C,R-module S then Corollary 7.4 implies that Inn(G) acts
trivially on T . Conversely, if Inn(G) acts trivially on T then Corollary 7.2(a) implies that eC · S 6= {0}.
This completes the proof of the corollary.

7.7 Remark Assume that C satisfies Condition (16), that for any two objects G and H of C the set
CG,H is closed under G×H-conjugation, and that the objects of C are closed under taking subquotients
in the sense of Corollary 7.6.

Corollary 7.6 can be considered as a parametrization result for simple biset functors on C over R,
when C is finite (cf. Example 5.15(c)). To make the transition from C being finite to C being arbitrary,
it is straightforward to show that the standard techniques developed in [Bc3], especially those in Section
3.3, 4.2 and 4.3 that are used in the parametrization of simple biset functors, still work if one weakens
the requirement of an admissable subcategory, cf. [Bc3, Definition 4.1.3], to requiring Condition (16),
that the morphism sets CG,H are closed under G ×H-conjugation, and that the objects of C are closed
under taking sections in the sense of Corollary 7.6. These techniques allow to reduce the determination
of simple biset functors on C over R to the case where C is finite. Together with Corollary 7.6 we then
obtain the theorem stated below. There we use Bouc’s definition of the simple biset functor S(G,T )

associated to the pair (G, T ), where G is an object of C and T is a simple ROutC(G)-module. Two
pairs (G, T ) and (G′, T ′) are called isomorphic if G and G′ are isomorphic and if for one (or equivalently
each) τ : G′ → G with (G, 1, τ, G′, 1) ∈ CG,G′ the modules T ′ and T correspond to each other under the
map cτ : AutC(G

′) → AutC(G). Note that such an isomorphism τ exists. The parametrization in the
following theorem slightly generalizes Bouc’s parametrization in [Bc3, Theorem 4.3.10] where AutC(P/K)
is assumed to be equal to Aut(P/K). Unfortunately, our methods require R to be a field of characteristic
0.
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7.8 Theorem Let C be a subcategory of B, not necessarily finite. Assume that C satisfies Condition (16),
that for any two objects G and H of C the morphism set CG,H is closed under G×H-conjugation, and
that C is closed under taking sections in the sense of Corollary 7.6. Then the map (G, T ) 7→ S(G,T )

induces a bijection between the set of isomorphism classes of pairs (G, T ), where G is an object of C and
T is a simple ROutC(G)-module, and the set of isomorphism classes of simple biset functors for C over
R.

8 Cyclic Groups

Throughout this section R denotes a commutative ring and D denotes a set of cyclic groups such that,
for all G ∈ D , the group order |G| is a unit in R. By ϕ we denote Euler’s totient function. The aim
of this section is to show that if, in addition, also ϕ(|G|), for G ∈ D , are units in R then the R-algebra⊕

G,H∈D
RB(G,H) is isomorphic to the category algebra RC̃, where C̃ is the finite inverse category

associated with the set D that was introduced in Definition 5.16. Thus we will, in particular, be able
to invoke the results quoted in Section 5 to deduce that if R is a field such that, for every G ∈ D , both
|G| and ϕ(|G|) are non-zero in R and if D is finite then

⊕
G,H∈D

RB(G,H) is a semisimple R-algebra.
In this case we will give an explicit decomposition of this algebra as a direct product of matrix algebras
over group algebras.

We set
BD
R :=

⊕

G,H∈D

RB(G,H) and ÃD
R :=

⊕

G,H∈D

RSG×H .

These two R-modules are equipped with the following multiplications: for G,H,H ′,K ∈ D , and for
a ∈ RB(G,H), b ∈ RB(H ′,K), x ∈ RSG×H , and y ∈ RSH′×K , we have

a · b :=

{
a ·H b if H = H ′,

0 if H 6= H ′,

cf. Example 5.15(c), and

x∗̃κy :=

{
x∗̃κHy if H = H ′,

0 if H 6= H ′.

Note that G×H acts trivially on RSG×H when G and H are abelian. Therefore, Propositions 3.2, 3.6
and 3.9 imply the following proposition.

8.1 Proposition The composition of the maps (αG,H)G,H∈D : BD
R →

⊕
G,H∈D

RSG×H and

(ζG,H)G,H∈D :
⊕

G,H∈D
RSG×H → ÃD

R defines an isomorphism

γ : (BD
R , ·)

∼
−→ (ÃD

R , ∗̃
κ)

of R-algebras.

Next we will focus on the structure of the R-algebra (ÃD
R , ∗̃

κ). First we will introduce a new R-basis
of ÃD

R and then, in Theorem 8.6, show that the product of any two of these basis elements is a multiple
of a basis element, or is equal to 0. This will require several steps.
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8.2 Notation For finite groups G and H and a subgroup L 6 G×H , we set

L̃ :=
∑

L′∈P(L)

L′ ∈ RSG×H ,

where
P(L) = {L′

6 L | p1(L
′) = p1(L), p2(L

′) = p2(L)} ,

cf. Definition 5.16. Note that the elements in {L̃ | L 6 G ×H}, form again an R-basis of RSG×H . We
also set

s(L) := [p1(L) : k1(L)] = [p2(L) : k2(L)] .

Note that s(L) = 1 if and only if L = p1(L)× p2(L) is a direct product.

In order to see that the basis elements L̃, L 6 G×H , have the desired property we first consider the
special case of cyclic p-groups G and H .

8.3 Lemma Let p be prime, and let G and H be cyclic p-groups.
(a) Let M ′ 6 M 6 G × H be such that p2(M

′) = p2(M) and p1(M
′) < p1(M). Then M =

p1(M)× p2(M); in particular, M ′ 6 U × p2(M) 6M , where U < p1(M) is such that [p1(M) : U ] = p.
(b) Let L′ 6 L 6 G×H be such that p1(L

′) = p1(L) and p2(L
′) < p2(L). Then L = p1(L)× p2(L);

in particular, L′ 6 p1(L)× V 6 L, where V < p2(L) is such that [p2(L) : V ] = p.

Proof We verify Part (a); Part (b) is proved analogously. So let (g, h) ∈M be such that 〈g〉 = p1(M),
thus g /∈ p1(M

′). Since h ∈ p2(M) = p2(M
′), there is some g′ ∈ p1(M

′) such that (g′, h) ∈M ′. Moreover,
〈g−1g′〉 = p1(M), and g−1g′ ∈ k1(M). Hence k1(M) = p1(M), that is, s(M) = 1.

8.4 Proposition Let p be a prime that is invertible in R, let G, H , and K be cyclic p-groups and let
L 6 G×H and M 6 H ×K be subgroups such that p2(L) = p1(M). Then, in RSG×K , one has

L̃∗̃κHM̃ =

{
ϕ(|k2(L)∩k1(M)|)

|H| · L̃ ∗M if s(L) = 1 = s(M),
|k2(L)∩k1(M)|

|H| · L̃ ∗M otherwise.

Proof By the definition of −∗̃κH− in Definition 3.8 and by Theorem 4.1, we have

L̃∗̃κHM̃ =
∑

(L′,M ′)∈P(L)×P(M)

L′∗̃κHM
′ =

∑

(L′,M ′)∈P(L)×P(M)

[ ∑

N∈P(L′∗M ′)

( ∑

σ∈EN

L′,M′

(−1)|σ|κ(σ)
)
·N

]
.

Note that if (L′,M ′) ∈ P(L)× P(M) then p2(L
′) = p1(M

′), since p2(L) = p1(M). Moreover, p2(L
′) =

p1(M
′) and p2(L) = p1(M) together with Lemma 2.7(i) imply that

p1(L
′ ∗M ′) = p1(L

′) = p1(L) = p1(L ∗M) and p2(L
′ ∗M ′) = p2(M

′) = p2(M) = p2(L ∗M) .

Therefore we have P(L′ ∗M ′) ⊆ P(L ∗M) and we can write

L̃∗̃κHM̃ =
∑

N∈P(L∗M)

bNL,M ·N
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with uniquely determined elements bNL,M ∈ R. Moreover, the first equation in the proof implies that

bNL,M =
∑

(L′,M ′)∈P(L)×P(M)

( ∑

σ∈EN

L′,M′

(−1)|σ|κ(σ)
)
=

∑

(L′,M ′)∈ZN
L,M

∩(P(L)×P(M))

( ∑

σ∈EN

L′,M′

(−1)|σ|κ(σ)
)
.

The last equation holds, since ENL′,M ′ is empty if (L′,M ′) /∈ ZN
L′,M ′ and since ZN

L′,M ′ ⊆ ZN
L,M .

Next we fix an element N ∈ P(L ∗M). To complete the proof of the proposition, it suffices to show
that

bNL,M =

{
ϕ(|k2(L)∩k1(M)|)

|H| if s(L) = 1 = s(M),
|k2(L)∩k1(M)|

|H| otherwise.
(22)

Note that by Möbius inversion in the poset ZN
L,M we have

κ(L,M) =
∑

(L′′,M ′′)6(L′,M ′)

in ZN
L,M

µ
ZN

L,M

(L′′,M ′′),(L′,M ′)κ(L
′′,M ′′)

(23)

=
∑

(L′,M ′)∈ZN
L,M

∑

σ∈EN

L′,M′

(−1)|σ|κ(σ) = bNL,M + cNL,M

with
cNL,M :=

∑

(L′,M ′)∈ZN
L,M

r(P(L)×P(M))

∑

σ∈EN

L′,M′

(−1)|σ|κ(σ) .

Claim: If L′ 6 L with p1(L
′) = p1(L) and p2(L

′) < p2(L) then k2(L
′) < k2(L). In fact, by Equation (1)

we have |L| = |p1(L)| · |k2(L)| and |L′| = |p1(L′)| · |k2(L′)|, and p2(L′) < p2(L) implies L′ < L. Similarly,
one can see that if M ′ 6 M with p2(M

′) = p2(M) and p1(M
′) < p1(M) then k1(M

′) < k1(M). This
settles the claim.

To finish the proof we distinguish three cases:

(i) If s(L) > 1 or s(M) > 1 then ZN
L,M r (P(L)× P(M)) = ∅ by Lemma 8.3. Therefore we obtain

cNL,M = 0 and Equation (23) implies bNL,M = κ(L,M), as desired.

(ii) If k2(L) = 1 or k1(L) = 1 then the above claim implies cNL,M = 0, and Equation (23) implies

bNL,M = κ(L,M) = 1/|H | = ϕ(|k2(L) ∩ k1(L)|)/|H |, as desired.

(iii) If s(L) = 1 = s(M), k2(L) > 1 and k1(M) > 1 then, by Lemma 8.3, we have ZN
L,M r (P(L) ×

P(M)) = ZN
p1(L)×V,V×p2(M), where V < p2(L) is the unique subgroup of index p. Thus,

cNL,M =
∑

(L′,M ′)∈ZN
p1(L)×V,V ×p2(M)

∑

σ∈EN

L′,M′

(−1)|σ|κ(σ)

and this is equal to κ(p1(L) × V, V × p2(M)) = κ(L,M)/p, by the first part of the equations in (23)
applied to (p1(L)× V, V × p2(M)). Now Equation (23) implies

bNL,M = κ(L,M)− cNL,M = κ(L,M)− κ(L,M)/p =
(1− 1/p) · |k2(L) ∩ k1(M)|

|H |
=
ϕ(|k2(L) ∩ k1(M)|)

|H |
,
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and the proof is complete.

In the sequel we will denote by P the set of prime numbers. For a finite abelian group G and a prime
p we denote by Gp the Sylow p-subgroup of G.

8.5 Definition Assume that G, H , and K are finite abelian groups such that |H | is invertible in R.
Let L 6 G ×H and M 6 H ×K be subgroups. For each p ∈ P, we define λp(L,M) ∈ R as follows: if
p2(Lp) 6= p1(Mp) then we set λp(L,M) := 0, and if p2(Lp) = p1(Mp) then we set

λp(L,M) :=

{
ϕ(|k2(Lp)∩k1(Mp)|)

|Hp|
if s(Lp) = 1 = s(Mp),

|k2(Lp)∩k1(Mp)|
|Hp|

otherwise.

Note that if p does not divide |H | then λp(L,M) = 1. Moreover, we define

λ(L,M) :=
∏

p∈P

λp(L,M) .

Thus, λ(L,M) 6= 0 if and only if p2(L) = p1(M), and in this case λ(L,M) is invertible in R provided
that ϕ(|H |) is also invertible in R.

8.6 Theorem Assume that G, H and K are finite cyclic groups such that |H | is invertible in R and let
L 6 G×H and M 6 H ×K be subgroups. Then

L̃∗̃κHM̃ = λ(L,M) · L̃ ∗M .

In particular, L̃∗̃κHM̃ = 0 if and only if p2(L) 6= p1(M).

For the proof of Theorem 8.6 we will need two lemmas that will reduce the theorem to the case of
cyclic p-groups and therefore to Proposition 8.4. For a finite abelian group G, one has the canonical
bijection

SG
∼
−→×

p∈P

SGp
, U 7→ (Up)p∈P ,

which induces an R-module isomorphism

θG : RSG
∼
−→

⊗

p∈P

RSGp
,

where the tensor product is taken over R. The inverse of θ maps the tensor product of a collection
Up, p ∈ P, of subgroups of G to their product

∏
p∈P

Up in p. If also H is a finite abelian group then
(G×H)p = Gp ×Hp and we obtain an R-module isomorphism

θG,H : RSG×H
∼
−→

⊗

p∈P

RSGp×Hp
.

The assertions of the following lemmas are straightforward verifications. The proof of the first one is
left to the reader.
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8.7 Lemma Let G and H be finite abelian groups and let L 6 G×H be a subgroup. Then the following
equations hold in

⊗
p∈P

RSGp×Hp
:

(a) θG,H(
∑

L′6L L
′) = ⊗p∈P(

∑
L′

p6Lp
L′
p);

(b) θG,H(L̃) = ⊗p∈PL̃p.

8.8 Lemma Let G, H and K be finite abelian groups such that |H | is invertible in R. Then the diagram

RSG×H ⊗RSH×K
− ∗κH −

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq

RSG×K

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

≀ ξG,H,K ◦ (θG,H ⊗ θH,K)

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

≀ θG,K

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

ζG,H ⊗ ζH,K

qqqqqqqqqqqqqqqqqqqq
qq
qq
qq
qq
qq
qq
qq
qq

ζG,K

RSG×H ⊗RSH×K
−∗̃κH−

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq RSG×K

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

≀ ξG,H,K ◦ (θG,H ⊗ θH,K)

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

≀ θG,K

⊗
p∈P

(
RSGp×Hp

⊗RSHp×Kp

)
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

⊗
p∈P

(−∗̃κHp
−)

⊗
p∈P

RSGp×Kp

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq⊗
p∈P

(ζGp,Hp
⊗ ζHp,Kp

)

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

⊗
p∈P

ζGp,Kp

⊗
p∈P

(
RSGp×Hp

⊗RSHp×Kp

)
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq

⊗
p∈P

(− ∗κHp
−)

⊗
p∈P

RSGp×Kp

is commutative. Here

ξG,H,K :
(⊗

p∈P

RSGp×Hp

)
⊗
(⊗

p∈P

RSHp×Kp

) ∼
→

⊗

p∈P

(
RSGp×Hp

⊗RSHp×Kp

)

denotes the canonical isomorphism.

Proof Let L 6 G ×H and M 6 H ×K. The two paths in the outer square map L ⊗M to the same
element since

|k2(L) ∩ k1(M)|

|H |
=

∏

p∈P

|(k2(L) ∩ k1(M))p|

|Hp|
=

∏

p∈P

|k2(Lp) ∩ k1(Mp)|

|Hp|
.

Furthermore, the top and bottom rectangles of the diagram commute, by Proposition 3.9, and the left
and right rectangles of the diagram commute, by Lemma 8.7(a). Lastly, since the maps ζ with various
indices are isomorphisms, also the inner square commutes.
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Proof of Theorem 8.6. Consider the inner square of the diagram in Lemma 8.8, and L̃ ⊗ M̃ ∈
RSG×H ⊗ RSH×K in its top left corner. Using Lemma 8.7(b), the left-hand arrow in this inner square

applied to this element yields the tensor product of the elements L̃p⊗ M̃p. By Proposition 8.4, this latter

element is mapped under the bottom map to the tensor product of the elements λp(L,M) · ( ˜Lp ∗Mp).

Since Lp ∗Mp = (L ∗M)p, also λ(L,M) · L̃ ∗M is mapped to this element under θG,K , by Lemma 8.7.
This completes the proof of the theorem.

Theorem 8.6 allows us to view the R-algebra ÃD
R as a twisted category algebra RλC̃: let C̃ = C̃(D)

denote the inverse category associated to D as in Definition 5.16, and recall that we are assuming |G| to
be invertible in R, for every G ∈ D . Recall further that the objects of C̃ are pairs (G,G′) with G ∈ D and
G′ 6 G. Moreover, for objects (G,G′) and (H,H ′) of C̃, the set of morphisms from (H,H ′) to (G,G′) is
given by P(G′ ×H ′), and if (K,K ′) is also an object of C̃ and L ∈ P(G′ ×H ′) and M ∈ P(H ′ ×K ′)
are morphisms in C̃ then their composition is defined by L ∗M . The identity morphism of (G,G′) is
equal to ∆(G′). Recall also that, for a morphism L between (H,H ′) and (G,G′), we will often write

GLH to indicate that it is a morphism between the objects (H,H ′) and (G,G′). The associativity of the
R-algebra ÃD

R and Theorem 8.6 imply that (L,M) 7→ λ(L,M) defines a 2-cocycle on C with values in
R× (if also ϕ(|G|) is invertible in R for all G ∈ D), and that the maps

RSG×H → RλC̃ , L̃ 7→ L ∈ Hom
C̃

(
(H, p2(L)), (G, p1(L))

)
,

for G,H ∈ D , induce an R-algebra isomorphism

δ : ÃD

R
∼
−→ RλC̃ (24)

onto the twisted category algebra RλC̃ of the inverse category C̃.

Our next goal is to show that RλC̃ is isomorphic to the ‘untwisted’ category algebra RC̃. The next
proposition will achieve this by showing that λ is a coboundary.

8.9 Definition For objects (G,G′), (H,H ′) of C̃ and a morphism GLH ∈ P(G′ ×H ′) from (H,H ′) to
(G,G′) we set

µ(GLH) :=
∏

p∈P

µp(GLH) ,

where

µp(GLH) :=

{
ϕ(|p1(Lp)|)

|Hp|
if s(Lp) = 1,

|k1(Lp)|
|Hp|

if s(Lp) > 1.

8.10 Proposition Assume that, for each G ∈ D , both |G| and ϕ(|G|) are invertible in R.
Let (G,G′), (H,H ′), (K,K ′) ∈ Ob(C̃), and let GLH ∈ Hom

C̃
((H,H ′), (G,G′)) and HMK ∈

Hom
C̃
((K,K ′), (H,H ′)). Then one has

λ(GLH ,HMK) = µ(GLH) · µ(HMK) · µ(G(L ∗M)K)−1 .

Thus the 2-cocycle λ on the category C̃ is a 2-coboundary, and the twisted category algebra RλC̃ is
isomorphic to the category algebra RC̃, via the isomorphism

ǫ : RλC̃ → RC̃ , GLH 7→ µ(GLH) · GLH ,

for GLH ∈ Mor(C̃).

37



Proof For convenience, set L := GLH and M := HMK . By the definitions of λ and µ, it suffices to show
that

λp(Lp,Mp)µp(Lp)
−1µp(Mp)

−1 = µp(Lp ∗Mp)
−1 , (25)

for all p ∈ P. To this end, let p ∈ P, and set lp := λp(Lp,Mp)µp(Lp)
−1µp(Mp)

−1 and rp := µp(Lp∗Mp)
−1.

We distinguish four cases:

(i) If s(Lp) = 1 = s(Mp) then we have Lp ∗Mp = p1(Lp)× p2(Mp), and thus

lp =
|Gp|

ϕ(|p1(Lp)|)
=

|Gp|

ϕ(|p1(Lp ∗Mp)|)
= rp .

(ii) If s(Lp) = 1 and s(Mp) > 1 then Lp ∗Mp = p1(Lp)× p2(Mp), and

lp =
|Gp| · |Hp| · |k1(Mp)|

|Hp| · ϕ(|p1(Lp)|) · |k1(Mp)|
=

|Gp|

ϕ(|p1(Lp ∗Mp)|)
= rp .

(iii) If s(Lp) > 1 and s(Mp) = 1 then Lp ∗Mp = p1(Lp)× p2(Mp), and

lp =
|Gp| · |Hp| · |k2(Lp)|

|Hp| · ϕ(|p2(Lp)|) · |k1(Lp)|
.

Since s(Lp) > 1, we also have |pi(Lp)| > 1, for i = 1, 2, and hence ϕ(|pi(Lp)|) = |pi(Lp)| − |pi(Lp)|/p, for
i = 1, 2. Thus

ϕ(|p2(Lp)|)

|k2(Lp)|
=

|p2(Lp)|

|k2(Lp)|
−

|p2(Lp)|

p · |k2(Lp)|
=

|p1(Lp)|

|k1(Lp)|
−

|p1(Lp)|

p · |k1(Lp)|
=
ϕ(|p1(Lp)|)

|k1(Lp)|
.

This shows that

lp =
|Gp|

ϕ(|p1(Lp)|)
=

|Gp|

ϕ(|p1(Lp ∗Mp)|)
= rp .

(iv) If s(Lp) > 1 and s(Mp) > 1 then, by Lemma 2.7, s(Lp ∗Mp) = min{s(Lp), s(Mp)} > 1, since
p2(Lp) = p1(Mp). Thus we have

lp =
|Gp| · |Hp| · |k2(Lp) ∩ k1(Mp)|

|Hp| · |k1(Mp)| · |k1(Lp)|
=

|Gp| · |k1(Lp)| · |k1(Mp)|

|k1(Lp ∗Mp)| · |k1(Lp)| · |k1(Mp)|
=

|Gp|

|k1(Lp ∗Mp)|
= rp .

This settles Equation (25), and the assertion of the proposition follows.

In consequence of Proposition 8.1, Equation (24), Proposition 8.10, Theorem 5.13, and Proposition
5.17 we have established the following theorem.

8.11 Theorem Let D be a finite set of cyclic groups, let C̃ be the finite inverse category associated with
D in Definition 5.16, and let R be a commutative ring. Suppose that, for all G ∈ D , both |G| and ϕ(|G|)
are units in R. Then there is a sequence of R-algebra isomorphisms

⊕

G,H∈D

RB(G,H) = BD

R
γ

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq ÃD

R
δ

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq RλC̃
ǫ

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq RC̃ ω
qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq ×
k

Matn(k)(RAut(Ck)) ;

here k varies over all divisors of all group orders |G| (G ∈ D), Ck denotes a cyclic group of order k, and
n(k) the number of sections of groups in D isomorphic to Ck. In particular, if R is a field then BD

R is a
semisimple R-algebra.

38



8.12 Remark Suppose that R is a field.

(a) Specializing to the case where the set D consists of one cyclic group G only, Theorem 8.11 implies
that the double Burnside algebra RB(G,G) is semisimple, provided |G| and ϕ(|G|) are non-zero in R.
Suppose that, whenever p is a prime divisor of |G|, also p2 is a divisor of |G|. In this case ϕ(|G|) ∈ R×

implies |G| ∈ R×, and we recover one half of [Bc3, Proposition 6.1.7], characterizing the fields R and finite
groups G such that RB(G,G) is a semisimple R-algebra. In addition, Theorem 8.11 yields an explicit
decomposition.

(b) Assume now that R has characteristic 0. Note that the R-algebra RC̃ and the corresponding
isomorphism ω from Theorem 5.13 are defined for an arbitrary finite set D of groups. However, if D does
contain a non-cyclic group G then RC̃ cannot be isomorphic to ÃD

R , since otherwise RB(G,G) (which
can be considered as a Schur algebra of ÃD

R ) would be semisimple, contradicting Bouc’s characterization,
cf. [Bc3, Proposition 6.1.7].

8.13 Remark Recall from Remark 5.14 the explicit decomposition of RC̃ as a direct sum of two-sided
ideals Ie that correspond to the matrix algebras under the above isomorphism. We close this section
by determining the R-basis of RC̃ corresponding under ω to the obvious R-basis in the direct product
of matrix rings over group algebras, consisting of matrices that have only one non-zero entry, namely a
group element in the group algebra. We emphasize that in Remark 5.14, which explicitly described the
isomorphism ω, R could be any commutative ring; the additional assumptions in Theorem 8.11 were only
necessary to establish the isomorphism ǫ ◦ δ ◦ ζ ◦ α : BD

R
∼= RC̃. For this purpose it is convenient to use

a more number-theoretic notation for the subgroups L of G × H in the case that G and H are cyclic
groups.

8.14 Notation Let G = 〈x〉 and H = 〈y〉 be cyclic groups with |G| = n and |H | = m. Suppose that
a, b, k ∈ N are such that a | n, b | m, and k | gcd{a, b}. Then xn/a〈xnk/a〉 and ym/b〈ymk/b〉 generate
subquotients of order k of G and H , respectively. Moreover, let i ∈ Z be such that gcd{k, i} = 1. Then
the map

αi : 〈y
m/b〉/〈ymk/b〉 → 〈xn/a〉/〈xnk/a〉 , ym/b〈ymk/b〉 7→ xin/a〈xnk/a〉 ,

defines a group isomorphism. We denote the group (〈xn/a〉, 〈xnk/a〉, αi, 〈ym/b〉, 〈ymk/b〉) of G×H by

G(k; a, i, b)H .

Thus, if L = G(k; a, i, b)H then one has |p1(L)| = a, |k1(L)| = a/k, |p2(L)| = b, |k2(L)| = b/k, s(L) = k.
Clearly, each subgroup L of G×H can be written in this way with k, a, and b, uniquely determined by
L. Moreover, G(k; a, i, b)H = G(k; a, j, b)H if and only if i, j ∈ Z satisfy i ≡ j (mod k).

Note that the subgroups 〈ym/b〉, 〈ymk/b〉, 〈xn/a〉, and 〈xnk/a〉 do not depend on the choice of the
generators x and y. However, the isomorphism αi does depend on these choices. Thus, when we will
use the notation G(k; a, i, b)H we assume that the groups G and H are equipped with a fixed choice of
generators.

With this notation the following lemma is an immediate consequence of Lemma 2.7; we thus omit its
proof.

8.15 Lemma With the notation from 8.14, let G, H , and K be cyclic groups, and let L 6 G ×H and
M 6 H ×K with p2(L) = p1(M) be given by

L = G(k; a, i, b)H and M = H(l; b, j, c)K ,
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for divisors a | |G|, b | |H |, c | |K|, k | gcd{a, b}, l | gcd{b, c}, and integers i, j ∈ Z with gcd{i, k} = 1 =
gcd{j, l}. Then

L ∗M = G(gcd{k, l}; a, ij, c)K .

8.16 Remark Recall from Proposition 5.17 that the idempotent endomorphisms in C̃ are of the form

G(k; a, 1, a)G, for G ∈ D , a | |G| and k | a. Moreover, idempotent endomorphisms G(k; a, 1, a)G and

H(l; b, 1, b)H in C̃ are equivalent if and only if l = k.

Let µ : N → N denote the number-theoretic Möbius function given by µ(n) = 0 if n is divisible by
p2 for some prime p, and µ(n) = (−1)r if n is the product of r pairwise distinct primes. Recall that if
one considers the divisors l of a fixed natural number k as a partially ordered set under the divisibility
relation then the Möbius function for this poset, applied to (l, k), is equal to µ(k/l).

8.17 Lemma (a) For every idempotent endomorphism e := G(k; a, 1, a)G in C̃, one has

{s ∈ Mor(C̃) | ŝ ◦ s = e} = {H(k; b, i, a)G | H ∈ D , k | b, b | |H |, gcd{i, k} = 1} .

(b) For every s := G(k; a, i, b)H ∈ Mor(C̃), one has

{u 6 s | u ∈ Mor(C̃)} = {G(l; a, i, b)H | l | k} .

In particular, for u := G(l; a, i, b)H with u 6 s in Mor(C̃), one has µ
Mor(C̃)
u,s = µ(k/l).

Proof Both parts of the lemma are easy consequences of 5.10, Proposition 5.17, and Lemma 8.15.

8.18 Notation Suppose that k ∈ N is such that k divides |G|, for some G ∈ D . Let {e1, . . . , en(k)} be

the equivalence class of the idempotent endomorphism G(k; k, 1, k)G in C̃. Thus, for each i = 1, . . . , n(k),
one has a pair (Gi, ai), where Gi ∈ D and ai ∈ N such that ai divides |Gi|, k divides ai, and ei =

Gi
(k; ai, 1, ai)Gi

.

With this notation, the following result is now a consequence of Lemma 8.17 and Remark 5.14. It
makes the map ω in Theorem 8.11 as explicit as possible.

8.19 Corollary Let D be a finite set of cyclic groups, let C̃ be the finite inverse category associated
with D in Definition 5.16, and let R be any commutative ring. Moreover, let k be a divisor of the order
of some G ∈ D and assume the notation from 8.18. For i, j ∈ {1, . . . , n(k)}, and for an integer t with
gcd{t, k} = 1, set

b(k; j, t, i) :=
∑

l|k

µ(k/l) · Gi
(l; aj, t, ai)Gi

∈ RC̃ .

Then ω(b(k; i, j, t)) is the standard basis element in ×kMatn(k)(RAut(Ck)) that has zero entry every-
where except in the k-th component, and whose k-th component is equal to the matrix whose only
non-zero entry is located in the (i, j)-th position and is equal to the element in Aut(Ck) that corresponds
to t. In particular, the central idempotent ek of RC̃, corresponding under ω to the tuple consisting of the
identity matrix in the k-th component and the zero matrix in all other components, is equal to

n(k)∑

i=1

∑

l|k

µ(k/l) · Gi
(l; ai, 1, ai)Gi

.
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[BT1] S. Bouc, J. Thévenaz: The group of endo-permutation modules. Invent. Math. 139 (2000),
275–349.
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