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ON COMMUTING VARIETIES OF NILRADICALS OF BOREL
SUBALGEBRAS OF REDUCTIVE LIE ALGEBRAS

SIMON M. GOODWIN AND GERHARD RÖHRLE

Abstract. Let G be a connected reductive algebraic group defined over an algebraically
closed field k of characteristic zero. We consider the commuting variety C(u) of the nilradical
u of the Lie algebra b of a Borel subgroup B of G. In case B acts on u with only a finite
number of orbits, we verify that C(u) is equidimensional and that the irreducible components
are in correspondence with the distinguished B-orbits in u. We observe that in general C(u)
is not equidimensional, and determine the irreducible components of C(u) in the minimal
cases where there are infinitely many B-orbits in u.

1. Introduction

Let G be a connected reductive algebraic group defined over an algebraically closed field
k of characteristic zero and let g = LieG be its Lie algebra. It was proved by Richardson
that the commuting variety

C(g) = {(x, y) ∈ g× g | [x, y] = 0}

of g is irreducible, see [9]. This fact was generalized to positive good characteristic by
Levy in [7]. In [8], Premet showed that the commuting variety C(N ) = C(g) ∩ (N × N )
of the nilpotent cone N of g is equidimensional, where the irreducible components are in
correspondence with the distinguished nilpotent G-orbits in N ; this theorem was proved also
in positive good characteristic.

In this short note we consider the commuting variety of the Lie algebra of the unipotent
radical of a Borel subgroup of G. To explain this further we introduce some notation. Let
B be a Borel subgroup of G with unipotent radical U and write b and u for the Lie algebras
of B and U , respectively. The commuting variety of u is

C(u) = {(x, y) ∈ u× u | [x, y] = 0}.

For e ∈ u, we write cb(e) and cu(e) for the centralizer of e in b and u, respectively. We define

C(e) = B · (e, cu(e)) ⊆ C(u)

to be the Zariski closure of the B-saturation of (e, cu(e)) in C(u); it is easy to see that C(e) is
irreducible and dim C(e) = dimB − dim cb(e) + dim cu(e). We say that e ∈ u is distinguished
provided cb(e) = cu(e), and note that for e distinguished we have dim C(e) = dimB.

Below is an analogue of Premet’s theorem from [8] for the case when B acts on u with a
finite number of orbits.
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Theorem 1.1. Suppose that B acts on u with a finite number of orbits. Let e1, . . . , er be
representatives of the distinguished B-orbits in u. Then

C(u) = C(e1) ∪ · · · ∪ C(er)
is the decomposition of the commuting variety C(u) into its irreducible components. In par-
ticular, C(u) is equidimensional of dimension dimB.

The cases where B acts on u with a finite number of orbits are known, thanks to work
by Bürgstein and Hesselink [2] and Kashin [5]. This is the case precisely when the length
`(u) of the descending central series of u is at most 4. Thus if g is simple, this is the case
precisely when g is of type A1, A2, A3, A4 or B2.

We also consider the cases where `(u) = 5, so for g simple, g is of type A5, B3, C3, D4

or G2. In these minimal cases where there are infinitely many B-orbits in u, we describe
the irreducible components of C(u) in Section 4. We note that in these cases, C(u) is no
longer equidimensional. In fact, we observe that C(u) is never equidimensional when there
are infinitely many B-orbits in u, see Lemma 4.1. This demonstrates that the situation
is considerably more subtle in the infinite orbit case and there appears to be no obvious
parametrization of the irreducible components.

Our methods are also applicable to the case where u is the Lie algebra of the unipotent
radical of a parabolic subgroup P of G. There are examples of such situations where P acts
with finitely many orbits on u yet C(u) is not equidimensional, see Remark 3.1.

For simplicity, we assume that chark = 0 (or at least that chark is sufficiently large),
though with additional work, it is strongly expected that the results remain true in good
characteristic.

2. Generalities about commuting varieties

For this section, we work in the following setting. Let P be a connected algebraic group
over k and U a normal subgroup of P ; we write p and u for the Lie algebras of P and
U , respectively. The group P acts on p and u via the adjoint action. For x ∈ p and any
subgroup H of P , we denote the H-orbit of x in p by H · x, the centralizer of x in H by
CH(x) and and the centralizer of x in h = LieH by ch(x).

Let P act diagonally on u×u. The commuting variety of u is the closed, P -stable subvariety
of u× u, given by

C(u) = {(x, y) ∈ u× u | [x, y] = 0}.
We recall that the modality of U on u is defined to be

mod(U ; u) = max
i∈Z≥0

(dim ui − i),

where ui = {x ∈ u | dimU · x = i}.
Our first lemma gives an expression for the dimension of C(u).

Lemma 2.1. dim C(u) = dimU + mod(U ; u).

Proof. Consider C(u)i = C(u)∩ (ui× u). Clearly, we have dim C(u)i = dim ui + (dimU − i) =
dimU + (dim ui − i) and C(u) =

⋃
i∈Z≥0

C(u)i. Therefore,

dim C(u) = max
i∈Z≥0

{dimU + (dim ui − i)} = dimU + mod(U ; u).

�
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For e ∈ u, we define

C(e) = P · (e, cu(e)) ⊆ C(u)

to be the Zariski closure of the P -saturation of (e, cu(e)) in C(u). It is easy to see that C(e)
is a closed irreducible P -stable subvariety of C(u) of dimension

(2.2) dim C(e) = dimP · e+ dim cu(e) = dimP − (dim cp(e)− dim cu(e)).

We define an action of GL2(k) on u× u by(
α β
γ δ

)
· (x, y) = (αx+ βy, γx+ δy),

cf. part (1) of the proof of [8, Prop. 2.1]. Since any linear combination of two commuting
elements from u gives in this way again a pair of commuting elements from u, it follows that
GL2(k) acts on C(u) and further, since GL2(k) is connected it must stabilize each irreducible
component of C(u). This proves the following lemma.

Lemma 2.3. The action of GL2(k) on C(u) preserves each irreducible component. In par-
ticular, each irreducible component is invariant under the involution σ : (x, y) 7→ (y, x).

For the remainder of this section apart from Remark 2.11, we assume that there are finitely
many P -orbits in u, and we choose representatives e1, . . . , es of these orbits. Then we have

C(u) = C(e1) ∪ . . . ∪ C(es).
In particular, each irreducible component of C(u) is of the form C(ei) for some i.

We proceed with some elementary lemmas. We recall that under our assumption that P
acts on u with finitely many orbits, there is a unique dense open P -orbit in u.

Lemma 2.4.

(i) Let e, e′ ∈ u. If C(e) ⊆ C(e′), then P · e ⊆ P · e′.
(ii) If e ∈ u is in the dense open P -orbit, then C(e) is an irreducible component of C(u).

Proof. Let π1 : u× u→ u be the projection onto the first factor. Since C(e) ⊆ C(e′), we have

P · e = π1(C(e)) ⊆ π1(C(e′)) = P · e′,
so (i) holds. Part (ii) follows from (i). �

The next lemma is used to show that certain C(e) are not irreducible components of C(u).

Lemma 2.5. Let e ∈ u. If C(e) is an irreducible component of C(u), then cu(e) ⊆ P · e.

Proof. The argument of part (2) in the proof of [8, Prop. 2.1] also applies in our case; we
repeat it here for the convenience of the reader. The projection π1 : u×u→ u on to the first
factor maps an irreducible component C(e) to P · e. Consequently, by Lemma 2.3, we have

cu(e) ⊆ (π1 ◦ σ)C(e) = P · e.
�

We define
d = min

e∈u
{dim cp(e)− dim cu(e)},

so we have dim C(u) = dimP − d, by (2.2). We say that e ∈ u is distinguished for P if
dim cp(e) − dim cu(e) = d. We assume that our representatives of the P -orbits in u are
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chosen so that e1, . . . , er are the representatives of the distinguished orbits. The following
lemma is immediate; we record it for ease of reference.

Lemma 2.6. The irreducible components of C(u) of maximal dimension are C(e1), . . . , C(er).

Assume from now on that there is a complementary subalgebra l of u in p and that U is
unipotent. Let h be an element of the centre z(l) of l such that p =

⊕
j∈Z≥0

p(j;h), where

p(j;h) = {x ∈ p | [h, x] = jx} and p(1;h) 6= 0; we call such h admissible. Note that we
have u ⊆

⊕
j∈Z≥1

p(j;h). Since there are finitely many orbits of P in u, we see that there is

a dense orbit of CP (h) in p(1;h) and we let e be a representative of this orbit; we then say
that e is linked to h. We define the irreducible P -stable subvariety

S(h, e) = P · (h, e) ⊆ p× u

of p× u. We write cp(h, e) = cp(e) ∩ cp(h) for the simultaneous centralizer of h and e in p.
Given a closed subvariety X of an affine space V , we write K(X) for the cone of X in V ,

as defined in [6, II. 4.2].
The following lemmas are analogues of results from [8, §2], the subsequent corollary is key

in the sequel.

Lemma 2.7. Let h be admissible and e be linked to h. Then

K(S(h, e)) ⊆ C(u)

and S(h, e) is equidimensional of dimension dimP − dim cp(h, e). In particular, K(S(h, e))
lies in the union of some C(ei) for which dim C(ei) ≥ dimP − dim cp(h, e).

Proof. We see that

S(h, e) ⊆ {(x, y) ∈ p× u | [x, y] = y}.
Therefore, by [6, II. 4.2 Thm. 2] and the definition of cones,

K(S(h, e)) ⊆ K({(x, y) ∈ p× u | [x, y] = y}) = {(x, y) ∈ p× u | [x, y] = 0}.
We have S(h, e) ⊆ (h+ u)× u and this implies that K(S(h, e)) ⊆ u× u. Hence,

K(S(h, e)) ⊆ (u× u) ∩ {(x, y) ∈ p× u | [x, y] = 0} = C(u).

By [6, II. 4.2 Thm. 2], we have that K(S(h, e)) is equidimensional. The final statement follows
easily from the fact that the irreducible components of C(u) are of the form C(ei). �

Lemma 2.8. Let e ∈ u and suppose that there exists admissible h̃ ∈ z(l) with linked ẽ, such

that [h̃, e] = e and [cu(e), h̃] = cu(e). Then (cu(e), e) ⊆ K(S(h̃, ẽ)).

Proof. Let H = CP (h̃). The H-orbit of ẽ is dense in p(1; h̃), and (h̃, H · ẽ) ⊆ S(h̃, ẽ), so

we obtain (h̃, p(1; h̃)) ⊆ S(h̃, ẽ). Thus (h̃,ke) ⊆ S(h̃, ẽ), because e ∈ p(1; h̃). Consider the

CU(e)-orbit CU(e)·h̃ in h̃+cu(e). This is closed in h̃+cu(e), because CU(e) is unipotent. Since

[cu(e), h̃] = cu(e), we obtain CU(e) · h̃ = h̃+ cu(e). Hence, CU(e) · (h̃,ke) = (h̃+ cu(e),ke) ⊆
S(h̃, ẽ). Taking cones we get K(h̃+ cu(e),ke) ⊆ K(S(h̃, ẽ)), by [6, II. 4.2 Thm. 2]. From the

definition of cones we see that K(h̃+ cu(e),ke) = (cu(e),ke) and the lemma follows. �

Corollary 2.9. Let e ∈ u. Suppose that there exists admissible h̃ ∈ z(l) such that [h̃, e] = e,

but e is not linked to h̃. Then C(e) is not an irreducible component of C(u).
4



Proof. If [cu(e), h̃] = cu(e), then we can apply Lemma 2.8 to deduce that (cu(e), e) ⊆
K(S(h̃, ẽ)), where ẽ is linked to h̃. Then by Lemma 2.7 we have that K(S(h̃, ẽ)) is contained

in a union of C(ei)’s of dimension at least dimP − dim cp(h̃, ẽ). Since these C(ei)’s are stable
under P and σ (cf. Lemma 2.3), we see that C(e) is contained in their union. We note that the

conditions [h̃, e] = e and [cu(e), h̃] = cu(e) imply that dim cp(e) − dim cu(e) ≥ dim cp(h̃, e) >

dim cp(h̃, ẽ), so that dim C(e) = dimP − dim cp(e) + dim cu(e) < dimP − dim cp(h̃, ẽ). Thus
C(e) is not an irreducible component of C(u).

If [cu(e), h̃] 6= cu(e), then cu(e) ∩ p(0; h̃) 6= {0}. Therefore, cu(e) 6⊆ P · e ⊆
⊕

j≥1 p(j; h̃), so

C(e) is not an irreducible component of C(u), by Lemma 2.5. �

Corollary 2.9 yields the following strategy to determine the irreducible components of
C(u):

Strategy 2.10.

(1) For each i = 1, . . . , s check whether ei is distinguished. If so, then C(ei) is an
irreducible component, by Lemma 2.6.

(2) Determine all the admissible h ∈ z(l). For each i = 1, . . . , s check whether ei is in
p(1, h) for some admissible h such that ei is not linked to h, so that C(ei) is not an
irreducible component of C(u), by Corollary 2.9.

(3) For the remaining i’s not dealt with in steps (1) and (2), use ad hoc methods to
determine whether C(ei) is an irreducible component or not.

Remark 2.11. Although we made the assumption that P acts on u with finitely many or-
bits above, the theory goes through with suitable adaptations when the P -orbits can be
parameterized nicely as explained below.

A family of representatives of P -orbits in u over an irreducible variety X, is given by
a subset e(X) = {e(t) | t ∈ X} of u such that: the map t 7→ e(t) is an isomorphism
from X onto its image in u; and for t, t′ ∈ X distinct, we have P · e(t) 6= P · e(t′) but
dimP · e(t) = dimP · e(t′).

Suppose that the P -orbits in u can be parameterized by a finite number of families
e1(X1), . . . , es(Xs). Then all of the theory above has a suitable adaption, when we replace
the single orbits ei by the families ei(Xi). For example, we can define irreducible varieties
C(ei(Xi)), and the irreducible components of C(u) are of this form. For the notion of a
family e(X) being linked to an admissible h ∈ z(l), we require [h, e(t)] = e(t) for all t ∈ X
and P · e(X) to be dense in p(1;h), and the subsequent results have similar adaptations.
Therefore, with this assumption on the action of P on u, there is, a version of Strategy 2.10
to determine the irreducible components of C(u). We note that this assumption does hold
for the action of a Borel subgroup on the Lie algebra of its unipotent radical, as explained
in [3, Section 2].

3. The case of a finite number of B-orbits

This section is devoted to the proof of Theorem 1.1. So in this section P = B is a Borel
subgroup of a simple algebraic group G and U is the unipotent radical of B. Further, we are
assuming that B acts on u with a finite number of orbits. As mentioned in the introduction,
this means that G is of type An for n ≤ 4 or type B2. We proceed on a case by case basis
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using Strategy 2.10 to determine the irreducible components of C(u) and observe that we
obtain the description as given in Theorem 1.1.

In each case we give a list of representatives of the B-orbits in u. We calculated these
using an adaptation of the computer program explained in [3]; which gives the same repre-
sentatives as in [2, Table 2] and as previously calculated in [5]. The notation used for these
representatives is as follows. We fix an enumeration {β1, . . . , βN} of the roots of b with re-
spect to a maximal torus T of B, and for each βi we fix a generator eβi for the corresponding
root space. This enumeration of the roots is listed, where the roots are given as vectors
with respect to the simple roots as labelled in [1, Planches I–IX]. Each of the representatives
of the B-orbits in u is of the form

∑
i∈I eβi , where I ⊆ {1, . . . , N}, and we represent this

element as the coefficient vector with respect to the eβi .
We briefly explain the meaning of an admissible element h in the present setting. Such h

belongs to a maximal toral subalgebra of b and q =
⊕

j≥0 g(j;h) is a parabolic subalgebra of

g such that
⊕

j>0 g(j;h) ⊆ b ⊆ q. So in this case, Corollary 2.9 says that if a representative

e of a B-orbit in u lies in q(1;h) = g(1;h) for such a q and e is not in the dense CB(h)-orbit
in q(1;h), then C(e) is not an irreducible component of C(u).

3.1. G is of type A1. There is just one root of b and there are 2 B-orbits in u: the regular
and the zero orbit. Here u is abelian and C(u) = u× u is irreducible and equal to C(e) where
e lies in the regular orbit.

3.2. G is of type A2. The roots of b are given by:

β1: 10; β2: 01; β3: 11.

There are 5 B-orbits in u with representatives:

e1: 110; e2: 100; e3: 010; e4: 001; e5: 000.

Apart from e1, each of the ei lies in b(1;h) for some admissible h, for which ei is not linked
to h. Therefore, using Strategy 2.10, we get that C(u) = C(e1) is irreducible.

3.3. G is of type A3. The roots of b are given by:

β1: 100; β2: 010; β3: 001; β4: 110; β5: 011; β6: 111.

There are 16 B-orbits in u with representatives:

e1: 111000; e2: 110000; e3: 101010; e4: 101000; e5: 100010; e6: 100000;
e7: 011000; e8: 010001; e9: 010000; e10: 001100; e11: 001000; e12: 000110;
e13: 000100; e14: 000010; e15: 000001; e16: 000000.

All of the ei except for e1, e3, e8 are in b(1;h) for some admissible h not linked to ei. We
see that e1 and e3 are distinguished, so C(e1) and C(e3) are irreducible components. Below
we verify by direct calculation that C(e8) is not an irreducible component.

Consider the pairs of strictly upper triangular matrices (x(α, λ), y(α, λ, a, b, c)) for α, λ ∈
k
×, a, b, c ∈ k with entries above the diagonal given by λ 0 1

1 0
αλ

,
λa b c

a αb
αλa

 .

It is straightforward to check that (x(α, λ), y(α, λ, a, b, c)) ∈ C(u) and that x(α, λ) ∈ B · e1.
Therefore, (x(α, λ), y(α, λ, a, b, c)) ∈ C(e1) for all α, λ ∈ k× and a, b, c ∈ k. Letting λ → 0,

6



we see that (x(α, 0), y(α, 0, a, b, c)) ∈ C(e1) for all α ∈ k
×. We have that x(α, 0) = e8 and

via a calculation we see that {y(α, 0, a, b, c) | α ∈ k×, a, b, c ∈ k} is a dense subset of

cu(e8) =

 0 a b
c d

0
a, b, c, d ∈ k

 .

Therefore, (e8, cu(e8)) ⊆ C(e1) and hence C(e8) ⊆ C(e1).
Putting this all together, we get that C(u) = C(e1) ∪ C(e3).

3.4. G is of type A4. The roots of b are given by:

β1: 1000; β2: 0100; β3: 0010; β4: 0001; β5: 1100;
β6: 0110; β7: 0011; β8: 1110; β9: 0111; β10: 1111.

There are 61 B-orbits in u with representatives:

e1: 1111000000; e2: 1110000000; e3: 1101000000; e4: 1100001000;
e5: 1100001000; e6: 1100000000; e7: 1011010000; e8: 1011000000;
e9: 1010010010; e10: 1010010000; e11: 1010000010; e12: 1010000000;
e13: 1001010000; e14: 1001000010; e15: 1001000000; e16: 1000011000;
e17: 1000010000; e18: 1000001010; e19: 1000001000; e20: 1000000010;
e21: 1000000000; e22: 0111000000; e23: 0110000001; e24: 0110000000;
e25: 0101000110; e26: 0101000100; e27: 0101000010; e28: 0101000000;
e29: 0100001100; e30: 0100001000; e31: 0100000100; e32: 0100000001;
e33: 0100000000; e34: 0011100000; e35: 0011000000; e36: 0010100010;
e37: 0010100000; e38: 0010000010; e39: 0010000001; e40: 0010000000;
e41: 0001110000; e42: 0001100100; e43: 0001100000; e44: 0001010000;
e45: 0001000100; e46: 0001000000; e47: 0000111000; e48: 0000110000;
e49: 0000101000; e50: 0000100010; e51: 0000100000; e52: 0000011000;
e53: 0000010001; e54: 0000010000; e55: 0000001100; e56: 0000001000;
e57: 0000000110; e58: 0000000100; e59: 0000000010; e60: 0000000001;
e61: 0000000000.

Except for e1, e3, e7, e9, e14, e23 and e25, we can check that each ei lies in b(1;h) for some
admissible h not linked to ei. The representatives e1, e3, e7, e9 and e25 are distinguished,
so the corresponding C(ei)’s are irreducible components of C(u). Below we verify by direct
calculation that C(e8) and C(e14) are not irreducible components.

We have 
1 0 0 0

αλ λ 1
0 0

1

,

a c e f
αλa λa a+ e

0 α−1(a− b)
b

 ∈ C(e3)
for all α, λ ∈ k× and a, b, c, e, f ∈ k, and

cu(e14) =


a c e f

0 0 a+ e
0 d

b

a, b, c, d, e, f ∈ k

 .

Letting λ→ 0, we see that C(e14) ⊆ C(e3).
7



Similarly, we have 
λ 0 0 1

1 0 0
1 0

αλ

,

λa λb c e
a b αc

a λαb
λαa

 ∈ C(e1)
for all α, λ ∈ k× and a, b, c, e ∈ k, and

cu(e23) =


0 0 c e

a b d
a 0

0

a, b, c, d, e ∈ k

 .

Letting λ→ 0, we see that C(e23) ⊆ C(e1).
Combining the above, the decomposition of C(u) into irreducible components is given by
C(u) = C(e1) ∪ C(e3) ∪ C(e7) ∪ C(e9) ∪ C(e25).

3.5. G is of type B2. The roots of b are given by:

β1: 10; β2: 01; β3: 11; β4: 12.

There are 7 B-orbits in u with representatives:

e1: 1100; e2: 1001; e3: 1000; e4: 0100; e5: 0010; e6: 0001; e7: 0000.

The two orbit representatives e1 and e2 are distinguished. Each of the other orbit represen-
tatives ei lies in b(1;h) for some h which is not linked to ei. So, using Strategy 2.10, we have
C(u) = C(e1) ∪ C(e2).

Remark 3.1. All of the material in Section 2 is valid when P is a parabolic subgroup of a
reductive algebraic group G and U is the unipotent radical of P . We note, however, that
in contrast to Theorem 1.1, C(u) is not equidimensional in general when there are finitely
many P -orbits in u. In fact, the difference in the dimensions of irreducible components can
be arbitrarily large, as shown in the example below.

Let m ≥ 2 be an integer and let P be the parabolic subgroup of GLm+2(k), which is the
stabilizer of a flag of subspaces k ⊆ k

2 ⊆ k
m+2 in km+2. Then P admits only a finite number

of orbits on the Lie algebra of its unipotent radical u, see [4]. However, one can calculate
that C(u) has two irreducible components of dimensions 4m+ 1 and 3m+ 2.

4. The case of an infinite number of B-orbits

We continue using the notation from the last section, but we remove the assumption that
B acts on u with a finite number of orbits. Also, we use the notation for families of B-orbits
e(X) in u, as explained in Remark 2.11.

We begin by observing that the analogue of Theorem 1.1 does not hold when there are
infinitely many B-orbits in u.

Lemma 4.1. Suppose that B acts on u with an infinite number of orbits. Then C(u) is not
equidimensional.

Proof. Let e ∈ u be in the regular nilpotent orbit. Then by Lemma 2.4(ii), we have that
C(e) is an irreducible component of C(u) of dimension dimB.
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Since B acts on u with an infinite number of orbits, there is a family of B-orbits e(X)
of B-orbits parameterized by some irreducible variety X of positive dimension such that
cb(e(t)) = cu(e(t)) for all t ∈ X; this assertion follows from the fact that it can be explicitly
checked for the minimal infinite cases considered below. Then we have that dim C(e(X)) =
dimB+ dimX. Thus, there must be an irreducible component of C(u) of dimension strictly
larger than dimB. �

We move on to describe the irreducible components of C(u) for the cases where g is of type
A5, B3, C3, D4 and G2. These are the minimal cases in which there is an infinite number
of B-orbits in u. We have determined the irreducible components using the adaptation of
Strategy 2.10, as discussed in Remark 2.11. The calculations are very similar in spirit to
those discussed in Section 3, so we omit the details. We use a parameterization of orbits
given by the programme from [3]; most of this information can also be extracted from [2].

From the descriptions given below, we see that the structure of C(u) is already rather
complicated, and there does not appear to be a nice way to parameterize the irreducible
components already in these minimal infinite cases. We have investigated the possibility of
doing this in terms of a suitable notion of distinguished families of B-orbits in u. However,
the natural candidates do not give the irreducible components, as desired.

4.1. G is of type A5. The roots of b are given by:

β1: 10000; β2: 01000; β3: 00100; β4: 00010; β5: 00001;
β6: 11000; β7: 01100; β8: 00110; β9: 00011; β10: 11100;
β11: 01110; β12: 00111; β13: 11110; β14: 01111; β15: 11111.

TheB-orbits in u are given by one 1-dimensional family e29(k
×) given by t 7→ 1010101010t0000

and 274 other orbits. We have that C(e29(k×)) is an irreducible component of dimension 21
and there are 12 irreducible components of dimension 20 given by C(ei), where ei is one of
the following:

e1: 111110000000000; e3: 111010001000000; e7: 110110010000000;
e8: 110110000001000; e10: 110100010001000; e23: 101110100000000;
e25: 101100100000010; e53: 100100000011010; e94: 011010001000100;
e103: 010110010100000; e107: 010100010101000; e119: 010010000101100.

4.2. G is of type B3. The roots of b are given by:

β1: 100; β2: 010; β3: 001; β4: 110; β5: 011;
β6: 111; β7: 012; β8: 112; β9: 122.

The B-orbits in u are given by one 1-dimensional family e12(k
×) given by t 7→ 0100011t0

and 34 other orbits. We have that C(e12(k×)) is an irreducible component of dimension 13
and there are 4 irreducible components of dimension 12 given by C(ei), where ei is one of
the following:

e1: 111000000; e2: 110000100; e4: 101010000; e5: 101000001.

4.3. G is of type C3. The roots of b are given by:

β1: 100; β2: 010; β3: 001; β4: 110; β5: 011;
β6: 111; β7: 021; β8: 121; β9: 221.

The B-orbits in u are given by one 1-dimensional family e4(k
×) given by t 7→ 101010t00

and 34 other orbits. We have that C(e4(k×)) is an irreducible component of dimension 13
9



and there are 3 irreducible components of dimension 12 given by C(ei) where ei is one of the
following:

e1: 111000000; e2: 110000100; e12: 011000001.

4.4. G is of type D4. The roots of b are given by:

β1: 1000; β2: 0100; β3: 0010; β4: 0001; β5: 1100; β6: 0110;
β7: 0101; β8: 1110; β9: 1101; β10: 0111; β11: 1111; β12: 1211.

The B-orbits in u are given by two 1-dimensional families e8(k
×) given by t 7→ 101101t00000

and e37(k
×) given by t 7→ 0100000111t0 and 98 other orbits. We have that C(e8(k×)) and

C(e37(k×)) are irreducible components of dimension 17 and there are 4 irreducible compo-
nents of dimension 16 given by C(ei), where ei is one of the following:

e1: 111100000000; e2: 111000000100; e4: 110100000100; e31: 011100001000.

4.5. G is of type G2. The roots of b are given by:

β1: 10; β2: 01; β3: 11; β4: 21; β5: 31; β6: 32.

The B-orbits in u are given by one 1-dimensional family e4(k
×) given by t 7→ 0101t0 and 11

other orbits. We have that C(e4(k×)) is an irreducible component of dimension 9 and there
are 2 irreducible components of dimension 8 given by C(ei), where ei is one of the following:

e1: 110000; e2: 100001.
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[4] L. Hille and G. Röhrle, A classification of parabolic subgroups of classical groups with a finite number

of orbits on the unipotent radical, Transform. Groups 4 (1998), no. 1, 317–337.
[5] V.V. Kashin, Orbits of an adjoint and co-adjoint action of Borel subgroups of a semisimple algebraic

group, (Russian) Problems in group theory and homological algebra (Russian), 141–158, Matematika,
Yaroslav. Gos. Univ., Yaroslavl, 1990.

[6] H. Kraft, Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg
& Sohn, Braunschweig, 1984.

[7] P. Levy, Commuting varieties of Lie algebras over fields of prime characteristic, J. Alg. 250 (2002), no.
2, 473–484.

[8] A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3,
653–683.

[9] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compos. Math.
38 (1979), no. 3, 311–327.

School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
E-mail address: s.m.goodwin@bham.ac.uk

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
E-mail address: gerhard.roehrle@rub.de

10


	OWP2012_14Deckblatt.pdf
	OWP 2012 - 14
	Simon M. Goodwin and Gerhard Röhrle
	On Commuting Varieties of Nilradicals of Borel Subalgebras of Reductive Lie Algebras


