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On the directionally Newton-non-degenerate singularities of complex hypersurfaces

Dmitry Kerner

Abstract. We introduce a minimal generalization of Newton-non-degenerate singularities of hypersurfaces. Roughly
speaking, an isolated hypersurface singularity is called directionally Newton-non-degenerate if the local embedded
topological singularity type can be restored from a collection of Newton diagrams. A singularity that is not directionally
Newton-non-degenerate is called essentially Newton-degenerate .

For plane curves we give an explicit and simple characterization of directionally Newton-non-degenerate singular-
ities, for hypersurfaces we give some examples.

Then we treat the question: is Newton-non-degenerate or directionally Newton-non-degenerate a property of
singular types or of particular representatives. Namely, is the non-degeneracy preserved in an equi-singular family?
This is proved for curves. For hypersurfaces we give an example of a Newton-non-degenerate hypersurface whose
equi-singular deformation consists of essentially Newton-degenerate hypersurfaces.

Finally, the classical formulas for the Milnor number (Kouchnirenko) and the zeta function (Varchenko) of the
Newton-non-degenerate singularity are generalized to some classes of directionally Newton-non-degenerate singularities.
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1. Introduction

We work with germs of complex algebraic (or locally analytic) hypersurfaces in Cn, mostly with isolated singular-
ities. For the standard notions from singularity theory cf. [AGLV-book] and [GLS-book].

1.1. To every germ of singular hypersurface (with fixed local analytic coordinates) the Newton diagram is as-
sociated. A germ Vf = {f = 0} ⊂ (Cn, 0) is called Newton-non-degenerate (or non-degenerate with respect to its
Newton diagram Γf ) if for each face σ ∈ Γf the truncation fσ of f to σ is non-degenerate (i.e. the corresponding
hypersurface has no singular points in the torus (C∗)n). A germ is called generalized Newton-non-degenerate if it is
Newton-non-degenerate for some choice of coordinates. Otherwise it is called generalized Newton-degenerate .

The Newton diagram of a Newton-non-degenerate germ is a complete invariant of the local embedded topological
singularity type of the germ. Namely, if (Vf , 0) and (Vg, 0) are two Newton-non-degenerate germs, such that Γf = Γg

then they have the same singularity type. This distinguishes the generalized Newton-non-degenerate germs as espe-
cially simple to deal with. For them many topological invariants of the singularity can be expressed via the geometry
of the Newton diagram in a relatively simple manner. For example:
• the Milnor number [Kouchnirenko76] (cf. also [GLS-book, I.2.1])
• the modality (with respect to right equivalence) for functions of two variables (conjectured in [Arnol’d74, 9.9],
proved in [Kouchnirenko76, proposition 7.2])
• the zeta function of monodromy [Varchenko76] (cf. also [AGLV-book, II.3.12])
• the spectrum [Steenbrink76, Khovanski-Varchenko85](cf. also [Kulikov98, II.8.5])
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• the Hodge numbers hp,q [Danilov-Khovanski87]
• the Bernstein-Saito polynomial [BGMM89]

Unfortunately, the condition to be generalized Newton-non-degenerate is very restrictive, even in the case of plane
curves.

Example 1.1. For the germ (C, 0) ⊂ (C2, 0) consider the tangential decomposition: C =
k∪

i=1
Ci.

Here each Ci has unique tangent line li (but may contain several branches). So, the tangent
cone is TC = (lp1

1 ..lpk

k ), where pi =the multiplicity of (Ci, 0) and
∑

pi = p = the multiplicity
of (C, 0). For example, for ordinary multiple point: p1 = .. = pk = 1.
Note that pi = 1 iff Ci is a smooth branch, not tangent to any other. If (C, 0) is a generalized
Newton-non-degenerate germ then pi > 1 for at most two i’s.
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Indeed, if pi > 1 and Ci is non-degenerate with respect to its diagram then a coordinate axis must be tangent
to Ci (to reflect the fact that some monomials are absent). So, in general there are ”not enough coordinate axes” to
encode the singularity. And many singularities with small Milnor numbers and quite simple defining equations are
not generalized Newton-non-degenerate.

On the other hand, among the locally irreducible curves (i.e. branches) the first examples of not generalized
Newton-non-degenerate singularities are: (x2 + y3)3 + y10 with µ = 44 and (x3 + y4)2 + y9 with µ = 38.

1.2. The present work has originated from the observation that many germs of curves are ”almost” generalized
Newton-non-degenerate. Namely, many of their topological singularity type (and thus many of of their properties) are
reflected on the Newton diagram, one just has to take several choices of coordinates.

Example 1.2. Continue the previous example. Given the tangential decomposition C =
k∪

i=1
Ci. For each 1 ≤ i ≤ k

let C(i) be a germ of curve with the tangential decomposition: C(i) =
( p−pi∪

j=1
Lj

)
∪ Ci. Here {Lj} are some lines,

such that any two are distinct and none is tangent to Ci (but arbitrary otherwise). Call such a germ: the directional
approximation of (C, 0). (The germ is non-unique, but its topological singularity type is unique and any two such
approximations are connected by a µ = const family.)
If each Ci is generalized Newton-non-degenerate then so is each C(i) and its type can be
restored from its Newton diagram (cf. the picture). Therefore, the local embedded topolog-
ical singularity type of the original germ (C, 0) is completely determined from the collection
of Newton diagrams (corresponding to all the directional approximations). The precise
statement is in §2.4.1.

-
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Note that if at least one branch of the curve is not generalized Newton-non-degenerate then no choice of coordi-
nates can help recognize the topological type.

The Newton-non-degenerate directional approximations in higher dimensions are introduced in §2.5.

We generalize this observation by introducing the class of directionally Newton-non-degenerate singularities of hy-
persurface -germs (this in particular contains the generalized Newton-non-degenerate germs). It is not clear currently,
how broad this class is or how to classify such germs (except for the case of curves, n = 2). Thus we start from the end:
the directionally Newton-non-degenerate singularities are defined as those germs whose local embedded topological
singularity type can be completely determined from the collection of Newton diagrams (the precise definition is in §2).
And then we describe some classes of directionally Newton-non-degenerate germs.

For plane curves (n = 2) we give the complete classification in §2.4.1: a germ is directionally Newton-non-
degenerate iff each branch of it is generalized Newton-non-degenerate and the union of any two branches is generalized
Newton-non-degenerate.

For hypersurfaces (n > 2) the situation is much more complicated. Some examples of directionally Newton-non-
degenerate are some of the absolutely isolated singularities [Melle00] (i.e. those that can be resolved by blowups of
points only), cf. §2.4.2.

Germs that are not directionally Newton-non-degenerate are called essentially Newton-degenerate .

1.3. A natural question arises: is directionally Newton-non-degenerate (or Newton-non-degenerate) a prop-
erty of the topological type or of the germ? Namely, suppose a singular type has a directionally Newton-non-
degenerate (or Newton-non-degenerate) representative. Is the generic representative of the type directionally Newton-
non-degenerate (or generalized Newton-non-degenerate)? Or, is this notion preserved in a µ = const deformation?
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This can be considered as a weakening of the constancy of Newton diagram along the µ = const stratum (which fails
by the example of [Briançon-Speder75]).

The answers are yes for the case of curves (corollary 2.11) and no for higher dimensions. We give examples in §2.3
of a Newton-non-degenerate hypersurface germ whose µ = const deformation is essentially Newton-degenerate (i.e.
not directionally Newton-non-degenerate). In fact for most singularity types this is the situation.

So, in general the ND-topological strata of hypersurfaces (i.e. those that can be brought to the given diagram by
a locally analytic change of coordinates) are of positive codimension in the classical equisingular strata.

1.4. Once the germ is proven to be directionally Newton-non-degenerate, its singularity type is determined by
the associated collection of Newton diagrams. Therefore, every topological singularity invariant can be expressed (at
least theoretically) via the geometry of the diagrams. A natural task is to generalize the formulas known for the
Newton-non-degenerate case.

In particular in §3.1 the formula for the Milnor number and in §3.2 the formula for the zeta function of monodromy
are generalized.

In general we work in the space of all the locally analytic hypersurface germs in Cn. Sometimes we pass to the
space of germs of (high) bounded degrees (to have a finite dimensional space, to use algebraicity and Zariski topol-
ogy). As the singularities are isolated this is always possible by finite determinacy.

Similarly, local changes of coordinates (in general diffeomorphisms) can be always assumed locally analytic.
The Newton diagrams are assumed to be commode (i.e. intersect all the coordinate axes), unless explicitly stated.

Denote by fσ the restriction of the function f to the face σ ∈ Γf .

1.5. Acknowledgements. This work would be impossible without numerous important discussions with E.Shustin
and G.M.Greuel. Many thanks are also to V.Goryunov for important advices.

The main part of this work was done during my stay at the Mathematische Forschungsinsitute Oberwolfach
(Germany). Many thanks to the staff for the excellent working atmosphere.

2. Directionally Newton-non-degenerate hypersurfaces

2.1. Preparations for the definition. Start from the following observation. Let (Vf , 0) = {f = 0} ⊂ (Cn, 0)
be a generalized Newton-non-degenerate isolated singularity. Let φ © (Cn, 0) be a local diffeomorphism, such that
φ∗(f) is non-degenerate with respect to its diagram Γφ∗(f). (By finite determinacy can assume φ to be a locally
analytic change of coordinates.) In the space of all the hypersurface germs at the origin consider the stratum:

(1) Σ(φ,Γφ∗(f)) := {(Vg, 0) = (g = 0) ⊂ (Cn, 0)| Γφ∗(g) = Γφ∗(f)}
Here the closure is taken in the classical topology (for the coefficients of the defining polynomial). Then for the generic
point (Vg, 0) ∈ Σ(φ,Γφ∗(f)) the local embedded topological types of (Vf , 0) and (Vg, 0) coincide [Kouchnirenko76].

Recall the notion of Newton weight function [AGLV-book, I.3.8] associated to every commode Newton diagram.
Namely, λΓ : Rn

+ → R+ is defined uniquely by the conditions: λΓ(α~x) = αλΓ(~x) and λΓ(Γ) = 1.
Given two diagrams we say Γ1 ≥ Γ2 if λΓ1(Γ2) ≤ 1 (or λΓ2(Γ1) ≥ 1).

Suppose a collection of pairs {(φi, Γi)i} is given (with φi © (Cn, 0) local diffeomorphisms and Γi some Newton
diagrams).

Definition 2.1. The stratum of hypersurfaces germs, associated to the collection {(φi, Γi)} is the closure of the
set of all the germs giving the prescribed diagrams in the prescribed coordinates, i.e.

(2) Σ{(φi,Γi)} := {(g = 0) ⊂ (Cn, 0)| ∀i : Γφ∗i (g) ≥ Γi}
Proposition 2.2. For any collection {(φi, Γi)i} as above the associated stratum Σ{(φi,Γi)} is a (non-trivial) linear

subspace of the space of all the germs. (In particular it is closed, irreducible and the notion of the general point is well
defined.)

Proof: The condition Γφ∗i (g) ≥ Γi means the absence of some monomials in the Taylor expansion of φ∗i (g). This
says that some directional derivatives vanish:

∑
ai1..in∂i1

x1
..∂in

xn
(g ◦ φ) = 0. And these conditions are linear in g. ¥
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2.2. The main definition.

Definition 2.3. The germ (Vf , 0) = {f = 0} ⊂ (Cn, 0) is called directionally Newton-non-degenerate if there
exist a finite number of coordinate choices (i.e. the diffeomorphisms φi © (Cn, 0)) such that the transformed functions
φ∗i (f) give the collection of the diagrams Γi, such that the general point of the stratum Σ{(φi,Γi)} corresponds to a
hypersurface germ, whose locally embedded topological type is that of (Vf , 0).

General here means: lying in the complement of a proper analytic subset.

Example 2.4. • Every generalized Newton-non-degenerate germ is directionally Newton-non-degenerate. In this
case, by definition, just one pair (φ, Γ) suffices.

• Let C =
k∪

i=1
Ci be the tangential decomposition of a plane curve singularity (cf. example 1.1). If each of Ci

is generalized Newton-non-degenerate then C is directionally Newton-non-degenerate. Indeed, make k choices of
coordinates with ŷ axis generic and x̂ axis chosen such that the germ Ci is Newton-non-degenerate. Then get the
collection of Newton diagrams similar to those of example 1.2. Obviously, this collection specifies the topological type
uniquely (the diagram Γi specifies the type of Ci and the fact that no other branch has the tangent common with Ci).
• The curve germ (x2 − y3)(x2 − y3 + x3) = 0 is the union of two branches, each being Newton-non-degenerate, but
the union is not directionally Newton-non-degenerate. It is easy to see that the germ (x2 − y3)(x2 + y3) = 0 has the
same Newton diagram as the original germ for any choice of coordinates.

Proposition 2.5. (Consistency of the definition.) Let (Vf , 0) ⊂ (Cn, 0) be a directionally Newton-non-degenerate germ
and {(φi,Γi)i=1..k} a collection of pairs fulfilling the condition of the definition (i.e. specifying the topological type of
Vf uniquely). Then for any additional pair (φk+1,Γk+1) the collection {(φi,Γi)i=1..k+1} also fulfills the condition of
the definition.

Proof: As f is directionally Newton-non-degenerate all the point of Σ{(φi,Γi)}i=1..k
(except for a proper analytic

subset) have the same singularity type as (Vf , 0). In particular any small deformation of Vf inside Σ{(φi,Γi)}i=1..k
is

equi-singular. Thus all the small deformations of Vf in Σ{(φi,Γi)}i=1..k+1 are equi-singular too. ¥

Note that the minimal number of the coordinate choices (and the associated diagrams) needed to recover the sin-
gularity type of a directionally Newton-non-degenerate singularity can be arbitrarily big (even in the case of plane
curves).

2.3. Germs vs types. (Continuation of §1.3.) For n ≥ 3 being directionally Newton-non-degenerate/generalized
Newton-non-degenerate is a property of germs (or of analytic singularity types) but not of the topological types. The
examples below are based on two ideas: playing with several low singularities of the tangent cone (for the case
of generalized Newton-non-degenerate) or playing with one high singularity of the tangent cone (for the case of
directionally Newton-non-degenerate).

Example 2.6. Consider the super-isolated singularity V0 = {fp + fp+1 = 0} ⊂ (C3, 0) where fp+1 is generic and
the projective curve {fp = 0} ⊂ P2 has three cusps (assume p is big enough). Arrange the coordinates such that the
cusps are at x̂ = (1, 0, 0), ŷ = (0, 1, 0) and ẑ = (0, 0, 1). Note that by now all the GL(3) freedom is exhausted (up
to permutations). To make V0 Newton-non-degenerate assume that the tangents to the cusps are oriented along the
coordinate axes, e.g. zp−3(zx2 + y3) + xp−3(xy2 + z3) + yp−3(yx2 + z3).

Let Vt be the equi-singular family, with the cusps staying at their points x̂, ŷ, ẑ, but their tangents changing freely.
For example: ft(x, y, z) = zp−3(z(x− ty)2 + y3) + xp−3(x(y + tz)2 + z3) + yp−3(y(x− tz)2 + z3).

Then Vt 6=0 is directionally Newton-non-degenerate but not generalized Newton-non-degenerate. Indeed, to bring
Vt 6=0 to a Newton-non-degenerate form one should keep the cusps at the points x̂, ŷ, ẑ and at the same time keep their
tangents along the axes. And this is impossible as only GL(3) transformations are relevant.

Example 2.7. Consider the family of surfaces ft = f5 + f6 = x5 + z(zx + ty2)2 + y5 + z6. The projectivized
tangent cone of these surfaces is the plane quintic {f5 = 0} ⊂ P2 with one A4 point at (0, 0, 1). Note that Sing(f5 =
0) ∩ (f6 = 0) = ∅. So, this is a super-isolated singularity (cf. [AB-L-MH06]). Thus µ = 68 = (5− 1)3 + 4 (see §3.1
for the general formula). The family is equisingular in t, e.g. because each surface Vt is resolved by one blowup of the
origin and the type of exceptional divisor is independent of t.

The singularity Vt=0 is Newton-non-degenerate (by direct check). For t 6= 0 the singularity is not generalized
Newton-non-degenerate. To show this, we prove that the restriction of ft to the face Span(x5, z3x2, zy4, y5) ⊂ Γ is
degenerate for any choice of coordinates. Let φ © (C3, 0) be a local diffeomorphism. As we are interested in the
face whose monomials correspond to the tangent cone, the non-linear part of φ is irrelevant. So, assume φ ∈ GL(C3)
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and acts on PTS = {f5 = 0} ⊂ P2. Thus the goal is to bring the singularity of this quintic to the Newton-non-
degenerate form. But this is impossible for t 6= 0, since the non-linear (quadratic) transformation in local coordinates
is needed. In other words, this is because the type A4 is so-called ”non-linear”, cf. [Kerner06].

2.3.1. Deformation to essentially Newton-degenerate. In the last example all the fibres are directionally Newton-
non-degenerate (by corollary 2.13). The deformation whose generic fibre is essentially Newton-degenerate (i.e. not
directionally Newton-non-degenerate) is a simple modification: one changes the inclinations of the face on which the
degeneration occurs (Span(x5, z3x2, zy4, y5) in the last example) and adds some other faces.
Consider the hypersurface f = xa + yb + zc + zk(zx + y2)2. (For (a, b, c, k) =
(5, 5, 6, 1) one has the previous example.) Suppose (a, b, c, k) are such that the
Newton diagram consists of the three faces (cf. the picture): Conv(xa, x2zk+2, yb),
Conv(yb, x2zk+2, y4zk) and Conv(x2zk+2, y4zk, zc). This can be fulfilled by some
convexity conditions.
Assume further that a < b < k + 4 < c and also: if φ © (C2, 0) is any locally analytic
transformation whose linear part is identity (i.e. (x, y, z) → (x + φx, y + φy, z + φz)
with φi ∈ m2) then Γf = Γφ∗(f). This can be achieved e.g. if for each face all the
slopes (with all the coordinate hyperplanes) are bounded 1

2 < tan(α) < 2.
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In total, all the restrictions above are implied by the following inequalities:

(3) b <
k + 2
1− 2

a

<
k

1− 4
b

< min(c, 2b), b < a < min(2b, k + 4) < c < k + 6

This implies c = k + 5 and k > 10. We consider (possibly the simplest case): ft = x14 + y13 + z16 + z11(zx + y2)2. By
direct check this family is equisingular (e.g. µt = 2220 = const, can be calculated using [GPS-Singular]).

The generic fibre f−1
t (0) is essentially Newton-degenerate by the following proposition.

Proposition 2.8. Let ft 6=0 as above and g = x14 + y13 + z16 + z11(zx)2. Then ft 6=0 and g have the same Newton
diagram in any coordinate system.

Proof: Let φ © (C2, 0) be a locally analytic change of coordinates whose linear part is identity. By the construc-
tion it preserves the Newton diagram. Therefore it’s enough to consider only linear coordinate changes. But then only
the monomials xa, yb are relevant and their coefficients are the same in both cases. ¥

In fact, as one sees, every non-linear generalized Newton-non-degenerate or directionally Newton-non-degenerate sin-
gularity of curves leads to a similar example. And since most of the singularity types of curves are non-linear, we see
that this example is typical.

2.4. Criteria for directional Newton-non-degeneracy.
2.4.1. Criteria for curves. For curves it is possible to give a very explicit equivalent definition of a directionally

Newton-non-degenerate germ.

Proposition 2.9. Let C = ∪iCi be the tangential decomposition. C is directionally Newton-non-degenerate iff
each Ci is directionally Newton-non-degenerate. And Ci is directionally Newton-non-degenerate iff the two conditions
are satisfied:
• Each branch of Ci is generalized Newton-non-degenerate (so, locally it is of the type xp + yq with (p, q) = 1).
• The union of any two branches is a generalized Newton-non-degenerate singularity. Namely, there does not exist a
pair of singular branches in Ci with local equations (in some coordinates): (xp + yq + ..)(xp + yq + ..). Here the dots
mean higher order terms (i.e. monomials lying over the Newton diagram).

Proof: The first equivalence is obvious. Regarding the second:
V If Ci contains a branch which is not generalized Newton-non-degenerate then for any choice of coordinates the
Newton diagram cannot record the type of this branch. Indeed, among the smooth arcs (γ, 0) ⊂ (C2, 0) let γm be such
that the local degree of intersection < Ci, γm > is maximal. Choose γm as one coordinate axis, choose the second axis
generically. Let ΓCi be the corresponding Newton diagram, it consists of one segment (ar, 0)(0, br) for gcd(a, b) = 1,
1 < a < b (so, Ci = {xar + .. + ybr + .. = 0}). Let C ′ be the generic curve with such a diagram (in particular C ′

is non-degenerate). Then in any coordinates C,C ′ have equal Newton diagrams. But, of course, they have distinct
singularity types.

The same applies to the case of (xp + yq + ..)(xp + yq + ..): no choice of coordinates can distinguish this from the
pair of branches (xp + yq + ..)(xp − yq + ..) (which is certainly of different type).
W We should prove that by choosing different coordinates the topological type of Ci is determined by the collection
of Newton diagrams. This amounts to the type of each branch and their intersection numbers.
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Given any smooth branch in Ci, rectify it. Namely, choose the coordinates in which it is a line y = 0, so fi = y(..)
and the Newton diagram is non-commode. This fixes uniquely the intersection numbers of this branch with all the
other branches.

So, it remains to consider only the singular branches and their intersections. Given a singular branch (general-
ized Newton-non-degenerate by assumption) bring to a Newton-non-degenerate form. Then its topological singularity
type is fixed from the diagram. Finally, let C1, C2 be two singular branches, bring one of them to a Newton-non-
degenerate form xp1 + yq1 + ... = 0, with 1 < p1 < q1 (dots mean higher order terms). Suppose for such choice of
coordinates the equation of the second branch is (x +

∑
j>1 αjy

j)p2 + yq2 + ... = 0. Then the intersection < C1, C2 >

is completely determined by the types of branches (i.e. the numbers p1, q1, p2, q2) and the least j for which αj 6= 0.
But this degree is also reflected on the diagram (e.g. as the inclination of the edge). ¥

Example 2.10. The proposition immediately provides a simple example of a singularity which is not directionally
Newton-non-degenerate: f = (x2 + y3)(x2 + y3 + y4). The simplest example of a branch which is not directionally
Newton-non-degenerate i.e. a branch which is not generalized Newton-non-degenerate was given in the introduction.

The proposition allows also to answer positively the question from the introduction for curves: being generalized
Newton-non-degenerate or directionally Newton-non-degenerate are properties of topological types and not only of
their representatives.

Corollary 2.11. Let (C, 0) ⊂ (C2, 0) be a generalized Newton-non-degenerate (or directionally Newton-non-
degenerate) germ of curve. Let (C ′, 0) ⊂ (C2, 0) be a germ of the same (local embedded topological) singularity type
as (C, 0). Then (C ′, 0) is also generalized Newton-non-degenerate (or directionally Newton-non-degenerate).

Proof: • For the directionally Newton-non-degenerate case the statement follows immediately from the proposi-
tion 2.9 (as the conditions are on the topological types of the branches).
• As was noticed in the introduction, if TC = (lp1

1 ..lpk

k ) is the tangent cone of a generalized Newton-non-degenerate sin-
gularity, then pi > 1 for at most two cases. As the tangent cone is topological invariant it suffices, therefore, to consider
the case of just one line in the tangent cone. So, let (C, 0) be such a generalized Newton-non-degenerate germ, in
particular each branch of C is generalized Newton-non-degenerate (and therefore of type xp + yq, (p, q) = 1).

Let (C ′, 0) ⊂ (C2, 0) be any other representative of the type of (C, 0). Then there is a 1:1 correspondence between
the branches of C,C ′, preserving the types of the branches and their intersections numbers. Order the branches of
C according to the edges of ΓC (note that the inclinations of the edges are topological invariants). Let the edge
corresponding to C1 intersect the ŷ axis at (0, p). Choose coordinates for C ′, such that the edge of C ′1 does the same.
Then the two edges coincide and can continue by induction.

Finally we have chosen the coordinates for C ′ such that ΓC = ΓC′ . Then C ′ is Newton-non-degenerate (e.g. by
the equality of their Milnor numbers). ¥

2.4.2. The case of hypersurfaces (n > 2). Here the situation is much more complicated. First we show that the
tangent cone cone of a hypersurface germ is completely fixed by the collection of Newton diagrams.

Proposition 2.12. Let Vf = f−1(0) and Vg = g−1(0) be two hypersurface germs in (Cn, 0). Suppose for any
choice of coordinates Γf = Γg. Let f = fp + fp+1 + .. and g = gp + gp+1 + .. be the Taylor expansions. Then fp = gp

(up to scaling).

Proof: To prove Vfp = Vgp ⊂ Pn−1 we start from the set-theoretic argument. Let x ∈ Vfp and φ ∈ GL(n) such
that φ : x → (1, 0...0) ∈ Pn−1. Then, in the new coordinates, the expansion of φ(fp) contains no monomial xp

1 and
this reflects on the Newton diagram Γφ(fp). From the equality of Newton diagrams (Γφ(fp) = Γφ(gp)) one has: x ∈ Vgp .
By considering all points of Vfp , Vgp we get the equality Vfp = Vgp as sets.

If the tangent cone is reduced, this gives fp = gp up to scaling. Otherwise, let fp =
k∏

i=1

fni
i and gp =

k∏
i=1

gmi
i be

the prime decompositions. Let x ∈ Vfi be the generic point, so that x is a smooth point of the reduced cone VQ fi
.

Apply linear transformation to (Cn, 0) to put x = (1, 0..0). Then the monomial x
deg(fi)
1 does not appear in fi, while

for any j 6= i the monomial x
deg(fj)
1 does appear in fj . Thus the number p − deg(fi)ni can be restored from the

Newton diagram Γφ(fp) by checking the monomial containing the highest power of x1. And by equality of the Newton
diagrams one gets ni = mi.

So the scheme structure of the projectivized tangent cone is also restored from the collection of the Newton dia-
grams. ¥
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Corollary 2.13. Let f = fp+fk where k > p and fk is generic with respect to fp (in particular (Vfk
, 0) ⊂ (Cn, 0)

is smooth). Then (Vf , 0) ⊂ (Cn, 0) is directionally Newton-non-degenerate.
In particular any super-isolated singularity is directionally Newton-non-degenerate.

2.5. The directional approximations. The directional approximations for curves were introduced in example
1.2, here we generalize this to the hypersurfaces. Let (Vf , 0) ⊂ (Cn, 0) be an isolated hypersurface germ of multiplicity
p.
Suppose its projectivized tangent cone PT(Vf ,0) ⊂ P(Cn) has only isolated singularities,
each one being of generalized Newton-non-degenerate type and can be brought locally to its
(commode) Newton-non-degenerate form by a linear transformation of Pn−1 (or of (Cn, 0)).
Let zi ∈ Sing(PT(Vf ,0)), choose coordinates in Pn−1 (i.e. local coordinates in (Cn, 0)) such
that zi = (0, ..., 0, 1) (i.e. corresponds to the x̂n axis) and (PT(Vf ,0), zi) is Newton-non-
degenerate. Assume that for this basis the defining function f has monomials xp

1...x
p
n−1, so

the Newton diagram is as in the picture.
Let {tα} be the top-dimensional faces of the Newton diagram of (PT(Vf ,0), zi). They naturally
correspond to some (n − 2) dimensional faces on Γ(Vf ,0) (cf. the picture). Let Tα be those
top-dimensional faces of the diagram Γ(Vf ,0) which intersect the hyperplane Span(xp

1..x
p
n)

along the faces {tα}.

6
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Suppose the remaining axes x̂1, .., x̂n−1 can be oriented (preserving the Newton diagram) such that {fTα} and {ftα}
are non-degenerate. (This is the analogue of the non-degeneracy of Ci in the case of curves.)

In this case consider a germ (Vi, 0) ⊂ (Cn, 0) defined by f∪Tα +
n−1∑
j=1

bjx
p
j . (Here f∪Tα is the truncation of f to the

corresponding faces, bj are some non-zero numbers, such that the truncation f∪tα+
n−1∑
j=1

bjx
p
j is Newton-non-degenerate.)

Definition 2.14. For each zi ∈ Sing(PT(Vf ,0)) the so defined germ (Vi, 0) is called the Newton-non-degenerate di-
rectional approximation.

As in the case of curves, the germ (Vi, 0) is not defined uniquely, but any two representatives have the same
singularity type, the same Newton diagram and can be joined by a µ = const family.

Proposition 2.15. Suppose for (Vf , 0) ⊂ (Cn, 0) the hypersurface PT(Vf ,0) ⊂ P(Cn) has isolated singularities
only and for each singular point of it there exists a Newton-non-degenerate directional approximation. Then (Vf , 0) is
directionally Newton-non-degenerate.

Proof: The direct application of the following criterion. Let (Vf , 0), (Vg, 0) be two isolated hypersurface germs
and (Ṽf , 0), (Ṽg, 0) be their strict transforms under the blowup (Bl0Cn, E) → (Cn, 0). Suppose the singular points
of E ∩ Ṽf correspond bijectively to those of E ∩ Ṽg and for each singular point zi(f) ∈ Sing(E ∩ Ṽf ) there ex-

ists a neighborhood zi(f) ∈ Uf ⊂ Bl0Cn and the embedded homeomorphism (Uf , zi(f))
φ→ (Ug, zi(g)) such that

(E,E ∩ Ṽf , zi(f))
φ→ (E, E ∩ Ṽg, zi(g)). Then (Vf , 0), (Vg, 0) are of the same topological type. ¥

3. Some singularity invariants

3.1. Kouchnirenko’s formula for the Milnor number. The derivation of the formula is based on the following
result [Melle00, Theorem 1]. For the hypersurface germ (V, 0) ⊂ (Cn, 0), let PT(V,0) ⊂ Pn−1 be the projectivization
of its tangent cone and Ṽ → V the strict transform under the blow-up of the origin. Assume, both Ṽ and PT(V,0)

have isolated singularities only. Let p = mult(V, 0) then:

(4) µ(V, 0) = (p− 1)n + µ(Pn−1,PT(V,0)) + µ(Bl0Cn, Ṽ )

Theorem 3.1. Let (V, 0) ⊂ (Cn, 0) be an isolated directionally Newton-non-degenerate hypersurface singularity.
Suppose it has the Newton-non-degenerate directional approximations (V1, 0)..(Vk, 0) corresponding to Sing(PT(V,0)) =
{z1..zk} (cf.§2.5). Then Kouchnirenko’s formula holds in the following form:
(5)

µ(V, 0) =
k∑

i=1

µ(Vi, 0)− (k−1)(p−1)n, where µ(Vi, 0) = (n−1)!V oln−1(Γ(Vi,0))− (n−2)!V oln−2(Γ(Vi,0))+ ..+(−1)n.
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Proof: As a preparation consider the change of the Newton diagram of Vi under the blowup.
As in §2.5, the top-dimensional faces of the diagram diagram are: a part
of Span(xp

1..x
p
n) and {Tα}. The intersections Tα ∩ A = tα are faces of

dimension (n− 2). Consider the strict transform of Vi under the blowup
{(x1..xn) = (σ1 : .. : σn)} ⊂ Cn × Pn−1. (The two Newton diagrams
are on the right.) The relevant chart is σn 6= 0, with the coordinates
( σ1

σn
..σn−1

σn
, xn). The total transform of the function is:

f(x1..xn) → xp
n

(
fp( σ1

σn
..σn−1

σn
, 1) + xnfp+1( σ1

σn
..σn−1

σn
, 1) + .. + xq−p

n

)
+ ...

The polyhedron under Γ(Vi,0) is naturally subdivided into two parts, one
being the pyramid under Span(xp

1..x
p
n). Denote the other polyhedron

(under Tα) by ∆Vi
. Let ∆̃Vi

be the polyhedron under Γ(Ṽi,0)
.
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The blowup induces the map ∆Vi → ∆̃Vi by (a1..an) → (a1..an−1, an − a1 − .. − an−1). So, there is the natural
correspondence between the faces of ∆Vi and ∆̃Vi .
While, ∆Vi

and ∆̃Vi
are not equal as polyhedra, their corresponding faces have equal volumes. Therefore µ(∆Vi

) =
µ(∆̃Vi

). Here µ(∆Vi
) is the standard expression: the main volume (n − 1)!V oln−1(∆Vi

) minus the volume of top-
dimensional faces (n− 2)!V oln−2(∆Vi), plus the sum of volumes of faces of codimension 2, etc.

Similarly, let ∆b
Vi

= ∆ ∩ Span(xp
1..x

p
n) and ∆̃b

Vi
= ∆̃ ∩ {xn = 0}. Then the corresponding faces of ∆b

Vi
and ∆̃b

Vi

have equal volume.
Therefore the classical Kouchnirenko’s formula gives (recall that Ṽi and PT(Vi,0) have Newton-non-degenerate sin-

gularities):

(6) µ(∆Vi) + µ(∆b
Vi

) = µ(∆̃Vi) + µ(∆̃b
Vi

) = µ(Ṽi) + µ(PT(Vi,0))

Finally,
• note that µ(Ṽi) = µ(Ṽ , zi) and µ(PT(Vi,0)) = µ(PT(V,0), zi)
• sum over all the singular point of the projectivized tangent cone PT(V,0) (i.e. sum over all the directional approxi-
mations Vi) and apply equation (4)
• note that each µ(Vi, 0) contains a contribution from the basic pyramid (xp

1..x
p
n), for which µ = (p− 1)n. ¥

Remark 3.2. For curves an especially simple proof can be given. It is based on the formulas for the δ invariant:
• µ = 2δ − r + 1, here r is the number of branches

• δ =
∑
i

δ(Ci) +
∑
i<j

< Ci, Cj > (for the tangential decomposition C =
k∪

i=1
Ci).

Using these formulas one gets:

(7) µ(C) = 2
(

∑
i

µ(Ci) + ri − 1

2
+

∑

i<j

< Ci, Cj >
)
−

∑

i

ri + 1 =
∑

i

µ(Ci) + 1− k +
∑

i6=j

pipj

(for pi = mult(Ci)). Assume that the curve-germ has a Newton-non-degenerate directional approximation {C(i)} (i.e.
each Ci is generalized Newton-non-degenerate). Then the result follows from the observation: µ(C(i)) = µ(Ci) + p2 −
p2

i + 2pi − 2p.

3.2. Zeta function of monodromy. Recall the basic result of [A’Campo75] (cf. also [AGLV-book, II.3.12]).
Given an isolated hypersurface singularity, construct its good resolution (cf. the diagram):
Ṽ is smooth, E consists of smooth components and Ṽ ∪E is a normal crossing divisor. Let
π−1(0) =

∑
miEi, i.e. Ei is an irreducible component of E, of multiplicity mi. Denote

Sm := {x ∈ E : mult(E, x) = m}.

(Ṽ , Ṽ ∩ E) ⊂ (Y, E)
↓ ↓ π

(V, 0) ⊂ (Cn, 0)

Then

(8) ζ(V,0)(z) =
∏

m≥1

(1− zm)χ(Sm)

where χ is the Euler characteristic.
The product structure of this formula is the basic reason for the possibility to determine the zeta function by the

geometry of the Newton diagram.

Proposition 3.3. Let (V, 0) ⊂ (Cn, 0) be a directionally Newton-non-degenerate germ, whose projectivized tangent
space has isolated singularities: Sing(PTV ) = {y1..yk} and the corresponding directional approximations V1..Vk are
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Newton-non-degenerate (cf.§2.5). Then A’Campo’s formula can be written in the form

ζ(V,0)(z) =

k∏
i=1

ζ(Vi,0)(z)

(1− zp)(k−1)(n−χp,n−1)

where ζ(Vi,0)(z) is the classical zeta-function of the (Newton-non-degenerate) hypersurface-germ, p = mult(V, 0) and
χp,n−1 = χ(Vp,n−1) for an arbitrary smooth hypersurface Vp,n−1 ⊂ Pn−1 of degree p.

Proof: Blowup Cn at the origin. By the assumption the strict transform Ṽ → V has isolated singularities only
and the exceptional divisor is pE for E ≈ Pn−1 ⊂ Bl0(Cn). Now, resolve the singularities of Ṽ .

Write the total preimage of the origin in the form: π−1(0) = pẼ +
k∑

i=1

Di. Here each Di

corresponds to the resolution of (Ṽ , yi) (cf. the picture). In particular: Di ∩ Dj = ∅ for
i 6= j.
Thus the product

∏
m≥1 in the original formula (8) can be replaced by k copies (for

each directional approximation Xi). Each such copy contributes the unnecessary factor

(1− zp)χ(Ẽ\(Di∪Ṽi)) and no copy contains the needed factor (1− zp)
χ(Ẽ\(∪

i
Di∪Ṽ)).
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So, the formula can be written in the form

(9) ζ(V,0)(z) = (1− zp)
χ(Ẽ\(∪

i
Di∪Ṽ ))

k∏

i=1

ζ(Vi,0)(z)

(1− zp)χ(Ẽ\(Di∪Ṽi))

Note that Ẽ \ (∪
i
Di ∪ Ṽ ) = E \ PTV and Ẽ \ (Di ∪ Ṽi) = E \ PTVi , so the correction factor is:

(10)
(1− zp)χ(E\PTV )

∏
i(1− zp)χ(E\PTVi

)
=

(1− zp)(1−k)χ(Pn−1)

(1− zp)χ(PTV )−Pχ(PTVi
)

Finally, for any isolated singularity: χ(PTVi) = χ(Vp,n−1) + Ni, where Vp,n−1 ⊂ Pn−1 is a smooth hypersurface of
degree p (in particular its Euler characteristic is independent of the hypersurface) and Ni is a number completely
determined by the topological singularity type. Thus χ(PTV )−∑

χ(PTVi) = (1−k)χ(Vp,n−1), proving the statement.
¥

Using the last proposition it is immediate to generalize Varchenko’s formula for the zeta function in terms of the
Newton diagram. Recall ([Varchenko76],[AGLV-book, II.3.12]) that for an isolated Newton-non-degenerate hyper-
surface singularity (V, 0) ⊂ (Cn, 0) the zeta function of the monodromy can be written in the form:

(11) ζ(V,0)(z) =
n∏

l=1

(ζl(z))(−1)l−1

where {ζl(z)}l are some polynomials completely determined by the geometry of l−dimensional faces of the Newton
diagram.

Corollary 3.4. Under the assumptions of the proposition 3.3 Varchenko’s formula is valid in the following form:

ζ(V,0)(z) =
1

(1− zp)(k−1)(n−χp,n−1)

∏

xi∈Sing(PT(V,0))

n∏

l=1

(ζl
(Vi,0)

(z))(−1)l−1

where, χp,n−1 = χ(Vp,n−1) for an arbitrary smooth hypersurface Vp,n−1 ⊂ Pn−1 of degree p, and ζl
(Vi,0)

(z) are the
standard Varchenko polynomials (for the Newton-non-degenerate singularities Vi).

3.2.1. Example: zeta function for some directionally Newton-non-degenerate singularities of curves. In the case
of curves all the objects are very explicit.

Let C =
k∪

i=1
Ci be the tangential decomposition, then the resolution tree consists of pE and k chains corresponding

to {Ci}. Let {C(i)} be the directional approximations (cf. example 1.2). Then the zeta function of the monodromy is
(cf. proposition 3.3):

(12) ζC(z) =
∏

i ζC(i)(z)
(1− zp)(k−1)(2−p)
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Note that in the case of curves this result is valid without assumption that each Ci is generalized Newton-non-
degenerate.

Assume now each Ci is generalized Newton-non-degenerate. To write Varchenko’s
formula introduce the parameters of the Newton diagram of ΓC(i) . For each edge lα
of the diagram (except for (0, p), (p− pi, pi)) let aαx + bαy = cα be the equation of
the line it spans. Here aα, bα, cα ∈ N and (aα, bα) = 1 (so the coefficient are fixed
uniquely). Let |lα| be the number of integral points minus one on the edge α. Then
the formula of corollary 3.4 reads:

-

6

•
•

•
•
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p

pi

p−pi q

ΓC(i)ignore
¡ª

aαi
x+bαi

y=cαi

(13) ζC(z) =
1

(1− zp)k−2

k∏

i=1

1− zqi

∏
αi

(1− zcαi )|lαi
|

Here αi runs over the edges of ΓC(i) , each time omitting the edge (0, p), (p− pi, pi).

3.3. Some further invariants.
3.3.1. Order of determinacy. Suppose an isolated hypersurface germ {f = 0} = (V, 0) ⊂ (Cn, 0) has a Newton-

non-degenerate directional approximation (V1, 0)... (Vk, 0). For each (Vi, 0) let o.d.(Vi, 0) be the (contact, topological)
order of determinacy [GLS-book, I.2.2]. It is easily read from the diagram of (Vi, 0).

Proposition 3.5. The order of determinacy of (V, 0) is max
i

(o.d.(Vi, 0))

Proof: Let q = max
i

(o.d.(Vi, 0)). Suppose jetq(f) = jetq(g), then f, g have coinciding collections of Newton

diagrams, isomorphic tangent cones and g is directionally Newton-non-degenerate with respect to its collection of the
diagrams. So, the singular types of f, g coincide.

On the other hand the order of determinacy of (V, 0) is certainly at least max
i

(o.d.(Vi, 0)). ¥

3.3.2. Right modality for functions of two variables.
For the Newton-non-degenerate singularities the (right) modality can be calculated as
the number of integral points (x, y) under the Newton diagram, satisfying x, y ≥ 2 (cf.
[Kouchnirenko76]). We can only propose a natural generalization. Let C = ∪

i
Ci be

the tangential decomposition, assume each Ci is generalized Newton-non-degenerate.
Let ΓCi be the corresponding Newton diagram. -

6
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It is naturally decomposed into the triangle x + y ≤ p for p = mult(C) and the remaining polygon ∆i. Let
∆i ∩ (2, 2)=number of integral points (x, y) ∈ ∆i, x, y ≤ 2 strictly below the Newton diagram.
Conjecture: (right) modality=(modality of xp + yp)+

∑
i

(∆i ∩ (2, 2)).

3.3.3. τes for linear types of curves. Let (C, 0) ⊂ (C2, 0) be a germ of curve whose directional approximations
{Ci} are Newton-non-degenerate with respect to their diagrams Γi. Assume also that the directional approximations
are of linear type [Kerner06], i.e. any representative of the type of Ci can be brought to Γi by linear transformations
only. Assume that every Γi is minimal.

As on the previous picture, let ∆i be the distinguished polygon on Γi. Let ]∆i be the number of integral points
in the closure ∆̄i, which lie (strictly) under the Newton diagram Γi.

Proposition 3.6. Under the assumptions above: τes =
∑

]∆i +
(
p+1
2

)− 2− k

Proof: Given T = (lp1
1 ..lpk

k ), let Σl1..lk = {C|∀1 ≤ i ≤ k : ΓC ≥ ΓCi for coordinates (li, y)}. Thus τes =
2 + k + codimΣl1..lk where 2 is for the choice of the point in the plane and k for the dimension of space of k lines
through the point. ¥

Corollary 3.7. For linear singularities the right modality=µ + 2 + k −∑
]∆i −

(
p+1
2

)
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