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SUPERTROPICAL SEMIRINGS AND SUPERVALUATIONS

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

Abstract. We interpret a valuation v on a ring R as a map v : R → M into a so called
bipotent semiring M (the usual max-plus setting), and then define a supervaluation ϕ as
a suitable map into a supertropical semiring U with ghost ideal M (cf. [IR1], [IR2]) covering
v via the ghost map U → M . The set Cov(v) of all supervaluations covering v has a natural
ordering which makes it a complete lattice. In the case that R is a field, hence for v a Krull
valuation, we give a complete explicit description of Cov(v).

The theory of supertropical semirings and supervaluations aims for an algebra fitting the
needs of tropical geometry better than the usual max-plus setting. We illustrate this by
giving a supertropical version of Kapranov’s lemma.
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Introduction

As explained in [IMS] and [G], tropical geometry grew out of a logarithmic correspon-
dence taking a polynomial f(λ1, . . . , λn) over the ring of Puiseux series to a corresponding
polynomial f̄(λ1, . . . , λn) over the max-plus algebra T . A key observation is Kapranov’s
Lemma, that this correspondence sends the algebraic variety defined by f into the so-called
corner locus defined by f̄ . More precisely, this correspondence involves the negative of a
valuation (where the target (T ) is an ordered monoid rather than an ordered group), which
has led researchers in tropical mathematics to utilize valuation theory. In order to avoid the
introduction of the negative, some researchers, such as [SS], have used the min-plus algebra
instead of the max-plus algebra.

Note that whereas a valuation v satisfies v(ab) = v(a) + v(b), one only has

v(a+ b) = min{v(a), v(b)}
when v(a) 6= v(b); for the case that v(a) = v(b), v(a+ b) could be any element ≥ v(a). From
this point of view, the max-plus (or, dually, min-plus) algebra does not precisely reflect the
tropical mathematics. In order to deal with this issue, as well as to enhance the algebraic
structure of the max-plus algebra T , the first author introduced a cover of T , graded by the
multiplicative monoid (Z2, ·), which was dubbed the extended tropical arithmetic. Then, in
[IR1] and [IR2], this structure has been amplified to the notion of supertropical semiring.
A supertropical semiring U is equipped with a “ghost map” ν := νU : U → U , which
respects addition and multiplication and is idempotent, i.e., ν ◦ν = ν. Moreover a+a = ν(a)
for every a ∈ U (cf. §3). This rule replaces the rule a + a = a in the usual max-plus (or
min-plus) arithmetic. We call ν(a) the “ghost” of a (often writing aν instead of ν(a)), and
we call the elements of U which are not ghost “tangible”1.

The image of the ghost map is a so-called bipotent semiring, i.e., a semiringM such that
a+ b ∈ {a, b} for every a, b ∈ M . So M is a semiring typically occurring in tropical algebra.
In this paper supertropical and bipotent semirings are nearly always tacitly assumed to be
commutative.

It turns out that supertropical semirings allow a refinement of valuation theory to a theory
of “supervaluations”. Supervaluations seem to be able to give an enriched version of tropical
geometry. In the present paper we illustrate this by giving a refined and generalized version
of Kapranov’s lemma. (§10, §11). Very roughly one may say that the usual tropical algebra
is present in the ghost level of our supertropical setting.

We consider valuations on rings (as defined by Bourbaki [B]) instead of just fields. We
mention that these can be understood as families of valuations on fields, cf. e.g. [HK] and
[KZ]. We use multiplicative notation, writing a valuation v on a ring R as a map into Γ∪{0}
with Γ a multiplicative ordered abelian group and 0 < Γ, obeying the rules

v(0) = 0, v(1) = 1, v(ab) = v(a)v(b),

v(a+ b) ≤ max(v(a), v(b)).
(∗)

We view the ordered monoid Γ ∪ {0} as a bipotent semiring by introducing the addition
x+ y := max(x, y), cf. §1 and §2. It is then very natural to replace Γ∪ {0} by any bipotent
semiring M , and to define an m-valuation (= monoid valuation) v : R → M in the same
way (∗) as before.

1The element 0 may be regarded both as tangible and ghost.
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Given an m-valuation v : R → M there exist multiplicative mappings ϕ : R → M into
various supertropical semirings U , with ϕ(0) = 0, ϕ(1) = 1, such that M is the ghost ideal
of U and νU ◦ ϕ = v. These are the supervaluations covering v, cf. §4.

In §5 we define maps α : U → V between supertropical semirings, called transmissions,
which have the property that for a supervaluation ϕ : R → U the composite α ◦ ϕ : R → V
is again a supervaluation. Given two supervaluations ϕ : R → U and ψ : R → V (not
necessarily covering the same valuation v), we say that ϕ dominates ψ, and write ϕ ≥ ψ,
if there exists a transmission α : U → V , such that ψ = α ◦ ϕ. {The transmission α then is
essentially unique.}

Restricting the dominance relation to the set of supervaluations2 covering a fixed valuation
v : R → M we obtain a partially ordered set Cov(v), which turns out to be a complete
lattice, as proved in §7. The bottom element of this lattice is the valuation v, viewed as a
supervaluation. The top element, denoted ϕv : R → U(v), can be described explicitly in
good cases. This description is already given in §4, cf. Example 4.5. The other elements of
Cov(v) are obtained from ϕv by dividing out suitable equivalence relations on the semiring
U(v), called MFCE-relations (= multiplicative fiber conserving equivalence relations). They
are defined in §6. Finally in §8, we obtain an explicit description of all elements of Cov(v)
in the case that R is a field, hence v is a Krull valuation.

If R is only a ring, our results are far less complete. Nevertheless it seems to be absolutely
necessary to work at least in this generality for many reasons, in particular functorial ones,
cf. e.g. [HK], [KZ].

If v : R → M is an m-valuation and γ : M → N is a homomorphism from M to a
bipotent semiring N , then γ ◦ v clearly again is an m-valuation, called a coarsening of
v. This generalizes the usual notion of coarsening for Krull valuations. It is of interest to
look for relations between the lattice Cov(v) and Cov(γ ◦ v). §9 gives a first step in this
direction. Given γ : M → N and a supertropical semiring U with ghost ideal M we look for
transmissions α : U → V which cover γ, i.e., V has the ghost ideal N and α(x) = γ(x) for
x ∈ M . Assuming that γ is surjective, we prove that there exists an initial such transmission
α = αU,γ : U → Uγ. This means that any other transmission α′ : U → V ′ covering γ is
obtained from α by composition with a transmission β : Uγ → V ′ covering the identity of N .
This allows us to define an order preserving map

γ∗ : Cov(v) → Cov(γ ◦ v),
sending a supervaluation ϕ : R → U to γ∗(ϕ) := αU,γ ◦ ϕ. (The map γ∗ will be only
introduced in §12.) In good cases αU,γ has a “pushout property” (cf. Definition 9.2), that is
even stronger than to be initial, and αU,γ can be described explicitly (cf. Theorem 9.11).

In §10 we delve deeper into the supertropical theory to pinpoint a relation, which we
call the ghost surpassing relation, which seems to be a key for working in supertropical
semirings. On the one hand, the ghost surpassing relation restricts to equality on tangible
elements, so enables us to specialize to the max-plus theory. On the other hand, the ghost
surpassing relation appears in virtually every supertropical theorem proved so far, especially
in supertropical matrix theory in [IR2] and [IR3].

In the present paper the ghost surpassing relation is the essential gadget to understand
and prove a general version of Kapranov’s lemma, valid for any valuation v : R → M
which is “strong”. This means that v(a + b) = max(v(a), v(b)) whenever v(a) 6= v(b).

2More precisely we should consider equivalence classes of supervaluations. We suppress this point here.
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If R is a ring, every valuation on R is strong, as is very well known, but if R is only
a semiring, this is a restrictive condition. On our way to Kapranov’s lemma we employ
supervaluations ϕ ∈ Cov(v) which are tangible, i.e., have only tangible values, and are
tangibly additive, which means that ϕ(a + b) = ϕ(a) + ϕ(b) whenever ϕ(a) + ϕ(b) is
tangible. We apostrophize tangibly additive supervaluations which cover strong m-valuations
as strong supervaluations.

The strong tangible supervaluations in Cov(v) seem to be the most suitable ones for
applications in tropical geometry also beyond Kapranov’s lemma. They form a sublattice
Covt,s(v) of Cov(v). In particular there exists an “initial” tangible strong valuation in Cov(v),
denoted by ϕv, which dominates all others. It gives the “best” supertropical version of
Kapranov’s lemma, cf. §11. At the end of §11 we make ϕv explicit in the case that v is
the natural valuation of the field of formal Puiseux series in a variable t (with real or with
rational exponents). We can interpret the value of ϕv(a(t)) of a Puiseux series a(t) as the
leading term of a(t), while v(a(t)) can be seen as the t-power contained in the leading term.

Section 12 is devoted to the behavior of tangible strong supervaluations under the map
γ∗ : Cov(v) → Cov(γ ◦ v) given above. It turns out that γ∗ maps Covt,s(v) into Covt,s(γ ◦ v).
But usually γ∗(ϕv) is different from the top element ϕγ◦v of Covt,s(γ◦v), while γ∗(ϕv) = ϕγ◦v.
This indicates that it is not advisable to restrict the supervaluation theory from start to the
strong supervaluations, even if we are only interested in these.

Strictly speaking, Kapranov’s Lemma extends the valuation v to the polynomial ring
R[λ1, . . . , λn] over R, with target in the polynomial ring M [λ1, . . . , λn], which no longer is
bipotent. Thus, the theory in this paper needs to be generalized if we are to deal formally
with such notions. This is set forth in the last Section 13, called the epilog, in which the
target of a valuation is replaced by a monoid with a binary sup operation. Much of this paper
could be formulated in this more general situation, but we only provide the broad outline
in the epilog (including the appropriate version of Kapranov’s Lemma), since a detailed
investigation would carry us too far afield at this stage.

The reader may ask whether valuations and supervaluations on semirings instead of just
rings deserve interest apart from formal issues. They do. It is only for not making a long
paper even longer that we do not give applications to semirings here.

The semiring R =
∑

A2 of sum of squares of a commutative ring (or even a field) A with
−1 /∈ R is a case in point. R is cancellative, and hence embeds into its Grothendieck ring
(which is A if 2 is a unit). But using families of valuations on R, we can pass from R to a
semiring R′ which is a degeneration, hence simplification, of R of interest. Usually R′ will
have Grothendieck ring zero, and hence will be completely out of the realm of rings. Real
algebra seems to be a fertile ground for studying valuations and supervaluations on semirings.
The paper contains only one very small hint pointing in this direction, Example 2.4.

1. Bipotent semirings

Let R be a semiring (always with unit element 1 = 1R). Later we will assume that R is
commutative, but presently this is not necessary.

Definition 1.1. We call a pair (a, b) ∈ R2 bipotent if a+ b ∈ {a, b}. We call the semiring
R bipotent if every pair (a, b) ∈ R2 is bipotent.

Proposition 1.2. Assume that R is a bipotent semiring. Then the binary relation (a, b ∈ R)

a ≤ b iff a+ b = b (1.1)
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on R is a total ordering on the set R, compatible with addition and multiplication, i.e., for
all a, b, c ∈ R

a ≤ b ⇒ ac ≤ bc, ca ≤ cb,

a ≤ b ⇒ a+ c ≤ b+ c.

Proof. A straightforward check. ¤

Remark 1.3. We can define such a binary relation ≤ by (1.1) in any semiring, and then
obtain a partial ordering compatible with addition and multiplication. The ordering is total
iff R is bipotent. Clearly, 0R ≤ x for every x ∈ R.

Definition 1.4. We call a semiring R a semidomain, if R has no zero divisors, i.e., the
set R \ {0} is closed under multiplication. We call R a semifield, if R is commutative and
every element x 6= 0 of R is invertible; hence R \ {0} is a group under multiplication.

Given a bipotent semidomain R, the set G := R \ {0} is a totally ordered monoid under
the multiplication of R.

In this way we obtain all (totally) ordered monoids. Indeed, if G = (G, ·) is a given ordered
monoid, we gain a bipotent semiring R as follows: Adjoin a new element 0 to G and form
the set R := G ∪ {0}. Extend the multiplication on G to a multiplication on R by the rules
0 · g = g · 0 = 0 for any g ∈ G and 0 · 0 = 0. Extend the ordering of G to a total ordering
on R by the rule 0 < g for g ∈ G. Then define an addition on R by the rule

x+ y := max(x, y)

for any x, y ∈ R. It is easily checked that R is a bipotent semiring, and that the ordering on
R by the rule (1.1) is the given one. We denote this semiring R by T (G).

These considerations can be easily amplified to the following theorem.

Theorem 1.5. The category of (totally) ordered monoids G is isomorphic3 to the category
of bipotent semidomains R by the assignments

G 7→ T (G), R 7→ R \ {0}.
Here the morphisms in the first category by definition are the order preserving monoid

homomorphisms γ : G → G′ in the weak sense; i.e., γ is multiplicative, γ(1) = 1, and
x ≤ y ⇒ γ(x) ≤ γ(y), while the morphisms in the second category are the semiring homo-
morphisms (with 1 7→ 1).

In the following we regard an ordered monoid and the associated bipotent semiring as the
same entity in a different disguise. Usually we prefer the semiring viewpoint.

Example 1.6. Starting with the monoid G = (R,+), i.e., the field of real numbers with the
usual addition, we obtain a bipotent semifield

T (R) := R ∪ {−∞},
where addition ⊕ and multiplication ¯ of T (R) are defined as follows, and the neutral element
of addition is denoted by −∞ instead of 0, since our monoid is now given in additive notation.

3This is more than equivalent!
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For x, y ∈ R
x⊕ y = max(x, y),

x¯ y = x+ y,

(−∞)⊕ x = x⊕ (−∞) = x,

(−∞)¯ x = x¯ (−∞) = −∞,

(−∞)⊕ (−∞) = −∞,

(−∞)¯ (−∞) = −∞.

T (R) is the “real tropical semifield” of common tropical algebra, often called the “max-
plus” algebra R ∪ {−∞} : cf. [IMS], or [SS] (there a “min-plus” algebra is used).

2. m-valuations

In this section we assume that all occurring semirings and monoids are commutative.
Let R be a semiring.

Definition 2.1. An m-valuation (= monoid valuation) on R is a map v : R → M into a
(commutative) bipotent semiring M 6= {0} with the following properties:

V 1 : v(0) = 0,

V 2 : v(1) = 1,

V 3 : v(xy) = v(x)v(y) ∀x, y ∈ R,

V 4 : v(x+ y) ≤ v(x) + v(y) [= max(v(x), v(y))] ∀x, y ∈ R.

We call the m-valuation v strict, if instead of V4 the following stronger axiom holds:

V 5 : v(x+ y) = v(x) + v(y) ∀x, y ∈ R.

We call v bipotent if ∀x, y ∈ R

V 5′ : v(x+ y) ∈ {v(x), v(y)}.
N.B. V 5′ is stronger than V4 but weaker than V5. A strict m-valuation v : R → M is

just a semiring homomorphism from R to M.

In the special case that M = Γ ∪ {0} with Γ an ordered abelian group, we call the
m-valuation v : R → M a valuation. Notice that in the case that R is a ring (instead of a
semiring), this is exactly the notion of a valuation as defined by Bourbaki [B] (Alg. Comm.
VI, §3, No.1) and studied, e.g., in [HK] and [KZ, Chap. I], except that for Γ we have chosen
the multiplicative notation instead of the additive notation.

If v : R → M is an m-valuation, we may replace M by the submonoid v(R). We then
speak of v as a surjective m-valuation.

Definition 2.2. A (commutative) monoid G is called cancellative, if, for any a, b, c ∈ G,
the equation ac = bc implies a = b.

Notice that an ordered monoid G is cancellative iff a < b implies ac < bc for any a, b, c ∈ G.
An ordered cancellative monoid can be embedded into an ordered abelian group Γ in the
well-known way by introducing formal fractions a

b
for a, b ∈ G. Then an m-valuation v from

R to T (G) = G∪{0} is essentially the same thing as an m-valuation from R to Γ∪{0}. For
this reason, we extend the notion of “valuation” from above as follows.
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Definition 2.3. A valuation on a semiring R is an m-valuation v : R → G ∪ {0} with G
a cancellative monoid.

m-valuations on rings have been studied in [HV], and then by D. Zhang [Z].
If R is a ring, an m-valuation v : R → M can never be strict, since we have an element

−1 ∈ R with 1 + (−1) = 0, from which for v strict it would follow that 0M = v(0) =
max(v(1), v(−1)); hence v(1) = 0M , a contradiction to axiom V2. But for R a semiring
there may exist interesting strict m-valuations, even with values in a group.

Example 2.4. Let T be a preprime in a ring R, by which we simply mean that T is a
sub-semiring of R (T + T ⊂ T, T · T ⊂ T, 0 ∈ T, 1 ∈ T ). {We do not exclude the case
−1 ∈ T (“improper preprime”) but these will not matter.}

We say that a valuation v : R → M is T -convex if the restriction v | T : T → M is
strict. As is well-known, if T =

∑
R2 (and M \ {0} is a group) the T -convex valuations are

just the real valuations on R. (A valuation v : R → Γ∪{0} is called real if the residue class
field k(v) is formally real.) See [KZ1], §5 for T a preordering, and §2 for T =

∑
R2.

The entire paper [KZ1] witnesses the importance of T -convex valuations for T a preorder-
ing.

Bipotent valuations on rings are rare. But for semirings they are rather common. In
particular, we have

Example 2.5. If R is a bipotent semiring, then every multiplicative map v : R → M to
another bipotent semiring, with v(0) = 0, v(1) = 1, is a bipotent m-valuation; v is strict iff
v is a semiring homomorphism.

In addition to strict and bipotent m-valuations, we introduce two more classes of m-
valuations.

Definition 2.6. We call an m-valuation v : R → M strong if, besides V1–V4, the following
holds:

V 5′′ : If x, y ∈ R and v(x) 6= v(y), then v(x+ y) = max(v(x), v(y)).

We call an m-valuation v amenable, if the following condition holds, which is still weaker
than both V5′ and V5′′.

V 5′′′ : If x, y ∈ R and v(x) 6= v(y), then v(x+ y) ∈ {v(x), v(y)}.
Note the implications of the following chart:

strict ⇒ bipotent

⇓ ⇓
strong ⇒ amenable ⇒ m-valuation.

If R is a ring, every m-valuation on R is strong. This can be seen by the same argument
as is well-known for valuations on fields. Thus in the bottom line of the chart we are dealing
with intricacies which only occur for the semirings.

Semirings, even semifields, may admit valuations which are not even amenable.

Example 2.7. Let F be a totally ordered field, and R := {x ∈ F |x ≥ 0} the subsemifield of
nonnegative elements. Further let Γ := {x ∈ F |x > 0}, viewed as a totally ordered group,
and M := {0} ∪ Γ the associated bipotent semifield. The map v : R → M with v(0) = 0,
v(a) = 1

a
for a 6= 0, is a valuation on R, which is not amenable.
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Proposition 2.8.

a) If v : R → M is an m-valuation and M is a bipotent semidomain, then v−1(0)
is a prime ideal of R (i.e., an ideal of R, whose complement in R is closed under
multiplication).

b) If v is strong, then, for any x ∈ R and z ∈ v−1(0),

v(x+ z) = v(x). (2.1)

Proof. a): If v(x) = 0, v(y) = 0, then

v(x+ y) ≤ max(v(x), v(y)) = 0;

hence v(x+y) = 0. Thus v−1(0) is closed under addition. If x ∈ R, z ∈ v−1(0), then v(xz) =
v(x)v(z) = 0. Thus v−1(0) is closed under multiplication by elements in R. If v(x) > 0,
v(z) > 0, then v(xz) = v(x)v(z) > 0. Thus R \ v−1(0) is closed under multiplication.

b): We have v(x + z) ≤ max(v(x), v(z)) = v(x). Assume that v is strong. If v(x) 6= 0 we
have

v(x+ z) = max(v(x), v(z)) = v(x).

¤
If v : R → M is an arbitrary m-valuation, then it is still obvious that v−1(0) is an ideal

of R.

Definition 2.9. We call the ideal v−1(0) the support of the m-valuation v, and write
v−1(0) = supp(v). We call the support of v insensitive, if the equality (2.1) above holds for
any x ∈ R and z ∈ supp(v), sensitive otherwise.

Proposition 2.8.b tells us that supp(v) is insensitive if v is strong. In particular, this holds
if R is a ring.

Example 2.10. Let Γ be an ordered abelian group and H is a convex proper subgroup. Let
a := {g ∈ Γ | g > H} ∪ {0}. We regard Γ∪ {0} as a bipotent semifield (cf. §1), and define a
subsemiring M of Γ ∪ {0} by

M := H ∪ a.

Notice that we have H · a ⊂ a, a · a ⊂ a, and a+ a ⊂ a. Thus M is indeed a subsemiring of
Γ ∪ {0}, and a is an ideal of M . We define a map v : M → H ∪ {0} by setting v(x) = x if
x ∈ H, and v(x) = 0 if x ∈ a. It is easily checked that v fulfills the axioms V1–V3 and V5′

above. Thus v is a bipotent valuation. But the support a of v is sensitive: For x ∈ H, z ∈ a
and z 6= 0, we have v(x) > 0, v(z) = 0, x+ z = z; hence v(x+ z) = 0.

We switch over to the problem of “comparing” different m-valuations on the same semi-
ring R.

Definition 2.11. Let v : R → M and w : R → N be m-valuations.

a) We say that v dominates w, if for any a, b ∈ R

v(a) ≤ v(b) ⇒ w(a) ≤ w(b).

b) We say that v dominates w weakly, if for any a, b ∈ R

v(a) = v(b) ⇒ w(a) = w(b).

c) If v dominates w weakly and v is surjective, there clearly exists a unique map
γ : M → N with w = γ ◦ v. We denote this map γ by γw,v.
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Clearly, γw,v is multiplicative and sends 0 to 0 and 1 to 1. If v dominates w, then γw,v is
also order-preserving and hence is a homomorphism from the bipotent semiring M to N.

Proposition 2.12. Assume that M,N are bipotent semirings and v : R → M is a surjective
m-valuation.

a) The m-valuations w : R → N dominated by v correspond uniquely with the homo-
morphisms γ : M → N via w = γ ◦ v, γ = γw,v.

b) If v has one of the properties “strict, strong, bipotent, amenable,” and dominates w,
then w has the same property.

c) Assume, in addition, that v is bipotent. Then the m-valuations w : R → N which are
weakly dominated by v are again bipotent. They correspond uniquely with the maps
γ : M → N which are multiplicative and send 0 to 0, 1 to 1, via w = γ ◦ v and
γ = γw,v.

Proof. It suffices to verify that, given a map γ : M → N of the right kind, the map γv :=
γ ◦ v : R → N is a valuation of the right kind.

a,b): If γ : M → N is a homomorphism, then clearly γv is an m-valuation, and γv inherits
from v each of the properties “strict, strong, bipotent, amenable”.

c): Assume now that γ : M → N is a multiplicative map with γ(0) = 0, γ(1) = 1.
Let a, b ∈ R. If v is bipotent, then v(a + b) ∈ {v(a), v(b)}. This, of course, implies that
γv(a+ b) ∈ {γv(a), γv(b)}. Thus γ is bipotent. ¤

3. Supertropical semirings

Definition 3.1. A semiring with idempotent is a pair (R, e) consisting of a semiring R
and a central idempotent e. {For the moment R is allowed to be noncommutative.}

We then have an endomorphism ν : R → R (which usually does not map 1 to 1) defined
by ν(a) = ea. It obeys the rules

ν ◦ ν = ν, (3.1)

aν(b) = ν(a)b = ν(ab). (3.2)

Conversely, if a pair (R, ν) is given consisting of a semiring R and an endomorphism ν (not
necessarily ν(1) = 1), such that (3.1), (3.2) hold, then e := ν(1) is a central idempotent of
R and ν(a) = ea for every a ∈ R.

Thus such pairs (R, ν) are the same objects as semirings with idempotents.

Definition 3.2. A semiring with ghosts is a semiring with idempotent (R, e) such that
the following axiom holds (ν(a) := ea)

ν(a) = ν(b) ⇒ a+ b = ν(a). (3.3)

Remark 3.3. This axiom implies that ea = e(a + b) = ea + eb if ν(a) = ν(b). We do not
want to demand that then eb = 0. Usually, (R,+) will be a highly non cancellative abelian
semigroup.

Terminology 3.4. If (R, e) is a semiring with ghosts, then ν : x 7→ ex, R → R is called the
ghost map of (R, e). The idea is that every x ∈ R has an associated “ghost” ν(x), which
is thought of to be somehow “near” to the zero element 0 of R, without necessarily being 0
itself. {That will happen for all x ∈ R only if e = 0.} We call eR the ghost ideal of (R, e).
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Now observe that, if (R, e) is a semiring with ghosts, the idempotent e is determined by
the semiring R above, namely

e = 1 + 1.

Thus we may suppress the idempotent e in the notation of a semiring with ghosts and
redefine these objects as follows.

Definition 3.5. A semiring R is called a semiring with ghosts if

1 + 1 = 1 + 1 + 1 + 1 (3.3′)

and for all a, b ∈ R
a+ a = b+ b ⇒ a+ b = a+ a. (3.3′′)

Remark 3.6. If (3.3)′ holds then e := 1 + 1 is a central idempotent of R. Passing from R
to (R, e) = (R, 1+ 1), we see that (3.3 ′′) is the previous axiom (3.3). Notice also that (3.3′′)
implies that 1+1+1 = 1+1. (Take a = 1, b = e.) Thus, m1 = 1+1 for all natural numbers
m ≥ 2.

Terminology 3.7. If R is a semiring with ghosts, we write e = eR and ν = νR if necessary.
We also introduce the notation

T := T (R) := R \Re,

G := G(R) := Re \ {0},
G0 := G ∪ {0} = Re.

We call the elements of T the tangible elements of R and the elements of G the ghost
elements of R. We do not exclude the case that T is empty, i.e., e = 1. In this case R is
called a ghost semiring.

The ghost ideal G0 = eR of R is itself a semiring with ghosts, in fact, a ghost semiring.
It has the property a + a = a for every a ∈ Re, as follows from (3.3). {Some people call a
semiring T with a+ a = a for every a ∈ T an “idempotent semiring”.}

We mention a consequence of axiom (3.3) for the ghost map ν : R → Re, ν(x) := ex.

Remark 3.8. If R is a semiring with ghosts, then, for any x ∈ R,

ν(x) = 0 ⇔ x = 0.

Proof. (⇐): evident.
(⇒): We have ν(x) = 0 = ν(0); hence by (3.3) x = x+ 0 = ν(0) = 0. ¤
We are ready for the central definition of the section.

Definition 3.9. A semiring R is called supertropical if R is a semiring with ghosts and

∀a, b ∈ R : a+ a 6= b+ b ⇒ a+ b ∈ {a, b}. (3.4)

In other terms, every pair (a, b) in R with ea 6= eb is bipotent.

Remarks 3.10.

(i) It follows that then G(R)0 = Re is a bipotent semidomain. Indeed, if a, b are different
elements of G(R), then a = ea 6= b = eb; hence a+b ∈ {a, b} by axiom (3.4). If a = 0
or b = 0, this trivially is also true. If a = b then a+ b = ea = a. Thus a+ b ∈ {a, b}
for any a, b ∈ G(R)0. The set G(R) is either empty (the case 1 + 1 = 0) or G(R) is
an ordered monoid under the multiplication of R, as explained in §1.
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(ii) The supertropical semirings without tangible elements are just the bipotent semirings.
(iii) Every subsemiring of a supertropical semiring is again supertropical.

Theorem 3.11. Let R be a supertropical semiring, e := eR, G := G(R). Then the addi-
tion on R is determined by the multiplication on R and the ordering on the multiplicative
submonoid G of R, in case G 6= ∅, as follows. For any a, b ∈ R

a+ b =





a if ea > eb,

b if ea < eb,

ea if ea = eb,

If G = ∅ then a+ b = 0 for any a, b ∈ R.

Proof. We may assume that ea ≥ eb. If ea = eb, axiom (3.3) tells us that a+ b = ea. Assume
now that ea > eb. By definition of the ordering on eR (cf. §1), we have

e(a+ b) = ea+ eb = ea.

By axiom (3.4), a+ b = a or a+ b = b.
Suppose that a + b = b. Then e(a + b) = eb. Since ea 6= eb, this is a contradiction. We

conclude that a+ b = a. ¤
From now on, we always assume that our semirings are commutative.

Remark 3.12. If R is a supertropical semiring, the ghost map νR : R → eR, x 7→ ex is a
strict m-valuation. Indeed, the axioms V1–V3 and V5 from §2 are clearly valid for νR.

Thus, every supertropical semiring has a natural built-in strict m-valuation.
There are important cases where νR is even a valuation (cf. Definition 2.3), as we explicate

now.

Proposition 3.13. Assume that R is a supertropical semiring and T (R) is closed under
multiplication. Then the submonoid G := eT (R) of G(R) is cancellative. (N.B. We have
eT (R) ⊂ G(R) by Remark 3.8.)

Proof. Let a, b, c ∈ T (R) be given with (ea)(ec) = (eb)(ec), i.e., eac = ebc. Suppose that
ea 6= eb, say ea < eb. Then Theorem 3.11 tells us that a + b = b and ac + bc = ebc.
By assumption, bc ∈ T (R); hence bc 6= ebc. But the first equation gives ac + bc = bc, a
contradiction. Thus ea = eb. ¤

In the situation of this proposition we may omit the part G(R)\G, consisting of “useless”
ghosts, in the semiring R, and then obtain a “supertropical domain” U := T (R) ∪G ∪ {0},
as defined below, whose ghost map νU := U → G ∪ {0} is a surjective strict valuation.

Definition 3.14. Let M be a bipotent semiring and R a supertropical semiring.
a) We say that the semiring M is cancellative if for any x, y, z ∈ M

xz = yz, z 6= 0 ⇒ x = y.

This means that M is a bipotent semidomain (cf. Definition 1.4) and the multiplicative
monoid M \ {0} is cancellative.

b)We call R a supertropical predomain, if T (R) = R \ eR is not empty (i.e., e 6= 1)
and is closed under multiplication, and moreover eR is a cancellative bipotent semidomain.

c) We call R a supertropical domain, if T (R) is not empty and is closed under multi-
plication, and R maps T (R) onto G(R).
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Notice that the last condition in Definition 3.14.c implies that G(R) is a cancellative
monoid (Proposition 3.13). Thus a supertropical domain is a supertropical predomain.

Looking again at Theorem 3.11, we see that a way is opened up to construct supertropical
predomains and domains. First notice that the theorem implies the following

Remark 3.15. If R is a supertropical predomain, we have for every a ∈ T (R) and x ∈ G(R)
the multiplication rule

ax = v(a)x

with v := νR | T (R). Thus the multiplication on

R = T (R) ∪̇ G(R) ∪̇ {0}
is completely determined by the triple (T (R),G(R), v). We write v = vR.

Construction 3.16. Conversely, let a triple (T ,G, v) be given with T a monoid, G an
ordered cancellative monoid and v : T → G a monoid homomorphism. We define a semiring
R as follows. As a set

R = T ∪̇ G ∪̇ {0}.
The multiplication on R will extend the given multiplications on T and G. If a ∈ T , x ∈ G,
we decree that

a · x = x · a := v(a)x.

Finally, 0 · z = z · 0 := 0 for all z ∈ R.
The addition on R extends the addition on G ∪{0} as the bipotent semiring corresponding

to the ordered monoid G, as explained in §1. For x, y ∈ T we decree

x+ y :=





x if v(x) > v(y),

y if v(x) < v(y),

v(x) if v(x) = v(y).

Finally, for x ∈ T and y ∈ G ∪ {0}

x+ y = y + x :=

{
x if v(x) > y,

y if v(x) ≤ y.

It now can be checked in a straightforward way4 that R is a supertropical predomain with
T (R) = T , G(R) = G, vR = v. Thus we have gained a description of all supertropical
predomains R by triples (T ,G, v) as above. We write

R = STR(T ,G, v)
{STR = “supertropical”}. Notice that in this semiring R every pair (x, y) ∈ R2 is bipotent
except the pairs (a, b) with a ∈ T , b ∈ T and v(a) = v(b). If v is onto, then R is a
supertropical domain.

Definition 3.17. A semiring R is called a supertropical semifield, if R is a supertropical
domain, and every x ∈ T (R) is invertible; hence both T (R) and G(R) are groups under
multiplication.

We write down primordial examples of supertropical domains and semifields (cf. [I], [IR1]).
Other examples will come up in §4.

4Alternatively consult [IKR, §1] (as soon as available), where a detailed proof of a more general statement
is given.
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Examples 3.18. Let G be an ordered cancellative monoid. This given us the supertropical
domain (cf. Construction 3.16)

D(G) := STR(G,G, idG).

D(G) is a supertropical semifield iff G is an ordered abelian group.
We come closer to the objects and notations of usual tropical algebra if we take here for

G ordered monoids in additive notation, G = (G,+), e.g., G = R, R>0, N, Z, Q with the
usual addition. D(G) contains the set G. For every a ∈ G there is an element aν in D(G)
(read “a-ghost”), and

Gν := {aν | a ∈ G}
is a copy of the additive monoid G disjoint from G. The zero element of the semiring D(G)
is now written −∞. Thus

D(G) = G ∪̇ Gν∪̇ {−∞}.
Denoting addition and multiplication of the semiring D(G) by ⊕ and ¯, we have the following
rules. For any x ∈ D(G), a ∈ G, b ∈ G,

−∞⊕ x = x⊕−∞ = x,

a⊕ b = max(a, b), if a 6= b,

a⊕ a = aν ,

aν ⊕ bν = max(a, b)ν ,

a⊕ bν = a, if a > b,

a⊕ bν = bν , if a ≤ b,

−∞¯ x = x¯−∞ = −∞,

a¯ b = a+ b,

aν ¯ b = a¯ bν = aν ¯ bν = (a+ b)ν .

In the case G = (R,+) these rules can already be found in [I]. There also motivation is
given for their use in tropical algebra and tropical geometry.

We now only say that the semiring D(G) associated to an additive ordered cancellative
monoid G should be compared with the max-plus algebra T (G) = G ∪ {−∞} introduced in
§1. The ghost ideal Gν ∪ {−∞} of D(G) is a copy of T (G).

4. Supervaluations

In this section R is always a (commutative) semiring. Usually the letters U, V denote
supertropical (commutative) semirings. If U is any such semiring, the idempotent eU =
1U + 1U will be often simply denoted by the letter “e”, regardless of which supertropical
semiring is under consideration (as we write 0U = 0, 1U = 1).

Definition 4.1. a) A supervaluation on R is a map ϕ : R → U from R to a supertropical
semiring U with the following properties.

SV 1 : ϕ(0) = 0,

SV 2 : ϕ(1) = 1,

SV 3 : ∀a, b ∈ R : ϕ(ab) = ϕ(a)ϕ(b),

SV 4 : ∀a, b ∈ R : eϕ(a+ b) ≤ e(ϕ(a) + ϕ(b)) [= max(eϕ(a), eϕ(b))].
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b) If ϕ : R → U is a supervaluation, then the map

v : R → eU, v(a) := eϕ(a)

is clearly an m-valuation. We denote this m-valuation v by eUϕ (or simply by eϕ), and we
say that ϕ covers the m-valuation eUϕ = v.

c) We say that a supervaluation ϕ : R → U is tangible, if ϕ(R) ⊂ T (U) ∪ {0}, and we
say that ϕ is ghost if ϕ(R) ⊂ eU.

N.B. A ghost supervaluation ϕ : R → U is nothing other than an m-valuation, after replacing
the target U by eU.

Proposition 4.2. Assume that ϕ : R → U is a supervaluation and v : R → eUU =: M is
the m-valuation eUϕ covered by ϕ. Then

U ′ := ϕ(R) ∪ eϕ(R)

is a subsemiring of U. The semiring U ′ is again supertropical and eU ′ = eU(= e).

Proof. The set v(R) is a multiplicative submonoid of the bipotent semiring M ; hence is itself
a bipotent semiring. In particular, v(R) is closed under addition. If a, b ∈ R are given with
v(a) ≤ v(b), then either v(a) < v(b), in which case

a+ b = b, v(a) + b = b, a+ v(b) = v(b),

or v(a) = v(b), in which case

a+ b = v(a) + b = a+ v(b) = v(a).

This proves that U ′ + U ′ ⊂ U ′. Clearly 0 ∈ U ′, 1 ∈ U ′ and U ′ · U ′ ⊂ U ′. Thus U ′ is a
subsemiring of U. As stated above (Remark 3.10.iii), every subsemiring of a supertropical
semiring is again supertropical. Thus U ′ is supertropical. ¤
Definition 4.3. We say that the supervaluation ϕ : R → U is surjective if U ′ = U. We
say that ϕ is tangibly surjective if ϕ(R) ⊃ T (U).

Remark 4.4. If ϕ : R → U is any supervaluation, then, replacing U by U ′ = ϕ(R)∪ eϕ(R),
we obtain a surjective supervaluation. If we only replace U by ϕ(R) ∪ (eU), which is again
a subsemiring of U, we obtain a tangibly surjective supervaluation.

Thus, whenever necessary we may retreat to tangibly surjective or even surjective super-
valuations without loss of generality.

Recall that an m-valuation v : R → M is called a valuation, if the bipotent semiring M
is cancellative (cf. Definition 2.3, Definition 3.14.a). Every valuation can be covered by a
tangible supervaluation, as the following easy but important construction shows.

Example 4.5. Let v : R → M be a valuation, and let q := v−1(0) denote the support of v.
We then have a monoid homomorphism

R \ q → M \ {0}, a 7→ v(a),

which we denote again by v. Let

U := STR(R \ q,M \ {0}, v),
the supertropical predomain given by the triple (R \ q,M \ {0}, v), as explained in Construc-
tion 3.16. Thus, as a set,

U = (R \ q) ∪̇ M.
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We have e = 1M , e · a = v(a) for a ∈ R \ q. The multiplication on U restricts to the given
multiplications on R \ q and on M , and a · x = x · a = v(a)x for a ∈ R \ q, x ∈ M. The
addition on U is determined by e and the multiplication in the usual way (cf. Theorem 3.11).
In particular, for a, b ∈ R \ q, we have

a+ b =





a if v(a) > v(b),

b if v(a) < v(b),

v(a) if v(a) = v(b).

Now define a map ϕ : R → U by

ϕ(a) :=

{
a if a ∈ R \ q,
0 if a ∈ q.

One checks immediately that ϕ obeys the rules SV1–SV3. If a ∈ R \ q, then
eUϕ(a) = 1M · v(a) = v(a),

and for x ∈ q, we have

eUϕ(a) = eU · 0 = 0 = v(a)

also. Thus SV4 holds, and ϕ is a supervaluation covering v.
By construction ϕ is tangible and tangibly surjective. If v is surjective then ϕ is surjective.

Definition 4.6. We denote the supertropical ring just constructed by U(v) and the superval-
uation ϕ just constructed by ϕv. Later we will call ϕv : R → U(v) the initial cover of v,
cf. Definition 5.15.

Notice that U(v) is a supertropical domain iff v is surjective, and that in this case the
supervaluation ϕv is surjective.

Remark 4.7. The supertropical predomain U(v) just constructed deviates strongly in its
nature from the supertopical domain D(G) for G an ordered monoid studied in Examples 3.18.
While for U = D(G) the restriction

νU | T (U) : T (U) → G(U)

of the ghost map νU is bijective, for U = U(v) this map usually has big fibers.

5. Dominance and transmissions

As before now all semirings are assumed to be commutative. R is any semiring, and U, V
are bipotent semirings.

Definition 5.1. If ϕ : R → U and ψ : R → V are supervaluations, we say that ϕ domi-
nates ψ, and write ϕ ≥ ψ, if for any a, b ∈ R the following holds.

D1. ϕ(a) = ϕ(b) ⇒ ψ(a) = ψ(b),

D2. eϕ(a) ≤ eϕ(b) ⇒ eψ(a) ≤ eψ(b),

D3. ϕ(a) ∈ eU ⇒ ψ(a) ∈ eV.

Notice that D3 can be also phrased as follows:

ϕ(a) = eϕ(a) ⇒ ψ(a) = eψ(a).
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Lemma 5.2. Let ϕ : R → U and ψ : R → V be supervaluations. Assume that ϕ dominates
ψ, and also (without essential loss of generality) that ϕ is surjective. Then there exists a
unique map α : U → V with ψ = α ◦ ϕ and

∀x ∈ U : α(eUx) = eV α(x)

(i.e., α ◦ νU = νV ◦ α).
Proof. By D1 and D2 we have a unique well-defined map β : ϕ(R) → ψ(R) with β(ϕ(a)) =
ψ(a) for all a ∈ R and a unique well-defined map γ : eϕ(R) → eψ(R) with γ(eϕ(a)) = eψ(a)
for all a ∈ R. Now U = ϕ(R) ∪ eϕ(R), since ϕ is assumed to be surjective. Suppose that
x ∈ ϕ(R) ∩ eϕ(R). Then x = ϕ(a) for some a ∈ R, and x = ex = eϕ(a). By axiom D3 we
conclude that ψ(a) = eψ(a). Thus β(x) = γ(x). This proves that we have a unique well-
defined map α : U → V with α(x) = β(x) for x ∈ ϕ(R) and α(y) = γ(y) for y ∈ eϕ(R). We
have α(ϕ(a)) = ψ(a), i.e., ψ = α ◦ ϕ. Moreover, for any a ∈ R, α(eUϕ(a)) = γ(eUϕ(a)) =
eV ψ(a). ¤

We record that in this proof we did not use the full strength of D2 but only the weaker
rule that eϕ(a) = eϕ(b) implies eψ(a) = eψ(b).

Definition 5.3. Assume that U and V are supertropical semirings.

a) If α is a map from U to V with α(eU) ⊂ eV, we say that α covers the map γ : eU →
eV obtained from α by restriction, and we write γ = αν . We also say that γ is the
ghost part of α.

b) Assume that ϕ : R → U is a surjective supervaluation and ψ : R → V is a supervalua-
tion dominated by ϕ. Then we call the map α occurring in Lemma 5.2, which is clearly
unique, the transmission from ϕ to ψ, and we denote this map by αψ,ϕ. Clearly,
αψ,ϕ covers the map γw,v connecting the surjective m-valuation v := eϕ : R → eU to
the m-valuation w := eψ : R → eV introduced in Definition 2.11.

Theorem 5.4. Let ϕ : R → U be a surjective supervaluation and ψ : R → V a supervalua-
tion dominated by ϕ. The transmission α := αψ,ϕ obeys the following rules:

TM1 : α(0) = 0,

TM2 : α(1) = 1,

TM3 : ∀x, y ∈ U : α(xy) = α(x)α(y),

TM4 : α(eU) = eV ,

TM5 : ∀x, y ∈ eU : α(x+ y) = α(x) + α(y).

Proof. TM1, TM2, and TM4 are obtained from the construction of α in the proof of
Lemma 5.2. This construction tells us also that α sends eU to eV . Using (again) that
U = ϕ(R) ∪ eϕ(R), we check easily that TM3 holds. The rule D2 (in its full strength) tells
us that the map γ : eU → eV , obtained from α by restriction, is order preserving. This is
TM5. ¤

Definition 5.5. If U and V are supertropical semirings, we call any map α : U → V which
the rules TM1–TM5, a transmissive map from U to V.

The axioms TM1-TM5 tell us that a transmissive map α : U → V is the same thing as a
homomorphism from the monoid (U, · ) to (V, · ) which restricts to a semiring homomorphism
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from eU to eV . It is evident that every homomorphism from the semiring U to V is a trans-
missive map, but there exist quite a few transmissive maps, which are not homomorphisms;
cf. §9 below and [IKR].

As a converse to Lemma 5.2 we have the following fact.

Proposition 5.6. Assume that ϕ : R → U is a supervaluation and α : U → V is a
transmissive map from U to a supertropical semiring V. Then α ◦ ϕ : R → V is again a
supervaluation. If eϕ has one of the properties “amenable”, “bipotent,” “strong”, “strict”,
then e(α ◦ ϕ) has the same property.

Proof. Let ψ := α ◦ ϕ. Clearly ψ inherits the properties SV1–SV3 from ϕ, since α obeys
TM1–TM3. If a ∈ R, then, by TM4,

eψ(a) = e(α(ϕ(a))) = α(eϕ(a));

hence eψ = αν ◦ (eϕ). Since eϕ is an m-valuation, and αν : eU → eV is order preserving by
TM5, we conclude that eψ is again an m-valuation.

Now assume that eϕ is amenable. Then we see that eψ is amenable as follows. Let
a, b ∈ R be given with eψ(a) 6= eψ(b), i.e., α(eϕ(a)) 6= α(eϕ(b)). Then eϕ(a) 6= eϕ(b); hence
eϕ(a + b) ∈ {eϕ(a), eϕ(b)}. Applying the map αν we obtain eψ(a + b) ∈ {eψ(a), eψ(b)}. In
the same way one verifies that eψ inherits any of the properties “bipotent”, “strict,” “strong”
from eϕ. ¤

Remark 5.7. If ϕ : R → U is a surjective supervaluation (cf. Definition 4.3) and α : U → V
is a surjective transmissive map, then the supervaluation α◦ϕ is again surjective. Conversely,
if ϕ : R → U and ψ : R → V are surjective supervaluations, and ϕ dominates ψ, then the
transmission αψ,ϕ : U → V is a surjective map.

Combining Theorem 5.4, Proposition 5.6 and this remark, we read off the following facts.

Scholium 5.8. Let U, V be supertropical semirings and ϕ : R → U a surjective supervalua-
tion.

a) The supervaluations ψ : R → V dominated by ϕ correspond uniquely with the trans-
missive maps α : U → V via ψ = α ◦ ϕ, α = αψ,ϕ.

b) If P is one of the properties “strict, strong, bipotent, amenable”, and eϕ has property
P, then eψ has property P.

c) The supervaluation ψ is surjective iff the map α is surjective.
d) Given a semiring homomorphism γ : eU → eV , the supervaluation ψ covers the

m-valuation γ ◦ (eϕ) iff αν = γ.
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Example 5.9. Let U be a supertropical semiring with ghost ideal M := eU. Then, as we
know, the ghost map νU : U → M, x 7→ ex, is a strict m-valuation on the semiring U
(Remark 3.12). Clearly, the identity map idU : U → U is a supervaluation covering νU .
Assume now that α : U → V is a transmissive map. Let γ := αν denote the homomorphism
from M to N := eV covered by α. Then v := γ ◦ νU = νV ◦ α is a strict valuation on U with
values in N, and α := α◦idU is a supervaluation on U covering v. Thus α is the transmission
from the supervaluation idU : U → U to the supervaluation α : U → V covering v.

The example tells us in particular that every transmissive map is the transmission between
some supervaluations. Therefore we may and will also use the shorter term “transmission”
for “transmissive map”.

In general, a transmission does not behave additively; hence is not a homomorphism. We
now record cases where nevertheless some additivity holds.

Proposition 5.10. Let α : U → V be a transmission and γ : eU → eV denote the ghost
part of α, γ = αν (which is a semiring homomorphism).

i) If x, y ∈ U and ex = ey, then α(x) + α(y) = α(x+ y).
ii) If x, y ∈ U and α(x) + α(y) is tangible, then again α(x) + α(y) = α(x+ y).
iii) If γ is injective, then α is a semiring homomorphism.

Proof. Let x, y ∈ U be given, and assume without loss of generality that ex ≤ ey. Notice
that this implies

eα(x) = α(ex) ≤ α(ey) = eα(y).

i): If ex = ey, then eα(x) = eα(y), and we have x+y = ex, α(x)+α(y) = eα(x) = α(ex);
hence α(x) + α(y) = α(x+ y).

ii): If α(x) + α(y) is tangible, then certainly eα(x) 6= eα(y); hence eα(x) < eα(y). This
implies ex < ey. Thus x+ y = y, α(x) + α(y) = α(y); hence α(x) + α(y) = α(x+ y).

iii): From i) we know that α(x + y) = α(x) + α(y) holds if ex = ey. Assume now that
ex < ey. Since γ is injective this implies eα(x) < eα(y). Thus x+y = y, α(x)+α(y) =
α(y); hence again α(x+ y) = α(x) + α(y).

¤
Given an m-valuation v : R → M , we now focus on the supervaluations ϕ : R → U which

cover v, i.e., with eU = M and eϕ = νU ◦ ϕ = v. We single out a class of supervaluations
which will play a special role.

Definition 5.11. A supervaluation ϕ : R → U is called tangibly injective if the map ϕ is
injective on the set ϕ−1(T (U)), i.e.,

∀a, b ∈ R : ϕ(a) = ϕ(b) ∈ T (U) ⇒ a = b.

Example 5.12. The supervaluation ϕv : R → U(v) constructed in §4 (cf. Example 4.5 and
Definition 4.6) is injective on the set R \ v−1(0), hence certainly tangibly injective. Notice
that ϕ−1(T (U(v))) = R \ v−1(0), i.e., ϕ is tangible. ϕ is also surjective.

Theorem 5.13. Assume that ϕ : R → U is a tangibly injective supervaluation covering v :
R → M. Let ψ : R → V be another supervaluation covering v, in particular, eU = eV = M.

a) ϕ dominates ψ iff the following holds:

∀a ∈ R : ϕ(a) = v(a) ⇒ ψ(a) = v(a), (5.1)

in other terms, ϕ(a) ∈ eU ⇒ ψ(a) ∈ eV.



SUPERTROPICAL SEMIRINGS AND SUPERVALUATIONS 19

b) If, in addition, ϕ is tangibly surjective (cf. Definition 4.1.c), then ϕ dominates ψ iff
there exists a homomorphism map α : U → V covering the identity of M such that
α ◦ ϕ = ψ. The supervaluation ψ is tangibly surjective iff α is surjective.

Proof. a): In the definition of dominance in Definition 5.1, the axiom D2 holds trivially since
eϕ(a) = eψ(a) = v(a). Axiom D3 is our present condition (5.1). Axiom D1 needs only to be
checked in the case ϕ(a) = ϕ(b) ∈ T (U), and then holds trivially since this implies a = b by
the tangible injectivity of ϕ.

b): Replacing U by the subsemiring T (U) ∪ v(R) we assume without loss of generality
that the supervaluation ϕ is surjective. A transmission α from ϕ to ψ is forced to cover
the identity of M ; hence is a semiring homomorphism, cf. Proposition 5.10.iii. We have
α(U) ⊃ eV. Thus α is surjective iff α(T (U)) = T (V ). This gives us the last claim. ¤
Corollary 5.14. Assume that v : R → M is a valuation. The supervaluation ϕv : R → U(v)
dominates every supervaluation ψ : R → U covering v. Thus these supervaluations ψ corre-
spond uniquely with the transmissive maps α : U(v) → U covering idM . They are semiring
homomorphisms.

Proof. ϕv is tangibly injective, and (5.1) holds trivially, since ϕv(a) ∈ eU only if v(a) = 0.
Theorem 5.13 and Proposition 5.10.iii apply. ¤
Definition 5.15. Due to this property of ϕv we call ϕv the initial supervaluation covering
v (or initial cover of v for short).

Remark 5.16. We may also regard v : R → M as a cover of v, viewing M as a ghost
supertropical semiring. Clearly every supervaluation ψ : R → U covering v dominates v
with transmission νU . Thus we may view v : R → M as the terminal supervaluation
covering v (or terminal cover of v for short).

The following proposition gives examples of dominance ϕ ≥ ψ where ϕ is not assumed to
be tangibly injective.

Proposition 5.17. Let U be a supertropical semiring with ghost ideal M := eU. Assume
that L is a submonoid of (M, ·) with M · (M \ L) ⊂ M \ L.

a) The map α : U → U, defined by

α(x) =

{
x if ex ∈ L,

ex if ex ∈ M \ L,
is an endomorphism of the semiring U.

b) If ϕ : R → U is any supervaluation, then the map ϕL := α ◦ ϕ from R to U
is a supervaluation dominated by ϕ and covering the same m-valuation as ϕ, i.e.
eϕL = eϕ.

Proof. a): We have eα(x) = ex for every x ∈ U, and α(x) = x for every x ∈ M. One checks
in a straightforward way that α is multiplicative, α(0) = 0, α(1) = 1.

We verify additivity. Let x, y ∈ U be given, and assume without loss of generality that
ex ≤ ey. We have eα(x) = α(e)α(x) = α(ex) = ex and eα(y) = ey. If ex = ey then
x + y = ex, and α(x) + α(y) = eα(x) = ex = α(x + y). If ex < ey then x + y = y and
α(x) + α(y) = α(y); hence again α(x) + α(y) = α(x+ y).

b): Now obvious. ¤
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Notice that ϕL = α◦ϕ with a map α : U → U given by α(x) = x if ex ∈ L, and α(x) = ex
if ex ∈ M \ L. Thus if ϕ is surjective, α is the transmission from ϕ to ϕL.

It is not difficult to find instances where Proposition 5.17 applies.

Example 5.18. Assume that M is a submonoid of Γ ∪ {0} for Γ an ordered abelian group.
Let H be a subgroup of Γ containing the set {x ∈ M

∣∣ x > 1}. Then
L = {x ∈ M | ∃h ∈ H with x ≥ h}

is a submonoid of M \ {0}. We claim that M · (M \ L) ⊂ M \ L.
Proof. Let x ∈ M, y ∈ M \ L be given. If x ≤ 1, then xy ≤ y; hence, clearly, xy ∈ M \ L.
Assume now that x > 1. Then x ∈ H. Suppose that xy ∈ L; hence h ≤ xy for some h ∈ H.
Then x−1 ≤ y and x−1h ∈ H; hence y ∈ L, a contradiction. Thus xy ∈ M \ L again. ¤

Later we will meet many transmissive maps which are not semiring homomorphisms (cf.
Theorem 9.11, [IKR]).

6. Fiber contractions

Before we come to the main theme of this section, we write down functional properties of
the class of transmissive maps.

Proposition 6.1. Let α : U → V and β : V → W be maps between supertropical semirings.

i) If α and β transmissive, then βα is transmissive.
ii) If α and βα are transmissive and α is surjective, then β is transmissive.

Proof. a) It is evident that analogous statements hold for the class of maps between su-
pertropical semirings obeying the axioms TM1–TM4 in §5. Thus we may assume from the
beginning that α, β and (hence) βα obey TM1–TM4, and have only to deal with the axiom
TM5 (cf. Theorem 5.4, Definition 5.5).

b) We conclude from TM3 and TM4 that α maps eU to eV and β maps eV to eW. TM5
demands that these restricted maps are semiring homomorphisms. Thus it is evident that
βα obeys TM5 if α and β do. If α is surjective, then also the restriction α|eU : eU → eV is
surjective, since for x ∈ U, y ∈ eV with α(x) = y we also have α(ex) = y. Clearly, TM5 for
α and βα implies TM5 for β in this case. ¤

Often we will only need the following special case of Proposition 6.1.

Corollary 6.2. Let U, V,W be supertropical semirings. Assume that α : U → V is a
surjective semiring homomorphism. Then a map β : V → W is transmissive iff βα has this
property. ¤

In the entire section U is a supertropical semiring. We look for equivalence relations on
the set U that respect the multiplication on U and the fibers of the ghost map γU : U → eU.

Definition 6.3. Let E be an equivalence relation on the set U . We say that E is multi-
plicative if for any x1, x2, y ∈ U,

x1 ∼E x2 ⇒ x1y ∼E x2y. (6.1)

We say that E is fiber conserving if for any x1, x2 ∈ U,

x1 ∼E x2 ⇒ ex1 = ex2. (6.2)

If E is both multiplicative and fiber conserving, we call E an MFCE-relation (multiplicative
fiber conserving equivalence relation) for short.
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Examples 6.4. (i) Assume that α : U → V is a multiplicative map from U to a su-
pertropical semiring V. Then the equivalence E(α), given by

x1 ∼ x2 iff α(x1) = α(x2),

is clearly multiplicative. If in addition α(eU) = eV , and if the induced map γ :
eU → eV, γ(ex) = eα(x), is injective, then E(α) is also fiber conserving; hence an
MFCE-relation. We usually denote this equivalence ∼ by ∼α .

In particular, we have an MFCE-relation E(α) on U for any semiring homomor-
phism α : U → V which is injective on eU.

(ii) The ghost map ν = νU : U → U gives us an MFCE-relation E(ν) on U. Clearly

x1 ∼ν x2 iff ex1 = ex2.

E(ν) is the coarsest MFCE-relation on U.
(iii) If E1 and E2 are equivalence relations on the set U , then E1 ∩E2 is again an equiv-

alence relation on U. {As usual, we regard an equivalence relation on U as a subset
of U × U}. We have

x1 ∼E1∩E2 x2 iff x1 ∼E1 x2 and x1 ∼E2 x2.

If E1 is multiplicative and E2 is an MFCE, then E1 ∩ E2 is an MFCE.
(iv) In particular, every multiplicative equivalence relation E on U gives us an MFCE-

relation E ∩E(ν) on U. This is the coarsest MFCE-relation on U which is finer than
E. We have

x1 ∼E∩E(ν) x2 iff x1 ∼E x2 and ex1 = ex2.

(v) We define an equivalence relation Et (the “t” alludes to “tangible”) on U as follows,
writing ∼t for ∼Et :

x1 ∼t x2 iff either x1 = x2

or x1, x2 ∈ T (U) and ex1 = ex2.

Clearly, this is an MFCE-relation iff for any tangible x1, x2, y ∈ E with ex1 = ex2

both x1y and x2y are tangible or equal. In particular, Et is an MFCE if T (U) is
closed under multiplication.

Let F denote the equivalence relation on U which has the equivalence classes T (U) and
eU . It is readily checked that Et = F ∩ E(ν).

The equivalence classes of Et contained in T (U) are the sets T (U) ∩ ν−1
U (z) with z ∈ M,

which are not empty. We call them the tangible fibers of νU .

Our next goal is to prove that, given an MFCE-relation E on U, the set U/E of all
E-equivalence classes inherits from U the structure of a supertropical semiring.

Lemma 6.5. If E is a fiber conserving equivalence relation on U , then for any x1, x2, y ∈ U

x1 ∼E x2 ⇒ x1 + y ∼E x2 + y.

Proof. ex1 = ex2. If ey < ex1, we have x1 + y = x1, x2 + y = x2. If ey = ex1, we have
x1 + y = ey = x2 + y. If ey > ex1, we have x1 + y = y = x2 + y. Thus, in all three cases,
x1 + y ∼E x2 + y. ¤

Notice that, as a formal consequence of the lemma, more generally

x1 ∼E x2, y1 ∼E y2 ⇒ x1 + y1 ∼E x2 + y2.
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Theorem 6.6. Let E be an MFCE-relation on a supertropical semiring U. On the set U :=
U/E of equivalence classes [x]E, x ∈ U, we have a unique semiring structure such that the
projection map πE : U → U, x 7→ [x]E is a semiring homomorphism. This semiring U is

supertropical, and πE covers a semiring isomorphism eU
∼→ ēU. (Here ē := eU = πE(e).)

Proof. We write x̄ := [x]E for x ∈ U and π := πE. Thus π(x) = x̄. Due to Lemma 6.5 and
condition (6.1), we have a well-defined addition and multiplication on U, given by the rules
(x, y ∈ U)

x̄+ ȳ := x+ y, x̄ · ȳ := xy.

The axioms of a commutative semiring are valid for these operations, since they hold in
U, and the map π is a homomorphism from U onto the semiring U .

We have 1̄ + 1̄ = ē and ēU = π(eU). If x, y ∈ eU and x ∼E y then x = ex = ey = y,
since E is fiber conserving. Thus the restriction π|eU is an isomorphism from the bipotent
semiring eU onto the semiring ēU (which thus is again bipotent).

We are ready to prove that U is supertropical, i.e. that axioms (3.3′), (3.3′′), (3.4) from
§3 are valid. It is obvious that U inherit properties (3.3′) and (3.4) from U . Let x, y ∈ E be
given with ēx̄ = ēȳ, i.e. ex = ey. Then ex = ey; hence x + y = ex by axiom (3.3′′) for U .
Applying the homomorphism π we obtain x̄+ ȳ = ēx̄. Thus U also obeys (3.3′′). ¤

Remark 6.7. Theorem 6.6 tells us, in particular, that every MFCE-relation E on U is of
the form E(α) for some semiring homomorphism α : U → V with α|eU bijective, namely,
E = E(πE).

Theorem 6.8. Assume that α : U → V is a multiplicative map. Let E be an MFCE-relation
on U, which is respected by α, i.e., x ∼E y implies α(x) = α(y). Clearly, we have a unique
multiplicative map ᾱ : U/E → V with ᾱ ◦ πE = α.

Then, if α is a transmission (a semiring homomorphism), the map ᾱ is of the same kind.

Proof. Corollary 6.2 gives us all the claims, since πE is a surjective homomorphism. ¤

Definition 6.9. We call a map α : U → V between supertropical semirings a fiber con-
traction, if α is transmissive and surjective, and the map γ : eU → eV covered by α is
strictly order preserving.

Notice that then α is a semiring homomorphism (cf. Proposition 5.10.iii) (hence α is a
transmission), and γ is an isomorphism from eU to eV.

Scholium 6.10.

i) If E is an MFCE-relation on U , by Theorem 6.6, the map πE : U → U/E is a fiber
contraction. On the other hand, if a surjective fiber contraction α : U ³ V is given,
then clearly E(α) is an MFCE-relation, and, as Theorem 6.8 tells us, α induces a

semiring isomorphism ᾱ : U/E(α)
∼→ V with α = ᾱ ◦ πE(α). In short, every fiber

contraction α on U is a map πE with E an MFCE-relation on U uniquely determined
by α, followed by a semiring isomorphism.

ii) If the semiring isomorphism ᾱ is the identity idM of M := eU (in particular eU =
eV ), we say α is a fiber contraction over M .

If E is an equivalence relation on a set X, and Y is a subset of X, we denote the set of
all equivalence classes [x]E with x ∈ Y } by Y/E.
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Example 6.11. Assume that U is a supertropical domain (cf. 3.14). Then the equiv-
alence relation Et introduced in Example 6.4.v is MFCE, and T (U) is a union of Et-
equivalence classes. The ring U = U/Et is a supertropical domain with T (U) = T (U)/Et

and G(U) = G(U). The ghost map of U maps T (U) bijectively to G(U); hence gives us a

monoid isomorphism v : T (U)
∼→ G(U). Thus (in notation of Examples 3.18)

U/Et = D(G(U)).

The map πEt is a fiber contraction over eU = eU/Et.

Example 6.12. (cf. Proposition 5.17) Let U be a supertropical semiring, M := eU, and let
L be a submonoid of (M, ·) with M · (M \ L) ⊂ M \ L. Then the map α : U → U with
α(x) = x if ex ∈ L, α(x) = ex if ex ∈ M \L, is a fiber contraction over M. The image of α
is the subsemiring ν−1

U (L) ∪ (M \ L) of U.
Example 6.13. Let again U be a supertropical semiring and M := eU. But now assume
only that L is a subset of M with M · (M \ L) ⊂ M \ L. We define an equivalence relation
E(L) on U as follows:

x ∼E(L) y ⇔ either x = y or ex = ey ∈ M \ L.
One checks easily that E(L) is MFCE. But if L is not a submonoid of (M, ·), then in the
supertropical semiring U := U/E(L) the set T (U) of tangible elements is not closed under
multiplication. In particular, U is not isomorphic to a subsemiring of U.

For later use we introduce one more notation.

Notation 6.14. If ϕ : R → U is a supervaluation and E is an MFCE-relation on U , let
ϕ/E denote the supervaluation πE ◦ ϕ : R → U/E. Thus, for any a ∈ R,

(ϕ/E)(a) := [ϕ(a)]E .

7. The lattices C(ϕ) and Cov(v)

Given an m-valuation v : R → M on a semiring R, we now can say more about the class of
all supervaluations ϕ covering v. Recall that these are the supervaluations ϕ : R → U with
eU = M and νU ◦ ϕ = v, in other words, eϕ = v. For short, we call these supervaluations
ϕ the covers of the m-valuation v. It suffices to focus on covers of v which are tangibly
surjective, cf. Remark 4.4. (N.B. Without loss of generality, we could even assume that v is
surjective. Then a cover ϕ of v is tangibly surjective iff ϕ is surjective.)

Definition 7.1.

a) We call two covers ϕ1 : R → U1, ϕ2 : R → U2 of v equivalent, if ϕ1 ≥ ϕ2 and ϕ2 ≥
ϕ1, i.e., ϕ1 dominates ϕ2, and ϕ2 dominates ϕ1. If ϕ1 and ϕ2 are tangibly surjective
(without essential loss of generality, cf. Remark 4.4), this means that ϕ2 = α ◦ ϕ1

with α : U1 → U2 a semiring isomorphism over M (i.e., eα(x) = ex for all x ∈ U1).
b) We denote the equivalence class of a cover ϕ : R → U of v by [ϕ], and we denote

the set of all these equivalence classes by Cov(v). {Notice that Cov(v) is really a
set, not just a class, since for any tangibly surjective cover ϕ : R → U , we have
U = ϕ(R) ∪ M ; hence the cardinality of U is bounded by CardR + CardM.} On
Cov(v) we have a partial ordering: [ϕ1] ≥ [ϕ2] iff ϕ1 dominates ϕ2. We always regard
Cov(v) as a poset5 in this way.

5 = partially ordered set
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c) If a covering ϕ : R → U of v is given, we denote the subposet of Cov(ϕ) consisting
of all [ψ] ∈ Cov(v) with [ϕ] ≥ [ψ] by C(ϕ). {Notice that this poset is determined by
ϕ alone, since v = eϕ.}

In §5 we have seen that, given a tangibly surjective cover ϕ : R → U of v, the tangibly
surjective covers ψ : R → V dominated by ϕ correspond uniquely to the transmissive
surjective maps α : U → V which restrict to the identity on M = eU = eV. Scholium 6.10
from the preceding section tell us, in particular, the following

Theorem 7.2. Suppose that ϕ : R → U be a tangibly surjective covering of the m-valuation
v : R → M.

a) The elements [ψ] of C(ϕ) correspond uniquely to the MFCE-relations E on U via
[ψ] = [ϕ/E].

b) Let MFC(U) denote the set of all MFCE-relations on U, ordered by the coarsening
relation: E1 ≤ E2 iff E2 is coarser than E1, i.e., E1 ⊂ E2, if the Ei are viewed – as
customary – as subsets of U ×U. The map E 7→ [ϕ/E] is an anti-isomorphism (i.e.,
an order reversing bijection) from the poset MFC(U) to the poset C(ϕ).

If (Ei

∣∣ i ∈ I) is a family in MFC(U) then the intersection E :=
⋂

i∈I Ei is again an

MFCE-relation on U, and is the infimum of the family (Ei

∣∣ i ∈ I) in MFC(U). Since
MFC(U) has a biggest and smallest element, namely E(νU) and the diagonal of U in U×U,
it is now clear that the poset MFC(U) is a complete lattice. Thus, for any cover ϕ : R → U
of the m-valuation v : R → M , also the poset C(ϕ) is a complete lattice. {We easily retreat
to the case that ϕ is tangibly surjective.}

The supremum of a family (Ei

∣∣ i ∈ I) in MFC(U) is the following equivalence relation
F on U. Two elements x, y of U are F -equivalent iff there exists a finite sequence x0 =
x, x1, . . . , xm = y in U such that for each j ∈ {1, . . . ,m} the element xj−1 is Ek-equivalent
to xj for some k ∈ I.

Construction 7.3. Assume again that ϕ is tangibly surjective. The supremum
∨

i∈I ξi of
a family (ξi

∣∣ i ∈ I) in C(ϕ) can be described as follows. Choose for each i ∈ I a tangibly
surjective representative ψi : R → Vi of ξi. Thus eVi = M, and ψi is a cover of v dominated
by ϕ. Let ei := eVi

(= 1M), and let V denote the set of all elements x = (xi

∣∣ i ∈ I) in the
semiring

∏
i∈I Vi with eixi = ejxj for i 6= j. This is a subsemiring of

∏
i∈I Vi containing the

image M ′ of M in
∏

Vi under the diagonal embedding of M into
∏

Vi. We identify M ′ = M,
and then have

eU = 1M = (ei
∣∣ i ∈ I) = 1V + 1V .

It is now a trivial matter to verify that V is a supertropical semiring by checking the axioms
in §3. We have eV V = eV = M ′ = M. The supervaluations ψi : R → Ui combine to a map
ψ : R → V, given by

ψ(a) := (ψi(a)
∣∣ i ∈ I) ∈ V

for a ∈ R. It is a supervaluation covering v, and ϕ : R → U dominates ψ (e.g., check the
axioms D1–D3 in §5). The class [ψ] is the supremum of the family (ξi

∣∣ i ∈ I) in C(ϕ).

Given again a family (ξi
∣∣ i ∈ I) in C(ϕ) with representatives ψi : R → Vi of the ξi, we

indicate how the infimum ∧ξi in C(ϕ) can be built, without being as detailed as above for
the supremum.

We assume that each supervaluation ψi is surjective. The transmission δi : U → Vi from
ϕ to ψi is a surjective semiring homomorphism. We form the categorical direct limit (=
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colimit) of the family (δi
∣∣ i ∈ I) in the category of semirings (cf. [Mit, Chap. II], [ML,

III, §3]). Thus we have a semiring V together with a family of semiring homomorphisms
(αi : Vi → V

∣∣ i ∈ I) such that αi ◦ δi = αj ◦ δj for i 6= j, which is universal. This means

that, given a family (βi : Vi → W
∣∣ i ∈ I) of homomorphisms with βi ◦ δi = βj ◦ δj for i 6= j,

there exists a unique homomorphism β : V → W with β ◦ αi = βi for every i ∈ I. Choosing
some i ∈ I let

ε := αi ◦ δi : U → V.

This homomorphism, which is independent of the choice of i, is surjective, due to universality,
since all maps δj : U → Vj are surjective. It turns out that the restriction ε|eU maps
eU = M isomorphically onto eV. We identify M with eV by this isomorphism and then have
ε|eU = 1M .

This can be seen as follows. Let ν := νU and νi := νVi
denote the ghost maps of U

and Vi. For every i ∈ I we have νi ◦ δi = ν. By universality we obtain a homomorphism
µ : V → M with µ ◦ αi = νi for every i. Let ji denote the inclusion map from M to Vi. We
have νi ◦ ji = idM ; hence

µ ◦ αi ◦ ji = νi ◦ ji = idM .

The surjective homomorphism αi maps M = eVi onto eV. We conclude that the restriction
αi|M gives an isomorphism from M onto eV, the inverse map being given by µ.

We identify M with eV via αi|M. Now αi : Vi → V has become a surjective semiring
homomorphism over M (for every i). Thus also ε : U → V is a surjective homomorphism
over M. We conclude, that epsilon gives an MFCE-relation E(ε) and the semiring V is
supertropical. The supervaluation

ψ := εϕ = αi ◦ ψi is dominated by every ψi and [ψ] =
∧
i

ξi.

Since Vi = ψi(R)∪M for every i, the semiring V and the αi can be described completely in
terms of the ψi without mentioning U and the δi. We leave this to the interested reader.

Definition 7.4. We call a supervaluation ϕ initial if ϕ dominates every other supervalua-
tion ψ with eϕ = eψ. We then also say that ϕ is an initial cover of v := eϕ.

If an m-valuation v : R → M is given, a supervaluation ϕ : R → U is an initial cover of v
iff eϕ = v and [ϕ] is the biggest element of the poset Cov(v).

Such an initial cover had been constructed explicitly in §4 in the case that v is a valuation,
namely, the supervaluation ϕv : R → U(v), cf. Definition 4.6 and Corollary 5.14. We now
prove that an initial cover always exists, although in general we do not have an explicit
description.

Proposition 7.5. Every m-valuation v : R → M has an initial cover. The poset Cov(v) is
a complete lattice.

Proof. Let (ψi

∣∣ i ∈ I) be a family of coverings of v which represents every element of the
set Cov(v). Now repeat Construction 7.3 with this family. It gives us a covering ψ : R → V
of v which dominates all ψi; hence is an initial covering of v. Of course, C(ψ) = Cov(v), and
thus Cov(v) is a complete lattice. ¤
Notation 7.6. If v : R → M is any m-valuation, let ϕv : R → U(v), denote a fixed
tangibly surjective initial supervaluation covering v. If v is a valuation, we choose for ϕv the
supervaluation constructed in Example 4.5.
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Notice that ϕv is unique up to unique isomorphism over M, i.e., if ψ : R → V is another
surjective initial cover of v, there exists a unique semiring isomorphism α : U(v)

∼→ V which
restricts to the identity on M. We call ϕv “the” initial cover of v. The lattice Cov(v)
coincides with C(ϕv).

Given a supervaluation ϕ : R → U or an m-valuation v : R → M , we view the lattice
C(ϕ) and Cov(v) as a measure of complexity of ϕ and v, respectively, and thus make the
following formal definition.

Definition 7.7. We call the isomorphism class of the lattice C(ϕ) the lattice complexity
of the supervaluation ϕ and denote it by lc(ϕ). In the same vein we call the isomorphism
class of the lattice Cov(v) the tropical complexity of the m-valuation v and denote it by
trc(v). We have trc(v) = lc(ϕv).

The word “complexity” in Definition 7.7 should not be taken too seriously. Usually a
“measure of complexity” has values in natural numbers or, more generally, in some well
understood fixed ordered set. The isomorphism classes of lattices are not values of this kind.
Our idea behind the definition is that, if you are given a function m on the class of lattices
which measures (part of) their complexity in some way, then m ◦ lc, resp. m ◦ trc, is such a
function on the class of supervaluations, resp. m-valuations.

Theorem 7.2 implies the following remarkable fact.

Theorem 7.8. If ϕ : R → U and ϕ′ : R′ → U are tangibly surjective supervaluations with
values in the same supertropical semiring U , then lc(ϕ) = lc(ϕ′).

Proof. Both lattices C(ϕ) and C(ϕ′) are anti-isomorphic to MFC(U); hence are isomorphic.
¤

Example 7.9. Let ϕ : R → U be a tangibly surjective supervaluation. The identity
idU : U → U is also a supervaluation. It is the initial cover of the ghost map νU : U → eU.
We have lc(ϕ) = trc(νU).

8. Orbital equivalence relations

Our main goal in this section is to introduce and study a special kind of MFCE-relations on
supertropical semirings, which seems to be more accessible than MFCE-relations in general.
But for use in later sections, we will define more generally “orbital” equivalence relations on
supertropical semirings. They are multiplicative but not necessarily fiber conserving. The
relations we are looking for here then will be the orbital MFCE-relations.

In the following U is a supertropical semiring, and M := eU denotes its ghost ideal. We
always assume that T (U) is not empty, i.e., e 6= 1. We introduce the set

S(U) := {x ∈ U
∣∣ xT (U) ⊂ T (U)}.

This is a subset of T (U) closed under multiplication and containing the unit element 1U ;
hence is a monoid.

The monoid S(U) operates on the sets U and T (U) by multiplication. If T (U) itself is
closed under multiplication then S(U) = T (U).

Let G be a submonoid of S(U). Then also G operates on U and on T (U). For any x ∈ U
we call the set Gx the orbit of x under G (as common at least for G a group). We define a
binary relation ∼G on U as follows:

x ∼G y ⇔ ∃g, h ∈ G : gx = hy.
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Thus x ∼G y iff the orbits Gx and Gy intersect. Clearly this is an equivalence relation on
U, which is multiplicative, i.e., obeys the rule (6.1) from §6. We denote this equivalence
relation by E(G).

The relation E(G) on U is MFCE, i.e., obeys also the rule (6.2) from §6, iff G is contained
in the “unit-fiber”

Te(U) := {x ∈ T (U)|ex = e}
of T (U). The biggest such monoid is the unit fiber

Se(U) := {g ∈ S(U)
∣∣ eg = e} = Te(U) ∩ S(U)

of S(U).

Example 8.1. Assume that R is a field and v : R → Γ∪{0} is a surjective valuation on R.
{In classical terms, v is a Krull valuation on R with value group Γ.} Let

U := U(v) = (R \ {0}) ∪̇ Γ ∪̇ {0},
cf. Definition 4.6. Then S(U) is the multiplicative group R∗ = R \ {0} of the field R, and
Se(U) is the group o∗v of units of the valuation domain

ov := {x ∈ R
∣∣ v(x) ≤ 1}.

Definition 8.2. We call an equivalence relation E on the supertropical semiring U orbital
if E = E(G) for some submonoid G of S(U). We denote the set of all orbital equivalence
relations on U by Orb(U) and the subset Orb(U)∩MFC(U), consisting of the orbital MFCE-
relations on U, by OFC(U). {“OFC” alludes to “orbital fiber conserving”.} Consequently, we
call the elements of OFC(U) the orbital fiber conserving equivalence relations on U ,
or OFCE-relations for short.

Example 8.3. It is evident that E(S(U)) is the coarsest orbital equivalence relation and
F := E(Se(U)) is the coarsest OFCE-relation on U. Assume now that U is a supertropical
domain. Then S(U) = T (U), Se(U) = Te(U), and G(U) = eT (U). E(S(U)) has just 3
equivalence classes, namely, T (U), G(U) and {0}. On the other hand, F is finer than the
MFCE-relation Et introduced in Example 6.4.v, whose equivalence classes in T (U) are the
tangible fibers of the ghost map νU . Very often Et is not orbital; hence F $ Et.

Subexample 8.4. Let R = k[x] be the polynomial ring in one variable x over a field k.
Choose a real number ϑ with 0 < ϑ < 1, and let v be the surjective valuation on R defined by

v(f) = ϑdeg f .

Thus, v : R ³ G ∪ {0} with G the monoid {ϑn
∣∣ n ∈ N0} ⊂ R. Finally, take

U := U(v) = (R \ {0}) ∪G ∪ {0},
cf. Definition 4.6. We have S(U) = R \ {0} and

Se(U) = {f ∈ R
∣∣ deg f = 0} = k \ {0},

the set of nonzero constant polynomials. If f, g ∈ T (U) are given with ef = eg, i.e.,
deg f = deg g, then f ∼F g iff g = cf with c a constant 6= 0. Thus, the set of F -equivalence
classes in T (U) can be identified with the set of monic polynomials in k[x], while the Et-
equivalence classes are the sets {f ∈ k[x]

∣∣ deg f = n} with n running thorough N0. For n = 0
this Et-equivalence class is also an F -equivalence class, while for n > 0 it decomposes into
infinitely many F -equivalence classes if the field k is infinite, and into |k|n F -equivalence
classes if k is finite.
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The semiring U/F (cf. §6) can be identified with the subsemiring V of U , which has as
tangible elements the monic polynomials in k[x] and has the same ghost ideal eV = eU as U.

¤
Different submonoidsG,H of S(U) may yield the same orbital equivalence relation E(G) =

E(H). But this ambiguity can be tamed.

Proposition 8.5. If G is a submonoid of S(U), then

G′ := {x ∈ S(U)
∣∣ ∃g ∈ G : gx ∈ G}

is a submonoid of S(U) containing G, and E(G) = E(G′). If G ⊂ Se(U) then G′ ⊂ Se(U).

Proof. a) It is immediate that G′ is a submonoid of S(U) and that G ⊂ G′. Given x ∈ G′ we
have elements g, h ∈ G with gx = h. If in addition G ⊂ Se(U), then e = eh = (eg)(ex) = ex;
hence x ∈ Se(U). Thus G′ ⊂ Se(U). It follows from G ⊂ G′ that E(G) ⊂ E(G′).

b) Let x, y ∈ U be given with x ∼G′ y. We have elements g′1, g
′
2 in G′ with g′1x = g′2y. We

furthermore have elements h1, h2 in G with h1g
′
1 = g1 ∈ G and h2g

′
2 = g2 ∈ G. Now

g1h2x = h1h2g
′
1x = h1h2g

′
2y = h1g2y.

Thus x ∼G y. This proves E(G′) ⊂ E(G); hence E(G) = E(G′). ¤
Definition 8.6. We call G′ the saturation of the monoid G (in U), and we say that G is
saturated if G = G′.

It is immediate that (G′)′ = G′. Thus G′ is always saturated.

Example 8.7. If S(U) happens to be a group, then the saturation of a submonoid G of S(U)
is just the subgroup of S(U) generated by G. Indeed, the elements of G′ are the x ∈ S(U)
with g1x = g2 for some g1, g2 ∈ G, i.e., the elements g−1

1 g2 with g1, g2 ∈ G.

Proposition 8.8. Let E be a multiplicative equivalence relation on U.

a) The set

GE := {x ∈ S(U)
∣∣ x ∼E 1}

is a saturated submonoid of S(U).
b) If E = E(H) for some submonoid H of S(U), then GE is the saturation H ′ of H.
c) In general, E(GE) is the coarsest orbital equivalence relation on U which is finer than

E.
d) If E is MFCE then GE ⊂ Se(U), and E(GE) is the coarsest OFCE-relation on U

which is finer than E.

Proof. a): If x, y ∈ GE then x ∼E 1, y ∼E 1; hence xy ∼E y ∼E 1, thus xy ∈ GE. This
proves that GE is a submonoid of S(U). Let x ∈ G′

E be given. We have elements g, h ∈ GE

with hx = g. It follows from g ∼E 1, h ∼E 1 that

x ∼E hx = g ∼E 1.

Thus x ∈ GE. This proves that G
′
E = GE.

b): Assume that E = E(H) with H a submonoid of S(U). For x ∈ S(U) we have

x ∼E 1 ⇔ ∃h1, h2 ∈ H : h1x = h2 ⇔ x ∈ H ′.

Thus GE = H ′.
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c): Let G := GE. If x ∼G y then g1x = g2y with some g1, g2 ∈ G. From g1 ∼E 1, g2 ∼E 1,
we conclude that

x ∼E g1x = g2y ∼E y.

Thus E(G) ⊂ E. If H is any submonoid of S(U) with E(H) ⊂ E, then

H ⊂ GE(H) ⊂ GE = G.

Thus E(H) ⊂ E(G).
d): Assume that E is MFCE. If x ∈ GE then we conclude from x ∼E 1 that ex = e. Thus

GE ⊂ Se(U). Every multiplicative equivalence relation on U which is finer than E is MFCE.
In particular, this holds for orbital relations. We learn from c) that E(GE) is the coarsest
OFCE-relation on U finer than E. ¤

We denote the set of saturated submonoids of S(U) by Sat(S(U)) and the set of saturated
submonoids of Se(U) by Sat(Se(U)).

Scholium 8.9. Propositions 8.5 and 8.8 imply that we have an isomorphism of posets
H 7→ E(H) from Sat(S(U)) to Orb(U), mapping Sat(Se(U)) onto OFC(U), with inverse
map E 7→ GE. {Here, of course, both sets Sat(S(U)) and Orb(U) are ordered by inclusion.}

It is fairly obvious that Sat(S(U)) is a complete lattice. Indeed, the supremum of a family
(Hi

∣∣ i ∈ I) of saturated submonoids of S(U) is the saturation H ′ of the submonoid of
S(U) generated by the Hi, while the infimum of this family is the saturation (

⋂
iHi)

′ of the
intersection of the family. Thus also Orb(U) is a complete lattice. It follows that Sat(Se(U))
and OFC(U) are complete sublattices of Sat(S(U)) and Orb(U), respectively.

Let Mult(U) denote the set of all multiplicative equivalence relations on U, partially or-
dered by inclusion. In §7 we have seen that the subposet MFC(U) of Mult(U), consisting of
the MFCE-relations on U, is a complete lattice. In the same way one proves that Mult(U)
itself is a complete lattice, the supremum and infimum of a family in Mult(U) being given in
exactly the same way as in §7 for MFCE-relations. This makes it also evident that MFC(U)
is a complete sublattice of Mult(U).

We doubt whether Orb(U) and OFC(U) are always sublattices of Mult(U) and MFC(U),
respectively. But we have the following partial result.

Proposition 8.10. Let (Gi

∣∣ i ∈ I) be a family of submonoids of S(U), and let G denote
the monoid generated by this family in S(U). Then, in the lattice Mult(U),

E(G) =
∨
i∈I

E(Gi).

{N.B. Thus the same holds in MFC(U), if every Gi ⊂ Se(U).}
Proof. Let F :=

∨
iE(Gi) in Mult(U). Of course, F ⊂ E(G) since each E(Gi) ⊂ E(G). Let

x, y ∈ U be given with x ∼G y. We want to conclude that x ∼F y, and then will be done.
We have gx = hy with elements g, h of G. Now g and h are products of elements in

⋃
i Gi,

and for any g′ ∈ ⋃
iGi and z ∈ U , we have z ∼F g′z. It follows that x ∼F gx and y ∼F hy;

hence x ∼F y. ¤
We present an important case where OFC(U) and MFC(U) nearly coincide.

Theorem 8.11. Assume that every x ∈ T (U) is invertible; hence T (U) is a group un-
der multiplication. {The main case is that U is a supertropical semifield.} Let E be an
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MFCE-relation on U. Then either E = E(ν), i.e., E is the top element of MFC(U) (cf. Ex-
ample 6.4.ii), or E is orbital.

Proof. a) Assume that there exists some x0 ∈ T (U) with x0 ∼E ex0. Multiplying by x−1
0 we

obtain 1 ∼E e, and then obtain x ∼E ex for every x ∈ U. Thus E = E(ν).
b) Assume now that x 6∼E ex for every x ∈ T (U) (i.e., E ⊂ Et). Clearly Se(U) = Te(U).

Let
H := G(E) = {x ∈ T (U)

∣∣ x ∼E 1}.
Then E(H) ⊂ E. Given x, y ∈ U with x ∼E y, we want to prove that x ∼H y. We have
ex = ey. If x ∈ eU or y ∈ eU , we conclude that x = y, due to our assumption on E. There
remains the case that both x and y are tangible. Then we infer from x ∼E y that

1 = x−1x ∼E x−1y.

Thus x−1y ∈ H, which implies x ∼H y. This completes the proof that E = E(H). ¤
Corollary 8.12. If every element of T (U) is invertible, then the poset MFC(U) \ {E(ν)}
is isomorphic to the lattice of subgroups of Te(U).

We may apply this to the “initial” supertropical semiring

U(v) = (R \ {0}) ∪ Γ ∪ {0}
associated to a surjective valuation v : R → Γ∪{0} on a field R. We obtain (cf. Example 8.1)

Scholium 8.13. If v is a Krull valuation on a field R with value group Γ, then the lattice
Cov(v) of equivalence classes of supervaluations covering v is isomorphic to the lattice of
subgroups of the unit group o∗v of the valuation domain ov := {x ∈ R

∣∣ v(x) ≤ 1}, augmented
by one element at the top.

9. Initial transmissions and a pushout property

We state the main problem which we address in this section.

Problem 9.1. Assume that U is a supertropical semiring with ghost ideal eU = M, and
γ : M → M ′ is a semiring homomorphism from M to a bipotent semiring M ′. Find a su-
pertropical semiring U ′ with ghost ideal eU ′ = M ′ and a transmission α : U → U ′ covering γ,
i.e., αν = γ (cf. Definition 5.3), with the following universal property. Given a transmission
β : U → V into a supertropical semiring V , with ghost ideal N := eV, and a semiring homo-
morphism δ : M ′ → N , such that βν = δγ, there exists a unique transmission η : U ′ → V
such that β = η ◦ α and ην = δ.

We indicate this problem by the following commuting diagram

U

β
++

α
// U ′

η
// V

M
?Â

OO

γ
// M ′

δ
//?Â

OO

N
?Â

OO

where the vertical arrows are inclusion mappings.
We call such a map α : U → U ′ a pushout transmission covering γ. This terminology

alludes to the fact that our universal property means that the left square in the diagram
above is a pushout (=cocartesian) square in the category STROP, whose objects are the
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supertropical semirings, and whose morphisms are the transmissions. To see this, just observe
that a map ρ : L → W from a bipotent semiring L to a supertropical semiring W is
transmissive iff ρ is a semiring homomorphism from L to eW followed by the inclusion
eW ↪→ W.

It is now obvious that, for a given homomorphism γ : M → M ′, Problem 9.1 has at most
one solution up to isomorphism over M ′ and U. More precisely, if both α : U → U ′ and
α1 : U → U1 are solutions, there exists a unique isomorphism ρ : U ′ → U1 of semirings over
M ′ with α1 = α′ ◦ ρ.

We may cast the universal property above in terms of α alone and then arrive at the
following formal definition.

Definition 9.2. We call a map α : U → V between supertropical semirings a pushout
transmission if the following holds:

1) α is a transmission.
2) If β : V → W is a transmission from U to a supertropical semiring W and δ :

eV → eW is a semiring homomorphism with βν = δ ◦ αν, then there exists a unique
transmission η : V → W with ην = δ and β = η ◦ α.

We then also say that V is “the” pushout of U along γ.

The notion of a pushout transmission can be weakened by demanding the universal prop-
erty in Definition 9.2 only for W = V and δ the identity of eV. This is still interesting.

Definition 9.3. We call a transmission α : U → V between supertropical semirings an
initial transmission, if, for any transmission β : U → W with eW = eV and βν = αν,
there exists a unique semiring homomorphism η : V → W over eV = eW with β = η ◦ α.

Given a supertropical semiring U and a semiring homomorphism γ : eU → N with N
bipotent, it is again clear that there exists at most one initial transmission α : U → V
covering γ (in particular, eV = N) up to isomorphism over U and N.

We turn to the problem of existence, first for initial transmissions and then for pushout
transmissions. In the first case we can apply results on supervaluations from §4 and §7, due
to the following easy but important observation.

Proposition 9.4. Let α : U → V be a map between supertropical semirings and γ : eU → eV
a semiring homomorphism. The following are equivalent:

a) α is a transmission covering γ.
b) α is a supervaluation on the semiring U with α(eU) = eV covering the strict m-

valuation v := γ ◦ νU : U → eV.

Diagram

U

νU
²²

α //

v

''OOOOOOOOOOOOO V

νV
²²

eU
γ // eV

Proof. We have to compare the axioms SV1–SV4 in §4 plus the condition α(e) = e with the
axioms TM1–TM5 in §5. The axioms SV1–SV3 say literally the same as TM1–TM3, and
the condition α(e) = e is TM4.

We now assume that α fulfills TM1–TM4. For every x ∈ U we have α(ex) = α(e)α(x) =
eα(x). That α is a transmission covering γ means that α(z) = γ(z) for all z ∈ eU. This is
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equivalent to α(ex) = γ(ex) for all x ∈ U ; hence to the condition eα(x) = γ ◦ νU(x) for all
x ∈ U. But this means that α is a supervaluation covering γ ◦ νU . ¤
Theorem 9.5. Given a supertropical semiring U with ghost ideal M := eU and a surjective
homomorphism γ : M → M ′ to a bipotent semiring M ′, there exists an initial transmission
α : U → U ′ covering γ.

Proof. We introduce the strict surjective valuation v = γ ◦ νU : U ³ M ′. By §7 there exists
an initial surjective supervaluation ϕv : U → U(v) covering v. (In particular, eU(v) = M ′.)
The other surjective supervaluations ψ : U → V covering γ are the maps πT ◦ ϕv with T
running through the set of all MFCE-relations on U(v), as explained in §7.

Let f := ϕv(eU) and e := eU(v) = 1M . Proposition 9.4 tells us that πT ◦ ϕv is the initial
transmission covering γ iff f ∼T e and moreover T is finer than any other MFCE-relation
on U(v) with this property. Now we invoke the following easy lemma, to be proved below.

Lemma 9.6. If W is a supertropical semiring and X is a subset of W, there exists a unique
finest MFCE-relation E on W with x ∼E eWx for every x ∈ X.

We apply the lemma to W = U(v) and X = {f}, and obtain a finest equivalence relation
T on U(v) with f ∼T ef. But

ef = νU(v) ◦ ϕv(eU) = v(eU) = e.

Thus, T is the unique finest MFCE-relation on U(v) with f ∼T e, and T gives us the wanted
initial transmission α = πT ◦ ϕv. ¤
Proof of Lemma 9.6. The setM of all MFCE-relations F onW with x ∼F ex for all x ∈ X is
not empty, since it contains the relation E(νW ). The relation E := ∧M, i.e., the intersection
of all F ∈ M, has the desired property. ¤
Notation 9.7. We denote “the” initial transmission in Theorem 9.5 by αU,γ, the semiring
U ′ by Uγ, and the equivalence relation E(αU,γ) by E(U, γ).

This notation is sloppy, since αU,γ is determined by U and γ only up to isomorphism.
But E(U, γ) truly depends only on U and γ. The ambiguity for αU,γ can be avoided if γ is
surjective, due to the following lemma.

Lemma 9.8. If α : U → V is an initial transmission covering a surjective homomorphism
γ : M → M ′, then α itself is a surjective map.

Proof. V1 := α(V ) is a subsemiring of V and thus a supertropical semiring itself. Replacing
V by V1 we obtain from α a surjective transmission α1 : U → V1. Since α is initial there
exists a unique transmission η : V → V1 over M ′ with α1 = ηα. Also α = jα1 with j the
inclusion from V1 to V. By the universal property of α we conclude from α = jηα that jη is
the identity on V. This forces V = V1. ¤

Thus, if γ is surjective, we have a canonical choice for Uγ and αU,γ, namely, Uγ = U/E(U, γ)
and αU,γ = πU,γ. Usually we will understand by Uγ and αU,γ this semiring and transmission.

In light of Theorem 9.5 our main Problem 9.1 can be posed as follows: Given U and γ, is
αU,γ : U → Uγ a pushout transmission?

We assume in the following that γ : M → M ′ is surjective and M ′ is a cancellative bipotent
domain; hence v = γ◦νU is a strict surjective valuation. In this case we will obtain a positive
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solution of the problem. The point here is that we can give an explicit description of Uγ and
αU,γ, which allows us to check the pushout property.

We already have an explicit description of ϕv : U → U(v), given by Example 4.5. Thus
all we need is an explicit description of the finest MFCE-relation T on U(v) with f ∼T e.
We develop such a description in a more general setting.

Assume that U is a supertropical semiring, e := eU , and f is an idempotent of U. The
ideal L := fU of U is again a supertropical semiring with unit element f (under the addition
and multiplication of U), since L is a homomorphic image of U. We have eL = f + f = ef.

If F is an equivalence relation on the set L, there is a unique finest equivalence relation E
on U extending F. It can be described as follows. Let x1, x2 ∈ U. Then x1 ∼E x2 iff either
x1 = x2 or x1 ∈ L, x2 ∈ L and x1 ∼F x2. We call E the minimal extension of the
equivalence relation F to U.

Lemma 9.9. Let F be an equivalence relation on fU , and let E denote the minimal extension
of F to U.

a) If F is multiplicative, then E is multiplicative.
b) If F is fiber conserving, so is E.

Proof. Assume that x1, x2 are elements of U with x1 ∼E x2. Assume (without loss of gener-
ality) that also x1 6= x2. Then x1, x2 ∈ fU and x1 ∼F x2.

If F is multiplicative then, for any z ∈ U,

x1z = x1(fz) ∼F x2(fz) = x2z;

hence x1z ∼E x2z. Thus E is multiplicative.
If F is fiber conserving, then

ex1 = (ef)x1 = (ef)x2 = ex2.

Thus E is fiber conserving. ¤
Proposition 9.10. Assume that U is a supertropical semiring, e := eU , and f is an idem-
potent of U. We define a binary relation E on U be decreeing (x1, x2 ∈ U)

x1 ∼E x2 iff either x1 = x2 or x1, x2 ∈ fU and ex1 = ex2.

a) E is an MFCE-relation on U.
b) If ef = e, then e ∼E f, and E is finer than any other multiplicative equivalence relation

E ′ on U with e ∼E′ f.

Proof. a) We apply the preceding lemma with F the relation E(νL) (cf. Examples 6.4.ii)
on the supertropical semiring L := fU. The minimal extension of F to U is the relation E
defined in the proposition. Indeed, for x1, x2 ∈ L we have x1 ∼F x2 if efx1 = efx2. Since
fxi = xi (i = 1, 2), this means that ex1 = ex2. By Lemma 9.9 the relation E is MFCE.

b) Assume now that ef = e, i.e., e ∈ L. Then e ∼E f by definition of E. Let E ′ be any
multiplicative equivalence relation on U with e ∼E′ f. If x1, x2 ∈ U and x1 ∼E x2 we want
to conclude that x1 ∼E′ x2. We may assume that x1 6= x2. Then x1, x2 ∈ fU and ex1 = ex2.
Now xi ∼E′ exi (i = 1, 2); hence x1 ∼E′ x2, as desired. ¤

We are ready for a solution of Problem 9.1 in the case that γ : M → M ′ is surjective and
M ′ is a cancellative bipotent semidomain; hence v = γ ◦ νU is a strict surjective valuation.
As before, let T denote the finest MFCE-relation on U(v) with f ∼T e for e := eU(v) and
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f := ϕv(eU). Recall from the proof of Theorem 9.5 that ef = e. Thus Proposition 9.10
applies. We spell out what the proposition says in the present case.

For that we write the semiring U(v) and the map ϕv in a way different from Definition 4.6.

Let Û denote a copy of U disjoint from U with copying isomorphism x 7→ x̂. We use this
to distinguish an element x ∈ U \ q, with q := supp v, from the corresponding element in
T (U(v)). Thus we write

U(v) = (Û \ q̂) ∪̇ M ′

with q̂ := {x̂
∣∣ x ∈ U, γ(eUx) = 0}, and ϕv(x) = x̂ for x ∈ U \ q, ϕv(x) = 0 for x ∈ q. Notice

that fU(v) = (M̂ \ q̂) ∪M ′ with M̂ := {x̂
∣∣ x ∈ M}.

According to Proposition 9.10 the equivalence relation T has the following description.
Let y1, y2 ∈ U(v) be given with y1 6= y2. Then y1 ∼T y2 iff y1 = x̂1, y2 = x̂2, with either
x1, x2 ∈ M and γ(eUx1) = γ(eUx2) or x1, x2 ∈ U and γ(eUx1) = γ(eUx2) = 0.We may choose
Uγ = U(v)/T and αU,γ = πT ◦ ϕv. The transmission α := αU,γ is a surjective map from U
to Uγ, and the equivalence relation E(α) is the relation E(U, γ) defined in Notation 9.7.
Thus E := E(U, γ) has the following description: If x1, x2 ∈ U and x1 6= x2 then

x1 ∼E x2 ⇔ γ(eUx1) = γ(eUx2), and if x1 ∈ T (U) or x2 ∈ T (U), γ(eUx1) = 0.

Having found E(U, γ) we now redefine Uγ = U/E(U, γ), αU,γ = πE(U,γ). We arrive at the
following theorem.

Theorem 9.11. Let U be a supertropical semiring, e := eU (different notation than be-
fore!), M := eU, and assume that γ : M → M ′ is a surjective homomorphism from M
to a cancellative bipotent semidomain M ′. Then E := E(U, γ) can be described as follows
(x1, x2 ∈ U) :

x1 ∼E x2 iff x1 = x2, or γ(ex1) = γ(ex2), ex1 = x1, ex2 = x2, or γ(ex1) = γ(ex2) = 0.

Thus this binary relation on U is a multiplicative equivalence relation, and πE : U → U/E
is the initial transmission covering γ.

N.B. Observe that most often πE is not a homomorphism.

Theorem 9.12. If γ is surjective and M ′ is a cancellative bipotent semidomain, then αU,γ

is a pushout transmission.

Proof. Let α := αU,γ = πE : U → U/E with E := E(U, γ). Assume that δ : M ′ → N is a
homomorphism from M ′ to a bipotent semiring N and β : U → V is a transmission covering
δγ : M → N, i.e., with eV β = δγeU . (In particular eV = N.)

We want to verify that β respects the equivalence relation E, i.e., given x1, x2 ∈ U, that

x1 ∼E x2 implies β(x1) = β(x2).

We may assume that x1 6= x2. If x1 or x2 is tangible then γ(ex1) = γ(ex2) = 0; hence
eV β(xi) = δγ(exi) = 0 for i = 1, 2. This implies β(x1) = β(x2) = 0. Assume now that both x1

and x2 are ghost. Then γ(ex1) = γ(ex2); hence δγ(ex1) = δγ(ex2), i.e., eV β(x1) = eV β(x2).
But both β(x1) and β(x2) are ghost or zero. Thus β(x1) = β(x2) again.

Since α is surjective, it follows that we have a well-defined map ρ : U/E → V with β = ρα.
Now Proposition 6.1 tells us that ρ is a transmission, since both α and β are transmissions
and α is surjective. We have

νV ρα = νV β = δγνU = δνE/Uα.
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Since α is surjective, this implies that νV ρ = δνE/U , i.e., ρ covers δ. The pushout property
of α is verified. ¤

Assume now that U is any supertropical semiring, M := eU, and γ : M → M ′ is an
injective semiring homomorphism from M to a bipotent semiring M ′. Then Problem 9.1
can be solved affirmatively in an easy direct way, as we explicate now.

We may assume, without loss of generality, that M is a subsemiring of M ′ and γ is the
inclusion from M to M ′. We define a semiring U ′ as follows. As a set, U ′ is the disjoint
union of the sets U and M ′ \M. We have U ⊂ U ′, M ′ ⊂ U ′, U ∪M ′ = U ′, U ∩M ′ = M.
Let ν denote the ghost map from U to M, ν = νU . We define addition and multiplication on
U by taking the given addition and multiplication on U and on M ′, and putting

x · z = z · x = ν(x) · z
x+ z = z + x = ν(x) + z

for x ∈ U, z ∈ M ′. In the cases that x ∈ M and z ∈ M ′, or x ∈ U and z ∈ M, these
new products are the same as the ones in M ′ or U, respectively. Thus we have well-defined
operations · and + on U ′. One checks in any easy and straightforward way that they obey
all semiring axioms. Thus U ′ is now a commutative semiring with 1U ′ = 1U . It clearly obeys
the axioms (3.3′), (3.3′′), (3.4). Thus U ′ is supertropical. We have eU ′ = eU , eU

′ = M ′,
T (U ′) = T (U).

Definition 9.13. We call U ′ the supertropical semiring obtained from U by extension
of the ghost ideal M to M ′. We also say, more briefly, that U ′ is a ghost extension
of U.

Let α denote the inclusion U ↪→ U ′. It is obvious that α is a transmission covering the
inclusion γ : U ↪→ U ′. We verify that α is a pushout transmission.

Let δ : M ′ → N be a homomorphism from M ′ to a bipotent semiring N and β : U → V
a transmission covering δγ. This means that eV = N, and

(1) β(x) = δ(x) for x ∈ M.

Clearly, we have a unique well-defined map ρ : U ′ → V with ρ|U = β and

(2) ρ(x) = δ(x) for x ∈ M ′.

We have ρ(0) = 0, ρ(1) = 1, ρ(eU ′) = eV . One checks easily that ρ is multiplicative.
We now know that ρ is a transmission covering δ. We have proved the following theorem.

Theorem 9.14. Assume that M ′ is a bipotent semiring and M is a subring of M ′. Assume
further that U is a supertropical semiring with ghost ideal M, and U ′ is the supertropical
semiring obtained from U by extension of the ghost ideal M to M ′. Then the inclusion
mapping U → U ′ is a pushout tranmission covering the inclusion mapping M ↪→ M ′.

Combining Theorems 9.12 and 9.14, we obtain the most comprehensive solution of Prob-
lem 9.1 that we can offer here.

Theorem 9.15. 6 Let γ : M → M ′ be a homomorphism between bipotent semirings, and
assume that the bipotent semiring γ(M) is a cancellative. {N.B. This holds if M ′ is a
cancellative.} Let U be a supertropical semiring with eU = M. Then αU,γ : U → Uγ is a
pushout transmission.

6There exist pushout transmissions, which are not covered by this theorem, cf. [IKR, Proposition 3.17].
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Proof. We have a factorization γ = i◦γ̄, with γ̄ the map x 7→ γ(x) fromM to the subsemiring
γ(M) of M ′, and i the inclusion from γ(M) to M ′. By Theorems 9.12 and 9.14 there exist
pushout transmissions α : U → U and β : U → U ′ covering γ̄ and i, respectively. Now look
at the commutative diagram

U α
// U β

// U ′

M

OO

γ̄
// // γ(M) Â Ä

i
//

OO

M ′

OO

where the vertical arrows denote inclusions. Here the left and the right square are pushout
diagrams in the category STROP of supertropical semirings and transmissions. Thus also
the outer rectangle is a pushout in this category (cf., e.g., [ML, §7]), i.e., βα is a pushout
transmission. If αU,γ : U → Uγ is any prechosen initial covering of γ, there exists an
isomorphism ρ : U ′ → Uγ overM

′ with ρβα = αU,γ. Thus also αU,γ is a pushout transmission.
¤

10. The ghost surpassing relation; strong supervaluations

Let U be any supertropical semiring. If x, y ∈ U , it has become customary to write

x = y + ghost

if x equals y plus an unspecified ghost element (including zero). In more formal terms we
have a binary relation |

gs

= on U defined as follows:

Definition 10.1.
x |

gs

= y ⇔ ∃z ∈ eU with x = y + z.

We call |
gs

= the ghost surpassing relation on U or GS-relation, for short.

The GS-relation seems to be at the heart of many supertropical arguments. Intuitively
x |

gs

= y means that x coincides with y up to some “negligible” or “near-zero” element, namely

a ghost element. But we have to handle the GS-relation with care, since it is not symmetric.
In fact it is antisymmetric, see below.

The GS-relation is clearly transitive:

x |
gs

= y, y |
gs

= z ⇒ x |
gs

= z.

It is also compatible with addition and multiplication: For any z ∈ U , x |
gs

= y implies

x+ z |
gs

= y + z, and xz |
gs

= yz.

We observe the following further properties of this subtle binary relation.

Remark 10.2. Let x, y ∈ U .

(i) x = y ⇒ x |
gs

= y ⇒ ν(x) ≥ ν(y).

(ii) If x ∈ T (U) ∪ {0}, then x |
gs

= y ⇔ x = y.

(iii) If x ∈ G(U) ∪ {0}, then x |
gs

= y ⇔ ν(x) ≥ ν(y).
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(iv) x |
gs

= 0 iff x = eU .

Lemma 10.3. The GS-relation is antisymmetric, i.e.;

x |
gs

= y, y |
gs

= x ⇒ x = y.

Proof. If x ∈ T (U) or y ∈ T (U) this is clear by Remark 10.2.ii. Assume now that both
x, y ∈ eU . Then ν(x) ≥ ν(y) and ν(y) ≥ ν(x) by Remark 10.2.iii; hence ν(x) = ν(y), i.e.,
x = y. ¤
Proposition 10.4.

(i) Assume that α : U → V is a transmission. Then, for any x, y ∈ U ,

x |
gs

= y ⇒ α(x) |
gs

= α(y).

(ii) Assume that ϕ : R → U and ψ : R → V are supervaluations with ϕ ≥ ψ. Then for
any a, b ∈ R

ϕ(a) |
gs

= ϕ(b) ⇒ ψ(a) |
gs

= ψ(b).

Proof. i): Let x |
gs

= y. If x is tangible or zero, then x = y; hence α(x) = α(y). If x is ghost,

then ν(x) ≥ ν(y); hence

ν(α(x)) = α(ν(x)) ≥ α(ν(y)) = ν(α(y))

by rule TM5 in §5. Since α(x) is ghost, this means α(x) |
gs

= α(y), cf. Remark 10.2.iii above.

ii): We may assume that the supervaluation ϕ is surjective. By §5 we have a (unique)
transmission α : U → V with α ◦ ϕ = ψ. Thus the claim follows from part i). ¤

We cannot resist giving a second proof of part ii) of the proposition relying only on
Definition 5.1 of dominance (conditions D1-D3).

Second proof of Proposition 10.4.ii. Assume that ϕ(a) |
gs

= ϕ(b). If ϕ(a) is tangible or zero,

then ϕ(a) = ϕ(b); hence ψ(a) = ψ(b) by D1; hence ψ(a) |
gs

= ψ(b). If ϕ(a) is ghost then

eϕ(a) ≥ eϕ(b); hence eψ(a) ≥ eψ(b) by D2. By D3 the element ψ(a) is ghost. Thus
ψ(a) |

gs

= ψ(b) again, ¤

The GS-relation seems to be helpful for analyzing additivity properties of supervaluations.

Lemma 10.5. If ϕ : R → U is a supervaluation on a semiring R with ϕ(a) + ϕ(b) ∈ eU ,
then

ϕ(a) + ϕ(b) |
gs

= ϕ(a+ b). (∗)

Proof. Let v : R → eU denote the m-valuation covered by ϕ, v = eϕ. We have v(a + b) ≤
v(a) + v(b); hence eϕ(a + b) ≤ e(ϕ(a) + ϕ(b)). If ϕ(a) + ϕ(b) ∈ eU , this shows that
ϕ(a) + ϕ(b) |

gs

= ϕ(a+ b). ¤

It will turn out to be desirable to have supervaluations on R at hand, where the property
(∗) holds for all elements a, b of R.
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Definition 10.6. We call a supervaluation ϕ : R → U tangibly additive, if in addition
to the rules SV1-SV4 from §4 the following axiom holds:

SV 5 : If a, b ∈ R and ϕ(a) + ϕ(b) ∈ T (U), then ϕ(a) + ϕ(b) = ϕ(a+ b).

Proposition 10.7. A supervaluation ϕ : R → U is tangibly additive iff for any a, b ∈ R

ϕ(a) + ϕ(b) |
gs

= ϕ(a+ b).

Proof. This is clear by Lemma 10.5 and Remark 10.2.ii above. ¤
Corollary 10.8. If ϕ : R → U is tangibly additive, then for every finite sequence a1, . . . , am
of elements of R

m∑
i=1

ϕ(ai) |
gs

= ϕ

(
m∑
i=1

ai

)
.

Proof. This holds for m = 2 by Proposition 10.7. The general case follows by an easy
induction using the transitivity of the GS-relation. ¤
Comment: We elaborate what it means that a given supervaluation ϕ : R → U is tangibly
additive in the case that the underlying m-valuation v = eϕ : R → eU is strong.

Let a, b ∈ R be given with ϕ(a) +ϕ(b) ∈ T (U), i.e., v(a) 6= v(b), and assume without loss
of generality that v(a) < v(b). Then v(a + b) = v(b). Hence, ϕ(a + b) is some element of
the fiber ν−1

U (v(b)); but the axioms SV1-SV4 say little about the position of ϕ(a+ b) in this
fiber. SV5 demands that ϕ(a+ b) has the “correct” value ϕ(a) + ϕ(b) = ϕ(b). ¤

Concerning applications the strong m-valuations seem to be more important than the
others. (Recall that any m-valuation on a ring is strong.) Thus the tangibly additive
supervaluations covering strong m-valuations deserve a name on their own.

Definition 10.9. We call a supervaluation ϕ : R → U strong if ϕ is tangibly additive
and the covered m-valuation eϕ : R → eU is strong.

We exhibit an important case where a tangibly additive supervaluation is automatically
strong.

Proposition 10.10. Assume that ϕ : R → U is a tangible (cf. Definition 4.1) and tangibly
additive supervaluation. Then ϕ is strong.

Proof. We have to verify that v := eϕ is strong. Let a, b ∈ R be given with v(a) 6= v(b).
Suppose without loss of generality that v(a) < v(b). Then ϕ(a), ϕ(b) ∈ U and ϕ(b) 6= 0.
Since ϕ is tangible, ϕ(b) ∈ T (U). It follows that ϕ(a) + ϕ(b) ∈ T (U); hence

ϕ(a) + ϕ(b) = ϕ(a+ b),

because ϕ is tangibly additive. Multiplying by e we obtain

v(a) + v(b) = v(a+ b).

¤
We now are ready to aim at an application of the supervaluation theory developed so far.

We start with the polynomial semiring R[λ] = R[λ1, . . . , λn] in a sequence λ = (λ1, . . . , λn)
of n variables over a semiring R. Let ϕ : R → U be a tangibly additive valuation with
underlying m-valuation v : R → M , M := eU .
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Given a polynomial

f =
∑
i

ciλ
i ∈ R[λ] (10.1)

in the usual multimonomial notation (i runs though the multi-indices i = (i1, . . . , in) ∈ Nn
0 ,

λi = λi1
1 · · ·λin

n , only finite many ci 6= 0), we obtain from f polynomials

ϕ̃(f) :=
∑
i

ϕ(ci)λ
i ∈ U [λ],

ṽ(f) :=
∑
i

v(ci)λ
i ∈ M [λ],

by applying ϕ and v to the coefficients of f . This gives us maps

ϕ̃ : R[λ] → U [λ], ṽ : R[λ] → M [λ].

Let a = (a1, . . . , an ∈ Rn) be an n-tuple of elements of R. It gives us n-tuples

ϕ(a) = (ϕ(a1), . . . , ϕ(an)), v(a) = (v(a1), . . . , v(an))

in Un and Mn, respectively. We have an evaluation map εa : R[λ] → R, which sends the
polynomial f (notation as in (10.1)) to

εa(f) = f(a) =
∑
i

cia
i (10.2)

and analogous evaluation maps

εϕ(a)(f) : U [λ] → U, εv(a)(f) : M [λ] → M.

These evaluation maps are semiring homomorphisms. We have a diagram

R[λ]

ϕ̃
²²

εa // R

ϕ

²²
U [λ]

εϕ(a) // U

(and an analogous diagram with v instead of ϕ) which usually does not commute. But it
commutes “nearly”.

Theorem 10.11. For f ∈ R[λ]

εϕ(a)(ϕ̃(f)) |
gs

= ϕ(εa(f)).

Proof. Let again f =
∑

i ciλ
i. Now ϕ(εa(f)) = ϕ(

∑
i cia

i), while

εϕ(a)(ϕ̃(f)) =
∑
i

ϕ(ci)ϕ(a)
i =

∑
i

ϕ(cia
i).

Thus the claim is that ∑
i

ϕ(cia
i) |

gs

= ϕ(
∑
i

cia
i). (∗)

This follows from Corollary 10.8 above. ¤
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We draw a consequence of this theorem. Let

Z(f) := {a ∈ Rn | f(a) = 0},
the zero set of f . Let further

Z0(ϕ̃(f)) := {b ∈ Un | ϕ̃(f)(b) ∈ eU},
which we call the root set of ϕ̃(f). For a ∈ Z(f) we have ϕ (

∑
i cia

i) = 0. It follows by
Theorem 10.11 that ϕ̃(f)(ϕ(a)) |

gs

= 0, i.e., ϕ̃(f)(ϕ(a)) is ghost.

We have proved

Corollary 10.12. If ϕ : R → U is tangibly additive, then, for any f ∈ R[λ],

ϕ(Z(f)) ⊂ Z0(ϕ̃(f)).

¤
Assume now that ϕ is tangible and tangibly additive; hence strong (cf. Proposition 10.10).

Then, of course, ϕ(Z(f)) ⊂ T (U)n0 with T (U)0 := T (U) ∪ {0}. Thus we have

ϕ(Z(f)) ⊂ Z0(ϕ̃(f))tan (∗∗)
with

Z0(ϕ̃(f))tan := Z0(ϕ̃(f)) ∩ T (U)n0 ,

which we call tangible root set of ϕ̃(f). We want to translate (∗∗) into a statement about
the relation between Z(f) and the so called “corner locus”, of the polynomial ṽ(f) ∈ M [λ],
to be defined.

We call a polynomial g =
∑

i diλ
i ∈ M [λ] a tropical polynomial, and define the corner-

locus Corn(g) of g as the set of all b ∈ Mn such that there exists two different multi-indices
j, k ∈ Nn

0 with

djb
j = dkb

k ≥ dib
i

for all i 6= j, k. We also say that Corn(g) is the tropical hypersurface defined by the
tropical polynomial g.

This is well established terminology at least in the “classical case” that M is the bipotent
semiring T (R) given by the order monoid (R,+ ), the so called max-plus algebra of R (cf. §1,
[IMS, §1.5]). A small point here is, that we admit coordinates with value 0M =: −∞, which
usually is not done in tropical geometry. On the other hand we could work as well with
Laurent polynomials. Then of course we would have to discard the zero element.

Returning to our tangible strong supervaluation ϕ : R → U and the m-valuation

v = eϕ : R → M,

we look at the tropical polynomial

ṽ(f) =
∑
i

v(ci)λ
i

from above. Let a ∈ Rn. Then

ϕ̃(f)(ϕ(a)) =
∑

ϕ(cia
i),

and all summands are the right side are in T (U)0. Thus the sum is ghost iff the maximum
of the ν-values

ν(ϕ(cia
i)) = v(ci)v(a

i) (i ∈ Nn
0 )
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is attained for at least two multi-indices. This means that v(a) ∈ Corn(ṽ(f)).
Thus (∗∗) has the following consequence

Corollary 10.13. Let v : R → M be a strong m-valuation on a semiring R. Assume that
there exists a tangible supervaluation ϕ : R → U covering v. Then for any polynomial
f ∈ R[λ],

v(Z(f)) ⊂ Corn(ṽ(f)).

We have arrived at a very general version of the Lemma of Kapranov ([EKL, Lemma
2.1.4]), as soon as we find a tangible cover ϕ : R → U of the given m-valuation v : R → M .
This turns out to be easy in the case that M is cancellative (i.e., v is a strong valuation).

Lemma 10.14. Suppose there is given a tangible multiplicative section of the ghost
map ν : U → M , i.e., a map s : M → T (U)0 with s(0) = 0, s(1) = 1, s(xy) = s(x)s(y), and
ν(s(x)) = x for any x, y ∈ M . Let v : R → M be a strong m-valuation. Then s ◦ v : R → U
is a tangible strong supervaluation covering v.

Proof. Clearly ϕ = sv obeys SV1-SV4. Let a, b ∈ R be given with v(a) < v(b). Then
v(a+ b) = v(b); hence sv(a+ b) = sv(b). Thus SV5 holds true. We have eϕ = ν ◦ϕ = v. ¤
Example 10.15. If U is a supertropical semifield, it is known that such a section s always
exists ([IR3, Proposition 1.6]).

Example 10.16. Assume that M is a cancellative bipotent semiring, and v : R → M is a
strong valuation. We take U := D(M \{0}) (Example 3.18), for which we write more briefly
D(M). For every z ∈ M there exists a unique x ∈ T (U)0 with ν(x) = z. We write x = ẑ.
Clearly z 7→ ẑ is a tangible multiplicative section of the ghost map, in fact the only one. By
the lemma we obtain a tangible supervaluation

v̂ : R → U, v̂(z) := v̂(z),

which covers v, in fact the only such supervaluation.

Looking again at Corollary 10.13 we now know that

v(Z(f)) ⊂ Corn(ṽ(f)),

whenever v : R → M is a strong valuation and f ∈ R[λ].

11. The tangible strong supervaluations in Cov(v)

Given an m-valuation v : R → M , recall from §7 that the equivalence classes [ϕ] of
supervaluations ϕ covering v form a complete lattice Cov(v). Abusing notation, we usually
will not distinguish between a supervaluation ϕ and its class [ϕ], thus writing ϕ ∈ Cov(v)
if ϕ covers v. This will cause no harm in the present section. {N.B If you are sceptical
about this, you may always assume that ϕ is surjective, more specially, that ϕ = ϕv/E with
ϕv the initial covering of v and E an MFCE-relation on U(v) (cf. Notation 6.14). These
supervaluations ϕ are canonical representatives of their classes [ϕ].}
Lemma 11.1. Assume that ϕ : R → U and ψ : R → V are supervaluation with ϕ ≥ ψ.

(i) If ψ is tangible, then ϕ is tangible.
(ii) It ϕ is tangibly additive, then ψ is tangibly additive.

Proof. i): is clear from the axiom D3 in the definition of dominance (cf. Definition 5.1).
ii): follows from Propositions 10.7 and 10.4.ii. ¤
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Starting from now we assume that v is a strong valuation (which means in particular that
M is cancellative). Let q denotes the support of v, i.e., q = v−1(0).

Notation 11.2. Covt(v) denotes the set of tangible supervaluations in Cov(v), and Covs(v)
denotes the set of strong (= tangibly additive) supervaluations in Cov(v). Finally, let

Covts(v) := Covt(v) ∩ Covs(v),

be the set of tangible strong supervaluations covering v.

We already know by Example 10.16 that the set Covts(v) is not empty. Lemma 11.1 tells
us in particular that Covt(v) is an upper set and Covs(v) is a lower set in the poset Cov(v).

Let us study these sets more closely. We start with Covt(v). The initial supervaluation
ϕv : R → U(v) (cf. Definition 5.15) is the top (= biggest) element of Cov(v), and thus is
also the top element of Covt(v). This can also be read off from the explicit description of ϕv

in Example 4.5. The other elements of Cov(v) are the supervaluations ϕv/E : R → U(v)/E,
with E running through the MFCE-relations on U(v). We have to find out which MFCE-
relations E on U(v) give tangible supervaluations ϕv/E.

Here is a definition which - for later use - is slightly more general than what we need now:

Definition 11.3. We call an equivalence relation E on a supertropical semiring U ghost
separating if for all x ∈ T (U), y ∈ U ,

x ∼E y ⇒ y ∈ T (U) or x ∼E 0.

If E is an MFCE-relation on U , then x ∼E 0 only if x = 0. Thus, E is ghost separating iff
T (U) is a union of E-equivalence classes. This means that E is finer than the MFCE-relation
Et introduced in Examples 6.4.v, whose equivalence classes are the tangible fibers of νU and
the one-point sets in eU .

If ϕ : R → Y is a surjective tangible supervaluation and E is an MFCE-relation on U ,
then it is obvious that ϕ/E : R → U/E is again tangible iff E is ghost separating. Thus we
see that ϕv/Et is the bottom (= smallest) element of Covt(v).

Now recall from Example 6.11 that, in the notion at the end of §10 (Example 10.16),

U(v)/Et = D(M);

hence ϕv/Et coincides with the only tangible cover v̂ of v with values in D(M), cf. Exam-
ple 10.16. We conclude that

Covt(ϕ) = {ψ ∈ Cov(v) | ψ ≥ v̂}.
Again by Example 10.16 we know that v̂ is strong. This v̂ is also the bottom of the
poset Covts(ϕ).

We turn to Covs(v). We will construct a new element of this poset in a direct way. For
that reason we introduce an equivalence relation on R.

Definition 11.4. Let S(v) denote the equivalence relation on the set R defined as follows.
{We write ∼v for ∼S(v).}

If a1, a2 ∈ R then

a1 ∼v a2 ⇐⇒ either v(a1) = v(a2) = 0
or ∃c1, c2 ∈ R, with v(c1) < v(a1), v(c2) < v(a2),
a1 + c1 = a2 + c2.
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It is easily checked that S(v) is indeed an equivalence relation on the set R, by making
strong use if the assumption that the valuation v is strong. This is the finest equivalence
relation E on U such that a ∼E a+ c if v(c) < v(a). Observe also that

a1 ∼v a2 =⇒ v(a1) = v(a2).

We claim that S(v) is compatible with multiplication, i.e.,

a1 ∼v a2 =⇒ a1b ∼v a2b

for every b ∈ R. This is obvious if a1 ∈ q or a2 ∈ q, or b ∈ q. Otherwise v(b) > 0, and
we have elements c1, c2 ∈ R with v(c1) < v(a1), v(c2) < v(a2), a1 + c1 = a2 + c2. Then
a1b+ c1b = a2b+ c2b and

v(cib) = v(ci)v(b) < v(ai)v(b) = v(aib)

for i = 1, 2, since by assumption M is cancellative. Thus indeed a1b ∼v a2b.
We denote the S(v)-equivalence class of an element a of R by [a]v. The set R := R/S(v)

is a monoid under the well defined multiplication

[a]v · [b]v = [ab]v

for a, b ∈ R. The subset R \ q of R is a union of S(v)-equivalence classes and the subset

R \ q := (R \ q)/S(v) of R is a submonoid of R. We have

R = R \ q ∪ {0̄}
with 0̄ = [0]v = q.

Since a1 ∼v a2 implies v(a1) = v(a2), we have a well defined monoid homomorphism
R → M , [a]v 7→ v(a), which restricts to a monoid homomorphism

v̄ : R \ q → M \ {0}.
This map v̄ gives us a supertropical semiring

U := STR(R \ q,M \ {0}, v̄),
cf. Construction 3.16. Notice that T (U) = R \ q and eU = M . We identify T (U)0 = R.

Proposition 11.5. The map χ : R → U given by

χ(a) := 0 if a ∈ q, χ(a) := [a]v ∈ T (U) = R \ q if a /∈ q,

is a tangible strong supervaluation covering v.

Proof. It is obvious that χ obeys the rules SV1-SV3 in the definition of supervaluations
(Definition 4.1). Due to our construction of U we have νU ◦ χ = v. Thus χ also obeys SV4,
and hence is a supervaluation covering the strong valuation v. It is clearly tangible.

It remains to verify that χ is tangibly additive. Let a, b ∈ R be given with χ(a) + χ(b) ∈
T (U), i.e., v(a) 6= v(b). Assume without loss of generality that v(a) < v(b). Then a+b ∼v b.
This means that χ(a+ b) = χ(b), as desired. ¤

We strive for an understanding of the set of all ψ ∈ Cov(v) which are dominated by this
supervaluation χ. We need a new definition.
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Definition 11.6. We call a supervaluation ϕ : R → V very strong, if

SV 5∗ : ∀a, b ∈ R : eϕ(a) < eϕ(b) =⇒ ϕ(a+ b) = ϕ(b).

Clearly SV5∗ implies that the m-valuation v is strong. If we require this property only for
a, b ∈ R with eϕ(a) < eϕ(b) and ϕ(b) tangible, we are back to condition SV5 given above
(Definition 10.6). Thus, a very strong supervaluation is certainly strong. On the other hand,
every tangible strong supervaluation is very strong.

Lemma 11.7. If ϕ : R → V is very strong, then any supervaluation ψ : R → W dominated
by ϕ is again very strong.

Proof. Let a, b ∈ R be given with eψ(a) < eψ(b). It follows from axiom D2 that eϕ(a) <
eϕ(b), since eϕ(a) ≥ eϕ(b) would imply eψ(a) ≥ eψ(b). Thus ϕ(a+b) = ϕ(b), and we obtain
by D1 that ψ(a+ b) = ψ(b). ¤

Returning to our given strong valuation v : R → M , let Cov∗s (v) denote the subset of all
ϕ ∈ Cov(v) which are very strong. Lemma 11.7 tells us in particular that Cov∗s (v) is a lower
set in the poset Cov(v), and hence is Covs(v). We have

Covt(v) ∩ Cov∗s (v) = Covt(v) ∩ Covs(v) = Covt,s(v).

Theorem 11.8. The tangible strong supervaluation χ : R → U from above (Proposition
11.5) dominates every very strong supervaluation covering v, and hence is the top element
of both Cov∗s (v) and Covt,s(v).

Proof. Let ψ : R → V be a very strong supervaluation covering v (in particular eV = M).
We verify axioms D1-D3 for the pair χ, ψ, and then will be done. D2 is obvious, and D3
holds trivially since χ is tangible. Concerning D1, assume that χ(a1) = χ(a2). By definition
of χ this means that a1 ∼v a2.

We have to prove that ψ(a1) = ψ(a2). Either a1, a2 ∈ q, or there exist c1, c2 ∈ R with
v(c1) < v(a1), v(c2) < v(a2), c1 + a1 = c2 + a2. In the first case eψ(a1) = eψ(a2) = 0 hence
ψ(a1) = ψ(a2) = 0. In the second case we have

ψ(a1) = ψ(a1 + c1) = ψ(a2 + c2) = ψ(a2)

since ψ is very strong. Thus ψ(a1) = ψ(a2) in both cases. ¤

Notation 11.9. We denote the semiring U given above by U(v) and the supervaluation χ
given above by ϕv. We call

ϕv : R → U(v) = STR(R \ q,M \ {0}, v̄)
the initial very strong supervaluation covering v.

In this notation
Cov∗s (v) = {ψ ∈ Cov(v) | ϕv ≥ ψ},
Covt,s(v) = {ψ ∈ Cov(v) | ϕv ≥ ψ ≥ v̂}.

Let E(v) denote the equivalence relation on U(v) whose equivalence classes are the sets
[a]v with a ∈ R \ q = T (U(v)) and the one point set {x} with x ∈ M . In other terms, the
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restriction E(v)|T (U) coincides with S(v)|R \ q, while E(v)|M is the diagonal diag(M) of
M . We identify

U(v)/E(v) = U(v)

in the obvious way.

Proposition 11.10. E(v) is a ghost separating MFCE-relation and

ϕv = ϕv/E(v).

Proof. It is immediate that E(v) is MFCE and ghost separating. For a in R \ q we have

πE(v)(ϕv(a)) = πS(v)(a) = [a]v = ϕv(a)

and for a ∈ q

πE(v)(ϕv(a)) = πE(v)(a) = 0 = ϕv(a),

again, Thus πE(v) is the transmission from ϕv to ϕv. ¤
Corollary 11.11. The MFCE-relations E on U(v) such that ϕv/E is very strong are pre-
cisely all E ∈ MFC(U(v)) with E ⊃ E(v).

Proof. This is a consequence of our observations above (Lemma 11.7, Theorem 11.8, Propo-
sition 11.10) and the theory in §7, cf. Theorem 7.2. ¤

We now focus on the special case that R is a semifield. Slightly more generally, we assume
that every element of R \ q is invertible, while q may be different from {0}.

T (U(v)) = R \ q is a group under multiplication. Thus the results from the end of §8
apply. We have

Te(U(v)) = {a ∈ R | v(a) = 1M} = o∗v,

with o∗v the unit group of the subsemiring

ov := {a ∈ R | v(a) ≤ 1M}
of R. Notice that the set

mv := ov \ o∗v = {a ∈ R | v(a) < 1M}
is an ideal of ov, just as in the classical (and perhaps most important) case, where R is a
field and v is a Krull valuation on R.

By Theorem 8.11 and Corollary 8.12 we know that every MFCE-relation on U(v) except
E(ν) is orbital, hence ghost separating. We have

ϕv/E(ν) = v,

viewed as a supervaluation. The other supervaluations ϕ covering v correspond uniquely
with the subgroups H of o∗v via ϕ = ϕv/E(H); cf. Scholium 8.9.

Instead of U(v)/E(H) and ϕv/E(H) we now write U(v)/H and ϕv/H respectively. In
this notation

T (U(v)/H) = (R \ q)/H,

and ϕv/H : R → U(v)/H is given by

(ϕv/H)(a) =

{
aH if a ∈ R \ q,
0 if a ∈ q.

Theorem 11.12. Assume that every element of R \ q is invertible (e.g. R is semifield).
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(i) Every strong supervaluation covering v is very strong. Except v itself, viewed as a
supervaluation, all these supervaluations are tangible. In other terms,

Covs(v) = Cov∗s (v) = Covt,s(v) ∪ {v}.
(ii) ϕv = ϕv/1 +mv.
(iii) The tangible strong supervaluations ϕ covering v correspond uniquely with the sub-

group H of o∗v containing the group 1 + mv via ϕ = ϕv/H. Thus we have an anti-
isomorphism H 7→ ϕv/H from the lattice of all subgroups H of o∗v containing 1 +mv

to the lattice Covt,s(v).

Proof. i): This follows from the discussion above, since every tangible strong supervaluation
is very strong and, of course, the supervaluation v : R → M is also very strong.

ii): We know that ϕv = ϕv/E(v) (Proposition 11.10). E(v) is ghost separating, hence
orbital. The subgroup H of o∗v with E(H) = E(v) has the following description (cf. Propo-
sition 8.8): If a ∈ R \ q = T (U(v)), then a ∈ H iff a ∼v 1. This means that there exist
elements c1, c2 ∈ mv with a+ c1 = 1 + c2. Now a+ c1 = a(1 + d1) with d1 =

c1
a
∈ mv. Thus

a ∼v 1 iff a ∈ 1 +mv.
iii): Now obvious, since ϕv is the top element of Covt,s(v).

¤
We look again at the GS-sentence

εϕ(a)(ϕ̃(f)) |
gs

= ϕ(εa(f)) (∗)

from §10, valid for any ϕ ∈ Covs(v), f ∈ R[λ], a ∈ Rn, cf. Theorem 10.11. Choosing here
any ϕ ∈ Covt,s(v), we learned that (∗) implies Kapranov’s lemma (Corollary 10.13). But the
statement (∗) itself has a different content for different ϕ ∈ Covt,s(v). If also ψ ∈ Covt,s(v)
and ϕ ≥ ψ, then we obtain statement (∗) for ψ from the statement (∗) for ϕ, leaving f and
the tuple a fixed, by applying the transmission αψ,ϕ. Thus it seems that (∗) has the most

content if we choose for ϕ the initial strong supervaluation ϕv : R → U(v).

We close this section by an explicit description of U(v) and ϕv in a situation typically
met in tropical geometry. Let R := F{t} be the field of formal Puiseux series with real
powers over any field7 F , cf. [IMS, p.6]. The elements of R are the formal series

a(t) =
∑
j∈I

cjt
j

with cj ∈ F ∗ and I ⊂ R a well ordered set, in set theoretic sense, (including I = ∅). Let
further M be the bipotent semifield T (R>0) (cf. Theorem 1.5), i.e.,

M = R>0 ∪ {0} = R≥0,

with the max-plus structure.
We define a (automatically strong) valuation

v : F{t} → M

by putting

v(a(t)) := ϑmin(I)

7For the matter of geometric applications, one usually needs F to be algebraically closed, but here we can
omit this restriction.
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if a(t) 6= 0, written as above, and v(0) := 0. Here ϑ is a fixed real number with 0 < ϑ < 1
(cf. [IMS]) loc. cit, but we use a multiplicative notation). Now o∗v is the group consisting of
all series

a(t) = c0 +
∑
j>0

cjt
j, c0 6= 0,

in F{t}, and 1 +mv is the subgroup of these series with c0 = 1.
The equivalence relation S(v) on R∗ = T (U(v)) is given by

a(t) ∼v b(t) ⇐⇒ a(t)

b(t)
∈ 1 +mv.

This means that the series a(t) and b(t) have the same leading term `(a(t)) = `(b(t)). Thus
the group of monomials

G := {ctj | c ∈ F ∗, j ∈ R}
is a system of representatives of the equivalence classes of S(v). We identify

G = R∗/S(v) = T (U(v))/E(v).

Then U(v) = STR(G,R>0, v|G) = G∪̇M in the notation of Construction 3.16, and our

supervaluation ϕv : R → U(v) is the map a(t) 7→ `(a(t)), which sends each formal series a(t)
to its leading term. {We read `(0) = 0, of course.}

In short, applying v to a series a(t) means taking its leading t-power and replacing t by
ϑ, while applying ϕv means taking its leading term.

Similarly we can interpret the bottom supervaluation v̂ ∈ Covt,s(v). The t-powers tj,
j ∈ R, are a multiplicative set of representatives of the Et-equivalence classes. Identifying

U(v)/Et = {tj | j ∈ R},
we can say that v̂(a(t)) is the leading t-power of the series a(t). The ghost map from
U(v)/Et = D(M) to M sends t to ϑ.

12. Pushouts of tangible supervaluations

If ϕ : R → U and ψ : R → V are supervaluation on a semiring R, and ϕ dominates ψ, then
we also say that ψ is a coarsening of ϕ . Recall that this happens iff there is a transmission
α : U → V with ψ = α ◦ ϕ. If in addition ϕ is surjective, i.e., U = ϕ(R) ∪ eϕ(R), which
is no essential loss of generality, then α is uniquely determined by ϕ and ψ, and we write
α = αψ,ϕ (cf. §5).

Assume now that v : R → M is a surjective m-valuation and ϕ : R → U is a surjective
supervaluation covering v (in particular M = eU). Moreover, let γ : M → N be a surjective
homomorphism to another (bipotent) semiring N .

Definition 12.1. We say that a surjective supervaluation ψ : R → V is the initial coars-
ening of ϕ along γ, if ψ is a coarsening of ϕ and αψ,ϕ is the initial transmission covering
γ (cf. Definition 9.3). In the notation 9.7; which we will obey in the following, this means
that V = Uγ and αψ,ϕ = αU,γ.We then write ψ = γ∗(ϕ).

In this way we obtain a map

γ∗ : Cov(v) → Cov(γv)

between complete lattices.
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[We could define such a map γ∗ also if γ : M → N is not necessarily surjective. But in
the present section this will give no additional insight.]

In the following, we will tacitly assume that all occurring supervaluations are surjective,
again without essential loss of generality.

We write down a functional property of the initial transmissions αU,γ, which will give us
simple properties of the maps γ∗. The map γ : M → N is always assumed to be a surjective
homomorphism between bipotent semirings (as before).

Proposition 12.2. Let U and V be supertropical semirings with eU = eV = M and let
λ : U → V be a transmission over M (hence a homomorphism, cf. Proposition 5.10.iii).

(a) Then there exists a unique transmission from Uγ to Vγ over N , denoted by λγ, such
that

λγ ◦ αU,γ = αV,γ ◦ λ.
We thus have a commuting diagram

V
αV,γ // Vγ

U

λ

OO

αU,γ // Uγ

λγ

OO

M
?Â

OO

γ // N
?Â

OO

with inclusion mappings M ↪→ U and N ↪→ Uγ.
(b) If ξ : V → W is a second homomorphism over M then

ξγλγ = (ξλ)γ.

Proof. a): αV,γλ : U → Vγ is a transmission covering γ. Now use the universal property of
the initial transmission αU,γ.

b): ξγλγ : Uγ → Wγ is a transmission over N such that

ξγλγαU,γ = ξγαV,γλ = αW,γξλ.

By the uniqueness part in a) we conclude that ξγλγ = (ξλ)γ. ¤

As an immediate consequence of part b) we have

Corollary 12.3. The map γ∗ : Cov(v) → Cov(γv) is order preserving in the weak sense,
i.e., ϕ ≥ ψ implies γ∗(ϕ) ≥ γ∗(ψ). ¤

Corollary 12.4. If ϕ : R → U and ψ : R → V are supervaluations covering v (in particular
eU = eV = M) with ϕ ≥ ψ then

αγ∗(ψ),γ∗(ϕ) = (αψ,ϕ)γ.

Proof. We have ψ = λϕ with λ := αψ,ϕ. From this we conclude that

γ∗(ψ) = αV,γλϕ = λγαU,γϕ = λγγ∗(ϕ).

Thus λγ is the transmission from γ∗(ϕ) to γ∗(ψ). ¤
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Starting from now we assume that the bipotent semirings M and N are cancellative; hence
v : R → M and γv : R → N are valuations. We define

p := γ−1(0), q := v−1(0) = supp(v), q′ := v−1(p) = supp(γv).

Notice that p, q, q′ are prime ideals of M and R, respectively.
Given any supertropical semiring U with eU = M , we now know that αU,γ : U → Uγ is a

pushout transmission (Theorem 9.12). Consequently, if ϕ ∈ Cov(v), we now call γ∗(ϕ) the
pushout of ϕ along γ (instead of “initial coarsening of ϕ along γ”).

The good thing is that we now have an explicit descriptions of Uγ and αU,γ which we recall
from §9, cf. Theorem 9.11.

We start with a multiplicative equivalence relation E(U, γ) on U defined as follows. For
x, y in U

x ∼E(U,γ) y ⇐⇒ either x = y,
or both x, y ∈ M and γ(x) = γ(y),
or ex ∈ p, ey ∈ p.

The restriction E(U, γ)|M is the equivalence relation E(γ) given by γ : M ³ N . We
identify every class [x]E(U,γ), x ∈ M , with the image γ(x) ∈ N and then have

M/E(U, γ) = N.

As proved in §9, we may choose8 Uγ = U/E(U, γ) and then have

αU,γ = πE(U,γ) : x 7−→ [x]E(U,γ).

Let x ∈ T (U). If ex /∈ y, then [x]E(U,γ) = {x}, but if ex ∈ y, then [x]E(U,γ) = 0 ∈ N . Thus
we see that T (Uγ) = Uγ \ N is the bijective image of {x ∈ T (U) | ex /∈ y}. We identify
[x]E(U,γ) with x, if x lies in this set, and then have

T (Uγ) = {x ∈ T (U) | ex /∈ p}, Uγ = {x ∈ T (U) | ex /∈ p} ∪̇ N.

Notice that the multiplicative monoid T (Uγ) has become a submonoid of T (U), since
E(U, γ) is multiplicative, but the sum of two elements of T (Uγ), computed in the semiring
Uγ, can be very different from their sum in U .

After all these identifications we have

Lemma 12.5. For any x ∈ U,

αU,γ(x) =





x if x ∈ T (U), ex /∈ p,

0 if x ∈ T (U), ex ∈ p,

γ(x) if x ∈ M.

¤
Clearly αU,γ maps T (U)0 into (in fact onto) T (Uγ)0. In other words, E(U, γ) is ghost

separating (cf. Definition 11.3). This implies

Proposition 12.6. γ∗(Covt(v)) ⊂ Covt(γv).

We further have the following important fact.

Theorem 12.7. The pushout of the initial covering ϕv : R → U(v) of v is the initial covering
ϕγv : R → U(γv) of γv. In particular U(γv) = U(v)γ.

8Recall that αU,γ : U → Uγ is the solution of a universal problem.
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Proof. Recall that T (U(v)) = R \ q and T (U(γv)) = R \ q′ with q = supp(v) and q′ =
supp(γv) = v−1(p). Thus it is pretty obvious that U(γv) = U(v)γ. If a ∈ R, we have

γ∗(ϕv)(a) = αU,γ(ϕv(a));

hence, by Lemma 12.5, γ∗(ϕv)(a) = ϕ(a) if v(a) = eϕv(a) /∈ p, while γ∗(ϕv)(a) = 0 if
v(a) ∈ p. These are precisely the values attained by ϕγv. ¤

We now focus on the restriction

γ∗,t : Covt(v) → Covt(γv)

of γ∗ to tangible supervaluations. It maps the top element ϕv of Covt(γ) to the top element
ϕγv of Covt(γv). But it almost never maps the bottom element v̂ of Covt(v) to the bottom
element γ̂v of Covt(γv), as we will see below.

Our goal now is to exhibit a sublattice of Covt(v) which maps bijectively onto γ∗,t(Covt(v))
under the pushout map γ∗,t. For that we need a construction of general interest.

In the following we always assume that eU = M and T (U) is closed under multiplication.
Given an ideal a of M we introduce the equivalence relation

Et,a := Et,a(U) := Et ∩ E(M \ a),
with Et and E(M \ a) the MFCE-relations defined in Examples 6.4.v and 6.12. Clearly Et,a

is a ghost separating equivalence relation.
E := Et,a(U) has the follows explicit description. Let x, y ∈ U be given, If x ∈ M , or if

x ∈ T (U), but ex /∈ a, then x ∼E y iff x = y. If x ∈ T (U) and ex ∈ a, then x ∼E y iff
y ∈ T (U) and ex = ey.

Definition 12.8. (a) We call the supertropical semiring U/Et,a(U) consisting of the
Et,a(U)-equivalence classes the t-collapse (= tangible collapse) of U over a and
we denote this semiring by ct,a(U).

(b) We call the natural semiring homomorphism

πEt,a(U) : U → ct,a(U)

the t-collapsing map of U over a, and we denote this map by πt,a, or πt,a,U if
necessary.

(c) If ϕ : R → U is a tangible supervaluation covering v, we call the supervaluation

ϕ/Et,a(U) = πt,a ◦ ϕ
the t-collapse of ϕ over a, and we denote this supervaluation by ct,a(ϕ).

(d) Finally, we say that U is t-collapsed over a, if πt,a is an isomorphism, for which we
abusively write ct,a(U) = U , and we say that ϕ is t-collapsed over a if ct,a(ϕ)) = ϕ
(which happens iff ct,a(U) = U , since our supervalutions are assumed to be surjective).

We describe the semiring ct,a(U) more explicitly. Without essential loss of generality we
assume that eT (U)0 = M .

If Z is any subset of M , let U |Z denote the preimage of Z under the ghost map νU ,

U |Z := {x ∈ U | ex ∈ Z}.
Now, if U is t-collapsed over a, every z ∈ U has a unique tangible preimage under νU . We

denote this preimage by ẑ, and then have

U |a = a ∪̇ â
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with â = {ẑ|z ∈ a}.
In general we identify

ct,a(U)|M\a = U |M\a.
This makes sense since [x]Et,a = {x} for any x ∈ U |M\a. We then have

ct,a(U) = (U |M\a ∪ M) ∪̇ â

and
U |M\a ∩ M = M \ a.

After these identifications the following is obvious.

Lemma 12.9. (i) If x ∈ U then

πt,a(x) =

{
x if x ∈ M or ex /∈ a,

(ex)∧ if ex ∈ a

(ii) If ϕ ∈ Covt(U) and a ∈ R, then

ct,a(ϕ)(a) =

{
ϕ(a) if v(a) /∈ a,

v̂(a) if v(a) ∈ a.

¤
We now look at the map

ct,a : Covt(v) → Covt(v)

which sends each ϕ ∈ Covt(v) to its t-collapse ct,a(ϕ) over a. It is clearly order preserving,
and is idempotent, i.e., (ct,a)

2 = ct,a. We denote its image by Covt,c,a(v). Its elements are
the t-collapsed tangible supervaluation over a which cover v.

Using the description of suprema and infima in the complete lattice Cov(v) in §7, it is an
easy matter to verify the following

Proposition 12.10. Covt(v) is a complete sublattice of Cov(v), and

ct,a : Covt(v) → Covt(v)

respects suprema and infima in Covt(v). Thus, also Covt,c,a(v) is a complete sublattice of
Cov(v).

Remark 12.11. Independently of this proposition it is clear that Covt,c,a(v) is a lower set
in Covt(v) with top element ct,a(ϕv). It follows that

Covt,c,a(v) = {ψ ∈ Cov(v) | ct,a(ϕv) ≥ ψ ≥ v̂ }.
This proves again that Covt,c,a(v) is a complete sublattice of Cov(v).

We return to the surjective homomorphism γ : M → N and now choose for a the prime
ideal p = γ−1(0) of M .

Proposition 12.12. Let V := ct,p(U).

(i) The homomorphism c : U → V induces an isomorphism (πt,p)γ : Uγ→̃Vγ over N .
More precisely, using the identifications from above we have Uγ = Vγ, and then
(πt,p)γ is the identity of Uγ.

(ii) αU,γ = αV,γ ◦ πt,p.
(iii) If ϕ ∈ Covt(v) then γ∗(ϕ) = γ∗(ct,p(ϕ)).
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Proof. We have the identification

T (U |M\p) = T (V |M\p)

(see above). On the other hand, αU,γ maps U |p to {0N}, and αV,γ maps V |p to {0N}. Finally
αU,γ|M = αV,γ|M = γ.

Thus it is evident that, under our identifications, Uγ = Vγ and then αU,γ = αV,γ ◦ πt,p.
Reading this equality as

idUγ ◦ αU,γ = αV,γ ◦ πt,p

we conclude by Proposition 12.2.a that (πt,p)γ = idUγ . Finally, if ϕ ∈ Covt(v), then

γ∗(ct,p(ϕ)) = αV,γ ◦ ct,p(ϕ) = αV,γ(πt,p(ϕ)) = αU,γ(ϕ) = γ∗(ϕ).

¤
Lemma 12.13. Let U , V be supertropical semirings with eU = eV = M , and λ : U → V
a transmission over M with λ(T (U)) ⊂ T (V ). Assume further that U is t-collapsed over p.
Finally assume that λγ : Uγ → Vγ is injective. Then λ : U → V is injective.

Proof. The upper square of the of the diagram in Proposition 12.2.a restricts to a commuting
square

T (U |M\p)

“λ”
²²

˜

id
// T (Uγ)

“λγ”

²²
T (V |M\p)

˜

id
// T (Vγ)

Here the vertical arrows are restrictions of the maps λ and λγ. The vertical arrow on the
right is an injective map by assumption. Thus, also the left vertical arrow is an injective
map. The restriction λ|T (U |p) is a priori forced to be injective, since U is t-collapsed over
p. Finally λ restricts to the identity on M . Thus, λ is injective. ¤

We now are ready for the main result of this section

Theorem 12.14. As before assume that T (U) is closed under multiplication.

(a) The pushout map

γ∗,t : Covt(v) → Covt(γv)

restricts to a bijection from Covt,c,p(v) to γ∗(Covt(γv)). Consequently γ∗(Covt(γv))
is a sublattice of Covt(γv) isomorphic to Covt,c,p(v).

(b) If ϕ, ψ ∈ Covt(v) then γ∗(ϕ) = γ∗(ψ) iff ϕ and ψ have the same t-collapse over p.

Proof. a): Since we know already that γ∗|Covt,c,p(v) is a lattice homomorphism (Proposition
12.10), it suffices to verify the following: If ϕ, ψ ∈ Covt(v) are t-collapsed over p and ϕ ≥ ψ,
but ϕ 6= ψ, then γ∗(ϕ) 6= γ∗(ψ).

We have a unique surjective transmission λ := αψ,ϕ : U → V with ψ = λϕ. This implies
γ∗(ψ) = λγγ∗(ϕ) by Corollary 12.4. If λγ would be an isomorphism then also λ would be an
isomorphism by Lemma 12.13 above. But this is not true. Thus λγ is not an isomorphism,
and this means that γ∗(ψ) 6= γ∗(ϕ).

b): We know by Proposition 12.12 that γ∗(ϕ) = γ∗(ct,p(ψ)). Thus γ∗(ϕ) = γ∗(ψ) iff
γ∗(ct,p(ϕ)) = γ∗(ct,p(ψ)). By part a) this happens iff ct,p(ϕ) = ct,p(ψ). ¤
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We turn to the image of the map γ∗,t : Covt(v) → Covt(γv). Here we will put emphasis
on strong supervaluations. Thus we now assume in addition that the surjective valuation
v : R → M is strong.

If ϕ : R → U is a strong supervaluation covering v, then γ∗(ϕ) = αU,γ ◦ϕ is again a strong
supervaluation, as follows from Lemma 11.1.ii and the definition of “strong” (Definition
10.9). Thus

γ∗(Covt,s(ϕ)) ⊂ Covt,s(γv).

We have seen that γ∗(ϕv) = ϕγv, but we can only state that the pushout γ∗(ϕv) of the initial

strong supervaluation ϕ : R → U(v) is dominated by ϕγv : R → U(γv). On the other side,
the pushout γ∗(v̂) of the bottom element v̂ : R → D(M) of both Covt,s(ϕ) and Covt(v)
dominates γ̂v : R → D(N). Using the abbreviations

α := αU(v),γ, ᾱ := αU(v),γ, β := αD(M),γ,

we thus have a commuting diagram

U(v)
α //

²²

U(v)γ = U(γv)

²²

U(γv)

²²

U(v)
ᾱ //

²²

(U(v))γ

²²
D(M)

β //

²²

D(M)γ

²²
D(N)

²²
R v

//

v̂

??¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡

ϕ̄v

EE®®®®®®®®®®®®®®®®®®®®®®®®®®®

ϕv

II¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
M

γ // N

with surjective transmissions over M and N respectively as vertical arrows.
The following questions immediately come to mind.

Questions 12.15.

(1) Can we expect that ϕγv = γ∗(ϕv)?
(2) Can we expect that γ̂v = γ∗(v̂)?
(3) Is γ∗(Covt(v)) convex9 in Covt(γv)?
(4) Is γ∗(Covt,s(v)) convex in Covt,s(γv)?

Recall that Covt,s(γv) is convex in Covt(γv), and Covt(γv) is convex in Cov(γv), as we
have seen in §11.

Question (2) has a negative answer: If z ∈ N \ {0}, then the tangible fiber of
{x ∈ D(M)γ|ex = z} is the union of the tangible fibers of D(M) over the points of γ−1(z),

9A subset Y of a poset X is called convex in X if y ≤ x ≤ z for y, z ∈ Y , x ∈ X implies that x ∈ Y .
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and thus will quite often contain more than one point. The other questions will be answered
here completely only in a special case to which we turn now.

Assume that R \ q is a group under multiplication. Then we can give a very explicit
description of the map γ∗,t, and even γ∗.

Now M \{0} = v(R \q) and N \{0} = γ(M \{0}) are groups, i.e., M and N are bipotent
semifields. This forces p = 0 and q = q′.

Since p = 0 we conclude from Theorem 12.14 and Proposition 12.12 that γ∗ is an iso-
morphism of the lattice Covt(v) onto its image γ∗(Covt(v)), By §8 the MFCE-relations on
U(v) except E(νU) are orbital, hence ghost separating. Thus Cov(v) = Covt(v) ∪ {v} (as
essentially observed in §11). We have γ∗(v) = γv, and we conclude that γ∗ is an isomorphism
from Cov(v) onto its image.

We have M = Γ ∪ {0} with Γ an ordered abelian group. Let ∆ := γ−1(1N). This is a
convex subgroup of Γ, since γ : M → N is an order preserving monoid homomorphism.
The map γ induces an isomorphism from M/∆ = Γ/∆ ∪ {0} onto N . In the following we
assume without loss of generality that N = M/∆ and γ is the map x 7→ ∆x from M to N .
Excluding a trivial case we assume that ∆ 6= 1.

Returning to the notation from the end of §11 we have o∗v = {a ∈ R | v(a) ∈ 1M} and
o∗γv = {a ∈ R | v(a) ∈ ∆}, further mv = {a ∈ R | v(a) < 1M} and mγv = {a ∈ R | v(a) < ∆}.
{v(a) < ∆ means v(a) < δ for every δ ∈ ∆.}

If H is a subgroup of o∗v then H is also a subgroup of o∗γv, since o∗v is a subgroup of o∗γv.
Thus H gives us a transmission

πH,U(v) : U(v) → U(v)/E(H)

over M and a transmission

πH,U(γv) : U(γv) → U(γv)/E(H)

over N . {Previously both maps sloppily had been denoted by πH .}
Theorem 12.16. If H is any subgroup of o∗v, then

(a) (πH,U(v))γ = πH,U(γv),
(b) γ∗(ϕv/H) = ϕγv/H.

Proof. a): Let V := U(v)/E(H). We are done by Proposition 12.2.a if we verify that

πH,U(γv) ◦ αU(v),γ = αV,γ ◦ πH,U(v).

This is easily verified by use of Lemma 12.5.
b): We know (Theorem 12.7) that

ϕγv = γ∗(ϕv) = αU(v),γ ◦ ϕv

Thus
ϕγv/H = πH,U(γv) ◦ αU(v),γ ◦ ϕv.

On the other hand

γ∗(ϕv/H) = αV,γ(ϕv/H) = αV,γ ◦ πH,U(v) ◦ ϕv.

By step a) we conclude that indeed

γ∗(ϕv/H) = ϕγv/H.

¤



SUPERTROPICAL SEMIRINGS AND SUPERVALUATIONS 55

We learned before (§8, §11) that the elements ϕ of Covt correspond uniquely with the
subgroups H of o∗v via ϕ = ϕv/H, and now conclude by Theorem 12.16 that

γ∗(Covt(v)) = {ϕγv/H | H ≤ o∗v}.
(“ ≤ ” means subgroup). On the other hand

Covt(γv) = {ϕγv/H | H ≤ o∗γv}.
Thus, γ∗(Covt(v)) is an upper set of the complete lattice Covt(γv) with bottom element

γ∗(v̂) = ϕγv/o
∗
v.

This element is definitely different from

γ̂v = ϕγv/o
∗
γv,

since o∗γv/o
∗
v
∼= ∆. Thus question 12.15.(2) has a negative answer (which we know already),

while question 12.15.(3) has a positive answer.
How about question 12.15.(1)? The top element of Covt,s(v) is ϕv. We saw in §11 that

ϕv = ϕv/1 +mv, and now conclude by Theorem 12.16 that

γ∗(ϕv) = ϕγv/1 +mv.

But
ϕγv = ϕγv/1 +mγv,

and mγv is definitely smaller than mv. Thus ϕγv � γ∗(ϕv). Question 12.15.(1) has a negative
answer.

Returning to the general situation, but still with v : R → M strong, we should expect
that ϕγv � γ∗(ϕv) except in rather pathological cases. Indeed, it seems often possible to

pass from v : R → M to a strong valuation ṽ : R̃ → M̃ , with R̃ a semifield by a localization
process (which we did not discuss), and to argue in Covt(ṽ). We leave this matter to a future
publication [IKR].

Concerning applications, the strong supervaluations seem to be more important than the
others. But the fact that γ∗(ϕv) differs from ϕγv, while γ∗(ϕv) = ϕγv, indicates that it would
not be advisable in supervaluation theory to restrict the study to strong supervaluations
from start, as said already in the Introduction.

13. Epilog: iq-valuations on polynomial semirings and related
supervaluations.

Since the semiring of polynomials over a supertropical domain is no longer supertropical
(or analogously, the semiring of polynomials over a bipotent semiring is no longer bipotent),
we would like a theory generalizing valuations to maps with values in these polynomial
semirings. Unfortunately, the target is no longer an ordered group (and is not even an
ordered monoid), so the theory must be framed in a somewhat broader context.

In this - compare to its goals- short section, we formulate some concepts of this paper
in the more general context of monoids with a supremum, instead of ordered monoids, and
show for example how this encompasses Kapranov’s Lemma. Recall that an operation a ∨ b
on a set S is called a sup if it has a distinguished element 0 and satisfies the following
properties for all a, b, c ∈ S:

(1) 0 ∨ a = a;
(2) a ∨ b = b ∨ a;



56 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

(3) a ∨ a = a;
(4) a ∨ (b ∨ c) = (a ∨ b) ∨ c.

In this case, we can define a partial order on S by defining a ≤ b when a ∨ b = b. Then
the following properties are immediate for all a, b, c ∈ S:

(a) 0 ≤ a;
(b) a ∨ b ≥ a and a ∨ b ≥ b;
(c) if a ≤ c and b ≤ c, then a ∨ b ≤ c. (Indeed, if a ∨ c = c and b ∨ c = c, then

(a ∨ b) ∨ c = (a ∨ c) ∨ (b ∨ c) = c ∨ c = c.)

We also say that a given sup x ∨ y on a monoid M is compatible with M if a(x ∨ y) =
ax ∨ ay for all a, x, y ∈ M .

In order to axiomatize this in the language of semirings, we recall that an idempotent
semiring R satisfies the property that x+ x = x for all x ∈ R.

Proposition 13.1.

(i) Every idempotent semiring R can be viewed as a multiplicative monoid with a com-
patible sup ∨ defined by

x ∨ y := x+ y.

(ii) Conversely, given a monoid M with a compatible sup, we can define an idempotent
semiring structure on M , with the same multiplication, and with addition given by
x+ y := x ∨ y.

Proof. All of the other verifications are immediate. ¤
Remark 13.2. If R is an idempotent semiring, then so is the polynomial semiring R[λ] as
well as the matrix semiring Mn(R).

Both of these assertions fail when we substitute “bipotent” for “idempotent.” Thus, it
makes sense to pass to idempotent semirings when studying polynomials and matrices. In
the case of semifields, we actually have a lattice structure.

Proposition 13.3. If R is a semifield, where ∨ is given by addition (as in Proposition 13.1),
then there is a compatible inf relation ∧ given by x ∧ y := xy

x+y
(taking 0 ∧ 0 = 0), thereby

making (R,∨,∧) a distributive lattice satisfying

(x ∨ y)(x ∧ y) = xy, ∀x, y ∈ R. (13.1)

Proof. Property (13.1) follows at once from the definitions, and implies that a(x ∧ y) =
ax ∧ ay, as well as associativity of ∧. To check distributivity, we need to check

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Since ≤ is clear, we only check ≥, and also may assume x, y, z 6= 0. Now

(x ∧ y) ∨ z =
xy

x+ y
+ z

≥ xy

x+ y + z
+ z

x+ y + z

x+ y + z

=
(x+ z)(y + z)

x+ y + z
=

(x+ z)(y + z)

(x+ z) + (y + z)

= (x ∨ z) ∧ (y ∨ z).

(13.2)

¤
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Having the translation of the sup relation to semirings at hand, we are ready to reformulate
some of the results of this paper. But first it is instructive to introduce a parallel of the
ghost surpassing relation.

Definition 13.4. y |= x ⇔ ∃a ∈ R with y = x+ a.

Clearly, |= is a transitive binary relation on R.

Definition 13.5. R is an upper-bound semiring, written ub-semiring, if the relation |= is
anti-symmetric; i.e.,

x |= y and y |= x ⇔ x = y.

The reason for this terminology is that now the relation |= gives a partial ordering on the
set R (a ≤ b iff b |= a), and x+ y is an upper bound of x, y in this ordering.

Remark 13.6.

(i) The condition that a semiring R is ub can be rephrased as follows:
For any a, b, x ∈ R, if x+ a+ b = x, then x+ a = x.

(ii) Any ub-semiring R has the property that a + b = 0 implies a = b = 0, by (i). (Take
x = 0.)

Proposition 13.7. Any idempotent semiring is an ub-semiring.

Proof. If x+ a+ b = x, then

x+ a = (x+ a+ b) + a = x+ a+ b = x.

¤

Lemma 13.8. Any ub-semiring satisfies the following properties:

(i) If x+ a+ b = x, then x+ a = x.
(ii) If a+ b = 0, then a = b = 0.

Proof. (i): Obviously x + a |= x, and the hypothesis implies x = (x + a) + b |= x + a, so
x+ a = x by anti-symmetry.

(ii): Take x = 0 in (i). ¤

If R is any semiring, let R[λ] = R[λ1, . . . , λn] denote the polynomial semiring over R in a
set of variables λ = (λ1, . . . , λn).

Proposition 13.9. Every supertropical semiring U is upper bound, and U [λ1, . . . , λn] is
upper bound for every n.

Proof. We have to check the condition in Remark 13.6.i. Let x, a, b ∈ U be given with
x+a+b = x. We have to verify that x+a = x. Multiplying by e we obtain ex+ea+eb = ex,
hence ea ≤ ex and eb ≤ ex. If ea < ex, then x+a = x right away.If eb < ex, then x+ b = x,
hence x = x + a + b = x + a again. There remains the case that ea = eb = ex. Now
x+ a+ b = ex, hence x is ghost, and x+ a = ex = x again. This proves that U is ub.

Let now f, g, h ∈ U [λ1, . . . , λn] be given with f + g + h = f . We write f =
∑

αiλ
i,

g =
∑

βiλ
i, h =

∑
γiλ

i. Then αi+βi+γi = αi for every i, and we conclude that αi+βi = αi

for every i, hence f + g = f , as desired. ¤
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The reason we want to consider the idempotent semiring M [λ] is that we want to extend
any m-valuation v : R → M to the map ṽ : R[λ] → M [λ], where we define

ṽ

(∑
i

αiλ
i1
1 . . . λin

n

)
=

∑
i

v(αi)λ
i1
1 . . . λin

n . (13.3)

Since M [λ] is no longer bipotent in the natural way, we would like to generalize Definition 2.1
to permit valuations to idempotent semirings.

Unfortunately, ṽ as defined in (13.3) need not satisfy property V3 of Definition 2.1,
since ṽ(fg) could differ from ṽ(f)ṽ(g). Indeed, if f =

∑
i αiλ

i and g =
∑

j βjλ
j, with

i = (i1, . . . , in) and j = (j1, . . . , jn), then writing fg =
∑

k

(∑
i+j=k αiβj

)
λk, we have

ṽ(fg) =
∑

k

v

( ∑

i+j=k

αiβj

)
λk

≤
∑

k

∑

i+j=k

v(αi)v(βj)λ
k

=
(∑

v(αi)λ
i
)(∑

v(βj)λ
j
)
,

where there could be strict inequality. Accordingly, we need a weaker notion:

Definition 13.10. An iq-valuation (= idempotent monoid quasi-valuation) on a semir-
ing R is a map v : R → M into a (commutative) idempotent semiring M 6= {0} with the
following properties:

IQV 1 : v(0) = 0,

IQV 2 : v(1) = 1,

IQV 3 : v(xy) ≤ v(x)v(y) ∀x, y ∈ R,

IQV 4 : v(x+ y) ≤ v(x) + v(y) ∀x, y ∈ R.

{NB:Here we use the partial order introduced above following Definition 13.5.}
Proposition 13.11. Suppose M is a bipotent semiring and v : R → M is an m-valuation.

(i) Then the map ṽ : R[λ] → M [λ] given above is an iq-valuation.
(ii) For any given a ∈ Mn, the map εa ◦ ṽ : R[λ] → M is again an iq-valuation. {Here

εa denotes the evaluation map f(λ) 7→ f(a), as in the previous sections.}
¤

If v is strong we can do better.

Theorem 13.12. Assume that v : R → M is a surjective strong m-valuation. Then, for
any a ∈ Mn, εa ◦ ṽ : R[λ] → M is again a strong m-valuation.

Proof. By an easy induction we restrict to the case of n = 1. Given f =
∑

i αiλ
i, g =

∑
j βiλ

i

in R[λ] we have to verify the following:

(1) εaṽ(fg) = εaṽ(f) · εaṽ(g);
(2) If εaṽ(f) < εaṽ(g), then εaṽ(f + g) = εaṽ(g).
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(1): We know already that

εaṽ(fg) ≤ εaṽ(f) · εaṽ(g).
Due to the bipotence of M we have smallest indices k and ` such that

εaṽ(f) =
∑
i

v(αi)a
i = v(αk)a

k,

εaṽ(g) =
∑
j

v(βi)a
j = v(β`)a

`.

We chose some c ∈ R with v(c) = a. Since v is strong and k, ` have been chosen minimally
we have

v

( ∑

i+j=k+`

αic
iβjc

j

)
= v(αkc

kβ`c
`) = εaṽ(f) · εaṽ(g).

Thus

εaṽ(fg) =
∑
r

v

( ∑
i+j=r

αic
iβjc

j

)

≥
∑

i+j=k+`

v

( ∑

i+j=k

αic
iβjc

j

)

= εaṽ(f) · εaṽ(g).
We conclude that

εaṽ(fg) = εaṽ(f) · εaṽ(g).
(2): Assume that εaṽ(f) < εaṽ(g). Using the same k, `, and c as before we have for all i

v(αic
i) < v(β`c

`),

v(βic
i) ≤ v(β`c

`).

Now

εaṽ(f + g) =
∑
i

v[(αi + βi)c
i],

and v[(αi + βi)c
i] ≤ v(β`c

`) for all i, with

v[(α` + β`)c
`] = v(β`c

`).

Thus,

εaṽ(f + g) = v(β`c
`) = εaṽ(g).

¤

In particular, we could take v to be the natural valuation on the field of Puiseux series
with rational exponents, as used in [G], or with real exponents as introduced above in §11.

Let us formulate the analogue of Definition 4.1 in the realm of semirings with ghosts.
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Definition 13.13. An iq-supervaluation on a semiring R is a map ϕ : R → U from R to
a ub-semiring U with ghosts, satisfying the following properties.

IQSV 1 : ϕ(0) = 0,

IQSV 2 : ϕ(1) = 1,

IQSV 3 : ∀a, b ∈ R : ϕ(ab) ≤ ϕ(a)ϕ(b),

IQSV 4 : ∀a, b ∈ R : eϕ(a+ b) ≤ e(ϕ(a) + ϕ(b)).

Here again we use the ordering given by the relation |
gs

=. This is justified by Proposi-

tion 13.9.
We are ready for the main purpose of this epilog.

Theorem 13.14. Assume that ϕ : R → U is a surjective strong supervaluation, and

v : R → eU = M

is the strong m-valuation covered by ϕ. Let a = (a1, . . . , an) ∈ Un be given, and let b :=
(ea1, . . . , ean) ∈ Mn.

(i) ϕ can be extended to an iq-supervaluation ϕ̃ : R[λ] → U [λ] by the formula

ϕ̃

(∑
i

αiλ
i

)
=

∑
i

ϕ(αi)λ
i.

(ii) εa ◦ ϕ̃ : R[λ] → U is a strong supervaluation. It covers the (strong) valuation εb ◦ ṽ :
R[λ] → M .

Proof. (i): If a, b ∈ R then we know from §10 that ϕ(a) + ϕ(b) |
gs

= ϕ(a + b). This implies

ϕ(a) + ϕ(b) |= ϕ(a+ b), i.e.
ϕ(a+ b) ≤ ϕ(a) + ϕ(b). (∗)

An argument parallel to the one before Definition 13.10 now tells us that for f, g ∈ R[λ]
we have

ϕ̃(fg) ≤ ϕ̃(f) · ϕ̃(g).
Clearly ϕ̃ extends ϕ, in particular ϕ̃(0) = 0, ϕ̃(1) = 1. From (∗) it is also obvious that
ϕ̃(f + g) ≤ ϕ̃(f) + ϕ̃(g), hence

eϕ̃(f + g) ≤ eϕ̃(f) + eϕ̃(g).

Thus, ϕ̃ is an iq-supervaluation. Clearly eϕ̃(f) = ṽ(f) for all f ∈ R[λ]. {By the way, this
gives us again that eϕ̃(f + g) ≤ eϕ̃(f) + eϕ̃(g).}

(ii): Again we restrict to the case of n = 1 by an easy induction. It is pretty obvious that
εaϕ̃ : R[λ] → U obeys the rules SV1, SV2, SV4 from §4 (Definition 4.1), and e · εaϕ̃(f) =
εbṽ(f) for every f ∈ R[λ]. Given f =

∑
i αiλ

i, g =
∑

i βiλ
i in R[λ] it remains to prove the

following:

(1) εaϕ̃(fg) = εaϕ̃(f) · εaϕ̃(g),
(2) If εaϕ̃(f) ≤ εaϕ̃(g) then εaϕ̃(f + g) = εaϕ̃(g).

(1): Let k, ` be the minimal indices such that

e
∑
i

ϕ(αi)a
i = eϕ(αk)a

k = eεaϕ̃(f), (∗∗)
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e
∑
i

ϕ(βi)a
i = eϕ(β`)a

` = eεaϕ̃(g), (∗ ∗ ∗)

(as in the proof of Theorem 13.12). We know by Theorem 13.12 that

e(εa ◦ ϕ̃)(fg) = eϕ(αk)a
k · eϕ(β`)a

` = e(εa ◦ ϕ̃)(f) · e(εa ◦ ϕ̃)(g).
We chose some c ∈ R with ϕ(c) = a. Using (∗) we obtain

(εa ◦ ϕ̃)(fg) =
∑
r

ϕ

( ∑
i+j=r

αiβj

)
ar

=
∑
r

ϕ

( ∑
i+j=r

αic
i · βjc

j

)

≤
∑
r

∑
i+j=r

ϕ(αic
i) · ϕ(βjc

j)

=
∑
i,j

ϕ(αi)a
i · ϕ(βj)a

j.

There is a single ν-dominating term in this sum iff there is a single ν-dominating term on
the left of (∗∗) and of (∗ ∗ ∗), so we conclude that

εaϕ̃(fg) = εaϕ̃(f) · εaϕ̃(g)
in all cases, using the fact that tangible elements x, y of U with x ≤ y, ex = ey are equal.

(2): This can be proved in the way analogous to claim (2) in the proof of Theorem 13.12.
¤

Thus, for U a supertropical semiring, the evaluation map returns us from iq-supervaluations
with values in U [λ] to the firmer ground of supervaluations.

Looking again at Theorem 10.11 we realize now that the theorem gives pleasant examples
of pairs of supervaluations which obey a “GS-relation” in the following sense.

Definition 13.15. If ρ : A → V and σ : A → V are supervaluations on a semiring A with
values in the same supertropical semiring V , then we say that ρ surpasses σ by ghost,
and write ρ |

gs

= σ, if ρ(a) |
gs

= σ(a) for every a ∈ A.

In this terminology Theorem 10.11 reads as follows:

Theorem 13.16. Let ϕ : R → U be a strong supervaluation. Then for any a ∈ Rn the super-
valuation εϕ(a)◦ϕ̃ : R[λ1, . . . , λn] → U surpasses the supervaluation ϕ◦εa : R[λ1, . . . , λn] → U
by ghost.

Of course, we should look for other examples of pairs of supervaluations ρ : A → V and
σ : A → V with ρ |

gs

= σ. Here the “classical” case that A is a semifield, or even a field,

and eV is cancellative, is perhaps not the most interesting one. Indeed, for such pairs ρ, σ
we have eρ(a) ≥ eσ(a) for every a ∈ A, and this forces eρ(a) = eσ(a) since for a 6= 0 also
eρ(a−1) ≥ eσ(a−1). Thus ρ and σ cover the same valuation eρ = eσ : A → eV . But for the
pairs occurring in Theorem 13.16, where A is a polynomial semiring, the valuation eρ and
eσ usually will have even different support, and ρ can be a very interesting “perturbation”
of σ by ghosts.
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The phenomenon of “surpassing by ghost” for supervaluations shows clearly the impor-
tance of studying valuations and supervaluations on semirings instead of just semifields. We
defer a thorough study of the GS-relation for supervaluations to a future occasion.
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