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SUPERTROPICAL LINEAR ALGEBRA

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

Abstract. The objective of this paper is to lay out the algebraic theory of supertropical vector spaces
and linear algebra, utilizing the key antisymmetric relation of “ghost surpasses.” Special attention
is paid to the various notions of “base,” which include d-base and s-base, and these are compared
to other treatments in the tropical theory. Whereas the number of elements in a d-base may vary
according to the d-base, it is shown that when an s-base exists, it is unique up to permutation and
multiplication by scalars, and can be identified with a set of “critical” elements. Linear functionals
and the dual space are also studied, leading to supertropical bilinear forms and a supertropical version
of the Gram matrix, including its connection to linear dependence, as well as a supertropical version
of a theorem of Artin.

1. Introduction

The objective of this paper is to lay out an algebraic theory for linear algebra in tropical mathematics.
Extending the max-plus algebra to the supertropical algebra of [8] (which was designed as an algebraic
foundation for tropical geometry), we obtain a theory paralleling the classical structure theory of
commutative algebras.

Although there already is an extensive literature on tropical linear algebra over the max-plus algebra,
including linear dependence [2] and matrix rank [1], the emphasis often is combinatoric or geometric.
The traditional approach in semiring theory is to divide the determinant into a positive and negative
part (since −1 need not exist in the semiring), cf. [15]. Whereas this approach provides many basic
important properties of matrices, such as a general method given in [2] to transfer identities from
ring theory to semiring theory, the reliance on combinatorics also leads to competing (and different)
definitions. For example, in [1], five different definitions of matrix rank are given: The row rank, the
Barvinok (Shein) rank, the strong rank, the Gondran-Minoux rank, the symmetrized rank, and the
Kapranov rank.

The structure theory of supertropical semirings tends to unify these notions, giving a single formula
for the determinant, from which we can define a nonsingular matrix; in this approach, the row rank,
column rank, and strong rank all coincide. This makes it easier to proceed with a traditional algebraic
development. Explicitly, properties of matrices were studied in [9], [10], [11], and [12], where the main
theme is to replace the max-plus algebra by a cover, called the supertropical semiring, which permits
one to formulate stronger results which are amenable to proofs more in line with classical matrix theory.
Recall that the underlying supertropical structure is a semiring (without zero), R, with a designated
semiring ideal G ⊇ mR for all m, where mR denotes a + · · · + a repeated m times; the algebraic
significance is obtained by interpreting G as “ghost elements”, elements which collectively are treated
analogously to a zero element. When convenient, one assumes that R contains a zero element 0R, which
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2 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

can be formally adjoined. Thus, we introduce the fundamental relation a |
gs
= b when a equals b plus a

ghost element (which could be 0R).
We recall that the tropical determinant of an n × n matrix A = (ai,j) in Mn(R) is really the

permanent, which we denote as

|A| =
∑

π∈Sn

aπ(1),1 · · · aπ(n),n.

Although the equation |AB| = |A||B| fails over the max-plus algebra, the relation |AB| |
gs
= |A||B|

holds over a supertropical semiring, [9, Theorem 3.5], and any matrix satisfies its characteristic poly-
nomial in the sense of [9, Theorem 5.2]. The tangible roots of this polynomial are precisely the su-
pertropical eigenvalues of A, as given in ([9, Theorem 7.10]). A key tool is the adjoint. It was used
in [10, Theorems 3.5 and 3.8] to solve equations via a variant of Cramer’s rule, thereby enabling us to
compute supertropical eigenvectors in [10, Theorem 5.6].

Our main objective here is to initiate a formal theory of supertropical vector spaces and their bases,
over semirings with ghosts, and in particular over supertropical semifields.

Our method is to rely as far as possible on the structure theory. While this theory parallels the
classical theory of linear algebra, several key differences do emerge. At the outset, one major difference
is that there are two different kinds of bases. First, one can take a maximal (tropically) independent
set, which we call a d-base, called a “basis” in [14, Definition 5.2.4]. This has considerable geometric
significance, intuitively providing a notion of rank (although, by an example in [14], the rank might
vary according to the choice of d-base). As one might expect from [10], any dependence among vectors
can be enlarged to an (often unique) saturated dependence, which is maximal in a certain sense;
cf. Theorem 4.18. This leads to a delicate analysis of rank of a subspace, especially since it turns out
that the number of elements in different d-bases may differ.

Alternatively, one can consider sets that (tropically) span the subspace; an s-base is a minimal such
set when it exists. Such sets are used in generating convex spaces, as studied in [4]. Not every d-base is
an s-base. In fact, the number of elements of an s-base might necessarily be larger than the number of
elements of a d-base. Surprisingly, an s-base is unique up to scalar multiples , and can be characterized
in terms of critical elements, which intuitively are elements that cannot be decomposed into sums of
other elements. On the other hand, the d-bases can be quite varied, and lead us to interesting subspaces
that they span, which we call thick.

We also consider linear transformations in this context, in which the equality ϕ(v+w) = ϕ(v)+ϕ(w)
is replaced by the ghost surpassing relation ϕ(v + w) |

gs
= ϕ(v) + ϕ(w). Linear transformations lead us

to the notion of the dual space. The dual space depends on the choice B of d-base, but there is a
natural “dual s-base” of the dual space of B, of the same rank (Theorem 6.20).

In the last section we introduce supertropical bilinear forms, in order to study “ghost orthogonality”
between vectors. One calls two vectors v and w g-orthogonal with respect to a supertropical bilinear
form 〈 , 〉 when 〈v, w〉 is a ghost. We construct the Gram matrix and prove the connection between
tropical dependence of vectors in a nondegenerate space and the singularity of this matrix (Theo-
rem 7.10). Finally, we prove (Theorem 7.20) a variant of Artin’s Theorem: When the g-orthogonality
relation is symmetric, the supertropical bilinear form is “supertropically symmetric.”

Since the exposition [14] is an excellent source of fundamental results and examples, we use it as
a general reference for the “standard” tropical theory and compare several of our definitions with the
definitions given there.

2. Supertropical structures

2.1. Semirings without zero. A semiring without zero, which we notate as semiring†, is a struc-
ture (R,+, ·, 1R) such that (R, · , 1R) is a monoid and (R,+) is a commutative semigroup, with distribu-
tivity of multiplication over addition on both sides. (In other words, a semiring† does not necessarily
have the zero element 0, but any semiring can also be considered as a semiring†.)

The reason one does not initially require a zero element is twofold: On the one hand, in contrast to
ring theory, the zero element plays at best a marginal role in semirings, because of the lack of additive
inverses, and often gets in the way, requiring special treatment in definitions and propositions; on the
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other hand, in our main example, the max-plus algebra of R, the zero element does not exist in R but is
adjoined formally (as −∞), and often gets in the way (for example, when one wants to evaluate Laurent
polynomials.) At any rate, given a semiring† R†, we can formally adjoin the element 0 to obtain the
semiring R := R† ∪ {0}, where we stipulate for all a ∈ R:

0+ a = a+ 0 = a; 0a = a0 = 0.
A semiring† with ghosts is a triple (R†,G, ν), where R† is a semiring† and G is a semiring† ideal,

called the ghost ideal, together with an idempotent map

ν : R† −→ G
called the ghost map on R†, given by

ν(a) = a+ a.

(We require that ν preserves multiplication as well as addition.) We write aν for ν(a). Thus,

e := 1Rν

is both a multiplicative and additive idempotent of R†, which plays a key role since ν(R†) = eR†.
A supertropical semiring† has the extra properties:

(a) a+ b = aν if aν = bν ;

(b) a+ b ∈ {a, b}, ∀a, b ∈ R† s.t. aν 6= bν .
(Equivalently, G is ordered, via aν ≤ bν iff aν + bν = bν .)

We write a >ν b if aν > bν ; we stipulate that a and b are ν-matched, written a ∼=ν b, if aν = bν .
We say that a dominates b if a >ν b.

Recall that any commutative supertropical semiring satisfies the Frobenius formula from [8, Re-
mark 1.1]:

(a+ b)m = am + bm (2.1)

for any m ∈ N+.
A supertropical domain† [8] is a supertropical semiring† R† for which

T := R† \ G
is a multiplicative monoid, such that the map ν|T : T → G (defined as the restriction from ν to T ) is
onto. T is called the set of tangible elements of R†. A supertropical semifield† is a supertropical
domain† (R†,G, ν) in which T is a group. Thus, G is also a group.

We have the analogous definitions when we adjoin the element 0R to the semiring† R† to obtain the
semiring with ghosts R. Thus, we write

R := R† ∪ {0R} = (R,G0, ν),
where G0 := G ∪ {0R} is a semiring ideal, called the ghost ideal, and the ghost map ν : R → G0
satisfies ν(0R) = 0R. Conversely, given a semiring with ghosts (R,G0, ν), we can take R† = R \ {0R}
and G = G0 \ {0R} and define the semiring† with ghosts (R†,G, ν). Thus, the theories with or without
0R are basically the same.

In this spirit, we say that R is a supertropical semiring when R† is a supertropical semiring†,
and say that R is a supertropical domain when R† is a supertropical domain†; i.e., T = R \ G0 is
the monoid of tangible elements. (We write T0 for T ∪ {0R} in the supertropical domain R.) Likewise,
a supertropical semifield is a supertropical domain (R,G0, ν) in which T is a group.

Intuitively, the tangible elements correspond in some sense to the original max-plus algebra, although
here a + a = aν instead of a + a = a. Our motivating example of supertropical semifield, used as the
primary example throughout [8] as well as in this paper, is the extended tropical semiring [5]

T := D(R) := (R ∪ Rν ∪ {−∞},Rν ∪ {−∞}, 1R),
the most familiar example of a supertropical semifield whose operations are induced by the standard
operations max and + over the real numbers; we call this logarithmic notation, since the zero element
0T is −∞ and the unit element 1T is 0.

The supertropical domain, and in particular the supertropical semifield, seem to play a basic role
in supertropical algebra parallel to the role of the field in classical algebra. In [8] a reduction is given
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from supertropical domains to supertropical semifields. Accordingly, one is led to study linear algebra
over supertropical semifields.

Occasionally, we also want to pass back from G to T . Abusing notation slightly, we pick a represen-
tative in T for each class in the image of ν̂, thereby getting a function

ν̂ : R† → T
by putting ν̂|T = 1T ; also, by definition, ν ◦ (ν̂|G) = 1G . In this case, we also write â for ν̂(a), but when
the notation becomes cumbersome, we still use the ν̂ notation.

Here are two reductions to the case that νT is 1:1.

Remark 2.1. We define an equivalence on R via a ≡ b when either a = b or a, b ∈ T with a ∼=ν b.
In other words, two tangible elements are equivalent iff they are ν-matched. Then we could define the
supertropical domain†

R := R†/≡
to be (T /≡) ∪ G. The ghost map ν defines a 1:1 function from the equivalence classes of T to G.
Remark 2.2. In [10, Proposition 1.6] we see that ν̂ can be chosen to be multiplicative on G. When G
is a multiplicative group, define

T̃ := ν̂(G) = {a ∈ T : âν = a},
and

R′ := T̃ ∪ G,
and let ν′ be the restriction of ν to R′. Then (R′,G, ν′) is a supertropical domain†, whose tangible

elements are T̃ , and ν′|T̃ : T̃ → G is 1:1.

Remark 2.3. When νT is not 1:1, it is convenient to define

Te := {a ∈ T : a ∼=ν 1R}.
Note that Te is a submonoid of T , and in fact Te ∪ {e} is a supertropical domain† contained in R.

To clarify our exposition, most of the examples in this paper are presented for the extended tropical
semiring D(R).

2.2. The “ghost surpass” and “ghost dependence” relations. We consider the semiring with
ghosts (R,G0, ν).
Definition 2.4. We say b is ghost dependent on a, written b g

gd
a, if a+ b ∈ G0.

In particular, a ∼=ν b implies that a g
gd

b.

Note that the ghost dependence relation is symmetric, but not transitive, since 1 g
gd

3ν and 3ν g
gd

2,

although 1 and 2 are not ghost dependent. The following antisymmetric and transitive relation is a key
to much of the theory.

Definition 2.5. We define the ghost surpasses relation |
gs
= on R, by

a |
gs
= b iff a = b+ c for some c ∈ G0.

In this notation, by writing a |
gs
= 0R we mean a ∈ G0. This restricts to the ghost surpasses relation

on R†, by
a |

gs
= b iff a = b or a = b+ c for some c ∈ G.

Remark 2.6. The following are equivalent:

(1) a g
gd
0R;

(2) a ∈ G0;



SUPERTROPICAL LINEAR ALGEBRA 5

(3) a |
gs
= 0R.

We quote some easy properties of |
gs
= from [10]:

Remark 2.7.

(i) ([10, Remark 1.2]) When a is tangible, a |
gs
= b implies that a = b. In particular, tangible elements

are comparable under |
gs
= iff they are equal. In this way, the relation |

gs
= generalizes equality.

(ii) a |
gs
= b iff a = b or a is a ghost ≥ν b. In particular, if a |

gs
= b then a ≥ν b; if a |

gs
= b for b ∈ G0,

then a ∈ G0.
(iii) ([10, Lemma 1.5]) |

gs
= is an antisymmetric partial order on R.

(iv) If a |
gs
= b, then a g

gd
b.

Lemma 2.8. Generalizing Remark 2.7(i), for R a supertropical domain†, an element a ∈ R is tangible
iff the following condition holds:

a |
gs
= b implies b = αa for some α ∈ Te.

Proof. (⇒) is by Remark 2.7(i). Conversely, suppose a is not tangible; i.e. a ∈ G, so a = aν . Then
a |

gs
= â, where â ∈ T and (â)ν = a. The condition implies â = αa for some α ∈ Te, which is impossible

since αa ∈ G. ¤

This leads us later to a good abstract criterion for tangibility. Also, conversely to Remark 2.7(iv),
we have

Lemma 2.9.

(i) If a g
gd

b with b ∈ T , then either a ≡ b or a |
gs
= b.

(ii) If a g
gd

b with a ≥ν b, then either a ≡ b or a |
gs
= b.

Proof. (For both parts) If a ∈ G with a ≥ν b, then a = b + a. So we are done unless a ∈ T , which
implies a ∼=ν b, and thus a = b, since ν|T is assumed to be 1:1. ¤

2.3. Vector spaces with ghosts. Modules over semirings (often called “semimodules” in the litera-
ture [16], or sometimes “cones”) are defined just as modules over rings, except that now the additive
structure is that of a semigroup instead of a group. (Note that subtraction does not enter into the
other axioms of a module over a ring.)

Definition 2.10. Suppose R is a semiring. An R-module V is a semigroup (V,+,0V ) together with
scalar multiplication R× V → V satisfying the following properties for all ri ∈ R and v, w ∈ V :

(1) r(v + w) = rv + rw;

(2) (r1 + r2)v = r1v + r2v;

(3) (r1r2)v = r1(r2v);

(4) 1Rv = v;

(5) r0V = 0V ;
(6) 0Rv = 0V .

Note 2.11. One could also define module over a semiring†, by deleting Axiom (6). In the other
direction, any module V over a semiring† R† becomes an R-module when we formally define 0Rv = 0V
for each v ∈ V.
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The reason we prefer the terminology “module” is that this definition of module over a semiring R
coincides with the usual definition of module when R is a ring, since −v = (−1R)v. In case the
underlying semiring is a semiring with ghosts, V has the distinguished submodule eV, as well as the
ghost map ν : V → eV, given by

ν(v) := v + v = (1R + 1R)v = ev ∈ eV.

Lemma 2.12. Any R-module V over a semiring with ghosts R satisfies the following properties for all
r ∈ R, v ∈ V :

(1) (rv)ν = rvν = rνv;

(2) (v + w)ν = vν + wν .

Proof. (1) (rv)ν = e(rv) = (er)v = (re)v = r(ev) = rvν .
(2) (v + w)ν = e(v + w) = ev + ew = vν + wν . ¤

In order to obtain a stronger version of supertropicality we introduce the following definition:

Definition 2.13. Suppose R = (R,G0, ν) is a semiring with ghosts. An R-module with ghosts
(V,H0) is comprised of an R-module V and an R-submodule H0 ⊇ eV satisfying the axiom:

vν = wν implies v + w = vν , ∀v, w ∈ V.

We call H0 the ghost submodule of V , and ν is called the ghost map on V .

We define the map ν : V → H0, given by ν(v) := v + v = ev, and write vν for ν(v).
The choice of the ghost submodule can be significant. (Note that vν could differ from v even when

v ∈ H0.) The standard ghost submodule of V is defined as eV. Any module over a supertropical
semiring can be viewed as a module with ghosts with respect to the standard ghost submodule eV ; in
this case, we suppress H0 in the notation.

Definition 2.14. An R-submodule with ghosts of (V,H0) is a submodule W of V , endowed with
the ghost submodule W ∩H0, whose ghost map is the restriction of ν to W .

When R is a supertropical semifield, (V,H0) is called a (supertropical) vector space over R, or
vector space, for short. We focus on vector spaces in this paper, and call their elements vectors. A
more general investigation of modules with ghosts is given in [7]. Our main example of a vector space

in this paper, as well as in [9], is R(n) = (R(n),G(n)
0 ), whose ghost map acts as ν on each component.

The zero element 0 of R(n) is (0R, . . . , 0R). The tangible vectors of R(n) are those (v1, . . . , vn) such
that each vi ∈ T0.

As with semirings with ghosts, we define the ghost surpassing relation |
gs
= for vectors v, w ∈ V

by:

v |
gs
= w if v = w + u for some u ∈ H0.

We say that two vectors v, w ∈ V are ν-matched, written v ∼=ν w, if vν = wν . Likewise, we write
v ≥ν w if vν = wν + xν for some xν ∈ H0.

Example 2.15.

(v1, . . . , vn) ≥ν (w1, . . . , wn) (2.2)

in R(n) iff vi ≥ν wi for each 1 ≤ i ≤ n.

Also, for elements v, w in a module with ghosts, we define

v g
gd

w if v + w ∈ H0.

Remark 2.16.

(i) If v |
gs
= w, then v + w ∈ H0, i.e., v g

gd
w.

(ii) If vi |
gs
= w for i = 1, 2, then v1 + v2 |

gs
= w.
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Lemma 2.17. Any module with ghosts (V,H0) satisfies the following property, for all v, w ∈ V, h ∈ eV :

v = w + h ⇒ v + h = v,

Proof. v = w + h = w + h+ h = v + h. ¤

Proposition 2.18. Any module with ghosts (V,H0) satisfies the following property, for all v, w ∈ V,
h1, h2 ∈ H0 :

v + h1 + h2 = v ⇒ v + h2 = v,

Proof. v = v + h1 + h2 = (v + h1 + h2) + (h1 + h2) = v + eh1 + eh2. Take w = v + eh1 and h = eh2 in
the lemma to get v = v + eh2 = (v + h1 + h2) + h2 = v + h2. ¤

Corollary 2.19. The ghost surpassing relation is always antisymmetric.

Motivated by Lemma 2.8, we have an abstract definition of tangibility for any vector space over
a supertropical semifield (which is used more generally in [7] for any module over a supertropical
semiring†):

Definition 2.20. The almost tangible vectors of V are those elements v ∈ V for which v |
gs
= w

implies w ∈ Tev, ∀w ∈ V.

Remark 2.21. A nonzero ghost vector v cannot be almost tangible, for we always have

v =

(
1R +

1R
2

)
v = v +

1R
2
v |

gs
=

1R
2
v.

Example 2.22. Clearly, almost tangible vectors in R(n) are tangible.
On the other hand, in logarithmic notation, taking R = D(R), if V is the submodule of R(2) spanned

by the the vectors v1 = (1, 1ν) and v2 = (0, 1), then one sees without difficulty that v1 is almost tangible
in V , although not tangible in R(2).

In fact, a submodule of R(n) need not have any tangible vectors at all, as exemplified by the submodule
R(1, 1ν) of R(2).

Example 2.23. For vectors v = (v1, . . . , vn) and w = (w1, . . . , wn) in R(n), v |
gs
= w iff vi |

gs
= wi for all

i = 1, . . . , n. Thus, checking components, we see that the ghost surpassing relation for vectors of R(n)

is antisymmetric.

Here is another useful property of vectors in R(n).

Lemma 2.24. If v |
gs
=

∑`
i=1 αiwi and v |

gs
=

∑`
i=1 α

′
iwi in R(n), then v |

gs
=

∑`
i=1

̂(αi + α′
i)wi.

Proof. Checking components, we may assume that n = 1. But then the assertion is immediate. ¤

3. Background from matrices

Any set S = {v1, . . . , vm} of m row vectors in R(n) corresponds to an m × n matrix A(S), whose
m rows are the vectors of S. We call A(S) the matrix of S.

We defined |A| in the introduction. We say that the matrix A is nonsingular if |A| is tangible (and
thus quasi-invertible when R is a supertropical semifield [9]); otherwise, |A| ∈ G0 (i.e., |A| |

gs
= 0F by

Remark 2.6) and we say that A is singular. In [9], we also defined vectors in

R(n)

to be tropically independent if no linear combination with tangible coefficients is in H0. By [12,
Theorem 3.4], when R is a supertropical domain, A(S) has m tropically independent rows iff A(S) has
a nonsingular m×m submatrix. Thus, it is natural to try to understand linear algebra in terms of the
supertropical matrix theory of [9, 10].

Although it was shown in [9] that the product of nonsingular matrices could be singular, we do have
the consolation that the product of nonsingular matrices cannot be ghost, cf. Theorem 3.4 below.
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Recall that a quasi-identity matrix is a nonsingular, multiplicatively idempotent matrix ghost-
surpassing the identity matrix. Suppose A = (ai,j), with |A| invertible in R. In [10, Theorem 2.8] one
defines the matrix

A∇ :=
1R
|A| adj(A), (3.1)

and obtains the quasi-identity matrices

IA = AA∇; I ′A = A∇A. (3.2)

3.1. Annihilators of matrices.

Definition 3.1. A vector v ∈ R(n) (written as a column) g-annihilates an m×n matrix A if Av |
gs
= 0V

in R(n). Define

Ann(A) =

{
v ∈ R(n) : Av |

gs
= 0V

}
,

clearly a submodule of R(n).

Accordingly, G(n)
0 ⊆ Ann(A), for any m× n matrix A.

Remark 3.2.

(i) The point of this definition is that the vector v = (β1, . . . , βm) g-annihilates (A(S))t, the trans-
pose of the matrix of S = {w1, . . . , wm}, iff ∑m

i=1 βiwi |
gs
= 0R. Thus, tangible g-annihilators

correspond to tropical dependence relations.

(ii) A (nonzero) tangible vector cannot g-annihilate a nonsingular matrix, since the columns are
tropically independent.

We can improve this result, to include vectors that are not necessarily tangible.

Lemma 3.3. The diagonal of the product IAIB of quasi-identity matrices IA, IB cannot all be ghosts.

Proof. Otherwise, write IA = (ai,j) and IB = (bi,j). If the assertion is false, then for each it there is
it+1 such that ait,it+1bit+1,it ≥ν 1F . Consider the digraph G of IAIB , cf. [9, §3.2]. By the pigeonhole
principle, the path of vertices i1, i2, i3, . . . , in+1 contains a cycle, say from is to i′s. But the weight of
any non-loop cycle in a quasi-identity has ν-value less than 1R. (Otherwise, multiplying by the entries
ai,i for all vertices i not in the cycle gives an extra summand ≥ e = 1Rν for |IA|, contrary to |IA| = 1R.)
Hence

1R ≤ν

s′−1∏

k=s

aik,ik+1
bik+1,ik =

s′−1∏

k=s

aik,ik+1

s′−1∏

k=s

bik+1,ik <ν 1R1R = 1R,

a contradiction. ¤

Theorem 3.4. The product of two nonsingular n× n matrices cannot be in Mn(G0).
Proof. If AB is ghost for A,B nonsingular, then in the notation of [9, Definition 4.6],

IA∇IB = I ′AIB = A∇ABB∇ ∈ Mn(G0),
contradicting the lemma. ¤

On the other hand, examples were given in [9] in which the product of two nonsingular n×n matrices
is singular. Here is a related example using quasi-identities:

Example 3.5. The matrices

A =

(
0 0ν

−∞ 0

)
, B =

(
0 −∞
0ν 0

)

over D(R) are nonsingular, but AB =

(
0ν 0ν

0ν 0

)
and BA =

(
0 0ν

0ν 0ν

)
are singular.



SUPERTROPICAL LINEAR ALGEBRA 9

4. Tropical dependence

Throughout the remainder of this paper, F = (F,G0, ν) denotes a supertropical semifield.
Dependence plays a major role in module theory. For supertropical modules with ghosts, the familiar

definition becomes degenerate. The following modification from [9], in which the role of zero is replaced
by the ghost ideal, is more suitable for our purposes.

Definition 4.1. Suppose (V,H0) is a vector space over F . A family of elements S = {wi : i ∈ I} ⊂ V
is tropically dependent if there exists a nonempty finite subset I ′ ⊂ I and a family {αi : i ∈ I ′} ⊂ T ,
such that ∑

i∈I′
αiwi ∈ H0. (4.1)

Any such relation (4.1) is called a tropical dependence for S. A subset S ⊂ V is called tropically
independent if it is not tropically dependent.

Given an element v ∈ V , we say that v is tropically dependent on a family S = {wi : i ∈ I} if
S ∪ {v} is tropically dependent, in which case we write v g

gd
S. (In particular, v g

gd
{v}.) A subset S′ of

V is tropically dependent on S if v g
gd

S for each v ∈ S′.

An easy observation:

Remark 4.2. Suppose S = {wi : i ∈ I} ⊂ V . For any given set {αi : i ∈ I} ⊂ T of tangible elements
of R, the set S is tropically independent iff {αiwi : i ∈ I} is tropically independent.

Also recall that any n+ 1 vectors of R(n) are tropically dependent, by [9, Corollary 6.7].

4.1. Tropical d-bases and rank.

Definition 4.3. A d-base (for dependence base) of a supertropical vector space V is a maximal set
of tropically independent elements of V . The rank of a d-base B, denoted rk(B), is the number of
elements of B.

Our d-base corresponds to the “basis” in [14, Definition 5.2.4].

Proposition 4.4. Any subspace of F (n) is tropically dependent on any subset S of n tropically inde-
pendent elements. All d-bases of F (n) have precisely n elements.

Proof. By [9, Theorem 6.6], the matrix A of S is nonsingular iff S is tropically independent, so in
particular any d-base B of F (n) must have at least n elements. On the other hand, any n + 1 vectors
in F (n) are tropically dependent, by [9, Remark 1.1], so B has precisely n elements. ¤

This leads us to the following definition.

Definition 4.5. The rank of a supertropical vector space V is defined as:

rk(V ) := max
{
rk(B) : B is a d-base of V

}
.

We have just seen that rk(F (n)) = n.

Corollary 4.6. If V ⊂ F (n), then rk(V ) ≤ n.

Proof. Any d-base of V is contained in a d-base of F (n), whose order must be that of the standard base
(to be given in §5.1), which is n. ¤

We might have liked rk(V ) to be independent of the choice of d-base of V , for any supertropical
vector space V . This is proved in the classical theory of vector spaces by showing that dependence is
transitive. However, transitivity fails in the supertropical theory, since we have the following sort of
counterexample.

Example 4.7. In logarithmic notation, over D(R)(3), the vector v = (0, 1, 3) is tropically dependent on
W = {w1, w2}, where w1 = (1, 1, 2) and w2 = (1, 1, 3), since v + w1 + w2 = (1ν , 1ν , 3ν). Furthermore,
W is tropically dependent on U = {u1, u2}, where u1 = (1, 1, 0) and u2 = (−∞,−∞, 1), since

w1 + u1 + 1u2 = (1ν , 1ν , 2ν), w2 + u1 + 2u2 = (1ν , 1ν , 3ν).
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But v, u1, and u2 are tropically independent, since the tropical determinant of the matrix whose rows
are these vectors is 3 ∈ T .

In fact, different d-bases may contain different numbers of elements, even when tangible. An example
is given in [14, Example 5.4.20], which is reproduced here with different entries.

Example 4.8. Consider the following vectors in D(R)(3):

v1 = (5, 5, 0), v2 = (5, 5, 4), v3 = (0, 1, 4), v4 = (0, 2, 4).

Then v1, v2, and v3 are tropically dependent (since their sum (5ν , 5ν , 4ν) is ghost) and likewise v1, v2,
and v4 are tropically dependent. It follows that {v1, v2} is a d-base for the supertropical vector space V
spanned by v1, v2, v3, and v4. But v2, v3, and v4 are tropically independent since their determinant is 11,
which is tangible; hence, {v2, v3, v4} is also a d-base of V .

We do have a consolation.

Lemma 4.9. If the vectors v1, . . . , vk ∈ F (n) are tropically independent and the vector v is tangible,
then there are i1, . . . , ik−1 in {1, . . . , k} such that the vectors vi1 , . . . , vik−1

, v are tropically independent.

Proof. Let A be the k+1 × n matrix whose rows are v1, . . . , vk, v, and let A0 denote the k × n matrix
of the first k rows v1, . . . , vk. By [12, Theorem 3.4], A0 has a nonsingular k × k submatrix obtained
by deleting n − k columns; deleting these columns in A, we have reduced to the case that n = k; i.e.,
A is a k+1 × k matrix. Now let A′

0 = (a′j,i) denote the adjoint matrix of A0. We are done unless for
each row i ≤ k, the k × k submatrix of A obtained by deleting the i row is singular, which means that∑k

j=1 a
′
i,jak+1,j is ghost. This means that the vector (ak+1,1, . . . , ak+1,k) g-annihilates the matrix A′

0,

which is nonsingular by [10, Theorem 4.9], an impossibility in view of [9, Corollary 6.6]. ¤

Proposition 4.10. For any tropical subspace V of F (n) and any tangible v ∈ V, there is a tangible
d-base of V containing v whose rank is that of V .

Proof. Take a tangible d-base of V of maximal rank, and apply the lemma. ¤

Example 4.11. Failure of the analog of Proposition 4.10 for non-tangible vectors: Consider the su-
pertropical vector space W ⊂ D(R)(2) spanned by w1 = (0, 1) and w2 = (0, 2). Then v = (1, 3ν)
comprises a d-base of W , consisting of only one element.

Proposition 4.12. If A is a matrix of rank m, its g-annihilator has a tangible tropically independent
set of rank ≥ n−m.

Proof. Take m tropically independent rows v1, . . . , vm of A, which we may assume are the first m rows

of A. For any other row vu of A (m < u ≤ n), we have βu,1, . . . , βu,m ∈ T0 such that vu+
∑

βi,jvi ∈ G(n)
0 .

Letting B be the (n−m)×nmatrix whose (i, j) entries are βi,j for 1 ≤ i, j ≤ m, and for which βi,j = δi,j
(the Kronecker delta) for m < j ≤ n, we see that B contains an (n−m)× (n−m) identity submatrix
so has tangible rank ≥ n−m, but BA is ghost. ¤

Example 4.13. An example of a 3 × 3 matrix A over D(R) of rank m = 2, all of whose entries are
tangible, although rk(Ann(A)) = 2 > 3− 2. Take

A =



4 4 0
4 4 1
4 4 2


 .

A is g-annihilated by the tropically independent vectors v1 = (1, 1, 0)t and v2 = (1, 1, 1)t, since Av1 =
Av2 = (5, 5, 5)t.

Note that this kind of example requires n ≥ 3, in view of Theorem 3.4.
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4.2. Saturated dependence relations. Let us study tropical dependence relations in R(n) more
closely. Example 5.8(ii) below shows that a tropical dependence of a vector v on an independent set
S = {wi : i ∈ I} is not determined uniquely. Nevertheless, in this subsection we do get a “canonical”
tropical dependence relation, which we call saturated. But first, in order for tropical dependence
relations to be well-defined with respect to the ghost map ν : R → G0, we verify the following condition.

Lemma 4.14. Any submodule of R(n) (with the standard ghost submodule H0 = G(n)
0 ) satisfies the

property that whenever αi, βi ∈ T with αi
∼=ν βi,∑

i

αiwi ∈ H0 iff
∑

i

βiwi ∈ H0. (4.2)

Proof. The condition clearly passes to submodules, so it is enough to prove it for R(n), and thus, to
check (4.2) on each component. We write wi,j for the j-component of wi. Note that αiwi,j

∼=ν βiwi,j

for each i. There are two ways for
∑

i αiwi,j ∈ G0:
(1) Some αi′wi′,j dominates

∑
αiwi,j and is ghost, implying wi′,j ∈ G0, so∑
βiwi,j = βi′wi′,j = αi′wi′,j ∈ G0.

(2) Two essential summands αi′wi′,j and αi′′wi′′,j are ν-matched. But then
∑

βiwi,j = βi′wi′,j + βi′′wi′′,j = (βi′wi′,j)
ν

= (αi′wi′,j)
ν = αi′wi′,j + αi′′wi′′,j =

∑
αiwi,j ∈ G0.

¤

We examine the tropical dependence

v g
gd

∑

i∈I

αiwi, (4.3)

Lemma 4.15. Suppose V = R(n). If v g
gd

∑
i∈I αiwi and v g

gd

∑
i∈I βiwi, for αi, βi ∈ T0, then taking

γi = α̂i + βi, we have

v g
gd

∑

i∈I

γiwi.

Proof. Checking each component in turn, we may assume that V = R. We proceed as in Lemma 4.14.
Namely, v g

gd

∑
i∈I αiwi (resp. v g

gd

∑
i∈I βiwi) implies one of the following:

(1) v and some term αi′wi′ dominate (resp. v and βi′wi′ dominate), in which case γi′ = αi′

(resp. γi′ = βi′).

(2) αi′wi′ and αi′′wi′′ dominate, (resp. βi′wi′ and βi′′wi′′ dominate), in which case γi′ = αi′ and
γi′′ = αi′′ (resp. γi′ = βi′ and γi′′ = βi′′).

(3) Some ghost term αi′wi′ (resp. βi′wi′) dominates, in which case γi′ = αi′ (resp. γi′ = βi′).

¤

Lemma 4.15 gives us a partial order on the coefficients of the tropical dependence relations of v on
a set S, and motivates the following definition:

Definition 4.16. We say that the support of a tropical dependence αv g
gd

∑
i∈I αiwi (where α ∈ T and

αi ∈ T0) is the set {i ∈ I : αi 6= 0R}. A tropical dependence of minimal support is called irredundant.

A tropical dependence of v on a tropically independent set S is called saturated if the coefficients
αi’s in Formula (4.3) are maximal possible with respect to ≥ν , as defined in Equation (2.2); in other

words, whenever v +
∑`

i=1 βiwi ∈ G(n)
0 with βi ∈ T0, then each βi ≤ν αi.

Remark 4.17. If

v g
gd

∑̀

i=1

αiwi (4.4)
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is a saturated tropical dependence, then, for any k ≤ ` and for v′ = v +
∑k

i=1 αiwi,

v′ g
gd

∑̀

i=k+1

αiwi (4.5)

is also a saturated tropical dependence, since any ν-larger tropical dependence for (4.5) would yield the
corresponding ν-larger tropical dependence for (4.4).

Theorem 4.18. Suppose V = F (n), for a supertropical semifield F = (F,G, ν). Any irredundant
tropical dependence

v g
gd

∑̀

i=1

αiwi (4.6)

can be increased to a unique (up to equivalence in the sense of Remark 2.1) saturated tropical dependence
of v on S = {w1, . . . , w`}, having the same support.

Remark 4.19. When the vector v is tangible, and S is a d-base, Theorem 4.18 is an immediate
consequence of [10, Theorems 3.5 and 3.8], which shows that Ax |

gs
= v has the maximal tangible vector

solution x = ν̂(A∇v) (where A∇ = 1
|A| adj(A)), which in view of Lemma 2.9 is also a solution for

Ax g
gd

v. Here we take A to be the matrix of S, which is nonsingular, and x to be the vector (α1, . . . , α`)
t.

In general, x = A∇v is a solution for the matrix equation Ax |
gs
= v, which, when v is written as a

row, is xAt |
gs
= v. (In a sense, row form is more natural, since the matrix of S is obtained from the

rows.) But this vector need not be tangible.

Here is a direct combinatoric proof of Theorem 4.18 that does not rely on matrix theory, and does
not depend on the additional assumption of tangibility of S.

Proof. Uniqueness of a saturated tangible solution is obvious, since one could just take the sup of any
two distinct saturated tropical dependences to get a contradiction. This also gives the motivation for
proving existence. Write v = (v1, . . . , vn). We start with some tropical dependence (4.6), which need
not be saturated, with the aim of checking whether we can modify it until it is saturated. In principle,
we could increase the ν-values of the coefficient αi if at each component j of the vector αiwi the ν-value
of vj is not attained, and this is the main idea behind the proof. But increasing αi still may not yield
a saturated tropical dependence, since the coefficient may be allowed to increase further, so long as
some other term in the tropical dependence also is adjusted so as to have a j-component of the same
ν-value. Since these j-components are the most difficult to keep track of, we pay special attention to
them. Write wi,j for the j-component of wi.

We say that an index j ≤ n has type 1 if vj is not dominated by
∑

αjwi,j , which means that either
vj itself is ghost, or else precisely one wi has αiwi,j matching vj and this wi,j ∈ T .

We say that j has type 2 for v if vj is dominated by
∑

αjwi,j , which means that either there exists i
such that wi,j is ghost and dominates vj or there are i, i

′ such that both αiwi,j and αi′wi′,j dominate vj .
Note that increasing the coefficients αi in a tropical dependence cannot change the type of an index j

from type 2 to type 1. Also, at least one index must have type 1, since otherwise
∑

αiwi,j ∈ G(n)
0 ,

contrary to the hypothesis that the wi are tropically independent. We choose our tropical dependence
such that the number of indices of type 1 is minimal. In this case, if αiwi,j ν-matches vj for j of
type 1, we cannot find a ν-greater tropical dependence in which αi is increased, since this would force
the tropical dependence to have an extra type 2 index. Thus, in this case we say wi is anchored at j.
Renumbering the vectors, we may assume that w1, . . . , wk are anchored at various indices, and replace

v by v′ = v +
∑k

i=1 αiwi. Now we have a new tropical dependence v′ +
∑`

i=k+1 αiwi ∈ G(n)
0 , which by

induction on ` can be increased to a saturated tropical dependence

v′ g
gd

∑̀

i=k+1

α′
iwi.
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But then the tropical dependence

v g
gd

k∑

i=1

αiwi +
∑̀

i=k+1

α′
iwi

is saturated, since w1, . . . , wk are anchored. ¤

Proposition 4.20. If

v g
gd

∑̀

i=1

αiwi, v′ g
gd

∑̀

i=1

α′
iwi (4.7)

are saturated tropical dependences, then

v + v′ g
gd

∑̀

i=1

̂(αi + α′
i)wi (4.8)

also is a saturated tropical dependence.

Proof. Again we have two proofs, the first using results from [10] in the case when v, v′ are tangible

and the matrix A of the wi is nonsingular. In the first case, one just takes the solutions x = Â∇v and

x′ = Â∇v′ for the vectors of the αi and the α′
i, and then note that

ν̂(A∇v +A∇v′) = ν̂(A∇(v + v′)).

For the general case, one needs to modify the second proof of Theorem 4.18 for the vector v + v′.
Namely, consider the tropical dependence

v + v′ g
gd

∑̀

i=1

γiwi,

where γi = ̂(αi + α′
i). At least one index in this tropical dependence must have type 1 for v + v′, since

otherwise the wi are tropically dependent. We choose our tropical dependence such that the number
of indices of type 1 is minimal. As before, if γiwi,j ν-matches vj for j of type 1 we cannot find a
larger tropical dependence in which γi is increased, so wi is anchored at j. Again, we may assume that
w1, . . . , wk are anchored at various indices, and replace v + v′ by

v′′ = v + v′ +
k∑

i=1

γiwi.

But

v +

k∑

i=1

αiwi g
gd

∑̀

i=k+1

αiwi and v′ +
k∑

i=1

α′
iwi g

gd

∑̀

i=k+1

α′
iwi

are saturated tropical dependences by Remark 4.17, so, by induction on `,

v′′ g
gd

∑̀

i=k+1

γiwi

is a saturated tropical dependence. But then the tropical dependence

v g
gd

k∑

i=1

γiwi +
∑̀

i=k+1

γiwi

is saturated. ¤

5. Tropical spanning

In this section, we continue to consider the fundamental question of what “base” should mean for
supertropical vector spaces. The d-base (defined above) competes another notion to be obtained from
|
gs
=. But at the moment we turn to the naive analog from the classical theory of linear algebra.
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5.1. Classical bases.

Definition 5.1. A module V over a semiring R is classically spanned by a set S = {wi : i ∈ I}
if every element of V can be written in the form

v =
∑

i∈J

riwi,

for ri ∈ R and some finite index set J ⊂ I.
A set B = {b1, . . . , bn} ⊂ V is a classical base of a module V over a semiring R, if every element

of V can be written uniquely in the form
∑n

i=1 ribi, for ri ∈ R. In this case, we say that V is classically
free of rank n.

For example, the standard base of R(n) is the classical base defined as

ε1 = (1R, 0R, . . . , 0R), ε2 = (0R, 1R, 0R, . . . , 0R), . . . , εn = (0R, 0R, . . . , 1R). (5.1)

Proposition 5.2. If V is classically free of rank n, then V is isomorphic to R(n).

The proof is standard; taking a classical base b1, . . . , bn, one defines the isomorphism R(n) → V by

(r1, . . . , rn) 7→
n∑

j=1

rjbj .

5.2. Tropical spanning.

Definition 5.3. A vector v ∈ V is tropically spanned by a set S = {wi : i ∈ I} ⊂ V if there exists
a nonempty finite subset I ′ ⊂ I and a family {αi : i ∈ I ′} ⊂ T , such that

v |
gs
=

∑

i∈I′
αiwi. (5.2)

In this case, we write v |
gs
= S.

A subset S′ ⊆ V is tropically spanned by S, written S′ |
gs
= S, if v |

gs
= S for each v ∈ S′.

Remark 5.4 (Transitivity for tropically spanning). If V |
gs
= W and W |

gs
= U , then V |

gs
= U .

Obviously, any set classically spanned by S is tropically spanned; surprisingly, the converse often
holds.

Remark 5.5.

(i) Any element tropically spanned by S = {wi : i ∈ I} is tropically dependent on S.

(ii) If an almost tangible vector v ∈ V is tropically spanned by a set S ⊂ V , then v is classically
spanned by S.

(iii) The assertion (ii) can fail for nontangible v ∈ R(n); take S = {(1R, 1R)} ⊂ R(2), viewed as an
R-module, then (1R, 1Rν) is tropically spanned by S, but not classically spanned by S.

(iv) If V has a classical spanning set B of almost tangible vectors, and B is tropically spanned by
a set S, then V is classically spanned by S, by (ii) and transitivity. In particular, if R(n) is
tropically spanned by a set S, then R(n) is classically spanned by S, since R(n) has the standard
base.

(v) Any element tropically spanned by S is also tropically dependent on S, but not conversely; for
example v = (1R, 1R) ∈ R(2) is tropically dependent on S = {(1R, 1Rν)} ⊂ R(2), viewed as
R-module, but v is not tropically spanned by S. This leads to an interesting dichotomy to be
studied shortly.

Thus, we see that almost tangible vectors already begin to play a special role in the theory of tropical
dependence.
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Remark 5.6. Tropical spanning does not satisfy the assertion analogous to Lemma 4.15. For example,
take

{w1 = (1, 2), w2 = (1, 3)} ⊂ D(R)(2)

and the vector v = (1, 3ν), then v |
gs
= w1 and v |

gs
= w2, but v |

gs
6= w1 + w2 = (1ν , 3).

Lemma 5.7. W = {v ∈ V : v |
gs
= S} is a subspace of V for any S ⊂ V .

Proof. If v =
∑

i∈I αiwi + y and v′ =
∑

i∈I α
′
iwi + z, where αi, α

′
i ∈ T , wi ∈ S and y, z ∈ H0, then

letting J = {i : αi
∼=ν α′

i}, we have, by bipotence,

v + v′ =
∑

i/∈J

βiwi +
∑

i∈J

αν
i wi + (y + z) |

gs
=

∑

i/∈J

βiwi,

where βi ∈ {αi, α
′
i} ⊂ T . The other verifications are easier. ¤

We call W (in Lemma 5.7) the subspace tropically spanned by S, and say that S is a tropically
spanning set of W .

A supertropical vector space is finitely spanned if it has a finite tropically spanning set.

Example 5.8. Take R = D(R), with logarithmic notation.

(i) The vectors

v1 = (1, 0, 1), v2 = (1, 1, 0), and v3 = (0, 1, 1)

are tropically dependent in D(R)(3), since their sum is (1ν , 1ν , 1ν). None of these vectors is
tropically spanned by the two other vectors.

(ii) Even when a vector is classically spanned by tropically independent vectors, the coefficients need
not be unique. For example,

(4, 5) = 2(1, 1) + 2(2, 3) = 1(1, 1) + 2(2, 3).

The point of this example is that the first coefficient is sufficiently small so as not to affect the
outcome.

(iii) Another such example: The vectors

v1 = (−∞,−∞, 1), v2 = (1, 1,−∞), and v3 = (−∞, 1, 1)

are tropically independent, although classical spanning with respect to them (and thus also trop-
ical spanning) is not unique; e.g., (3, 3, 1) = 2v2 + v3 = v1 + 2v2.

(iv) Another such example: Consider the vectors

v1 = (1, 4, 3), v2 = (2, 3, 4), and v3 = (0, 20, 20).

Then (3, 20, 20) = 1v2 + v3 = 3v1 + v3.
(v) Another such example: Consider the space V spanned by the five critical vectors

(0,−∞, 0,−∞, 0,−∞), (−∞, 0,−∞, 0,−∞, 0),

(0,−∞,−∞, 0,−∞,−∞), (−∞, 0,−∞,−∞, 0,−∞), (−∞,−∞, 0,−∞,−∞, 0).

Then (0, 0, 0, 0, 0, 0) is the sum of the first two vectors as well as the last three.

It does not follow from Lemma 2.24 that for S = {w1, . . . , wn}, there is a ν-maximal set of

α1, . . . , α` ∈ T such that v |
gs
=

∑`
i=1 αiwi. For example, in logarithmic notation take

v = (1, 1), w1 = (1, 0), and w2 = (1, 1).

Then v = αw1 + w2 for all α < 0, but taking α = 0 yields w1 + w2 = (1ν , 1).

Proposition 5.9. For any subspace V of F (n), the number of elements of any tropically spanning set S
of V is at least rk(V ).



16 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

Proof. Take a d-base {v1, . . . , vm} of V, where m = rk(V ) ≤ n. By [12, Theorem 3.4], the m×n matrix
whose rows are v1, . . . , vm has rank m. Taking a nonsingular m × m submatrix and erasing all the
n − m columns not appearing in this submatrix, we may assume that m = n (since we still have a
supertropically generating set which we can shrink to a minimal one).

Writing vi |
gs
=

∑
αi,jsj for suitable sj ∈ S, we see that some matrix whose rows are various sj is

nonsingular, implying that some subset of m vectors of S is tropically independent, and thus |S| ≥
m. ¤
5.3. s-bases. We are ready for another version of base.

Definition 5.10. An s-base (for supertropical base) of a supertropical vector space V (over a su-
pertropical semifield F ) is a minimal tropical spanning set S, in the sense that no proper subset of S
tropically spans V .

As we shall see in Example 5.21 below, a vector space with a finite d-base could still fail to have an
s-base. Even when an s-base exists, it could be considerably larger than any d-base.

Example 5.11. Elements of a vector space V may be tropically dependent on a subspace W but not
tropically spanned by W , as indicated in Example 5.8(i).

Example 5.12. Let V be the subspace of R2 spanned by S = {(1, 1), (1ν , 1), (1, 1ν)} in logarithmic
notation, equipped with the standard ghost module.

Each of these vectors alone comprises a d-base of V, whereas S is an s-base of V.

Note that an s-base S need not be finite. On the other hand, obviously any finite tropical spanning
set contains an s-base, so any finitely spanned vector space has an s-base. In order to coordinate the
definitions of s-base and d-base we introduce the following definition.

Definition 5.13. A d,s-base is an s-base which is also a d-base. A supertropical vector space V is
finite dimensional if it has a finite d,s-base.

Proposition 5.14. The cardinality of the s-base S of a finite dimensional vector space V is precisely
rk(V ).

Proof. |S| ≥ rk(V ) by Proposition 5.9. But we get equality, since by definition S is itself a d-base. ¤
Example 5.15. Suppose S is a tropically independent subset of V . Then S is a d,s-base of the subspace
of V tropically spanned by S. These are the subspaces of greatest interest to us, and will be studied
further, following Definition 6.13.

Example 5.16. There are four possible sorts of nonzero subspaces of F (2) tropically spanned by a set S
of tangible elements over a supertropical semifield F , writing {ε1 = (1R, 0R), ε2 = (0R, 1R)} for the
standard base:

(i) The plane F (2) itself.

(ii) A half-plane – of tangible rank 2, having tangible s-base containing ε1 or ε2, as well as one
tangible element α1ε1 + α2ε2 for α1, α2 ∈ T ;

(iii) A planar strip – of tangible rank 2, having tangible s-base {α1ε1 + α2ε2, β1ε1 + β2ε2}, where
α1, α2, β1, β2 ∈ T ;

(iv) A subspace of tangible rank 1, each pair of whose elements are tropically dependent. The tangible
vectors are all multiples of a single vector.

One also has examples of non-tangibly generated subspaces of F (2), such as W = {(α, αν) : α ∈ F}.
5.4. Critical elements versus s-bases. Since s-bases are involved in the actual generation of the
space, they are more in tune with the classical theory of convexity, and can be studied combinatorially.
Here is another way to view the s-base, which is inspired by the literature on convex spaces. For
convenience, we take R to be a supertropical semifield. We say that two elements v, w in a supertropical
vector space V are projectively equivalent, written v ∼ w, iff v = αw for some tangible element
α ∈ R. Accordingly, we define the equivalence class of v as

[v]∼ := {w ∈ V | w ∼ v}.
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Definition 5.17. A vector v in a supertropical vector space V is critical if we cannot write v |
gs
= v1+v2

for v1, v2 ∈ V \ [v]∼. Taking one representative for each class [v]∼, a tropical critical set of V is
defined as a set of representatives of all the critical elements of V .

Critical elements correspond to “extreme points” over the max-plus algebra in [4], who show that
every point in R(n) is a linear combination of at most n+1 extreme points. There is a basic connection
between criticality and almost tangible.

Lemma 5.18. Suppose v |
gs
= αv + w for α ∈ T , v, w ∈ V, and v /∈ H0. Then α ≤ν e. Furthermore:

(1) If α <ν e, then v |
gs
= w.

(2) Suppose α ∈ Te; i.e., α ∼=ν e. If w ∈ H0, then v = αv. For any w ∈ V,

v = α2v + ew′ = α2v,

where w′ |
gs
= w.

Proof. Write v = αv + w′, where w′ |
gs
= w.

(1): If α >ν e, then
v = αv + w′ = (α+ 1F )v + w′

= v + αv + w′ = v + v = ev ∈ H0,

a contradiction. Hence, α ≤ν e.
If α <ν e, then α = α+ 1F , implying

v = (α+ 1F )v = αv + v = αv + αv + w′ = eαv + w′ |
gs
= w,

proving (1).
(2): Thus, we assume that α ∈ Te. If w = ew, then

v = αv + w′ = α(αv + w′) + w′

= α2v + (α+ 1F )w′ = α2v + ew′

= α(αv + ew′) = αv.

For any w, if α ∈ Te, then
v = αv + w′ = α(αv + w′) + w′ = α2v + (α+ 1F )w′ = α2v + ew′.

Hence, v = α2v by the previous assertion. ¤

Proposition 5.19. Any critical element v ∈ V is almost tangible.

Proof. Otherwise v = w + w′ for suitable w ∈ V , w′ ∈ H0, for which w 6= v, but by criticality, w = αv
for α ∈ T . First assume that v /∈ H0. Then, by Lemma 5.18, α ≤ν e, and furthermore α ∈ Te, since
otherwise v |

gs
= ew′ contrary to v /∈ H0. But now, by Lemma 5.18, v = αv = w, a contradiction.

Hence we may assume that v ∈ H0, and thus

w = αv = (αe)v = ev = v,

again a contradiction. ¤

Lemma 5.20. An almost tangible element v ∈ V is critical iff it is not tropically spanned by V \ [v]∼,
i.e. v |

gs
6= ∑

αiwi for any αi ∈ T , wi ∈ V \ v.

Proof. (⇒) Suppose on the contrary that v |
gs
=

∑t
i=1 αiwi; by definition of criticality, t > 1. Then

taking v1 = α1w1 and v2 =
∑t

i=2 αiwi, we must have v2 ∈ [v]∼, and conclude by induction on t. ¤

Clearly a tropical critical set of a vector space V is projectively unique, but could be empty.

Example 5.21.
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(i) The standard base {ε1, . . . , εn} of R(n) is also its tropical critical set.

(ii) The tropical critical set of the subspace W = R(2) \ ([ε1]∼ ∪ [ε2]∼) is empty.

(iii) W = R(2) \ [ε1]∼ has the tropical critical set [ε2]∼, but has no s-base.

Despite the last two examples, some positive information is available.

Lemma 5.22. Any tropical spanning set S contains a tropical critical set of V .

Proof. Suppose v ∈ V is critical. By hypothesis on S, v is tropically spanned by S but, by Lemma 5.20,
it must be an element of S (up to projective equivalence). ¤

Theorem 5.23. Suppose V has an s-base S. Then S is precisely the tropical critical set of V .

Proof. In view of Lemma 5.22, it remains to show that each element of S is critical. Suppose v ∈ S is
not critical. Then v = v1 + v2 where v1, v2 /∈ T v. Thus, when we write

v1 =
∑

α1,is1,i + w1 and v2 =
∑

α2,is2,i + w2

for α1,i, α2,i ∈ T and w1, w2 ∈ H0, we must have v appearing in one of the sums (for otherwise
v = v1 + v2 is tropically spanned by the other elements of S, contrary to hypothesis).

Thus, we may assume s1,1 = v, and we have

v1 |
gs
= α1v +

∑

i 6=1

α1,is1,i

and similarly v2 |
gs
= α2v +

∑
i 6=1 α2,is2,i. (Formally, we permit α2 = 0F .) We also write vj = αj + xj

where xj |
gs
=

∑
i 6=1 αj,isj,i.

Now

v = v1 + v2 = βv + x,

where β = α1,1 + α2,1 and x = x1 + x2. But then β ≤ν e, by Lemma 5.18, which also says that if
β <ν e, then v |

gs
= x, contrary to S being an s-base. Thus, we may conclude that β ∼=ν e. By symmetry,

we assume that α1
∼=ν e. If α2 <ν e, then v2 |

gs
= x2, and

v = v1 + v2 = α1v + x1 + v2
= α1(α1v + x1 + v2) + x1 + v2
= α2

1v + (α1 + 1F )(x1 + v2)
= α2

1v + e(x1 + v2),

and thus
v1 = α2

1v + e(x1 + v2)
= α1(α

2
1v + e(x1 + v2)) + x1 + v2

= α3
1v + e(x1 + v2)

= α1(α
2
1v + e(x1 + v2)) = α1v.

Thus, we are done for α2 <ν e, and may assume that α2 ∈ Te. Then
v = (α1 + α2)v + x1 + x2 = ev + x,

implying v = ex ∈ H and thus αjv = αjev = ev for j = 1, 2. Hence

v = v1 + v2 = α1v + x1 + α2v + x2 = (α1 + α2)v + x = ev + x,

and thus v = ev + ex by Lemma 5.18, implying

v1 = ev + x1 = ev + ex+ x1

= ev + ex1 + ex2 + x1

= ev + ex1 + ex2 = ev + ex = v.

¤

This theorem is generalized in [7].
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Corollary 5.24. The s-base (if it exists) of a supertropical vector space is unique up to multiplication
by tangible elements of R, and is comprised of almost tangible elements.

By Corollary 5.24, we have the following striking result:

Theorem 5.25. The s-base (if it exists) of a supertropical vector space is unique up to multiplication
by scalars.

Example 5.26. The only s-bases of the supertropical vector space V = R(n) are its classical bases
S = {α1ε1, . . . , αnεn}, where α1, . . . , αn ∈ T .

One also has the following tie between critical sets and s-bases.

Proposition 5.27. Any critical set C of a supertropical vector space V is an s-base of the subspace W
tropically spanned by C.

Proof. By hypothesis, C tropically spans W , so we need only check minimality. But for any v ∈ C, by
definition, C \ {v} does not tropically span v. ¤

5.5. Thick subspaces.

Definition 5.28. A subspace W of a supertropical vector space (V,H0) is thick if rk(W ) = rk(V ).

For example, the subspace αV ⊆ V is thick, for any α ∈ T . Likewise, any subspace of R(n) containing
n tropically independent vectors is thick.

Remark 5.29. By definition, any thick subspace of a thick subspace of V is thick in V .

Remark 5.30. Any thick subspace W of a supertropical vector space (V,H0) contains a d-base of V .
Indeed, by definition, for n = rk(V ), W contains a set of n tropically independent elements, which must
be a maximal tropically independent set in V , by definition of rank.

Thus, V is tropically dependent on any thick subspace.

Example 5.31. There exists an infinite chain of thick subspaces W1 ⊂ W2 ⊂ · · · of V = D(R)(2),
where Wk is the strip tropically spanned by {(k, 0), (0, k)}, k ∈ N+. Thus, {(k, 0), (0, k)} is not an
s-base of D(R)(2). (One could expand this to an uncountable chain by taking k ∈ R+.)

5.6. Change of base matrices. We write Pπ for the permutation matrix whose entry in the (i, π(i))
position is 1R (for each 1 ≤ i ≤ n) and 0R elsewhere. Likewise, we write diag{a1, . . . , an} for the
diagonal matrix whose entry in the (i, i) position is ai and 0R elsewhere, and denote it as D. We call
the product PπD of a permutation matrix and a tangible (nonsingular) diagonal matrix, with each

diagonal entry 6= 0R, a generalized permutation matrix, and denote it as P̃π;D.
Recall from [9, Proposition 3.9] that over a supertropical semifield, a matrix is invertible iff it is

a generalized permutation matrix P̃π;D with D nonsingular. In particular, the set of all generalized
permutation matrices form a group whose unit element is I.

Definition 5.32. Given an s-base B = {v1, . . . , vn} and another s-base B′ = {v′1, . . . , v′n} of V ⊆ F (n),
whose respective row matrices are denoted A and A′, a change of base matrix is a matrix P such
that

A′ = PA; (5.3)

Proposition 5.33. The generalized permutation matrices are the only change of base matrices of
s-bases (and thus classical bases).

Proof. Immediate by Theorem 5.25. ¤
Remark 5.34. It follows from Proposition 5.33, applied to the standard base, that the matrix A is the
matrix of a classical base iff A is a generalized permutation matrix.

Example 5.35. Any classical base of R(n) (after reordering indices) must be of the form

b1 = (r1, 0R, . . . , 0R), b2 = (0R, r2, 0R, . . . , 0R), . . . , bn = (0R,0R, . . . , rn),
where ri ∈ T are invertible and tangible.
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6. Linear transformations of supertropical vector spaces, and the dual space

Our main goal in this section is to introduce supertropical linear transformations, and use these to
define the dual space with respect to a d,s-base B, and to show that it has the canonical dual s-base
given in Theorem 6.20; this enables us to identify the double dual space with VB. (A version of a dual
space for idempotent semimodules, in the sense of dual pairs, leading to a Hahn-Banach type-theorem
is given in [3].)

6.1. Supertropical maps. Recall that a module homomorphism ϕ : V → V ′ of modules over a
semiring R satisfies

ϕ(v + w) = ϕ(v) + ϕ(w), ϕ(av) = aϕ(v), ∀a ∈ R, v, w ∈ V.

We weaken this a bit in the supertropical theory.

Definition 6.1. Given supertropical vector spaces (V,H0) and (V ′,H′
0) over a supertropical semi-

field F , a supertropical map
ϕ : (V,H0) → (V ′,H′

0)

is a function satisfying

ϕ(v + w) |
gs
= ϕ(v) + ϕ(w), ϕ(αv) = αϕ(v), ∀α ∈ F, v, w ∈ V, (6.1)

as well as
ϕ(H0) ⊆ H′

0. (6.2)

We write Hom(V, V ′) for the set of supertropical maps from V to V ′, which is viewed as a vector
space over F in the usual way. A supertropical map is strict if it is a module homomorphism.

The modules over a given semiring with ghosts form a category, whose morphisms are the supertrop-
ical maps of modules with ghosts.

Remark 6.2. The second condition of (6.1) implies

ϕ(vν) = ϕ(ev) = eϕ(v) = ϕ(v)ν
′
;

i.e., ϕ ◦ ν = ν′ ◦ ϕ.
In case H0 = eV, the standard ghost submodule, (6.2) follows formally from (6.1).

Remark 6.3. One may wonder why we have required ϕ(αv) = αϕ(v) and not just ϕ(αv) |
gs
= αϕ(v).

In fact, these are equivalent when α ∈ T , since F is a supertropical semifield. Indeed, assume that
ϕ(αv) |

gs
= αϕ(v) for any α ∈ T and v ∈ V . Then also α−1 ∈ T . By hypothesis,

α−1ϕ(αv) |
gs
= α−1αϕ(v) = ϕ(v)

and
ϕ(v) = ϕ(α−1αv) |

gs
= α−1ϕ(αv),

so by antisymmetry, α−1ϕ(αv) = ϕ(v), implying ϕ(αv) = αϕ(v).

Lemma 6.4. If v |
gs
= w then ϕ(v) |

gs
= ϕ(w).

Proof. Write v = w + w′ where w′ ∈ H0. Then

ϕ(v) |
gs
= ϕ(w) + ϕ(w′) |

gs
= ϕ(w).

¤

Lemma 6.5. If v ≥ν w, then ϕ(v) ≥ν ϕ(w).

Proof. By definition, vν ≥ wν , implying ϕ(v)ν = ϕ(vν) ≥ν ϕ(wν) = ϕ(w)ν . (Since they are ghosts,
ϕ(vν) |

gs
= ϕ(wν) is the same as ϕ(vν) ≥ν ϕ(wν).) ¤
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Proposition 6.6. If V = F , then any supertropical map ϕ : V → V ′ is strict.

Proof. We need to show that ϕ(a + b) = ϕ(a) + ϕ(b) for all a, b ∈ V. First assume that a >ν b. Then
ϕ(a) ≥ν ϕ(b). But ϕ(a+ b) = ϕ(a). If ϕ(a) >ν ϕ(b), then ϕ(a+ b) = ϕ(a)+ϕ(b). If ϕ(a) ∼=ν ϕ(b), then

ϕ(a) = ϕ(a+ b) |
gs
= ϕ(a)ν ,

implying ϕ(a) ∈ H′
0 and ϕ(a+ b) = ϕ(a)ν = ϕ(a) + ϕ(b).

Thus, we may assume that a ∼=ν b. But then

ϕ(a+ b) = ϕ(a)ν = ϕ(a) + ϕ(b)

since ϕ(a) ∼=ν ϕ(b) by Lemma 6.5. ¤

Remark 6.7. There are two advantages that strict supertropical maps have over supertropical maps.
First, (ϕ(V ), ϕ(H0)) is a submodule of (V ′,H′

0), for any strict supertropical map ϕ : V → V ′, whereas
this may not be so for other supertropical maps.

Secondly, any strict supertropical map from F (n) → F (n) is defined up to ghost surpassing by its
action on the standard base. In particular, the strict supertropical map ϕ : F (n) → F (n) can be
described in terms of n× n matrices over F . (Proposition 5.33 shows that when these maps are onto,
the corresponding matrices are generalized permutation matrices.) Any supertropical map agreeing with
ϕ on the standard base must ghost surpass ϕ, so in this sense the strict supertropical maps are the
“minimal” supertropical maps with respect to ghost surpassing.

Definition 6.8. Given a supertropical map ϕ : V → V ′ of modules with ghosts, we define the ghost
kernel

g-ker(ϕ) := ϕ-1(H′
0) = {v ∈ V : ϕ(v) ∈ H′

0},
an R-submodule of V . We say that ϕ is ghost monic if ϕ-1(H′

0) = H0.

Definition 6.9. A supertropical map ϕ : V → W of vector spaces of rank n is called tropically onto
if ϕ(V ) contains a d-base of W of rank n. An iso is a supertropical map that is both ghost monic and
tropically onto. (Note this need not be an isomorphism in the usual sense, since ϕ need not be onto.)

Remark 6.10. The composition of isos is an iso, in view of Remark 5.29.

6.1.1. Linear functionals.

Definition 6.11. Suppose V = (V,H0) is a vector space over a supertropical semifield F . The set of
supertropical maps

V ∗ := Hom(V, F ),

is called the dual F -module of V , and its elements are called linear functionals; i.e., any linear
functional ` ∈ V ∗ satisfies

`(v1 + v2) |
gs
= `(v1) + `(v2), `(av1) = a`(v1), `(H0) ⊆ G0

for any v1, v2 ∈ V and a ∈ F .

A linear functional ` : V → F is called a ghost functional if `(V ) ∈ G0 for all v ∈ V . We
write H∗

0 ⊂ V ∗ for the subset of all the ghost linear functionals; this is the ghost submodule of V ∗.
(V ∗,H∗

0, ν
∗) is a supertropical module over F , under the natural operations

(`1 + `2)(v) = `1(v) + `2(v), (a`)(v) = a`(v), ν∗`(v) = `(v)ν ,

for a ∈ F , v ∈ V .
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6.2. Linear functionals on subspaces of F (n). The idea here is to develop a theory of linear func-
tionals for n-dimensional subspaces V ⊆ F (n) (Often V = F (n)).

Towards this end, we want a definition of linear functionals that respects a given d-base B =
{b1, . . . , bn} of V . We define the matrix

A∇ := A∇AA∇,

cf. [10, Remark 2.14], and recall that IA = AA∇ and I ′A = A∇A as defined in Equations (3.1) and
(3.2). Since the elements of B are tropically independent, the matrix A = A(B) is nonsingular, and so
are the matrices

IA = AA∇, A∇ = A∇AA∇ = A∇IA, and I ′A = A∇A,

as well as IAA (since IAAA∇ = I2A = IA is nonsingular).

Definition 6.12. A d-base B is closed if IAB = B.
There is an easy way to get a closed d-base from an arbitrary d-base B. From now on we set the

matrix

A := A(B).
Definition 6.13. Write AB = IAA, and let B denote the rows of AB. Let

VB := {ABv : v ∈ V },
the thick subspace of V spanned by B.

VB is the subspace of interest for us, since it is invariant under the action of the matrix A.

Remark 6.14. B is obviously spanned by B, but since IAA is nonsingular, B also is a d-base of V ,
and clearly B is closed since I2A = IA. Thus, B is a d,s-base of VB.

The d-base B easier to compute with, since now we have

IABAB = AB.

From now on, replacing B by B if necessary, we assume that the d-base B of V is closed.
Rather than dualizing all of V , we turn to the space

V ∗
B := Hom(VB, F ).

Define LA ∈ Hom(V, V ) by

LA(v) := A∇v.

We also define the map L̃A : V → V by

L̃A(v) := IAv.

Remark 6.15. (L̃A)
2 = L̃A, and L̃A is the identity on VB since

IA(IAAv) = I2AAv = IAAv.

Likewise, LA(v) = A∇v for all v ∈ VB.

Lemma 6.16. If ` ∈ V ∗
B , then ` = (` ◦ L̃A)

∣∣
VB

on VB. In other words,

V ∗
B = {(` ◦ L̃A)

∣∣
B : ` ∈ V ∗}.

Proof. Follows at once from the remark. ¤

Lemma 6.17. V ∗
B is a supertropical vector space, whose ghost submodule H0(V

∗
B ) is {f |VB : f ∈ H∗

0}.
Proof. Suppose f ′ ∈ H0(V

∗
B ). Let f = f ′◦L̃A ∈ H∗

0. Then f ′ = f |VB . The other inclusion is obvious. ¤

Definition 6.18. Given a (closed) d-base B = {b1, . . . , bn} of V, define εi : VB → F by

εi(v) = bi
tLA(v),

the scalar product of bi and A∇v. Also, define B∗ = {εi : 1 ≤ i ≤ n}.
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When v is tangible, we saw in Remark 4.19 that

v g
gd

n∑

i=1

biε̂i(v)

is a saturated tropical dependence relation of v on the bi’s; this is the motivation behind our definition.

Remark 6.19.

(i) εi is a linear functional. Also, by definition, εi(bj) is the i, j position of AA∇ = IA, a quasi-
identity, which implies

εi(bi) = 1R; εi(bj) ∈ G, ∀i 6= j.

Hence,
n∑

i=1

αiεi(bj) |
gs
= αjεj(bj) = αj .

(ii)
∑

biεi(v) = A



ε1(v)
...

εn(v)


 = AA∇v = v, for v ∈ VB.

Theorem 6.20. If R is a supertropical semifield and B is a closed s-base of V , then {εi : 1 ≤ i ≤ n}
is a closed s-base of V ∗

B .

Proof. For any ` ∈ V ∗
B , we write αi = `(bi), and then see from Remark 6.19 that

∑
αiεi |

gs
= ` on VB.

It remains to show that the {εi : i = 1, . . . , n} are tropically independent. If
∑n

i=1 βiεi were ghost

for some βi ∈ T0, we would have
∑

βibi
tA∇ ghost. Let D denote the diagonal matrix {β1, . . . , βn},

and let I = {i : βi 6= 0R}, and assume there are k such tangible coefficients βi. Then for any i /∈ I we
have βi = 0, implying the i row of the matrix DIA is zero. But the sum of the rows of the matrix DIA
corresponding to indices from I would be

∑
βibi

tA∇, which is ghost, implying that these k rows of
DIA are dependent; hence DIA has rank ≤ k−1. On the other hand, the k rows of DIA corresponding
to indices from I yield a k × k submatrix of determinant

∏
i∈I βi ∈ T , implying its rank ≥ k by [12,

Theorem 3.4], a contradiction. ¤
In the view of the theorem, we denote B∗ = {εi : 1 ≤ i ≤ n}, and call it the (tropical) dual s-base

of B.
Write V ∗∗

B for (V ∗
B )

∗. Define a map
Φ : VB → V ∗∗

B ,

given by v 7→ fv, where
fv(`) = `(v).

Remark 6.21. Let vj denote the j-th row of A∇, i.e., vj = b′j. Since AA∇ = IA is a quasi-identity
matrix, we see that

fbj (εi) = εi(bj) = bi
tA∇ bj =

{
|A|
|A|bi = bi, i = j;

ghost, i 6= j.

Lemma 6.22. Suppose v =
∑

αibi, for αi ∈ T . Then fv(εi) /∈ H0 for some i.

Proof. (⇐) The assertion is obvious. (⇒) Suppose εi(v) = fv(εi) ∈ H0 for each i. Then
∑

αibi ∈ H0,
contrary to the bi being tropically independent. ¤
Example 6.23. Suppose V = F (n), a supertropical vector space. The map Φ : V → V ∗∗ is a vector
space isomorphism when B is the standard base.

Proposition 6.24. For any v ∈ V, define v∗∗ ∈ V ∗∗ by v∗∗(`) = `(v). The map Φ : VB → V ∗∗
B given

by v 7→ v∗∗ is an iso of supertropical vector spaces.

Proof. Φ(B) is a d-base of n elements, which is ghost injective, since any non-ghost vector v =
∑

αibi
of Φ(B) has some tangible coefficient αi, and then v∗∗(εi) = αi ∈ T . But by Example 6.23, taking
the standard classical base, we see that V ∗∗ has rank n. Hence any supertropical subspace having n
tropically independent elements is thick. ¤
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7. Supertropical bilinear forms

The classical way to study orthogonality in vector spaces is by means of bilinear forms. In this
section, we introduce the supertropical analog, providing some of the basic properties. Although the
tropical literature deals with orthogonality in terms of the inner product, as described in [1, § 25.6],
the supertropical theory leads to a more axiomatic approach.

The notion of supertropical bilinear form follows the classical algebraic theory, although, as to be
expected, there are a few surprises, mostly because of the characteristic 2 nature of the theory [6]. In
this section, we assume that V is a vector space over a supertropical semifield F .

7.1. Supertropical bilinear forms.

Definition 7.1. A (supertropical) bilinear form on supertropical vector spaces V = (V,H0) and
V ′ = (V ′,H′

0) is a function B : V × V ′ → F that is a linear functional in each variable; i.e., writing
(v, w) 7→ B(v, w) for v ∈ V and w ∈ V ′, any given u in V and u′ ∈ V ′, we have linear functionals

B(u, ) w 7→ B(u,w), B( , u′) v 7→ B(v, u′),

satisfying B(V,H′
0) ⊆ G0 and B(H0, V

′) ⊆ G0. Thus,

B(v1 + v2, w1 + w2) |
gs
= B(v1, w1) +B(v1, w2) +B(v2, w1) +B(v2, w2),

B(αv,w) = αB(v, w) = B(v, αw),

for all α ∈ F and vi ∈ V, and wj ∈ V ′.
When V ′ = V , we say that B is a (supertropical) bilinear form on the vector space V. We say

that a bilinear form B is strict if

B(α1v1 + α2v2, β1w1 + β2w2) =
α1β1B(v1, w1) + α1β2B(v1, w2) + α2β1B(v2, w1) + α2β2B(v2, w2),

for all vi ∈ V and wi ∈ V ′.

We often suppress B in the notation, writing 〈v, w〉 for B(v, w). Perhaps surprisingly, one can lift
many of the classical theorems about bilinear forms to the supertropical setting, without requiring
strictness.

Example 7.2. There is a natural bilinear form B : V × V ∗ → F , given by B(v, f) = f(v), for v ∈ V
and f ∈ V ∗.

Remark 7.3.

(i) There is a natural map Φ : V ′ → V ∗, given by w 7→ 〈 , w〉. Likewise, there is a natural map
Φ : V → (V ′)∗, given by v 7→ 〈 , v〉.

(ii) For any bilinear form B, if v |
gs
=

∑
αivi and w |

gs
=

∑
βjwj, for αi, βj ∈ T , then

〈v, w〉 |
gs
=

∑

i,j

αiβj〈vi, wj〉. (7.1)

For the remainder of this section, we take V ′ = V ⊆ F (n), a vector space over the supertropical
semifield F , and consider a (supertropical) bilinear form B on V .

Definition 7.4. The Gram matrix of vectors v1, . . . , vk ∈ V = F (n) is defined as the k × k matrix

G̃(v1, . . . , vk) =




〈v1, v1〉 〈v1, v2〉 · · · 〈v1, vk〉
〈v2, v1〉 〈v2, v2〉 · · · 〈v2, vk〉

...
...

. . .
...

〈vk, v1〉 〈vk, v2〉 · · · 〈vk, vk〉


 . (7.2)

The set {v1, . . . , vk} is nonsingular (with respect to B) iff its Gram matrix is nonsingular (see §3).
The Gram matrix of V is the Gram matrix of an s-base of V .
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Example 7.5. The quasi-identity

G̃(v1, v2) =

(
0 1ν

−∞ 0

)
(7.3)

(in logarithmic notation) is the Gram matrix of a bilinear form. Note that

〈v1, v2〉 = 1ν > 0ν = 〈v1, v1〉+ 〈v2, v2〉.
In particular, we have the matrix G̃ = G̃(b1 . . . , bk), which can be written as (gi,j) where gi,j =

〈bi, bj〉; (7.1) written in matrix notation becomes

〈v, w〉 |
gs
= vt G̃w. (7.4)

Of course, the matrix G̃ depends on the choice of tangible s-base B of V , but this is unique up

to multiplication by scalars and permutation, so G̃ is unique up to PG̃P t where P is a generalized

permutation matrix. In particular, whether or not G̃ is nonsingular does not depend on the choice of
s-base.

7.2. Ghost orthogonality. Bilinear forms play a key role in geometry since they permit us to define
orthogonality of supertropical vectors. However, as we shall see, orthogonality is rather delicate in this
setup.

Definition 7.6. We write v⊥⊥w when 〈v, w〉 ∈ G0, that is 〈w1, w2〉 |
gs
= 0F (cf. Remark 2.6), and say

that v and w are ghost orthogonal, or g-orthogonal for short. Likewise, subspaces W1, W2 of V are
g-orthogonal if 〈w1, w2〉 ∈ G0 for all wi ∈ Wi.

A subset S of V is g-orthogonal (with respect to a given bilinear form) if any pair of distinct vectors
from S is g-orthogonal. The (left) orthogonal ghost complement of S is defined as

S⊥⊥ = {v ∈ V : 〈v, S〉 ∈ G0}.
The orthogonal ghost complement S⊥⊥ of any set S ⊂ V is a subspace of V , and H0 ⊆ S⊥⊥ for any

S ⊂ V. Note that g-orthogonality is not necessarily a symmetric relation.

Definition 7.7. A subspace W of V is called nondegenerate (with respect to B), if W⊥⊥ ∩W ⊆ H0.
The bilinear form B is nondegenerate if the space V is nondegenerate.

The radical, rad(V ), with respect to a given bilinear form B, is defined as V ⊥⊥. Vectors wi are
radically dependent if

∑
αiwi ∈ rad(V ) for suitable αi ∈ T0, not all 0F .

Clearly, H0 ⊆ rad(V ).

Remark 7.8.

(i) rad(V ) = H0 when V is nondegenerate, in which case radical dependence is the same as tropical
dependence.

(ii) Any ghost complement V ′ of rad(V ) is obviously tropically g-orthogonal to rad(V ), and nonde-
generate since

rad(V ′) ⊆ V ′ ∩ rad(V ) ⊆ H0.

This observation enables us to reduce many proofs to nondegenerate subspaces, especially when
a Gram-Schmidt procedure is applicable (to be described in [6]).

Lemma 7.9. Suppose {w1, . . . , wm} tropically span a subspace W of V . If
∑

βi〈v, wi〉 ∈ G0 for each
v ∈ V, then

∑m
i=1 βiwi ∈ W⊥⊥.

Proof. 〈v,∑i βiwi〉 |
gs
=

∑
i〈v, βiwi〉 =

∑
i βi〈v, wi〉 ∈ G0 for all v ∈ W . Thus,

∑
i βiwi ∈ W⊥⊥. ¤

Theorem 7.10. Assume that vectors w1 . . . , wk ∈ V span a nondegenerate subspace W of V . If

|G̃(w1 . . . , wk)| ∈ G0, then w1 . . . , wk are tropically dependent.

Proof. Write G̃ = G̃(v1, . . . , vk). By [9, Theorem 6.6], |G̃| ∈ G0 iff the rows of G̃ are tropically dependent.

By the lemma, if |G̃| ∈ G0, then some linear combination of the vi is in W⊥⊥. When W is nondegenerate,
this latter assertion is the same as saying that the vi are tropically dependent. ¤
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Corollary 7.11. If the bilinear form B is nondegenerate on a vector space V , then the Gram matrix
(with respect to any given supertropical d,s-base of V ) is nonsingular.

Remark 7.12. In case the bilinear form B is strict, we can strengthen Lemma 7.9 to obtain:

m∑

i=1

βiwi ∈ W⊥⊥ iff
∑

βi〈v, wi〉 ∈ G0

for each v ∈ V. (Indeed, if
∑

i βiwi ∈ W⊥⊥, then
∑

i βi〈v, wi〉 = 〈v,∑i βiwi〉 ∈ G0 for all i.)

In this case, we can also strengthen Corollary 7.11 to read:

Corollary 7.13. A strict bilinear form B is nondegenerate on a supertropical vector space V iff the
Gram matrix (with respect to any given supertropical d,s-base of V ) is nonsingular.

7.3. Symmetry of g-orthogonality. In this subsection, we prove the supertropical version of a
classical theorem of Artin, that any bilinear form in which g-orthogonality is symmetric must be either
an alternate or symmetric bilinear form. In characteristic 2, any alternate form is symmetric, so we
would expect our supertropical forms to be symmetric in some sense.

Definition 7.14. The (supertropical) bilinear form B is orthogonal-symmetric if it satisfies the
property for all vi, w ∈ V :

∑

i

〈vi, w〉 ∈ G0 iff
∑

i

〈w, vi〉 ∈ G0, (7.5)

for any finite sum taken over vi ∈ V .
B is supertropically symmetric if B is orthogonal-symmetric and satisfies the additional property

that 〈v, w〉 ∼=ν 〈w, v〉 for all v, w ∈ V satisfying 〈v, w〉 ∈ T .
A vector v ∈ V is isotropic if 〈v, v〉 ∈ G0; the vector v is strictly isotropic if 〈v, v〉 = 0F .

Remark 7.15. If every v ∈ V is strictly isotropic, then the (supertropical) bilinear form B is trivial.
(Indeed,

0F = 〈v + w, v + w〉 = 〈v, w〉+ 〈w, v〉
for all v, w ∈ V, implying 〈v, w〉 = 〈w, v〉 = 0F .)

Remark 7.16. When the bilinear form B is strict, Condition (7.5) reduces to the condition

〈v, w〉 ∈ G0 iff 〈w, v〉 ∈ G0
since, taking v =

∑
i vi, we have

∑

i

〈vi, w〉 = 〈v, w〉; 〈w, v〉 =
∑

i

〈w, vi〉.

In general, we need Condition (7.5) to carry through the proof of Theorem 7.20 below.

Lemma 7.17. An orthogonal-symmetric bilinear form B is supertropically symmetric if it satisfies the
condition that 〈v, w〉+ 〈w, v〉 ∈ G0 for all vectors v, w ∈ V .

Proof. If 〈v, w〉 ∈ G0, then 〈w, v〉 ∈ G0 by orthogonal-symmetry. Thus, we may assume that 〈v, w〉 ∈ T .
But then 〈w, v〉 ∈ T by orthogonal-symmetry; by hypothesis, 〈v, w〉 + 〈w, v〉 ∈ G0, implying 〈v, w〉 ∼=ν

〈w, v〉, as desired. ¤

Also, the symmetry condition extends to sums.

Lemma 7.18. If B is supertropically symmetric, then
∑

i

〈vi, w〉 ∈ T iff
∑

i

〈w, vi〉 ∈ T .

In this case,
∑

i〈vi, w〉 =
∑

i〈w, vi〉.
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Proof. We may assume that
∑

i〈vi, w〉,
∑

i〈w, vi〉 ∈ T , since there is nothing to check if one (and
thus the other) is ghost. Take i1 such that 〈vi1 , w〉 is the dominant summand of

∑
i〈vi, w〉, and thus

is tangible. Likewise, take i2 such that 〈w, vi2〉 is the dominant summand of
∑

i〈w, vi〉, and thus is
tangible. By hypothesis 〈vi1 , w〉 = 〈w, vi1〉 and 〈w, vi2〉 = 〈vi2 , w〉. Since these dominate their respective
sums, we get

∑
i〈vi, w〉 =

∑
i〈w, vi〉 ∈ T . ¤

We aim to prove that an orthogonal-symmetric (supertropical) bilinear form is supertropically sym-
metric.

Another important property to check is when 〈v, w〉 + 〈w, v〉 ∈ G0. This condition means that v is
orthogonal to w with respect to the new bilinear form given by 〈v, w〉′ := 〈v, w〉 + 〈w, v〉, and arises
here in several assertions.

Lemma 7.19. Suppose that B is an orthogonal-symmetric bilinear form and v, w ∈ V . Then either
〈v, w〉+ 〈w, v〉 ∈ G0, or v and w are strictly isotropic.

Proof. One may assume that 〈v, w〉 ∈ T ; hence 〈w, v〉 ∈ T . If 〈v, w〉 ∼=ν 〈w, v〉 then 〈v, w〉+ 〈w, v〉 ∈ G0,
so we may assume by symmetry that 〈v, w〉 >ν 〈w, v〉.

First assume that w is nonisotropic. Then γ〈v, w〉+〈w,w〉 is ghost for γ = 〈w,w〉
〈v,w〉 and tangible for any

other tangible γ in F . But γ〈w, v〉+ 〈w,w〉 is ghost for γ = 〈w,w〉
〈w,v〉 , contradicting orthogonal-symmetry

unless 〈v, w〉 ∼=ν 〈w, v〉, implying 〈v, w〉+ 〈w, v〉 ∈ G0.
Next assume that w is isotropic but 〈w,w〉 = αν 6= 0F for α ∈ T . Then for tangible γ >ν

〈w,w〉
〈v,w〉

we see that 〈γv, w〉 + 〈w,w〉 is tangible, so 〈w, γv〉 + 〈w,w〉 must also be tangible, which is false if

γ <ν
〈w,w〉
〈w,v〉 . This yields a contradiction if 〈w, v〉 <ν 〈v, w〉, and similarly we have a contradiction if

〈w, v〉 >ν 〈v, w〉; hence 〈w, v〉 ∼=ν 〈v, w〉, implying 〈v, w〉+ 〈w, v〉 ∈ G0.
Thus, we may assume that 〈w,w〉 = 0F . Likewise, 〈v, v〉 = 0F , since otherwise we would conclude

by interchanging v and w. ¤
We conclude with our supertropical version of Artin’s theorem.

Theorem 7.20. Every orthogonal-symmetric bilinear form B on a supertropical vector space V is
supertropically symmetric.

Proof. We are done by Lemma 7.19 unless there are vectors v, w ∈ V for which 〈v, v〉 = 〈w,w〉 = 0F
and 〈v, w〉+ 〈w, v〉 ∈ T .

In this case, α := 〈v, w〉 ∈ T , β := 〈w, v〉 ∈ T , and α + β ∈ T . Observe that, if v′ ∈ V such that
〈v′, w〉 ∼=ν α, then 〈w, v′〉 ∼=ν β. Indeed, 〈v, w〉 + 〈v′, w〉 = αν , implying 〈w, v〉 + 〈w, v′〉 ∈ G. But
〈w, v′〉 ∈ T , so we conclude that 〈w, v′〉 ∼=ν β.

Now let vector v′ be any vector of V . Then

〈v + v′, w〉 |
gs
= 〈v, w〉+ 〈v′, w〉 6= 0F .

Thus, 〈v + v′, w〉 ∼=ν γ, for some γ ∈ T . Let v′′ := α
γ (v + v′). Then

〈v′′, w〉 = α

γ
〈v + v′, w〉 ∼=ν α,

and thus 〈w, v′′〉 ∼=ν β, as just observed. Hence, 〈v′′, w〉 + 〈w, v′′〉 /∈ G. Now Lemma 7.19 yields
〈v′′, v′′〉 = 0F . From

0F = 〈γv′′, γv′′〉 |
gs
= 〈v, v〉+ 〈v, v′〉+ 〈v′, v〉+ 〈v′, v′〉,

we conclude that 〈v′, v′〉 = 0F for all v′ ∈ V ; i.e., B is trivial, by Remark 7.15, which is absurd since
α = 〈v, w〉 6= 0F . Thus, B must be supertropically symmetric. ¤
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