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Non-integrated defect relation for
meromorphic maps of complete Kähler

manifolds into a projective variety intersecting
hypersurfaces

Tran Van Tan and Vu Van Truong

Abstract

In 1985, Fujimoto established a non-integrated defect relation for
meromorphic maps of complete Kähler manifolds into the complex
projective space intersecting hyperplanes in general position. In this
paper, we generalize the result of Fujimoto to the case of meromorphic
maps into a complex projective variety intersecting hypersurfaces in
general position.

1 Introduction and statements

Let f be a meromorphic map of an m−dimension connected complex man-
ifold M into CPN , and let p0 be a positive integer or +∞ and D be a
hypersurface in CPN with Imf 6⊂ D. We denote the intersection multiplicity
of the image of f and D at f(a) by ν(f,D)(a) and the pull-back of the normal-
ized Fubini-Study metric form Ω on CPN by Ωf . The non-integrated defect
of f with respect to D cut by p0 is defined by

Mathematics Subject Classification 2000: Primary 32H30; Secondary 32H04, 32H25,
14J70.
Key words and phrases: Nevanlinna theory, Second Main Theorem.
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δ
[p0]
f (D) := 1− inf{η ≥ 0 : η satisfies condition (∗)}.

Here, the condition (∗) means that there exists a bounded nonnegative con-
tinuous function h on M with zeros of order not less than min{ν(f,D), p0}
such that

(degD)ηΩf + ddc log h2 ≥ [min{ν(f,D), p0}],

where we mean by [ν] the (1, 1)−current associated with a divisor ν. By
([9], pp. 250) if M is a ball in Cm, then the condition (∗) is satisfied if
and only if there exists a continuous plurisubharmonic function u 6≡ −∞
such that eu|φ| 6 ‖f‖(degD)η, where φ is a nonzero holomorphic function
on M with νφ = min{ν(f,D), p0}. In other words, there exists a continuous
plurisubharmonic function v 6≡ −∞ such that ev 6 ‖f‖(degD)η and v− log |φ|
is plurisubharmonic, where φ is a nonzero holomorphic function on M with
νφ = min{ν(f,D), p0}.

It is clear that 0 6 δ
[p0+1]
f (D) 6 δ

[p0]
f (D) 6 1, and δ

[p0]
f (D) = 1 if Imf∩D =

∅. Moreover, if ν(f,D)(z) ≥ p for every z ∈ f−1(D), then

δ
[p0]
f (D) ≥ 1− p0

p
.

For z = (z1, . . . , zm) ∈ Cm, we set ‖z‖ =
( m∑
j=1

|zj|2
)1/2

and define

B(r) = {z ∈ Cm : ‖z‖ < r}, S(r) = {z ∈ Cm : ‖z‖ = r},

dc =

√
−1

4π
(∂ − ∂), Vk =

(
ddc‖z‖2

)k
, σ = dclog‖z‖2 ∧

(
ddclog‖z‖

)m−1
.

Let ` be a positive integer or +∞ and ν be a divisor on B(R0) (0 < R0 6
+∞). Set |ν| := {z : ν(z) 6= 0} and ν [`] := min{ν, `}.

The truncated counting function of ν is defined by

N [`]
ν (r, r0) :=

r∫
r0

n[`](t)

t2m−1
dt (0 < r0 < r < R0),
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where

n(`)(t) =

∫
|ν|∩B(t)

ν [`] · Vm−1 for m ≥ 2 and

n[`](t) =
∑
|z|6t

ν [`] for m = 1.

For a nonzero meromorphic function ϕ on B(R0), we denote by νϕ the

zero divisor of ϕ and set N
[`]
ϕ (r) := N

[`]
νϕ(r).

Let f be a meromorphic map of B(R0) into CPN . For arbitrary fixed ho-
mogeneous coordinates (w0 : · · · : wN) of CPN , we take a reduced represen-
tation f = (f0 : · · · : fN), which means that each fi is a holomorphic function
on B(R0) and f(z) = (f0(z) : · · · : fN(z)) outside the analytic set {z : f0(z) =
· · · = fN(z) = 0} of codimension ≥ 2. Set ‖f‖ = max{|f0|, . . . , |fN |}.

The characteristic function of f is defined by

Tf (r, r0) :=

r∫
r0

dt

t2m−1

∫
B(t)

Ωf ∧ Vm−1, 0 < r0 < r < R0.

We have

Tf (r, r0) :=

∫
S(r)

log‖f‖σ −
∫

S(r0)

log‖f‖σ.

For a hypersurface D of degree d in CPN defined by the homogeneous
polynomial Q ∈ C[x0, . . . , xN ], if Q(f) := Q(f0, . . . , fN) 6≡ 0 we denote

N
[`]
f (r, r0, D) := N

[`]
Q(f)(r, r0) and ∗δ

[`]
f (D) := 1− lim

r→R0

sup
N

[`]
f (r, r0, D)

dTf (r, r0)
.

If limr→R0 Tf (r, r0) = +∞, then by an argument similar to the proof of
Proposition 5.6 in [9], we have

0 6 δ
[`]
f (D) 6 ∗δ

[`]
f (D) 6 1. (1.1)

For brevity we will omit the character [`] in the counting function, defect
number, and divisor if ` = +∞.
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Let V ⊂ CPN be a smooth complex projective variety of dimension
n ≥ 1. Let D1, . . . , Dk (k ≥ 1) be hypersurfaces in CPN of degree dj. The
hypersurfaces D1, . . . , Dk are said to be in general position in V if for any
distinct indices 1 6 i1 < · · · < is 6 k, (1 6 s 6 n + 1), there exist
hypersurfaces D′1, . . . , D

′
n+1−s in CPN such that

V ∩Di1 ∩ · · · ∩Dis ∩D′1 ∩ · · · ∩D′n+1−s = ∅.

In particular for hypersurfaces D1, . . . , Dk in general position in V , we have
V 6⊆ Dj for all j = 1, ..., k.

In 1983, relating to the study of value distribution of the Gauss maps of a
complete minimal surfaces in Rm, Fujimoto [8] introduced the new notion of
the non-integrated defect for a holomorphic map of an open Riemann surface
into CP n and obtained some results analogous to the Nevanlinna-Cartan de-
fect relation. In [9], he generalized his result in 1983 to the case of meromor-
phic maps of a complete Kähler manifold into the complex projective space
intersecting hyperplanes in general position. By using the technique of Dio-
phantine approximation introduced in [2,6,7], recently, Ru [13,14], Dethloff-
Tan-Thai [3,4] obtained Nevanlinna-Cartan defect relations for holomorphic
maps of Cm into a complex projective variety intersecting hypersurfaces in
general position. The purpose of this paper is to generalize the result of
Fujimoto [9] on the non-integrated defect relation to the case of meromor-
phic maps of a complete Kähler manifold into a complex projective variety
intersecting hypersurfaces in general position. A part of our paper is motived
by [3,4,13,14]. However, we would like to remark that in the proofs of these
papers, the result obtained by Ru in 1997 plays an essential role, but it does
not remain valid for our situation. Instead we use the Logarithmic Derivative
Lemma. Moreover, whereas in previous papers the truncation level of mul-
tiplicity depends on the number of hypersurfaces, in our situation we need a
truncation level of multiplicity that does not depend on this number.

Let V ⊂ CPN be a smooth complex projective variety of dimension n ≥ 1
and let D1, . . . , Dq (q > n+1) be hypersurfaces in CPN of degree dj. Assume
that D1, . . . , Dq are in general position in V. Denote by d the least common
multiple of d1, . . . , dq. Let ε be an arbitrary constant with 0 < ε < 1. Set

m := [4dn+1(2n+ 1)(n+ 1) deg V · 1

ε
] + 1 (1.2)

where [x] := max{k ∈ Z : k 6 x} for a real number x.
With these notations, we state our main results:
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Theorem 1.1. Let f be an algebraically nondegenerate map of B(R0) into

V. Then, there exists a positive integer ` 6
( N +md

md

)
such that

(q − n− 1− qε)Tf (r, r0) 6
q∑
j=1

1

dj
N

[`]
f (r, r0, Dj) + A(r),

where A(r) is evaluated as follows.
i) In the case R0 <∞,

A(r) 6 K
(

log+ 1

R0 − r
+ log+ Tf (r, r0)

)
for every r ∈ [r0, R) excluding a set E with

∫
E

1
(R0−t)dt < ∞, where K is a

positive constant.
ii) In the case R0 =∞,

A(r) 6 K
(

log r + log+ Tf (r, r0)
)

for every r ∈ [r0,+∞) excluding a set E ′ with
∫
E′
dt <∞.

As a corollary of Theorem 1.1, we get the following defect relation.

Corollary 1.2. In the same situation as in Theorem 1.1, if (i) R0 <∞ and

lim
r→R0

sup
Tf (r, r0)

log 1
R0−r

=∞

or (ii) R0 =∞, then

q∑
j=1

∗δ
[`]
f (Dj) 6 n+ 1 + qε.

Theorem 1.3. Let M be a complete Kähler manifold with Kähler form ω =√
−1
2

∑
i,j hijdzi ∧ dzj. Set

Ric ω = ddc log(det(hij)).

Assume that the universal covering M̃ of M is biholomorphically isomorphic
to a ball B(R0) (0 < R0 6 ∞). Let f be an algebraically nondegenerate
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meromorphic map of M into V. For some ρ ≥ 0, if there exists a bounded
continuous function h ≥ 0 on M such that

ρΩf + ddc log h2 ≥ Ric ω, (1.3)

then for any ε > 0 we have

q∑
j=1

δ
[`]
f (Dj) 6 n+ 1 + qε+ ρT

for some posivite integers `, T satisfying

` 6
( N +md

md

)
and T 6

(n+ 1)
( N +md

md

)
d(m− (n+ 1)(2n+ 1)dn deg V )

.

Let Dk be an arbitrary set of hypersurfaces in CPN satisfying following
conditions:

i) 1 6 degD 6 k, for any D ∈ Dk, and
ii) (∩n+1

i=1 Di)∩V = ∅, for any (n+1) distinct hypersurfacesD1, . . . , Dn+1 ∈
Dk.

Under the same assumption of Theorem 1.3, we note that δf (D) 6 δ
[p]
f (D)

for any positive integer p, the number m given in the formula (1.2) does not
depend on q, and the least common multiple of all degD (D ∈ Dk) is not
bigger than k!. Therefore, according to Theorem 1.3, it is easy to see that
for any ε > 0, the cardinality of the set {D ∈ Dk : δf (D) ≥ 2ε} is finite. By
this fact, we have the following corollary.

Corollary 1.4. The number of D ∈ Dk with δf (D) > 0 is at most countable.

We finally give an application of Theorem 1.3 to the study of the Gauss
map of a complete regular submanifold of Cκ.

Let g = (g1, . . . , gκ) : M −→ Cκ be a regular submanifold of Cκ, namely,
M be a connected complex manifold and g be a holomorphic map of M
into Cκ such that rank dpg = dimM for every point p ∈ M. To each point
p ∈ M, we assign the tangent space TpM of M at p which may be regarded
as an m−dimensional linear subspace of Tg(p)Cκ, where m = dimM. On the
other hand, each TxCκ is identified with T0Cκ = Cκ by an parallel trans-
lation. Therefore, to each TpM corresponds a point G(p) in the complex

6



Grassmannian manifold G(m,κ) of all m−dimensional linear subspace of Cκ.
We call the map G : M −→ G(m, κ) the Gauss map of g : M −→ Cκ. On
the other hand, the space G(m, κ) is canonically imbedded in CPN , where

N =
( κ

m

)
− 1. Therefore, the Gauss map G may be identified with the

holomorphic map of M into CPN given as follows.
Taking holomorphic local coordinates (z1 . . . , zm) defined on an open set

U ⊂M, we consider the map

Λ := D1g ∧ · · · ∧Dmg : U −→ ∧mCκ \ {0} = CN+1 \ {0},

where Dig := (∂g1
∂zi
, . . . , ∂gκ

∂zi
). Then G := π ·Λ locally, where π is the canonical

projection map.
A regular submanifold M of Cκ is considered a Kähler manifold with the

metric ω induced from the standard flat metric on Cκ. Take ρ = 1, h ≡ 1,
then by ([9], pp. 259) we have

ρΩG + ddc log h2 = ddc‖G‖ = Ric ω.

Therefore, we get the following corollary of Theorem 1.3 (with ρ = 1, h ≡ 1).

Corollary 1.5. Let g : M −→ Cκ be a complete regular submanifold such
that the universal covering of M is biholomorphically isomorphic to B(R0) (0 <
R0 6 ∞). Let G : M −→ CPN be the Gauss map of g. Let V ⊂ CPN be a
smooth complex projective variety of dimension n such that ImG ⊂ V and
G : M −→ V is algebraically nondegenerate. Then

q∑
j=1

δ
[`]
G (Dj) 6 n+ 1 + qε+ T

for some posivite integers `, T satisfying

` 6
( N +md

md

)
and T 6

(n+ 1)
( N +md

md

)
d(m− (n+ 1)(2n+ 1)dn deg V )

.

Acknowledgements: This work was done during a stay of the first named
author at the Mathematisches Forschungsinstitut Oberwolfach, Germany. He
wishes to express his gratitude to this organization.
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2 Some lemmas

Let X ⊂ CPN be a projective variety of dimension n and degree 4. Let
IX be the prime ideal in C[x0, . . . , xN ] defining X. Denote by C[x0, . . . , xN ]m
the vector space of homogeneous polynomials in C[x0, . . . , xN ] of degree m
(including 0). Put IX(m) := C[x0, . . . , xN ]m ∩ IX .

The Hilbert function HX of X is defined by

HX(m) := dimC[x0, . . . , xN ]m�IX(m). (2.1)

Lemma 2.1 ([4], Lemma 3.1). For n ≥ 1, we have HX(m) ≥ m + 1 for all
m ≥ 1.

For each tuple c = (c0, . . . , cN) ∈ RN+1
≥0 , and m ∈ N, we define the m-th

Hilbert weight SX(m, c) of X with respect to c by

SX(m, c) := max

HX(m)∑
i=1

Ii · c,

where Ii = (Ii0, . . . , IiN) ∈ NN+1
0 and the maximum is taken over all sets

{xIi = xIi00 · · · x
IiN
N } whose residue classes modulo IX(m) form a basis of the

vector space C[x0, . . . , xN ]m�IX(m).

Lemma 2.2. Let X ⊂ CPN be an algebraic variety of dimension n and
degree 4. Let m > 4 be an integer and let c = (c0, . . . , cN) ∈ RN+1

≥0 . Let
{i0, . . . , in} be a subset of {0, . . . , N} such that {x = (x0 : · · · : xN) ∈ CPN :
xi0 = · · · = xin = 0} ∩X = ∅. Then

1

mHX(m)
SX(m, c) ≥ 1

(n+ 1)
(ci0 + · · ·+ cin)− (2n+ 1)4

m
· max

06i6N
ci.

Proof. We refer to [6], Theorem 4.1, and [7], Lemma 5.1 (or [14], Theorem
2.1 and Lemma 3.2).

Let f be a linearly nondegenerate meromorphic map of B(R0) to CPN

with reduced presentation f = (f0 : · · · : fN). Then by Proposition 4.5 in
[9], there exist N + 1 sets (αi = (αi1, . . . , αim) (0 6 i 6 N) of m nonnegative

integers such that |α0| + · · · + |αN | 6 N(N+1)
2

, and the Wronskian Wα(f) :=
det(Dαif, 0 6 i 6 N) 6≡ 0.
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Lemma 2.3 ([9], Proposition 6.1). In the above situation, take constants
t, p with 0 < t(|α0| + · · · + |αN |) < p < 1. Let H1, . . . , Hq (q ≥ N + 1) be
hyperplanes in CPN in general position. Then, for 0 < r0 < R0 there exists
a positive constant K such that for r0 < r < R < R0∫

S(r)

|zα0+···+αN Wα(f)

H1(f) · · ·Hq(f)
|t‖f‖t(q−N−1)σ 6 K(

R2m−1

R− r
Tf (R, r0))

p.

Lemma 2.4 ([9], Proposition 4.10).

νH1(f)···Hq(f)
Wα(f)

6
q∑
j=1

ν
[N ]
Hj(f)

outside an analytic set of codimension ≥ 2.

3 Proof of Theorems 1.1-1.3.

Let Pj (j = 1, ..., q) be homogeneous polynomials in C[x0, . . . , xN ] defining

the hypersurfaces Dj, degPj = dj. Set Qj := P
d
dj

j . Then, degQj = d and

1

dj
N

[`]
f (r, r0, Dj) =

1

dj
N

[`]
Pj(f)(r, r0) ≥

1

d
N

[`]
Qj(f)(r, r0). (3.1)

Since D1, . . . , Dq are in general position in V, we have ∩qj=1Dj ∩ V = ∅. We
define a map Φ : V −→ CP q−1 by Φ(x) = (Q1(x) : · · · : Qq(x)). Then Φ is a
finite morphism (see [15], Theorem 8, page 65). We have that Y := imΦ is
a complex projective subvariety of CP q−1 and dimY = n and

4 := deg Y 6 dn · deg V. (3.2)

This follows, in the same way as [15], Theorem 8, page 65, from the fact
that Φ : V −→ CP q−1 is the composition of the restriction of the d-uple

embedding ρd|V : V −→ CPL−1 to V (with L =
( N + d

N

)
) with the linear

projection p : CPL−1 −→ CP q−1, defined by the linear forms Q1, ..., Qq in
the monomials of degree d, since we have:

deg Y = deg Φ(V ) 6 deg ρd|V (V ) 6 dn · deg V.

9



It is clear that for any 1 6 i0 < · · · < in 6 q such that ∩ni=0Dji ∩ V = ∅, we
have

{y = (y1 : · · · : yq) ∈ CP q−1 : yi0 = · · · = yin = 0} ∩ Y = ∅. (3.3)

Denote by {I1, . . . , Iqm} the set of all Ii := (Ii1, . . . , Iiq) ∈ Nq0 with Ii1 +
· · ·+ Iiq = m.

Let F be a holomorphic mapping of B(R0) into CP qm−1 with the reduced

representation F =
(
QI11

1 (f) · · ·QI1q
q (f) : · · · : Q

Iqm1

1 (f) · · ·QIqmq
q (f)

)
, (note

that Qm
1 (f), . . . , Qm

q (f) have no common zero point outside the analytic set
{f0 = · · · = fN = 0}).

Define an isomorphism between vector spaces, Ψ : C[z1, . . . , zqm ]1 −→
C[y1, . . . , yq]m by Ψ(zi) := yIi (i = 1, . . . , qm). Consider the vector space
H := {H ∈ C[z1, . . . , zqm ]1 : H(F ) ≡ 0 }. Then F is a linearly nondegenerate
mapping of C into the complex projective space P := ∩H∈H{H = 0} ⊂
CP qm−1, and we will from now on, by abuse of notation, consider F to be
this linearly nondegenerate map F : B(R0) → P . By the definition of F, it

is clear that dimP 6
( N +md

md

)
.

For any linear form H ∈ C[z1, . . . , zqm ]1, since f is algebraically nonde-
generate, we have that H ∈ H if only if

H(QI11
1 (x) · · ·QI1q

q (x), · · · , QIqm1

1 (x) · · ·QIqmq
q (x)) ≡ 0 on V.

This is possible if and only if Ψ(H)(y) := H(yI1 , · · · , yIqm ) ≡ 0 on Y. There-
fore, we get that Ψ(H) = (IY )m. On the other hand Ψ is an isomorphism.
Hence, we have

( N +md
md

)
≥ dimP = dim

⋂
H∈H

{H = 0} = qm − 1− dimH

= qm − 1− dim(IY )m = HY (m)− 1. (3.4)

Let α be a family of HY (m) sets αi = (αi1, . . . , αim) (0 6 i 6 HY (m) − 1)

such that Wα(F ) 6≡ 0 and |α0|+ · · ·+ |αHY (m)−1| 6 (HY (m)−1)HY (m)
2

.
We define hyperplanes Hj (j = 1, . . . , qm) in the complex projective space

P by Hj := {(z1 : · · · : zqm) ∈ CP qm−1 : zj = 0} ∩ P, (these intersections are
not empty by Bézout’s theorem, and they are proper algebraic subsets of P
since V 6⊂ Dk, 1 6 k 6 q).
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Denote by L the set of all subsets J of {1, . . . , qm} such that #J = HY (m)
and the hyperplanes Hj, j ∈ J, are in general position in P. Since Ψ is
an isomorphism and Ψ(H) = IY (m), L is also the set of all subsets J of
{1, . . . , qm} such that {yIj , j ∈ J} is a basis of C[y1, . . . , yq]m�IY (m).

For each j ∈ {1, . . . , q} and k ∈ {1, . . . , qm}, we put

EQj(f) = log
‖f‖d · ‖Qj‖
|Qj(f)|

≥ 0 and EHk(F ) = log
‖F‖ · ‖Hk‖
|Hk(F )|

≥ 0,

where ‖Qj‖ (respectively ‖Hk‖) is the maximum of absolute values of the
coefficients of Qj (respectively Hk). They are continuous functions with
values in R≥0 ∪ {+∞} which take the value +∞ only on analytic subsets of
codimension 1 in B(R0).

Let N be the set of all subsets J ⊂ {1, . . . , q} with #J = n+ 1. For any
J ∈ N , since the hypersurfaces Dj (j = 1, . . . , q) are in general position in

V, the function λJ(x) :=
maxj∈J |Q(x)|

‖x‖d is continuous on V and λJ(x) > 0 for
all x ∈ V. On the other hand, V is compact, so there exist positive constants
cJ , c

′
J such that c′J ≥ λJ(f(z)) ≥ cJ for all z ∈ B(R0). This implies that

d · log ‖f‖ = max
j∈J

log |Q(f)|+O(1), for all J ∈ N . (3.5)

Therefore, there exists a positive constant c such that

min
{j1,...,jq−n−1}

q−n−1∑
i=1

EQji (f) 6 c.

Then, we have

q∑
j=1

EQj(f) 6 max
J∈N

∑
j∈J

EQj(f) +O(1). (3.6)

This implies that

qd log ‖f‖ −
q∑
j=1

log |Qj(f)| 6
q∑
j=1

EQj(f) +O(1)

6 max
J∈N

∑
j∈J

EQj(f) +O(1). (3.7)
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Applying integration on the both sides of (3.7), and using Jensen’s formula,
we get

dqTf (r, r0)−
q∑
j=1

NQj(f)(r, r0) 6
∫
S(r)

max
J∈N

∑
j∈J

EQj(f)σ +O(1). (3.8)

Since ImF ⊂ P and {QIi1
1 (f) · · ·QIiq

q (f), 1 6 i 6 qm} have no common

zero point, for every J ∈ L, the holomorphic functions {QIi1
1 (f) · · ·QIiq

q (f), i ∈
J} also have no common zero point.
Then, for every J ∈ L, we have

‖F‖ = max
i∈J
|Hi(F )|+O(1) = max

i∈J
|QIi1

1 (f) · · ·QIiq
q (f)|+O(1) 6 ‖f‖dm +O(1).

This implies that

TF (r) 6 dm · Tf (r) +O(1). (3.9)

For every J ∈ L and i ∈ J, we have

EHi(F ) = log
‖F‖ · ‖Hi‖
| Hi(F ) |

= log
‖F‖

|QIi1
1 (f) · · ·QIiq

q (f)|
+O(1)

= log
‖f‖dm

|QIi1
1 (f) · · ·QIiq

q (f)|
− dm log ‖f‖+ log ‖F‖+O(1)

=
∑

16j6q

IijEQj(f)− dm log ‖f‖+ log ‖F‖+O(1). (3.10)

Let cz := (EQ1(f(z)), · · · , EQq(f(z))) for every z ∈ B(R0) \D, where D
denotes the thin analytic subset where one of these functions takes the value
+∞. By the definition of the Hilbert weight, there exists a subset Jz ∈ L
such that

SY (m, cz) =
∑
i∈Jz

Ii · cz. (3.11)

On the other hand by (1.2) and (3.2) we have m > 4. Hence, by (3.3) and
Lemma 2.2, for every J ∈ N , we have

SY (m, cz)

mHY (m)
≥ 1

n+ 1

∑
j∈J

EQj(f(z))− (2n+ 1)4
m

max
16j6q

EQj(f(z)). (3.12)

12



Then, by (3.10), (3.11) and (3.12), for every J ∈ N , z ∈ B(R0) \D, we have

1

(n+ 1)

∑
j∈J

EQj(f(z)) 6
SY (m, cz)

mHY (m)
+

(2n+ 1)4
m

max
16j6q

EQj(f(z))

=

∑
i∈Jz Ii · cz
mHY (m)

+
(2n+ 1)4

m
max
16j6q

EQj(f(z))

=
1

mHY (m)

∑
i∈Jz

16j6q

IijEQj(z) +
(2n+ 1)4

m
max
16j6q

EQj(f(z))

=
1

mHY (m)

∑
i∈Jz

EHi(F (z)) + d log ‖f(z)‖ − 1

m
log ‖F (z)‖

+
(2n+ 1)4

m
max
16j6q

EQj(f(z)) +O(1)

6
1

mHY (m)
max
L∈L

∑
i∈L

EHi(F (z)) + d log ‖f(z)‖ − 1

m
log ‖F (z)‖

+
(2n+ 1)4

m

∑
16j6q

EQj(f(z)) +O(1). (3.13)

This implies that, for every z ∈ B(R0) \D,

max
J∈N

1

(n+ 1)

∑
j∈J

EQj(f(z)) 6
1

mHY (m)
max
L∈L

∑
i∈L

EHi(F (z)) + d log ‖f(z)‖

− 1

m
log ‖F (z)‖+

(2n+ 1)4
m

∑
16j6q

EQj(f(z)) +O(1),

(3.14)

and by continuity this then holds for all z ∈ B(R0). So, by integrating and
by (3.8), we get

dqTf (r, r0)−
q∑
j=1

NQj(f)(r, r0) 6
n+ 1

mHY (m)

∫
S(r)

max
L∈L

∑
i∈L

EHi(F )σ

+ d(n+ 1)Tf (r, r0)−
n+ 1

m
TF (r, r0)

+
(2n+ 1)(n+ 1)4

m

∑
16j6q

∫
S(r)

EQj(f)σ +O(1).

(3.15)

13



We have∫
S(r)

max
L∈L

∑
i∈L

EHi(F )σ =

∫
S(r)

max
L∈L

log
‖F‖HY (m)+1

|
∏
i∈L

Hi(F )|
σ +O(1)

6 (HY (m) + 1)TF (r, r0) +

∫
S(r)

max
L∈L

log
∣∣ Wα(F )∏
i∈L

Hi(F )

∣∣σ
−NWα(F )(r, r0) +O(1). (3.16)

For an integrable function h ≥ 0 on S(r), by Lemma 3.5 in [1] we have∫
Sr

log+ hσ 6 log+

∫
S(r)

hσ + log 2.

Therefore, for any t, p with 0 < t(|α0| + · · · + |αN |) < p < 1, by Lemma 2.3
we have

t

∫
S(r)

max
L∈L

log
∣∣ Wα(F )∏
i∈L

Hi(F )

∣∣σ + t

∫
S(r)

log |zα0+···+αN |σ

=

∫
S(r)

max
L∈L

log
∣∣zα0+···+αNWα(F )∏

i∈L
Hi(F )

∣∣tσ
6
∫
S(r)

∑
L∈L

log+
∣∣zα0+···+αNWα(F )∏

i∈L
Hi(F )

∣∣tσ
6
∑
L∈L

log+

∫
S(r)

∣∣zα0+···+αNWα(F )∏
i∈L

Hi(F )

∣∣tσ +K1

6
∑
L∈L

log+KL

(R2m−1

R− r
log TF (R, r0)

)p
+K1

6 K
(

log+ R2m−1

R− r
+ log+ Tf (R, r0)

)
(3.17)

where KL, K,K1 are positive constants.
On the other hand, by Lemma 2.4 in [10], we have

Tf
(
r +

R0 − r
eTf (r, r0)

, r0
)
6 2Tf (r, r0)

14



outside a set E of r such that
∫
E

1
R0−rdr <∞ in the case R0 <∞ and

Tf
(
r +

1

Tf (r, r0)
, r0
)
< 2Tf (r, r0)

outside a set E ′ of r such that
∫
E′
dr <∞ in the case R0 =∞.

Take R = r + R0−r
eTf (r,r0)

if R0 < ∞ and R = r + 1
Tf (r,r0)

if R0 = ∞, then by

(3.17) we get ∫
S(r)

max
L∈L

log
∣∣ Wα(F )∏
i∈L

Hi(F )

∣∣σ 6 A(r) (3.18)

where

A(r) 6 K
(

log+ 1

R0 − r
+ log+ Tf (r, r0)

)
outside a set E of r such that

∫
E

1
R0−rdr <∞ in the case R0 <∞ and

A(r) 6 K
(

log r + log+ Tf (r, r0)
)

outside a set E ′ of r such that
∫
E′
dr <∞ in the case R0 =∞.

By (3.15), (3.16), and (3.18) we have

dqTf (r, r0)−
q∑
j=1

NQj(f)(r, r0)

6
(n+ 1)(HY (m) + 1)

mHY (m)
TF (r, r0)−

n+ 1

mHY (m)
NWα(r, r0) + A(r)

+ d(n+ 1)Tf (r, r0)−
n+ 1

m
TF (r, r0) +

(2n+ 1)(n+ 1)4
m

∑
16j6q

∫
S(r)

EQj(f)σ

6
n+ 1

mHY (m)
TF (r, r0)−

n+ 1

mHY (m)
NWα(r, r0) + A(r)

+ d(n+ 1)Tf (r, r0) +
(2n+ 1)(n+ 1)4

m

∑
16j6q

∫
S(r)

EQj(f)σ +O(1).

(3.19)
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For each j ∈ {1, . . . , q}, by Jensen’s formula, we have∫
S(r)

EQj(f)σ 6 d

∫
S(r)

log ‖f‖σ −
∫
S(r)

log |Qj(f)|σ +O(1)

6 dTf (r, r0)−NQj(f)(r, r0) +O(1) 6 dTf (r, r0) +O(1).
(3.20)

By (1.2), (3.2), and by Lemma 2.1 we have

(2n+ 1)(n+ 1)d4
m

<
ε

4
and

(n+ 1)d

HY (m)
<
ε

4
. (3.21)

Therefore, by (3.9), (3.19), and (3.20), we get

dqTf (r, r0)−
q∑
j=1

NQj(f)(r, r0) 6
(
(n+ 1)d+ q

ε

2

)
Tf (r, r0)

− n+ 1

mHY (m)
NW (F )(r, r0) + A(r).

This implies that

d(q − n− 1− q ε
2

)Tf (r, r0) 6
q∑
j=1

NQj(f)(r, r0)

− n+ 1

mHY (m)
NWα(F )(r, r0) + A(r). (3.22)

For each J := {j1, . . . , jHY (m)} ∈ L, then there exists a constant γJ ∈
C, γJ 6= 0 such that

Wα(F ) = γJ ·Wα(Q
Ij11

1 (f) · · ·QIj1q
q (f), . . . , Q

IjHY (m)1

1 (f) · · ·Q
IjHY (m)q

q (f)).
(3.23)

On the other hand, by (3.4) and Lemma 2.4,

ν
Q
Ij11
1 (f)···Q

Ij1q
q (f)···Q

IjHY (m)1

1 (f)···Q
IjHY (m)q

q (f)

Wα

(
Q
Ij11
1 (f)···Q

Ij1q
q (f),...,Q

IjHY (m)1

1 (f)···Q
IjHY (m)q

q (f)

) 6
∑

16i6HY (m)

ν
[HY (m)−1]

Q
Iji1
1 (f)···Q

Ijiq
q (f)

.

(3.24)
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Hence, for all J ∈ L, we have

νWα(F ) ≥ ν
Q
Ij11
1 (f)···Q

Ij1q
q (f)···Q

IjHY (m)1

1 (f)···Q
IjHY (m)q

q (f)
−

∑
16i6HY (m)

ν
[HY (m)−1]

Q
Iji1
1 (f)···Q

Ijiq
q (f)

≥
∑

16j6q

∑
i∈J

Iij
(
νQj(f) − ν [HY (m)−1]

Qj(f)

)
. (3.25)

For every z ∈ B(R0), let cz := (c1,z, . . . , cq,z) where cj,z := νQj(f)(z) −
ν

[HY (m)−1]
Qj(f) (z). Then, by definition of the Hilbert weight, there exists Jz ∈ L

such that

SY (m, cz) =
∑
i∈Jz

Ii · cz =
∑

16j6q

∑
i∈Jz

Iij
(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)
.

Then, by (3.3) and Lemma 2.2, for every K ∈ N we have

1

mHY (m)

∑
16j6q

∑
i∈Jz

Iij
(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)

≥ 1

n+ 1

∑
j∈K

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)

− (2n+ 1)4
m

max
16j6q

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)

≥ 1

n+ 1

∑
j∈K

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)

− (2n+ 1)4
m

∑
16j6q

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)
.

Combining with (3.25), for every K ∈ N and z ∈ B(R0), we have

1

mHY (m)
νWα(F )(z) ≥

1

n+ 1

∑
j∈K

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)

− (2n+ 1)4
m

∑
16j6q

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)
.
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This implies that

n+ 1

mHY (m)
νWα(F ) ≥ max

K∈N

∑
j∈K

(
νQj(f) − ν [HY (m)−1]

Qj(f)

)
− (n+ 1)(2n+ 1)4

m

∑
16j6q

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)
.

(3.26)

On the other hand, since the hypersurfaces Dj (j = 1, . . . , q) are in general
position in V, we have that for any z ∈ B(R0) there are at least (q-n) indices
j of {1, . . . , q} such that νQj(f)(z) = 0. Thus, we have

q∑
j=1

(
νQj(f) − ν [HY (m)−1]

Qj(f)

)
= max

J∈N

∑
j∈J

(
νQj(f) − ν [HY (m)−1]

Qj(f)

)
.

Therefore, by (3.26) we have

n+ 1

mHY (m)
νWα(F ) ≥

q∑
j=1

(
νQj(f) − ν [HY (m)−1]

Qj(f)

)
− (n+ 1)(2n+ 1)4

m

∑
16j6q

(
νQj(f)(z)− ν [HY (m)−1]

Qj(f) (z)
)
.

(3.27)

So, by integrating and by Jensen’s formula, we get

n+ 1

mHY (m)
NWα(F )(r) ≥

q∑
j=1

(
NQj(f)(r, r0)−N [HY (m)−1]

Qj(f) (r, r0)
)

− (n+ 1)(2n+ 1)4
m

∑
16j6q

NQj(f)(r, r0)

≥
q∑
j=1

(
NQj(f)(r, r0)−N [HY (m)−1]

Qj(f) (r, r0)
)

− (n+ 1)(2n+ 1)dq4
m

∑
16j6q

Tf (r)−O(1)

(3.21)

≥
q∑
j=1

(
NQj(f)(r, r0)−N [HY (m)−1]

Qj(f) (r, r0)
)
− qε

4
Tf (r).

18



Combining with (3.22) we get

d(q − n− 1− qε)Tf (r, r0) 6
q∑
j=1

N
[HY (m)−1]
Qj(f) (r, r0) + A(r).

Combinning with (3.1) we have

(q − n− 1− qε)Tf (r, r0) 6
q∑
j=1

1

dj
N

[HY (m)−1]
f (r, r0, Dj) + A(r).

Combining with (3.4), we complete the proof of Theorem 1.1. �
We next prove Theorem 1.3.

Let ω̃ : M̃ →M be the universal covering of M. Then f̃ = fω̃ : M̃ → V is
also algebraically nondegenreate. Moreover, it holds that δ

[`]
f (Dj) 6 δ

[`]

f̃
(Dj).

Hence, if Theorem 1.3 is true for f̃ then it is also true for f. Therefore, we
may assume that M = B(R0) for some R0 (0 < R0 6∞). According to (1.1)
and Corollary 1.2, it suffices to prove Theorem 1.3 for the case R0 = 1 and

lim
r→1

sup
Tf (r, r0)

log 1
1−r

<∞.

Then, by (3.9) we also have

lim
r→1

sup
TF (r, r0)

log 1
1−r

<∞. (3.28)

We now prove that

q∑
j=1

δ
[HY (m)−1]
f (Dj) 6 n+ 1 + qε+ ρT. (3.29)

where T := (n+1)(HY (m)−1)
d(m−(n+1)(2n+1)4)

(3.4)

6
(n+1)

( N + dm
dm

)
d(m−(n+1)(2n+1)dn deg V )

.

Indeed, assume that the inequality (3.29) does not hold. Then, by defi-
nition of the non-integrated defect, there exist nonnegative constants ηj and
continuous plurisubharmonic functions uj 6≡ −∞ (1 6 j 6 q) such that

q∑
j=1

(1− ηj) > n+ 1 + qε+ ρT, euj 6 ‖f‖djηj (3.30)

19



and uj − log|φj| is plurisubharmonic, where φj is a nonzero holomorphic

function with νφj = min{ν(f,Dj), HY (m)− 1} = ν
[HY (m)−1]
Pj(f) ≥ dj

d
ν

[HY (m)−1]
Qj(f) .

On the other hand, by (3.27) we have

ν(∏q
j=1

Qj(f)

)A
Wα(F )

6 A
∑

16j6q

ν
[HY (m)−1]
Qj(f) .

where A := (1− (n+1)(2n+1)4
m

)mHY (m)
n+1

.
Therefore,

v := log |zα0+···+αN Wα(F )(∏q
j=1Qj(f)

)A |+ A

q∑
j=1

d

dj
uj

is plurisubharmonic on B(1).
By (cf. [9], pp. 252), the condition (1.3) is satisfied if and only if there

exists a continuous plurisubharmonic function w 6≡ −∞ on B(1) such that

ewdV 6 ‖f‖2ρVm

where dV denotes the volume form of B(1).
Set

t :=
2ρ

d
(
(q − n− 1− n+1

HY (m)
− (n+1)(2n+1)q4

m
)B − (η1 + · · ·+ ηq)A

)
and u := w + tv,

where B := mHY (m)
n+1

. Then u is plurisubharmonic and so subharmonic on the
Kähler manifold M.
By (3.21), (3.30) we have

t(|α0|+ · · ·+ |αN |) 6
2ρ

d
(
(q − n− 1− qε)A− (η1 + · · ·+ ηq)A

) · (HY (m)− 1)HY (m)

2

6
ρT∑q

j=1(1− ηj)− n− 1− qε
< 1 (3.31)
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(note that 0 < A < B). Then, we have

eudV 6 etv‖f‖2ρVm

= |zα0+···+αN Wα(F )(∏q
j=1Qj(f)

)A |tet∑q
j=1 A

d
dj
uj‖f‖2ρVm

(3.30)

6 |zα0+···+αN Wα(F )(∏q
j=1Qj(f)

)A |t‖f‖t∑q
j=1 dAηj‖f‖2ρVm

= |zα0+···+αN Wα(F )(∏q
j=1Qj(f)

)A |t‖f‖td(q−n−1− n+1
HY (m)

− (n+1)(2n+1)q4
m

)B
)
Vm.

Therefore, by the help of the identity Vm = 2m‖z‖2m−1σ ∧ d‖z‖ we get that∫
B(1)

eudV 6
∫
B(1)

|zα0+···+αN Wα(F )(∏q
j=1Qj(f)

)A |t‖f‖td(q−n−1− n+1
HY (m)

− (n+1)(2n+1)q4
m

)B
)
Vm

6 2m

1∫
0

ξ2m−1

∫
S(ξ)

|zα0+···+αN Wα(F )(∏q
j=1Qj(f)

)A |t‖f‖td(q−n−1− n+1
HY (m)

− (n+1)(2n+1)q4
m

)B
)
σdξ.

(3.32)

By (3.7) and (3.14) we have

log
‖f‖dq

|
∏q

j=1Qj(f)|
6

n+ 1

mHY (m)
max
L∈L

∑
i∈L

EHi(F ) + d(n+ 1) log ‖f‖

− n+ 1

m
log ‖F‖+

(2n+ 1)(n+ 1)4
m

∑
16j6q

EQj(f) +O(1)

=
n+ 1

mHY (m)
max
L∈L

log
‖F‖HY (m)+1

|
∏

i∈LHi(F )|
+ d(n+ 1) log ‖f‖

− n+ 1

m
log ‖F‖+

(2n+ 1)(n+ 1)4
m

log
‖f‖dq

|
∏q

j=1Qj(f)|
+O(1)

=
n+ 1

mHY (m)
log max

L∈L

1

|
∏

i∈LHi(F )|
+ d(n+ 1) log ‖f‖

+
n+ 1

mHY (m)
log ‖F‖+

(2n+ 1)(n+ 1)4
m

log
‖f‖dq

|
∏q

j=1Qj(f)|
+O(1)
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(3.9)

6
n+ 1

mHY (m)
log
∑
L∈L

1

|
∏

i∈L(F,Hi)|
+
(
d(n+ 1) +

d(n+ 1)

HY (m)

)
log ‖f‖

+
(2n+ 1)(n+ 1)4

m
log

‖f‖dq

|
∏q

j=1Qj(f)|
+O(1)

Therefore,

|Wα(F )| ·
(‖f‖d(q−n−1− n+1

HY (m)
− q(n+1)(2n+1)4

m

)
|
∏q

j=1Qj(f)|1−
(n+1)(2n+1)4

m

)mHY (m)

n+1
6
∑
L∈L

|Wα(F )|
|
∏

i∈L(F,Hi)|
.

This implies that

|Wα(F )| · ‖f‖
d
(
q−n−1− n+1

HY (m)
− q(n+1)(2n+1)4

m

)
B

|
∏q

j=1Qj(f)|A
6
∑
L∈L

|Wα(F )|
|
∏

i∈LHi(F )|
. (3.33)

By (3.31), there exists p′ such that t(|α0| + · · · + |αN |) < p′ < 1. Then by
(3.32), (3.33) and by Lemma 2.3, we have∫

B(1)

eudV 6 2m

1∫
0

ξ2m−1

∫
S(ξ)

∑
L∈L

|zα0+···+αN | |Wα(F )|t

|
∏

i∈LHi(F )|t
σdξ

6 2m

1∫
0

ξ2m−1
∑
L∈L

KL

(R2m−1

R− ξ
TF (R, r0)

)p′
dξ

= 2m
∑
L∈L

KL

1∫
0

ξ2m−1
(R2m−1

R− ξ
TF (R, r0)

)p′
dξ (3.34)

for r0 < ξ < R < 1.
According to Lemma 2.4 in [10], if we choose R = ξ + 1−ξ

eTF (ξ,r0)
, then

TF (R, r0) 6 2TF (ξ, r0)

outside a set E with
∫
E

1
1−ξdξ <∞.

Therefore, by (3.28) and (3.34) we have∫
B(1)

eudV 6
∑
L∈L

K ′L

1∫
0

ξ2m−1

(1− ξ)p′
(

log
1

1− ξ
)p′
dξ <∞.
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On the other hand, by the result of Yau [16] and Karp [11], we have neces-
sarily ∫

B(1)

eudV =∞

because B(1) has infinite volume with respect to the given complete Kähler
metric (cf. [16], Theorem B). This is a contradiction. Therefore, we get
(3.29). This completes the proof of Theorem 1.3. �
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