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SOME COMBINATORIAL IDENTITIES RELATED
TO COMMUTING VARIETIES AND HILBERT SCHEMES

GWYN BELLAMY AND VICTOR GINZBURG

WITH AN APPENDIX BY
ELIANA ZOQUE

ABSTRACT. In this article we explore some of the combinatorial consequences of recent re-
sults relating the isospectral commuting variety and the Hilbert scheme of points in the plane.

Table of Contents

Introduction

Bigraded G-character of %

Principal nilpotent pairs

Principal nilpotent pairs for g,

Polygraph spaces

Rational Cherednik algebras

The Harish-Chandra module and Cherednik algebras
Appendix by E. Zoque:

T-orbits of principal nilpotent pairs

PO NNT s ®N

1. INTRODUCTION

In this paper, we derive various combinatorial identities by comparing bigraded charac-
ters of objects of four different types. Fix an integer n > 1 and let g = gl,,.

The objects of the first type are associated with the Procesi bundle &7 on the Hilbert scheme
of n points in the plane. The Procesi bundle was introduced and studied by M. Haiman in
his work on the n! theorem [10]-[12]. According to Haiman, the combinatorics of the Procesi
bundle is closely related to Macdonald polynomials.

The objects of the second type are associated with a certain remarkable coherent sheaf
Z on (the normalization of) the commuting variety of the Lie algebra gl,,, introduced by
one of us in [6]. The sheaf % has an interpretation in terms of a certain double analogue
of the Grothendieck-Springer resolution, to be recalled in §2.2 below. Therefore, the com-
binatorics of the coherent sheaf % is related to the geometry of the flag variety of gl, and
to the standard combinatorics of root systems. Now, it was explained in [6] how one can
use the sheaf # to construct (a close cousin of) the Procesi bundle &?. This yields, on the
combinatorial side, various identities relating the combinatorics of the root system of gl,, to
Kostka-Macdonald polynomials.

The first author would like to thank Bernard Leclerc and Iain Gordon for stimulating discussions. This
work is the result of a visit of the first author to the University of Chicago, made possible through a Cecil-
King travel scholarship. The first author would like to thank the London Mathematical Society and Cecil-King
Foundation for this opportunity and the University of Chicago for its hospitality and support. The research of
the first author was supported through the programme “Oberwolfach Leibinz Fellows” by the Mathematisches
Forshungsinstitut Oberwolfach in 2010. The research of the second author was supported in part by the NSF
award DMS-1001677.
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The objects of the third type are associated with D-modules on the Lie algebra gl,,. There is
a distinguished D-module M, called the Harish-Chandra module, that has played a key role
in [6]. The Harish-Chandra module M comes equipped with a canonical Hodge filtration
and the sheaf Z is obtained, essentially, as an associated graded sheaf gri°de¢ M. Thus, the
sheaves # and M have closely related character formulas.

Finally, the objects of the fourth type are associated with representations of rational Chered-
nik algebras. Specifically, in section 6 we are interested in character formulas for simple ob-
jects in the category O for rational Cherednik algebras of type A. These character formulas
can be obtained, thanks to the work of Rouquier [22], from the multiplicity numbers of sim-
ple modules in standard modules for Schur algebras. The latter may be expressed in terms
of Kazhdan-Lusztig type polynomials associated with canonical bases in a Fock space, by
the work of Leclerc-Thibon [19]-[20] and Varagnolo-Vasserot [25].

On the other hand, many simple objects of the category O for the rational Cherednik
algebra can be constructed by applying a version of the Hamiltonian reduction functor in-
troduced by Calaque, Enriquez, and Etingof [1] to various direct summands of the Harish-
Chandra module. This relates the characters of the simple objects to the characters of the
Harish-Chandra module. Thus, combining everything together, we obtain in section 7 an
interesting identity that involves some Kazhdan-Lusztig polynomials on one side and some
Macdonald polynomials on the other side.

We outline in a bit more detail the main results of each section.

In section 2 we introduce the sheaf # on the normalization of the commuting variety
and describe its G x W x C* x C*-equivariant structure. In the main result of this section,
Theorem 2.4.1, we give a formula for the bigraded G-character of the global sections of # in
terms of certain degenerate Macdonald polynomials and a bivariate analogue of Kostant’s
partition function. This formula can be interpreted as a double analogue of Hesselink’s
formula for the graded G-character of C[g].

The fixed (up to conjugation by () points in the commuting variety with respect to action
of C* x C* are the “principle nilpotent pairs” of that variety. The fiber of # at each of these
fixed points is a bigraded space of dimension |I¥|. The goal of section 3 is to give a formula,
Theorem 3.5.1, for the bigraded character of each of these special fibers. The proof of this
theorem is an intricate calculation in equivariant K-theory, which uses in an essential way
the alternative description given in [6] of # as a complex of sheaves on a doubled analogue
of the Grothendieck-Springer resolution. The results of sections 2 and 3 are valid for any
connected complex reductive group G.

In section 4 we show that it is possible to give an explicit combinatorial expression for
the formula of Theorem 3.5.1 when G = GL,,. In this case it is known from [6] and [8] that
the fibers of the sheaf % at the principle nilpotent pairs are isomorphic to the fibers of a
C* x C*-equivariant sheaf, closely related to the Procesi bundle, at the fixed points of the
Hilbert scheme. Therefore the bigraded character of these fibers is also given by a recursive
formula of Garsia and Haiman, based on the Pieri rules for transformed Macdonald poly-
nomials. We show by direct computation that our combinatorial expression is equivalent to
Garsia and Haiman’s formula.

This remarkable relationship between the sheaf % and the Procesi bundle on the Hilbert
scheme is exploited in section 5 in order to describe more completely the full G x W x
C* x C*-equivariant structure of #. For almost all irreducible G-representations V,,, we
show in Theorem 5.3.2 that the bigraded W -character of the V),-isotypic component of % is
expressible in terms of transformed Macdonald polynomials. Corollary 5.3.4 gives a similar
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formula for the G-isotypic components of the normalized commuting variety.

In section 6, we change tack and turn our attention to the graded character of the simple
modules for the rational Cherednik algebra of type A. As explained above, we use work
of Rouquier, Leclerc-Thibon and Varagnolo-Vasserot to calculate the graded character of
these modules. In (6.6.1), we introduce a class of rational functions G¥(\,v;t), defined in
terms of Littlewood-Richardson coefficients and (g, t)-Kostka polynomials, and show that
these functions give the graded &,,,-character of a large class of simple modules, Proposition
6.6.2. In this section we also describe the Calaque-Enriquez-Etingof functor which relates
equivariant D-modules supported on the nilpotent cone to simple modules for the rational
Cherednik algebra.

The Calaque-Enriquez-Etingof functor allows us to interpret the character formulas given
in section 6 for simple modules of the rational Cherednik algebra as the characters of certain
equivariant D-modules on the nilpotent cone. As noted above, the graded character of #
is closely related to the character of the Harish-Chandra module M. This module is also,
via a D-module interpretation of the Springer correspondence, closely related to the simple,
equivariant D-modules supported on the nilpotent cone, cf. [14]. Therefore, in section 7,
we compare the characters of these simple D-modules derived from the character formulae
of #Z given in section 5 with the formulae given in terms of the rational functions that were
introduced in section 6. This produces (Theorem 7.6.8) some interesting and rather myste-
rious identities. Another consequence of this comparison is that one can define a filtration
on a large class of simple modules for the rational Cherednik algebra such that the asso-
ciated graded object is bigraded and the bigraded &,,,-character, Proposition 7.7.2, can be
expressed in terms of transformed Macdonald polynomials.

Results regarding the torus orbits of principal nilpotent pairs for gl,, are given by E. Zoque
in the appendix.

2. BIGRADED G-CHARACTER OF %

2.1. Throughout the paper we take G to be a connected complex reductive group with Lie
algebra g. Fix T C G, a maximal torus, and let t = LieT be the corresponding Cartan
subalgebra of g. Let W be the Weyl group associated to T' C G.

Put & := g x g. The commuting scheme €, of the Lie algebra g, is defined as the scheme-
theoretic zero fiber of the commutator map x : & — g, (x,y) — [z,y]. Set-theoretically, one
has € = {(z,y) € & | [z,y] = 0}. The group G acts on g via the adjoint action G > g :
z +— Ad g(x) and diagonally on &. This makes € a closed G-stable subscheme of . We put
T =t x tand let the Weyl group W act diagonally. Restriction of polynomial functions on
® to T gives rise to a map of algebras res : C[¢]% — C[Z]V (c.f. [6, (1.3.1)]).

The isospectral commuting variety is defined to be the reduced, closed subvariety

X ={(z,t) €€ xT | P(z) = (res P)(t), VP € C[¢]}

of € x ¥. It is shown in [6, Theorem 1.3.3] that the normalization X, of X is a Cohen-
Macaulay, Gorenstein variety with trivial canonical bundle. A consequence of this is that
Chorm is also Cohen-Macaulay.

Projection onto the first factor defines a map X — €. This lifts ([6, §1.4]) to a finite mor-
phism puorm : Xnorm — €norm. We define Z := (Pnorm )« Ox,0m, @ cOherent sheaf on € opm.

The group C* acts on g x t by dilations. Therefore, there is also an action of C* x C*
on B x T = (g xt) x (g xt) by dilations. Since the action of C* x C* commutes with the
actionof G x Won & x T, itisa G x W x C* x C*-variety. Fix H := G x C* x C*. The
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variety X is H x W-stable and, as noted in [6, §1.4], this induces an action of H x W on the
isospectral variety X,orm. The morphism phorm is G x W x C* x C*-equivariant, therefore
Z is a H x W-equivariant coherent sheaf on €,om.

2.2. An analogue of the Grothendieck-Springer resolution. Let # be the flag variety, the
variety of all Borel subalgebras b C g. The following variety was introduced by the second
author in [6, §3.1]:

& :={(b,7,y) € Bxgxg|xychb}

Projection onto the first factor makes & a sub vector bundle of the trivial vector bundle
BxG — A Letq : ® — % and o & — &, (b,z,y) — (z,y) denote the G-equivariant
projections on to the first, respectively the second and third factors. Let the group C* act by
dilations on each Borel b. Then there is an action of the group C* x C* on the fibers b x b of
q. This makes & a H -variety and the maps q and p are H-equivariant.

Let 7 denote the tangent bundle on %, its fiber at the point b is g/b ~ [b, b]*. For each
n > 0, let o7, := A"q*T, a vector bundle on &. By letting C* x C* act by dilations on
the fibers of 7, each .47, is naturally a H-equivariant sheaf. As explained in [6, §3.4], the
commutator map can be used to define a differential 0, : <% — _1 so that & := P, -, 7,
is a sheaf of coherent DG O@-algebras. Let u denote the composite map €porm — € — &.
Then one of the main results of [6], Corollary 4.5.3, says that there is an isomorphism of
H-equivariant Og-modules

(R, o) ~ u %, (2.2.1)

and % (Rp, /) = 0 forall k # 0. In other words, in D’ | (&), the bounded derived category
of coherent sheaves, one has Ry, .« ~ u.Z%. This implies that we have an equality

. = u.| %) (2.2.2)

in the Grothendieck group K*(®) of H-equivariant coherent Og-modules.

2.3. Degenerate Macdonald polynomials. The representation ring of G, respectively W,
will be denoted R(G), respectively R(W). Let Ry C t* denote the set of weights of the
adjoint t-action on the vector space [b,b]* ~ g/b, and let /(—) denote the length function
on the Weyl group W. Denote by P the lattice of integral weights in t* and by @ the root
lattice. The set of dominant weights (i.e. those weights A € P such that (\,a") > 0 for all
a € R') will be denoted P* and we set QT = Q N PT. The semi-group in @ generated
by the positive roots R is denoted Q. Let p denote the half-sum of all positive roots. We
denote by J the anti-symmetrization map on the ring Z[P], which is defined by J(e) :=
Zwew(—l)e(w)ew(”. For € P, the class in R(G) of the irreducible, finite dimensional G-
module with highest weight 1 will be denoted s,(z). We identify s,(z) with the T-character
J(e!*P)/J(e?) of V,,. All identities that we present will be elements in the ring A := Q(q, t)®y,
R(G) ®z R(W).

For any weight A\ € P we define, as in [24]', the degenerate Macdonald polynomial to be

Pty =Y w (a 11 Otec“)) _ (@ aens (1= te™)).

e (1 —e ) J(er)

Lwe will only consider the case w = p and omit it from the notation.
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The degenerate Macdonald polynomial is symmetric, therefore there exist polynomials p, ,,(t)

such that
Z Pau(t) - su(2) (2.3.1)

peP+
For each A\ € P we denote by A the unique dominant weight in the W-orbit of A. By [24,
Proposition 2.2], we have py ,(t) = 0 unless p < AT. When X is dominant, Py(¢) is the
usual Hall-Littlewood-Macdonald polynomial and p) ,(t) = K) ,(t), the Kostka-Foulkes
polynomial. For A € P, define

J (e>‘+p [locr (1= teo‘))
J(eP) ’

P\(t) =
Lemma 2.3.2. Forany A € P we have
Bty= > Baul)-sul2)
p<(A+2p)*
where Py (1) = (—t)°Pat2pu(t™1) and ¢ = |RT|.
Proof. This follows from the identity

J (AP [Toeps (1 — te®))
J(eP)

= (—1)° Py, (t7). 0

2.4. Bigraded character formula. Given a reductive group K, a K-scheme X and a K-
equivariant coherent sheaf F on X, we write X (F) for its equivariant Euler characteris-
tic, a class in the Grothendieck group of rational K-modules. We identify the Grothendieck
group of rational C* x C*-modules with the Laurent polynomial ring Q[¢*!, t*1].

We define a (¢, t)-analogue P(—;q,t) : P — Q|q, t] of Kostant’s partition function by the

generating function
1
A
H (1 — ge®)(1 — te®) ZP Uk
acR AEQ+

Each isotypic component of C[&] with respect to the action of C* x C* is finite dimensional,
therefore X/ (Og) is a well-defined element in A. Since # may be considered as a coherent
sheaf on &, x (%) is also well-defined as an element in A. The isomorphism (2.2.1) allows
us to calculate the Euler characteristic x (%) of %.

Theorem 2.4.1. The bigraded G-character of the global sections of the sheaf % is given by the formula

1 ~
X' = T e ZQZ P(X; ) Bagulat) - su(2). (242)
B<(A+2p)

where r is the rank of G.

The remainder of this section is devoted to the proof of Theorem 2.4.1. We first calculate
the Euler characteristic x> *C* (%) of Z.

Proposition 2.4.3. The bigraded T-character of the global sections of the sheaf % is given by the
formula

X ><>< X _ 1
XT C*xC (’%)_(1_(1)?(1—75)? Zw(

weWw
5

(1 — qte®)
H (1 —ge®)(1 —te*)(1 — ea)> ’

acR4



Proof. For any locally finite representation E, of a Borel subgroup B C G, let E denote the
corresponding induced G-equivariant vector bundle on % = G/B.

The terms of the complex q..%7* are the quasi-coherent vector bundles q..27", whose fiber
atb € Ais Symb* @ Sym b* ® (A"[b, b]*). Therefore we get the equation:

X ety = Y (—at)" g™ x T (Sym* b @ Sym™ 0" @ (A"[b, b)) (24.4)
k,m,n>0

Thanks to the equality (2.2.2), the left hand side of equation (2.4.4) is equal to the bi-
graded character of the T-module Z. To obtain the formula of the proposition, one com-
putes the right hand side of equation (2.4.4) using the Atiyah-Bott fixed point formula for
G-equivariant vector bundles on the flag variety, as explained in [2, §6.1.16]. O

Proof. (of Theorem 2.4.1) Since [[ ., #ﬂ) = e?J(e?)~1 and J(e”) is skew symmetric,

(1 —qte”)
(1—q)7( 1—trJ eP) ZV:V ( QLL (1qea)(1tea)>'

XT><(CX xCX* (%)

By definition,

1
H (1 —ge®)(1 — te®) Z P(Xigt)

aER4 AEQ
which means that

XTX(CXX(CX(%) — (T (1 — i) Z P(A;q,t (eP‘H‘ H — qte® ) .

)\EQ+ a€ERt

Then equation (2.4.2) follows from the formula for Py (¢t) given in Lemma 2.3.2. O

3. PRINCIPAL NILPOTENT PAIRS

When restricted to the smooth locus of the commuting variety, the isospectral commuting
variety % is a bigraded, G x W-equivariant vector bundle. In this section we use the theory
of principal nilpotent pairs to study the bigraded character of the fiber of this bundle at fixed
points. The main result of this section is the character formula (3.5.2) of Theorem 3.5.1.

3.1. Definitions. For any pair x = (x1,22) € €, write 3(x) for the simultaneous centralizer
of x1 and x2. By a theorem of Richardson, [21], G- (t x t) is open and dense in €. This implies
that dim 3(x) > rk g for all x € €. The pair (z1, z2) is said to be regular if dim 3(x) = rk g. The
set of all regular pairs in € is denoted €; it is the smooth locus of €.

Lemma 3.1.1 (Theorem 1.5.2 (i), [6]). The restriction of # to €" is a locally free sheaf such that
each fiber of the corresponding vector bundle affords the reqular representation of W.

The paper [5] introduced the notion of principal nilpotent pairs in €:
Definition 3.1.2. A pair e = (e1,e2) € & is called a principal nilpotent pair if the following

conditions hold:
(1) eisaregular pairie. e € €7;
(2) For any (t1,t2) € C* x CX, there exists g = g(t1,t2) € G such that (¢ - e1,t2 - €2) =
(Adg(e1), Adg(ez)).
6



Note that condition (2) of definition 3.1.2 implies that e; and es are nilpotent. It is shown
in [5, Theorem 1.2] that one can associate to each principal nilpotent pair e € ¢ a pair h =
(h1,h2) € € of semisimple elements of g such that [h;,e;] = 0;; - €j for i,j = 1,2 and the
adjoint action of h on g defines a Z?-grading g = ®p qez2 Opq-

3.2. For the remainder of this section we fix a principal nilpotent pair e € €" and associated
semisimple pair h = (hq, hg). Without loss of generality, 3(h) = t. Recall that H = G X
C* x C* actson gby (g,a, ) -z = Ad(g) -  and on & by

(g:0,8) - (z,y) = (@ - Ad(g) -z, 87" - Ad(g) - ).

Let A := C* x C* and let o : A — G be the homomorphism such that dp : C? — g sends
(1,0) to hy and (0,1) to ho. The embedding A — H, (t1,t2) — (o(t1,t2),t1,t2,) defines an
action of A on g, respectively on &. Explicitly, (¢1,t2)ex = Ad g(t1,%2) - x, and

(t1,ta)e(z,y) = (t7 ' - Ado(t1, ba) - @, t5 ' - Ad o(t1, 2) - ).
This A-action defines a Z2-grading & = D, jcz9i,; such that

&= 0ir1; ®0ij1 = {(z,y) €g@g | Ado(ty,t2) -z = t5) -2, Ado(t1, t2) -y = 13Ty}

By definition, gt = goo (=t) and &4 = 0,0 (= 91,0 ® go,1)- Note that we have e; € g; o and
€2 € go,1,80 € € &4, The map g — &,z — (adej(x),adez(x)) is A-equivariant.

3.3. Since e is fixed by A, the fiber #Z, of # at e is bigraded. In order to present a formula
for this bigraded vector space we require a few further definitions.

Definition 3.3.1. A Borel subalgebra b is said to be adapted (to ey, ez, h1, ho) if it contains all
four elements ey, es, hy, ho.

Lemma 3.3.2. A Borel subalgebra b is adapted if and only if we have ®; j>0g;; C b.
Proof. This follows from the proof of [5, Theorem 1.13] which shows that one has

@i’jzogm = Z (adep)P(ade2)?(t). O

p,q>0

If b contains h; and hsy then t C b. Since the set of Borel subalgebras containing t is nat-
urally in bijection with the elements of W, choosing a particular adapted Borel subalgebra
b; defines a bijection b,, <> w between the set of all adapted Borel subalgebras of g and a
certain subset Wyoq, C W.

3.4. Partial slices. In [5, §7] a certain “partial slice” to the G-orbit in ¢" through e was con-
structed. Decompose the centralizers 3(e1) = @y 43p,q(€1) and 3(e2) = By g3p.q(€2) With re-
spect to the action of A. For each p, g such that p < 0 and ¢ > 0, choose a T-stable subspace
Sp.g C 3pqle2) complementary to Im(ad e : 3p—1,4(€1) = 3pq(e1)) and form the subspace
Snw 1= @p§07q20 Sp.g C 9. Let Spw := Snw @ {0} C & denote the corresponding subspace
in &. Similarly, by considering all p > 0 and ¢ < 0, one defines Sge := Sse © {0} C &. The
following result is noted in [5, §6].

Lemma 3.4.1. There is an A-equivariant isomorphism of vector spaces

Te€ ~ Spw @ Sse @ g/ﬁ(e)'
7



Proof. Recall that r : & — g is the commutator map so that € = x71(0). The regular locus
¢" C Cis precisely the set of points where the rank of dx is maximal. Therefore, since e € €7,
Te € = Kerder. The map « is G-equivariant, hence G - e C €". This gives a three term
complex

di Ad & dek g (342)
such that, if H! is the middle cohomology of the above complex, then T ¢ ~ H! & T, (G -e).
The above complex is (up to sign) precisely the complex [5, (6.1)]. Therefore, in the notation
of [5], H' = H'(e,g). Now [5, Theorem 6.6] implies that the natural map Syw @ Sse —
H*(e, g) is an isomorphism. Since T (G - e) = g/;(e), the lemma follows. O

Lemma 3.4.3. The free orbit T - e is open in (g1,0 ® go1) N <.

Proof. Write Z = (g1,0® go,1) N €. Since the component group of 7' is trivial, the fact that 7"- e
is free follows from Lemma 3.3.2 which implies that 3(e) Nt = 0. To show that 7"- e is open in
Z it suffices to show that 7, Z = dy Ad(t). The map ad : g — & is A-equivariant. Therefore,
since g1,0 ® go,1 = *, Lemma 3.4.1 says that

To Z = (Suw @ Sse & g/3(€)).

Now t = g and [5, Theorem 6.6] says that H'(e, g)4 = 0 which implies that (Spw @ Sse @
g/3(e))4 = tas required. o

Remark 3.4.4. In the case G = SL,, it is shown by E. Zoque in the Appendix that the torus
orbit 7" - e is dense in (g1,0 ® go,1) N €.

3.5. Given a rational A-module V, denote by A\(V') the Euler characteristic of the alternating
sum nggv(—l)k[/\kV] € K4(pt) = R(A). If w is adapted to e then Lemma 3.3.2 says
that the bigrading on g induces a bigrading b,, = @®;; (by)i;, where (by);; = by N g4 j.
Furthermore, we have (b,)00 = go0 = tand (by)1,1 = g1,1. Let u,, be the T' x C* x C*-
stable complement to g ; in [by,, by, thus, we have

(b, by] = GB (bw)ij, Tresp. Uy, = @ (by)ij-
{ig | (4.5)#(0,0)} {ig | (4.5)#(0,0), (1L,1)}

Theorem 3.5.1. The bigraded character of e, the fiber of the vector bundle % at the principal
nilpotent pair e € €, is given by the formula

x\ —1
() = MSiw @850 @/6@) 2 0)) 3 A (bubule (2222 ) ),

wWEWaap 810 @ go.1 ( )
3.5.2

In order to give meaning to Theorem 3.5.1, we must explain how the torus A acts on the
various spaces appearing in formula (3.5.2). As explained in (3.1), the action of A comes from
its embedding in C* x C* x T Therefore we will just remind the reader how 7" x C* x C*
acts on these spaces. Recall that in (3.1) we have defined the action of 7" x C* x C* on g
and &. The group acts on Sj,,, and S, as subspaces of &*. The action of 7' x C* x C* on
(g/(3(e) @ t))* comes from its action on g*. The space (b,, ® by, /g1.0 @ go.1)* is a subspace of
&* and [by,, b, is a subspace of g. One has to be careful with the action of 7' x C* x C* on
uy, - the space u}; is a subspace of the fiber of q*7 at (b,,, 0, 0). Therefore T acts in the natural
way but C* x C* acts by dilations, hence this is not the action of 7' x C* x C* coming from
the fact that u,, C g.
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The remainder of this section is devoted to the proof of Theorem 3.5.1. It is a rather long
calculation in equivariant K-theory. We begin, following [2, Chapter 5], by describing the
basic setup in which we work.

3.6. Equivariant K-theory. Given a group A acting on a smooth quasi-projective variety M,
write M4 for the fixed point set. We will assume that A is abelian and reductive. Then, as
shown in [2, Lemma 5.11.1], M4 is also smooth. The Grothendieck group of A-equivariant
coherent sheaves on M will be denoted K“(M) and its complexification K#(M). For an
A-equivariant vector bundle V on M, define A\(V) = 21;‘6(—1)"3[/\"‘1/] € KA(M).Fixae A
to be M-regular (that is, a € A such that M® = M%) and let ev, : KA(M*4) — Kc(M%)
be the map K4(M*4) = R(A) @z K(M*) — Kc(M*4) given by evaluating functions at a.
Define A\(V), := eva(A(V)) € Kc(M#A) and (c.f. [2, (5.11)]):
resa(F) = NTja M) eva(i*F) € Ke(M™?),

where i : M4 < M. Let KA(M%), := R(A), ®R(A) KA(M*) denote the localization of
KA(MA) with respect to the set of functions in R(A) that are non-zero at a. Then [2, Propo-
sition 5.10.3] says that A(T,4 M) is invertible in K A(M),. Write

Resq(F) = ATjaM)™" - i*F € KA(M™A),,

so that res, = ev, o Res,. Consider the following setup:

NACL) A
| |
N(—“> M

where u is an A-equivariant, closed embedding of smooth varieties. When in this situation,
we will repeatedly use the following two facts (as explained in [2, Proposition 5.4.10]):

(1) if F is a sheaf on M, whose support is contained in N, then v*[F] = A(T{x M) - [F|n].
(2) if Fis alocally free sheaf on M then v*[F] = [u*F].

Here T\, M denotes the conormal bundle of N in M.
Lemma 3.6.1. Let F be an A-equivariant sheaf on M whose support is in N.
(1) In the K-group K4(N*), we have an equality
Reso(u*[F]) = MTiaN) "1 - NTia M| ya) - (u)* Resq([F)).
(2) In the K-group Kc(N*) we have an equality
resq(u*[F]) = MThaN)gt - MTiaM|ya)a - (u?)*resq([F]).
Proof. As noted above, u*[F] = AT M) - [F|n]. Therefore, using the fact that e*A\(T\, M) =
XNTXNM |ya), we have
Resa(u"F) = NT{M|ya) - NTjaN) ™" €[ F|].
On the other hand,
(uh)* Resa(F) = () (N(Typa M)~ € [F]) = MTypaM|ya) ™ - (€0 u) [F].

Since eou? = u o ¢,

(eou)[F] = (uo &)*[F] = MTNM|ya) - &[FIn],
9



from which the first equation follows. Applying ev, to the first equation gives the second.
a

Lemma 3.6.2. In K4(N*), one has
NTHM|ya) = MTiaN) ™ NTgaMA) - NTia M| ya). (3.6.3)

Proof. The closed embeddings N4 < N < M imply that there is a short exact sequence

0— TNAN — TNAM — (TNM)|NA — 0
and dually,

0¢— TNaN — TyaM «— (TNM)|ya <— 0.
By [2, Corollary 5.4.11], this implies that A(Ty 4 M) = AM(TxaN) - N(T\M|y4). Similarly, the
closed embeddings N4 — M# < M imply that AMTxaM) = )\(T]’(,AMA) “MTyaM|ya).
Therefore

A(T5aN) - M3 M) = NTiyaMA) - X(Tfpa M),

Since \(T},, N) is invertible in K4 (N4),, equation (3.6.3) follows. O

Given a rational A-module V, we denote by V the A-equivariant vector bundle on M
defined by the projection 7 : M x V — M, where A acts diagonally on M x V.

3.7. The DG algebra </ on . We now return to the setting of Theorem 3.5.1. Recall from
(2.2) that we have a DG algebra .« on &. This is a complex of H-equivariant vector bun-
dles .7,, whose fiber at (b, z,y) is A™([b,b]*). Let [«/] = > (—=1)" - [#4] € KH (&) be the
corresponding class in equivariant K-theory. Write &" for the open subset of & consisting
of points (b, z, y) such that the pair (z, y) is regular. Since the semisimple pair h is regular,

BA = BT Then 6™4 .= (67)4 = Upew & where
G = {by} x (by B byw) N (g1,0 S go,1)"

The pull-back of 47, to &5 is the T x A-equivariant vector bundle A™([by,, b,]*). By defini-
tion,
Reso([]) = ) AN(T5,a®") " in[e/] = ) A(T5,a®") " A([bw, bu])
weW weW

where i, : QBZ}A < ®" and [bu, by]" is the T x A-equivariant vector bundle on (gZ}A with

fibers [b,,, b,,]*. Consider the following setup

A A
T el grac_ v GrA FrA

™
™
~

CT( w B ® 81“

The idea is to push and pull Res,([«7]) all the way back to 7" - e. Recall that we have fixed
a T x A-stable complement u,, to gi,1 in [by, by so that A([by, bu]) = A(y,) - A(g, ;) in

KTXA(T - e). We note that g1 1 equals ([by, b,])?, so it will be important to keep track of
g1,1 because A\([by, by])e = /\(g1 1)a =0in Kg(T - e), where as A(u,,), # 0. Recall also that

p: & — & is the projective morphism sending (b, z, ) to (z,y).
10



Lemma 3.7.1. In the Grothendieck group K™*4(T - e), we have
(u? o f)* w2 Resy|o?] = A (g7 ) ) ANT @\W) (). (3.7.2)

'LUGWadp

Proof. The restriction of u4 to & is a closed embedding. If b, is adapted to e then &t =
(91,0 ® g0,1)" and p is just the identity on &t Pushing forward,

i Res (1)) = 3 NI lora) ™ Allous bul®) + Q € K (674),
w adp

where Q) consists of terms such that e is not in the support (if e ¢ & then p? is not
an isomorphism so one must take derived push-forward, but we can ignore the resulting
terms). Since the terms in Q are the classes of 7' x A-equivariant sheaves, the fact that e is
not in the support of Q implies that (f o u4)*Q = 0. Pulling back along f o u” gives the
required equation. O

3.8. It is also possible to compute an expression for (u? o f)*u Res,[</] in terms of Z. Since
Rp,. o = u,Z in the derived category D? . (8"), we also have p,[o/] = u.[%] in KT*A(&").

Lemma 3.8.1. In the Grothendieck group K™>*4(T - e), we have the equality
MT5. o€ ) ML a®" 1) - (u? 0 f) il Resq[of] = NT&®" |1.6) - Resq[Z).
Proof. By [2, Proposition 5.4.10]
u (. lef)) = w ) = NT57) - (7] € KT*AE),

coh

This implies that
Resg u* (p,[]) = Resa(MTg&") - [Z]) € KT*4(e4),.
Since A(T-®") is an alternating sum of vector bundles on ¢,
Resq(MTg8") - [Z]) = NTgr B |¢ra) - Resq[ %),
and hence
Resq u* ([ ]) = MT§B" |gra) - Reso[Z) € KT*A(€"4),. (3.8.2)

Since p, 7] is the class of a sheaf supported on ¢", Lemma 3.6.1 with N = ¢" and M = &"
implies that

Resq u*(p,[#]) = NTgra@ ) MTg5ra®" [gra) - (u)* Resq p,[<7). (3.8.3)

As in the proof of [2, Theorem 5.11.7], we can apply [2, Proposition 5.3.15] to conclude that
Res, p[/] = pu2Res, [</]. Combining equations (3.8.2) and (3.8.3) produces the required
formula. O

Lemma 3.8.4. In K™*4(T - e) we have Mgy )= )\(Tgr,AQS’"’A).

Proof. Since we are applying A(—) to T' x A-equivariant vector bundles on T"- e, it suffices to
show that the fibers of these vector bundles at e are isomorphic as A-modules. We have the
following subsequence of the sequence (3.4.2) considered in the proof of Lemma 3.4.1:

0—t=go0— 910Pg0,1 — g1,1 — 0, (3.8.5)
where the first map is ade; @ ad ez and the second is ad e; — ad e3. This sequence is exact
thanks to [5, Theorem 6.6] and [5, Proposition 1.12,“Weak Lefschetz”]. Since Te (T - €) =~ t
and &4 = 91,0 D go,1, we have

(Tr.c6")e = (Te®")/(Te (T - €)) ~ (91,0 D g0,1)/90,0 ~ 1.1,
1



where the last isomorphism is due to (3.8.5). On the other hand, Lemma 3.4.3 says that the
orbit 7" - e is open in (g1,0 @ go,1) N ¢" = ¢4, Therefore, we deduce that

(T@'vAﬁr’A)e = (TT~e®A)e =011
It follows that Tigr, 2 BhA = 9, and hence T, » BnA = g*l‘ 1 O
Since KT>4(T-e) ~ R(C* x C*) is a domain, we can cancel non-zero terms in equations
holding in KT*4(T - e). Let V be a rational 7' x A-module and V the corresponding 7' x A-

equivariant vector bundle on T - e. Then A(V) # 0in K7*4(T - e) if and only if the weights
of V under the 7' x A-action are all non-zero.

Proposition 3.8.6. In Kc(pt) ~ C,
Tr(a; #e) = M(Tga€e)a Y M(Tga6")e)a' - Auh)a (3.8.7)
wEWadp
Proof. In the case M = " and N = ¢", Lemma 3.6.2 says that the equality
MTES" |gra) = M Tgra €)™ AT a ) - N(T 4B [gra) (3.8.8)
holds in KT*4(¢"4),. Combining equation (3.8.8) with Lemmata 3.7.1, 3.8.4 and 3.8.1, to-
gether with the fact that A(g, ,) and A(T§;, 4" [r.e) are not zero-divisors in K T>A(T - e),
produces
Resal#] = Y AMT5.a8|1.) " - Au,) (3.8.9)
wGWadp Y
in KT*A(T - e),. Recall that
Resa|#) = MN(Tgra€" |1.6) " - E[Z),
and hence
resa[#) = M(Tgra€ | 1.e)s " - €va(E°[2)). (3.8.10)
Since T acts freely on T - e, we have KT (T - e) ~ K(e). Let 7! : KX(T - e) — Kc(e) denote

the isomorphism of descent (c.f. [2, (5.2.15)]). Applying 7! to equations (3.8.10) and (3.8.9)
produces (3.8.7). O

3.9. Cotangent Spaces. To complete the proof of Theorem 3.5.1 we just need to show that
equation (3.5.2) is equivalent to equation (3.8.7). This follows from:

Lemma 3.9.1. As A-equivariant vector spaces,
(Tera€)e = Spw © Se @ (8/(3(e) © 1),
and, for w adapted to e and v := (b, e) € enA
~ by ® by \*
T2, 48")y 2 [by, by & | ——— | .
(T2 ®"e = | | (gl,o S 90,1)

Proof. Ate, Te€" ~ Spw @ Sse @ g/3(€). The fact that T acts freely at e and the corresponding
orbit is open in €4 implies that To€" /To€™4 ~ S,y @ Sse @ g/(3(e) ® t) so that

(Tgra€)e =~ Shw ® Sge @ (9/(3(e) & 1))".
Atw, TU@T =g/by ® by, @by, and TvéﬁA = 01,0 D go,1 SO

by & by, >*

TE A8 )y = [by, by] &
( Gl ) | ] (91,0@90,1
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4. PRINCIPAL NILPOTENT PAIRS FOR gl,,

In this section, we focus on the case G = GL,, and hence W = &,,, the symmetric group.
The aim of this section is to give an explicit combinatorial expression, Theorem 4.4.1, for
formula (3.5.2). In the second part of this section we show that this combinatorial expression
is equivalent to a formula of Garsia and Haiman. We begin by recalling some standard
combinatorics related to the representation theory of the groups GL,, and &,,.

4.1. Partitions. When G = G L,, the ring A is Q(q, t)[25}, . . ., 21]%" ®7 R(S,,) and the char-
acter s, (z) is the Schur polynomial labeled by x. The standard inner product on A, with
respect to which the Schur polynomials form an orthonormal basis, will be denoted (—, —).
The complete symmetric function labeled by the partition y is denoted h,(2).

Let 1 be a partition of n of length ¢(x and denote by n(u) = Zf(:“l) (¢ — 1), the partition

statistic. The Young diagram of u is defined to be the subset Y, := {(i,j) € Z?|0 < j <
O(u)—1,0<i < pj— 1} of Z2 Each box in the diagram is called a node. The Young diagram
should be visualized as a stack of boxes, justified to the left; for example the partition (4, 3, 1)
is:

This convention is chosen to agree with [12]. We put

Bu(q,t):= >  q't" (4.1.1)

(r,s)€Yy

We adapt the convention that By(g, t) = 0, where () is the empty partition.

For x € Y, the arm a(x) of x is defined to be the number of boxes strictly to the right of
x and the leg [(z) of x is the number of boxes strictly above z. We denote by h(z) the hook
length of x, which is defined to be a(x) + {(x) + 1. For instance, the hook length of (1,0) in
the above Young diagram is 4. The hook polynomial is defined to be

1) = ] (- )
€Y,
The dominance ordering on partitions will be denoted >. A rim-hook of the partition y is a
connected skew partition /v, for some v C g, such that /v contains no sub-diagram of
type (2,2). An r-rim-hook is a rim-hook of size r. The r-core of a partition is the partition
obtained by removing as many r-rim-hooks as possible. For any given partition, the result-
ing r-core does not depend on the choice of r-rim-hooks removed (see [15, Theorem 2.7.16]).
For example, the 4-core of (4,3,3,1) is (2,1).

A tableau o of shape 1 is a filling of the Young diagram Y}, with the numbers 1,. .., n, each
number appearing exactly once. The tableau ¢ is said to be standard if o(z) < o(y) for all
y € Y, that are above or to the right of =. The set of all tableaux of shape p is written YT (1)
and the set of standard tableaux of shape p is SYT(u). Let o; the standard tableau of shape
 that is given by placing 1 in (0,0), 2 in (1,0), filling across and then beginning the next
row at the left and working across.

4.2. Plethysums. Let Z = 2,42+ - - be an alphabet. The algebra Ay of symmetric functions
in Z over a field I of characteristic zero is freely generated by the power-sum polynomials
13



P := 28 +25+- ... Therefore, for any sequence [R] = 71,72, . . ., of elements in a commutative
algebra A, the map p; — r, uniquely defines a morphism from the algebra of symmetric
functions to A, f — f[R]. The operation f — f[R] is called the plethystic substitution of R
into f. We will mainly be interested in the automorphisms of A, where F = Q(g,t), defined
by f— f[Z/(1 —t)]and f — f[Z(1 —t)]. These are inverse to one another; see [12, §3.3] for
details.

We will also use the €2 notation. Define Q[Z] := [[,(1 — z;) so that

Then, as noted in [12, §3.3], the equalities py[A + B] = pi[A] + px[B] and pi[—A] = —pi[A]
imply that
QA+ B] =Q[A] - Q[B], Q[-A] =1/Q[A].

A Laurent polynomial f € Z[g*!,#*!] can be thought of as a “sequence” of monomials
in Q(q,t) as follows: a term a - ¢"t™ should be thought of as recording the occurrence of
the monomial ¢"t™ “a times”. A monomial may occur a negative number of times in this
sequence. Then Q[f] is defined to be the product (1 — ¢"t"™) over all monomials ¢ with
the factor (1 — ¢"t"™) occurring a times. If f has a non-zero constant term ¢ > 0 then Q[f] =0
and if ¢ < 0 then Q[f] is undefined. In general, if the constant term of f is ¢ then we write
QIf° := Q[f — ¢]. An example:

Qe =3t + 2+ 2¢t 7% = (1 = ) (1 =t (1 - qt7°)%

4.3. The set of principal nilpotent pairs for g = gl,, are naturally labeled by partitions of
n. For a given partition p, one should think of the pair (ey, ez) labeled by 4 as a pair of
operators acting on the boxes of Y},. The operator e; moves each box one to the right and e
moves each box up by one. We use the standard tableau o; defined above to realize e; and
e2 as matrices in g. Each node of the tableau o; corresponds to an element of the standard
basis {v1,...,,v,} of the vectorial representation V" of g. Therefore if v; lies in a given box of
Y, and v; is in the box to its right then e; - v; = v;. This gives our matrix corresponding to e;.
In a similar way we get the matrix for e;. For instance, if = denotes the principal nilpotent
operator with ones just below the diagonal and zeros elsewhere, so that « - v; = v;41 for all
1 <i<n-—1,then u = (n) labels the pair (x,0) and (1") labels the pair (0, z).

In section 3 we fixed a principal nilpotent pair e with associated semi-simple pair h and
corresponding group A so that the expression in Theorem 3.5.1 is a sum over all adapted
Borel subalgebras of g. Here we take a different approach and fix b; to be the Borel subalge-
bra of lower triangular matrices in gl,,. Then R, = {«; ; | 1 < i < j < n}is the set of positive
roots corresponding to the weights of 7'in [by, b;]*. For each w € &,,, the Borel b, := w-b; is
adapted to e if and only if b; is adapted to w™! - e i.e. if and only if b; contains the elements
w e, weg, w - hy, and wt - ho.

Lemma 4.3.1. Let e be the principal nilpotent pair labeled by 1. Then, the adapted Borel subalgebras
are parametrized by the standard tableaux of shape .

Proof. The symmetric group &,, acts freely and transitively on YT(x). Therefore we can

identify the set SYT () of standard tableaux with a certain subset of &,,, w <> w - 01 =: 0y.

We just need to show that this subset of &,, is precisely (&,,)aqp. Let D be some operator

acting by moving the boxes of Y),. Each tableau o,, gives a realization of D as some linear

operator on V' and one can see that D is in b; if and only if 0,,(D(z)) < oy () forall z € Y),.
14



Since e; moves things to the right and e; moves things up we see that these operators belong
to by if and only if oy, is a standard tableau. O

As in [5, §5], each 0 € SYT(u) gives us a canonical choice of associated semisimple pairs
(h1, ho): if we enumerate the nodes (p,q) € Y, such that o(ay,b;) = k then define by =
(a1,...,an) and hy = (b1,...,by,). The pair (hi, he) is regular semi-simple with 3(h, he) =
diag(gl,) =: t.

4.4. The theorem below provides a purely combinatorial formula for the bigraded character
of %, in the GL,, case.

For a standard tableau o, let ¢, (i) denote the column of Y}, containing i and 7, (%) the row
of Y, containing ¢ so that o(c,(i),75(i)) = i. A standard tableau o of x defines a nested
sequence of partitions ) = ¢(0) C --- C o(n) = \.

Theorem 4.4.1. Let e € € be the principal nilpotent pair labeled by 1 and, for each standard tableau
o of u, define

o 0
Fa(q’ t) = H Q |:(1 —q— t+ qt)BU(kfl) (q7 t)qfcﬂ(k)tfra(k)} .
k=1

Then the bigraded character of Ze is given by the formula
[Ley, (1 — ¢tFe@¢l@)) (1 — gmal@)¢l+l@)
(I—g"@—t)" QB¢ Lt

x*(%e) = > Tolg,b). (4.42)

oESYT (1)
Example 4.4.3. If ;1 = (2, 1) then
x(%e) = qt +2q + 2t + 1,
orif u = (3,1) then
XM %) = ¢t + 3¢° + 3¢°t + 5¢% + 5qt + 3¢+ 3t + 1.
4.5. Proof of Theorem 4.4.1. To prove Theorem 4.4.1 we simply need to evaluate the various

terms appearing in equation (3.5.2). Fix a standard tableau o of shape p. Note that if V' is an
A-module then \(V) = Q[x4(V)].

Lemma 4.5.1. In Q(q,t) we have

A(SE,, ®SE,) = H (1- q1+a(w)t—l(a:))(1 _ q—a(m)tl—&-l(x))’ (4.5.2)
T€Y,
and
M/tesE)) = > "= > gt (453
(r,8)#(p,a) €Yy (0,0)%(r,s)€Y),

Proof. First we show (4.5.2). For each z = (p, q) € Y}, let f,(, ;) € Sse be the element defined
in [5, §7, Example]. The set {f,,q) | (p,q) € Y.} is a basis of Sse. Then

[hlu fu(p,q)] = (pmax - p)fzx(p,q)a [h27 fz/(p,q)] = (q - Qmax)fz/(p,q)-
Similarly, if Ju(p.q) € Snw s the element defined in [5, §7, Example], then

[hlv fl/(p,q)] = (p - pmam)fu(p,q)a [h27 fl/(p,q)] = (Qmam - Q)fu(p,q) .
15



The above expressions can be rewritten in terms of arms and legs as
[hh fzx(x)] = a(x)fu(z)v [h27 fu(:]c)] = _l(x)fl/(m)7 vfzx(gc) € Sse;

(b1, fo)] = —a(@) fuys  [he2, fu@)] = 1@) fu@), V@) € Snw-
The action of A on S, is shifted in comparison to the action of A on Shw (and similarly for
Sse)- This accounts for the extra 1’s in (4.5.2). Now we show (4.5.3). We have

AM(g/(t@3(e)) = 2x*(g") — x* () — x”(3(e)"))-
Equation (4.5.3 ) follows from

XA(g*) =n4+ Z qa(hl)ta(hQ) — Z qT—PtS—q,
O‘GR (T78)7(p7q)eYH
WO =n and XY= Y g

(0,0)#(r,8)€EY,
Here we have used the fact, [5, Theorem 5.6], that 3(e) has basis {efe5 | (r,s) € Y,\ { (0,0) } }.
O

4.6. Dropping o from the notation, ¢(i) will denote the column containing ¢, (i) the row
containing ¢ and, for all ¢, j € {1,...,n}, we write ¢(i, j) := ¢(i) — ¢(j), r(i,7) = r(i) — r(j).
Then
(aij,hi) = c(i, ), (ij,he) =7(i,j) V1<i#j<n.
Hence, for (p, q) # (0,0), by g = Da, ;8a; ;, where the sumis over all i > j such that c(i, j) = p
and r(i, j) = ¢ (recall that by o = t). We have
XA(b:c; ® b:;) =ng+nt+ Z q1+c(i,j)tr(i,j) + qc(i,j)t1+r(i,j)_
1<i<j<n

Note that the constant term of XA(bj; @ bk)is XA(gl,o @ go,1) = dim(g1,0 © go,1), SO

0
A <<[m’> ) _q {nq fntr Y gt | qc(i,j)t1+r(i,j):| '

91,0 D 90,1 I<ici<n

Also,

)\([[’m bg]) _ H(l . q—a(hl)t—a(hQ)) -0 ! Z qc(j,z)tr(j,i)] ’

a>0 1<i<j<n

and

0
M) = [ = gotottpetatty — g [ > qc("’j)“t“"’”“] :

acJ 1<i<j<n
where J = {a € R | (a(h1),a(h2)) # (—1,—1)}. For fixed 1 < k < n, one has
Z qc(i,k)tr(i,k) — qic(k)tir(k)Bg(k,U (q, t).
i<k
Hence, if for 1 < k < n, we define

Aoy (q.t) = (gt — ¢ — )Pt W B, 41y (q.t) —q —t — BB,y (g1 1),
16



then

A ([ba, by] @ (E"’M“) >_1 A = Q

81,0 P go,1

Similarly, for 1 < k < n, we define
Dyy(a,t) = ¢ Pt MB 1 (g,8) + ¢ P WB, oy (g7 ) — g W),
so that equation (4.5.3) shows

A(g/(t@3(e)))") =

and

3

M(g/(t@5(€))") ([ba, bs] @ <;0§;Zo)) ) =0

For1 < k < n, we have
Ap1)(@:8) + Doy (q,8) = (1 — g — t + qt) By 1) (g, t)g 7Bt — gmeo®ymrolh) g ¢,

Since

0O [ Z q—cv(k)t—rd (k)
k=1

Theorem 4.4.1 follows.

0
1

S RRRE and Q [ Z‘I(qﬂ)

1
(1—g)m(1 =)’

n

4.7. Comparison with the Garsia-Haiman formula. The Hilbert scheme of n points in the
plane, Hilb" C?, is a smooth irreducible variety of dimension 2n. Haiman has constructed a
rank n! vector bundle & on Hilb" C? called the Procesi bundle. Given a Young diagram ,
let 2, be the fiber of & at the C* x C*-fixed point I, € Hilb" C?, a bigraded codimension
nideal I, C Clz,y] associated with y, see [10].

In the paper [4], Garsia and Haiman use an analogue of the Pieri rule for Macdonald
polynomials to derive an expression for x© % (2,;¢,t). We recall their result: let Ry,
respectively Cy, denote the set of all boxes in the same row, respectively column, of o(k) as
the box py = o(k)\o(k — 1), excluding py, itself. For x € Y, ), let ax(z), respectively Ix(z),
denotes the arm length, respectively leg length, of z in Y, (k). For all 1 < k < n define

B (1 — gMtas(@) - 1e@)) (1 — g-ar@ (@)
Co (k) (Q7t) = ( H (1 _ q1+ak_1(ac)t—lk_1(ac)) H (1 _ q—ak—l(ﬂf)t1+lk—1(w)) .

z€Rg z€Cy

Then it is shown by Garsia and Haiman [4, §1], that

X(CX xcx(gu;%t) = Z < Cg(k)(q,t)> . (471)
ceSYT(n) \k=1
Proposition 4.7.2. Let o be a standard tableau of shape . Then
Hf’fEYu(l - q1+a(w)tfl(x))<1 _ qfa(z)tlﬂ(x)) n
’ FU q,t) = Co q,t). 4.7.3
1—g)™(1—-t)"- Q[Bu(q—l’ t=1)]0 (q,t) kli[l (k)( ) ( )

i.e. the Garsia-Haiman formula is equivalent to equation (4.4.2).
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An independent construction of a natural rank n! vector bundle 2 on Hilb" C? is given
in [6, §7] It is immediate from the construction of & that one has an isomorphism QZM ~ Ko
where @ is the fiber of # at the point I,, € Hilb" C? and e is the principal nilpotent pair
assoc1ated with the diagram p. Thus, the Proposition above says that one has an equality
XC (P q,t) = X (9,“ ¢,t). This equality is also a consequence of the n! theorem
of Haiman which implies, in particular, a vector bundle isomorphism & ~ 2, of. [12, §5).
We note that in order to deduce the equation x© *C*(22,,; ¢,t) = x& *¢” (Wﬂ, q,t) one does
not actually need the full strength of the n! theorem. It suffices to use the recent result of
Gordon [8] that insures that the Macdonald polynomials can be recovered from the vector

bundle & without the knowledge of the isomorphism & ~ 2.
The remainder of this subsection is devoted to the proof of Proposition 4.7.2, which is just
a direct calculation.

Lemma 4.7.4. Let v be a partition, then

() %)
By(qt)- (1—q—t+gt) =1+ "t 1) =@ =14+ > (¢/ — ¢/ 1)t — ¢"*".
i—1 j=1

Proof. Consider the Young diagram Y, of v as a subset of Z2. The coefficient of ¢“t¥ in
B,(g,t) - (1 — ¢ — t + qt) can be thought of as an integer placed at the point (u,v) € Z2. This
integer depends on whether the point (u,v) or the point directly below, directly to the left
etc. lies in Y, or not. One can check that the only point in Y, whose value is not 0 is (0, 0),
whose value is 1. If we define 7 to be the “partition” (co,v1 + 1,12 + 1,...) then Y,\Y}, is
an infinite strip running along the z-axis, above the “diagonal” edge of Y,, and then up the
y-axis. This strip has two types of corners, those pointing to the south-west like (0,0) in
[2, 1] and those pointing to the north-east like (1, 1) in [2, 2]. These corners have the value —1
and 1 respectively. All other entries of ¥,)\Y, (and the rest of Z?) have value 0. This picture
corresponds to the equation of the lemma. O

Lemma 4.7.5. Let ;1 be a partition and let (c,r) € Y, be a removable box. Set v = p\{(c,r)}, then
By(q,t)-(1—q—t+qt) = Ctr+Zq—q t“z+Zq“J — 1 (4.7.6)

Proof. Since (c,7) = (ptr41,7) = (¢ pop 1),
Z(qi A Zq — Z(ql — ¢ Nt + Zq“f — (4.7.7)
i=1 i=1
Using a pictorial argument as in the proof of Lemma 4.7.4 one Checks that expression (4.7.7)
is the same as the right hand side of (4.7.6), except in the boxes (0, 0) and (¢, ) which have
entries 0. The coefficient of ¢°t? in the right hand side of (4.7.6) is 1 and the coefficient of ¢¢"
is —1. Therefore (4.7.6) = (4.7.7) +1 — ¢“t". O

4.8. We write
So‘(k:) _ H (1 _ q1+ak($)t—lk($))(1 _ q—ak(x)tl—&-lk(x))
xEYa(k)
with SO’(O) :=1, so that A\(S},, ® Si.) = Sg(n). Since
So(n)  So(n-1)

Sa(n—l) SU(n—Q)
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we need to show that
So(k)

0
L [—q —t—q Wt ®) 4 (1— g —t 4 qt)Bygeoyy (g, )g W7o ®
o(k—1)

Co(ky (4, 1) =

forall 1 < k£ < n. The argument is similar for all k£ so we take k = n.

4.9. Since
Sa(n) _ H (1- q1+an($)t*ln(m))(l _ q*an(w)tln(z)+1) -t
Sotn ) \pertie, (1= 1@ b @) (1 = g-a i @) R

we must show that Q [—¢=¢® ¢k 4 (1 — g — ¢ + qt) Bo(r-1)(q, t)gce®g=ra(B)] °=

(1 _ q1+an_1(x)tfln_1(x)) (1 _ qfan_1(:t)t1+ln_1(x))
H (1 _ q1+an(x)tfln(x)) H (1 _ qfan(:r)tlJrln(x)) ’

zeCy, z€Ry,

The right hand side of the above equation is €2 applied to
Z q1+an,1(x)fzn,1(x) _ q1+an(:p)tfln(:p) + Z q*anfl(ﬁ)tl‘i’lnfl(f) _ q—an(x)tuln(w) (4.9.1)
{L’ECn z€Ry,

Lemma 4.9.2. The expression (4.9.1) equals

gt (Z(qi — ¢ Heh —i—Zq — ) , (4.9.3)

i=1
where ¢ := c(n) and r := r(n).
Proof. Note that R,, = {(7,7) |0 < i < ¢} and C,, = {(¢,j) |0 < j < r}. Then, for i < c and
J<r,

an(i,r) =c—1, apn—1(i,7)=c—i—1, an(c,j)=an-1(c,j) = Ajy1 —c—1,

ln(i,r) = lp—1(i, 1) = )‘;+1 —r—1, l(e,j)=r—134, lp-1(c,j)=r—j—1
Equation (4.9.3) follows. U

The statement of Proposition 4.7.2 follows by combing Lemmata 4.7.5 and 4.9.2.

5. POLYGRAPH SPACES

5.1. Two parameter Macdonald polynomials and (¢, ¢)-Kostka polynomials. The combi-
natorics of the Procesi bundle on the Hilbert scheme is described by transformed Macdonald
polynomials. We denote by H,,[Z; g, ] the transformed Macdonald polynomial labeled by the
partition 1, as defined in [12, Definition 3.5.2]. The transformed Macdonald polynomials are
related to the integral form J,,(Z; ¢,t) of Macdonald’s polynomials as follows:

Ju(Zyq,t) = t"WH,[(1 -t Z;q,t71). (5.1.1)

Since the polynomials H ulZ;q,t) and J,(Z; q,t) are symmetric 2 there exist polynomials
K u(qv t) and K ,(q,t) such that

W Zia,t] =D Kau(a.t) - sal2), W Ziat) = Kaula.t) - sy[(1-0)Z]. (512
AFn AFn

2There seems to be a mistake in the corresponding formula at the bottom of page 64, [12].
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The polynomials K (g,t) are called the Kostka-Macdonald polynomials. Equation (5.1.1) im-

plies that K(g,t) = t""W K, ,(q,t™"). A direct corollary of Haiman’s proof of the n! conjec-
ture, and the original motivation for the work, is the confirmation of Macdonald’s positivity
conjecture: K ,(q,t) € N[g,t], VA, n.

5.2. Recall (4.7) that Hilb" C? denotes the Hilbert scheme of n points in the plane. Let V' de-
note the tautological bundle on Hilb" C?, whose fiber over a point I € Hilb" C? is C[z, y]/I.
Since the action of &,,, on Hilb" C? is trivial, the vector bundle V®™ decomposes as

Vo= @ Ve
pms £(p)<n.
Write R(n,u) = HO(Hilb" C?, 2 ® V,,). By [11, Theorem 3.5], the bigraded W -character of
R(n,m) is given by, cf. (4.1.1)

B (Qat) i V[Z q, ]

W xC* xC*
R
X ( ( HweY (1 _ tl-i—l(a: )(1 —t— 1+a(:c))

(5.2.1)

n,m)) =

vkn

Choose some ordering {(r1, 51), ..., (7n,5n)} of the Young diagram Y. If s,(z1,..., zn)
is a Schur polynomial then the plethystic substitution s, [B, (g, t)] is the polynomial in ¢, ¢
obtained by evaluating s, at z; = ¢"'t°1,. .., 2, = ¢"t°". Since the fiber of the vector bundle
V,, at the fixed point of Hilb™ C? labeled by v has bigraded character s,[B,(q,t)], formula
(6.2.1) implies that

XCXxCx [B(7)]H[Zv]
XVCXC (R ) :Zﬂxeyy(l—t“’(“gq ())(1_3 EpETO (522)

vkn

On the other hand, according to [6, Theorem 1.8.2], for each m > 0 there is a C* x C* x
W x &,,-equivariant isomorphism of C[¥]-modules

R(n,m) ~ (# @ C"V] @ Vem)$n(©) (5.2.3)

where G,,, acts by permuting the tensorands of V®™ on the left-hand side and permutes the
tensorands of V®™ on the right-hand side.
Since each G x W x C* x C*-isotypic component of % is finite dimensional, we can write

XGXWXC xC (%) = Z bua(g:t) - su(2) - xa-
WEPT; AFn.

Comparison of formulas (5.2.2) and (5.2.3) allows us to obtain an expression for some of
the polynomials b, »(g,t) in terms of Macdonald polynomials. This is the content of Theo-
rem 5.3.2 below.

5.3. Let P,,—1 be the set of all partitions with at most n — 1 parts, thought of as those weights
p € P such that p, = 0. Define a partial ordering on P,_; by setting < Aif Y, C Y.
We denote by 1 the Z-linear operator on Z[P,_1] defined by () = >_ 1, where the sum
is over all 1 < X such that A/p is a skew partition not containing the vertical strip (1,1) (so
A/ consists entirely of disjoint horizontal strips). The operator v is invertible. Its inverse
will be denoted ¢.

Example 5.3.1. Let A = (2,2,1,0). Then

w()‘) = (2a 2, 170) + (2>2>070) + (27 1, 170) + (27 17070)
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and
¢(A) = (2727 170> - (2727070) - (27 17 170) + (27 17070) + (17 17 170) - (17 17070)

The map A — s)(z) realizes Z[P,_1] as a Z-submodule of A. The image of ¢()), respec-
tively ¢()), under this map will be denoted ®,(z), respectively ¥,(z). Denote by wy the
longest word in &,, so that (Vy)* ~ V_,, () for all X in P,". We denote by » the map from
Pr—1 to Q! that sends p to

= —wo (i, o i1, — Y i)
<n
This map is injective but clearly not bijective.
The main result of this section is the following, whose proof is given in the next section.

Theorem 5.3.2. Let n € Pp,_1 and A+ n, then

_ ®, [By(9,1)] - Ko (g t)
b“*’/\(q’ t) - Z HzeY (1 _ tl—i—l(ac)q—a(;t))(l _ t—l(w)q1+a(1’)) ' (533)

vkn
Corollary 5.3.4. Let j1 € Py,_1, then the bigraded character of the p*-isotypic component of O, ...
is given by
(I)IJ [Bl/ (q7 t)]

C*xCx* —
X ((anorm)#*) - Z eryu(l _ t1+l(ﬂ,‘)q—a($))(1 — t_l(m)q1+a($)) ’

vkn
Proof. By [6, Corollary 1.5.1 (i)], we have Og,_ .. =~ %W; Therefore x© %" ((Og, .0 ) i8
given by (5.3.3) with A = (n). But, as noted in [12, §3.5], K, (¢,t) = 1 for all v. O

Since ®(y(2) = 5(0)(2) = 1 and (0)* = (0), Theorem 5.3.2 also implies:
Corollary 5.3.5. The bigraded &,,-character of %#¢ is

HM[Za q, t]
[Ley, (1 — t1F@gma@)) (1 — t=l@) gl+al@))’
“w

Xan(C xC (%G)

ukn

5.4. The proof of Theorem 5.3.2 is based on a version of the Pieri rules. In order to agree
with the convention in (4.1), we think of y € P as n infinite rows, bounded on the right,
such that the lengths of the rows decrease as we go up the page. Form € Nand p € P,
define E(u, m) to be the set of all v € P, obtained from u by removing m squares, no two
from the same column. For instance, if i = (4,2, —1) and m = 3 then

E(,UH m) = {(45 27 _4)7 (47 1a _3)’ (47 07 _2)7 (31 2a _3)’ (37 17 _2)7 (31 Oa _1)a (27 27 _2)7 (21 1a _1)}
Lemma 5.4.1. Let p € P, and m € N, then
Cr'VlieVu~ @ Va
AEE (pu,m)
Proof. Define D(j1, m) to be the set of all dominant weights A obtained from the weight i by
adding m boxes, no two in the same column. Then Pieri’s rule says that
Symm™V eV, ~ @ V.
AeD(p,m)
Choose k£ >> 0 and letn = (k™) — wo(u), then

21
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”( D VA®detk) ( D VA(kn)) = D Voo

AeD(n,m) AED(n,m) AeD(n,m)
This is the same as the statement of the lemma. O

Proposition 5.4.2. Let i € P,,—1, p = m, then

— Su [BV(qat)] HZ/[Zv(Lt]
Yoo bt =) o (= e ) - gy O49)

—wq (n)EE(1,m) vkn
AFn

Proof. Equating the multiplicity spaces of the irreducible &,,-module x, in (5.2.3) gives an
isomorphism of C* x C* x W-modules

(Z © C™V] @ V,)5E© ~ R(n, ). (5.4.4)

By Lemma 5.4.1, C™[V] ® V,, decomposes into a direct sum of those irreducible G L, (C)-
modules V;, such that p € E(u,m). Let n,v € P, then (V,, ® V,,)55+(©) +£ 0 if and only if
there exists k € Z such that (k") = n + wo(v) i.e. 9, + vn—; = kforalli € {1,...,n}. In this
case the space (V,, ®V;,)5%»(©) is one-dimensional. If both 1, v € Q;} then (V;, ® V;,)52(©) £ 0
if and only if v = —wg(n). From the definition of #Z we see that b, \(¢,t) = O unless v € Q;'.
Similarly, if n € E(u, m) then n € Q;;. Therefore the stated formula follows from equations
(5.4.4) and (5.2.2) and Lemma 5.4.1. O

Proof of Theorem 5.3.2. Firstly, note that taking the x x-isotypic component of (5.4.3) and using
the expansion (5.1.2) of H,(z; ¢, t) in terms of the Kostka-Macdonald polynomials K} , (g, t)
gives

S [BV(Qvt)] . N)\ V(Qvt)
Yoo bpalet) =) sl K, | 545
’ — t1Hl(@) g—a(@)) (1 — t—1U@)gl+a()
—wo(n)€E (| ul) ~ aey, (1t q J(1—t=l=)g )

By definition, {—wo(n) | n € E(u, |u|)} = {¢* | ¢ < p}. Therefore if we take the Z-linear sum
of equation (5.4.5) over all terms in ¢(u) the left hand side becomes b+ (g, t) and the right
hand side is N
q),u« [BV(Q7 t)] : K/\,Z/(Q7 t)
o~ erYl, (1 _ t1+l(x)q—a(x) ) (1 — t—l(=) ql—l—a(m))

as required. O

5.5. The sheaf %"!. As explained in [6, §8], we have a commutative diagram

Ox
x norm t

Pnorm \L iﬂ'
Oe

Chorm —— J[/I/V

where 0y : Xyorm — tis the morphism induced by the projection from & x T onto the first
copy of t and f¢ is the map induced from projection of & onto the first copy of g, followed
by the quotient map g — t/W. It is shown in [6, Proposition 8.1.3] that the maps fx and ¢
are flat. Define X™! and ¢! to be the scheme-theoretic fibers 5; 1(0) and gg 1(0) respectively.

We write 2™ for the coherent sheaf (pnmn)>,<(’)3~€nil on @l The group H x W acts on

X" For each y € Trr(W), let Z" be the y,,-isotypic component of ™! so that %" =
2



D,creor) %’Eﬂ ® X, where the action of W on ;%)/rjﬂ is trivial.

For A, 1 F n, define polynomials kj ,(¢,t) € Q[q, t] by

Hy(1-)Z;q,t) = > kaula.t) - sal2).
AFn

Corollary 5.5.1. Let p € Py,—1 and X\ - n, then

(I),u [BV(CL t)] i k)x,u(qv t)

C*xC* nil
X ((‘@ ) *) 1— tl—f—l(x)q—a(x))(l — t_l(w)q1+a(x))

(5.5.2)

v<A H:EGYM (

and specializing tot = ¢~ 1:

BN w) = a7 "Ny [Ba(g,a D] Hala )7 (5:5.3)
where (%) 1+ = (%;\“1 ® V_o(u))© s the multiplicity space of Vy» in Z3.

Proof. Let t denote the permutation representation of &,,, equipped with an action of C* x C*
such that t has bi-degree (1,0). Let M be a &,, x C* x C*-equivariant C[t]-module. If M

is flat as a t-module, then using the Koszul resolution of M it is shown in [12, Proposition

3.3.1] that

XGnX(CX xCX (M/t . ]\4’7 Z) — XGnX(CX xCX <M7 (1 o q)Z)
A key result in Haiman’s work on the isospectral Hilbert scheme is [10, Proposition 3.8.1]

which implies that R(n,m) is a flat C[t|]-module. Therefore the direct summand R(n, i) of
R(n,m) is also flat over t and hence formulae (5.2.2) implies that

s [Bu(g: )] - Hy[(1 — 9)Z; g, t]
erY (1 _ tl-l—l(x)q—a(a:))(l _ t—l(ac)ql—f—a(q:)) :

Note that by [12, Definition 3.5.2 ()], kx,(¢,t) = 0 unless v < A. Then equation (5.5.4)
implies that the x)-isotypic component of R(n, 1)/t - R(n, i) has bigraded character

SM [Bl/<q7 t)} : kA,U(Qv t)
1 — fi+@g—a(@))(1 — (-l gl+a@))

(5.5.4)

XS E I (R, )t Rl ) = 3

vkn

VSA HIEYV (

Now if we replace the right hand side of equation (5.4.5) with the above expression and
repeat the argument given in the proof of Theorem 5.3.2 we get expression (5.5.2). Using the
identity, [12, Proposition 3.5.10],

H\Zig,q7 "] = ¢ "M H(q) - 5 [(Z}

1-q)
and making the specialization t = ¢~ ! in equation (5.5.4) gives
xS (R(n, p)/t- R(n, p)) Zq "Ns, [Ba(g, g )] Ha(@H ™ xo. (5.5.5)
AFn

Here we have used the fact that

H (1 N tl—l—l(r)q—a(x))(l . tl(:r:)ql-i-a(u’v))] |t:q*1: H/\(q) . H)\(q_l).

€Y

Once again, we replace the right hand side of equation (5.4.5) with equation (5.5.5) and
repeat the argument given in the proof of Theorem 5.3.2 to get (5.5.3). O
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6. RATIONAL CHEREDNIK ALGEBRAS

In this section we use results of Rouquier, Varagnolo-Vasserot and Leclerc-Thibon to de-
scribe a character formula for certain simple modules of the rational Cherednik algebra of
type A that belong to category O. Via the Calaque-Enriquez-Etingof functor, see (6.7), this
allows us to give a character formula for those GL,,(C)-equivariant Z(gl,,)-modules that are
supported on the nilpotent cone.

6.1. The rational Cherednik algebra associated to the symmetric group. Let k € Q. The
rational Cherednik algebra H,, , associated to the symmetric group &,, is defined to be the
quotient of C(x) ® C(y) x &,,, where C(x) := C(x1,...,2n) and C(y) := C(y1,...,Ym), by
the relations
[$i7xj] = 0, [yi,yj] = O, Vi,j,
and
[yi, 5] = ksij, Vi#Fj [yi,@]=1- kZSij-
JF
By [3, Theorem 1.3], the rational Cherednik algebra has a triangular decomposition H,, , ~
Clx] ® C[6,,] ® Cly], where C[x] := Clz1,...,xy] and Cly] := Clyi, .. ., ym]. Category Oy, i
is define to be the category of all H,,, ,-modules M such that

(1) M is finitely generated as a C[x]-module,
(2) the action of C[y] on M is locally nilpotent.

This is a highest weight category and the standard modules of this category are
A()\) = Hm,k ®C[y}><6m A,

where ) is an irreducible &,,-module, extended to a C[y| x &,,-module by making the y; act
as zero. The simple head of A()) will be denoted L(\) so that the set {L(\) | A € Irr(S,,)} is
a complete set of non-isomorphic simple modules in O,, .

6.2. Character of simple H,,, ,-modules. Let
- 2 ' xlyl ylzl - ' :L"Lyl 2 2 ya SZ_]'
i=1 i=1 1<i#j<m

Then [h, z;] = 2; and [h, y;] = —y;. The element h defines a grading on those H,,, ;-modules
M such that the action of h is locally finite with each generalized eigenspace

My :={meM|(h—-a)-m=0,1>>0}

being finite dimensional. If M € O, then dim M, < oo for all a and one can define the
character of M to be

X"(M)=> t*dim M, € @ t*-N((2)).

acC a€eC/Z

We denote by x(k, \) the scalar by which h acts on the lowest weight vectors in A(\). Then
X" (A(N)) and xP(L())) belong to t*(*MNJ[t]].

Lemma 6.2.1. Forall k € Q,
k(k,\) = % +k(n(\) — n(\). (6.2.2)
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Proof. Recall that the Jucys-Murphy elements in C[&,,] are defined to be ©; = >_._; s;, for

alli =2,...,m so that
m m m
hzzll'iyi—FQ—k‘%@i.
1= 1=

Let o be a standard tableau of shape A and v, the corresponding vector in x. Then
©; - vy = cty(i)vg,

where ¢, (%) is the column of A containing i, 7,(7) is the row of A containing ¢ and ct,(7) :=
co (i) — ro(i) is the content of the node containing i. Note that ct,(1) = 0 for all standard

tableaux o. Therefore
m .
h-v, = (2 —k EQ cta(z)> Vg,

and hence
m
m

Ak, N) = 5 — kY cto(i) = % — kY cto(i).
=2 i=1

Now 7 7,(i) = Y04 (j — 1)A; = n()) and similarly -7 ¢,(i) = n(X). This implies
equation (6.2.2). O

6.3. Rouquier’s equivalence. Let k € Q¢ and fix n = exp(27v/—1k) to be a primitive r"

root of unity. Let S, (m) be the quantized Schur algebra of type A, specialized to 7 (see [22,
§6.2]). It is a finite dimensional C-algebra and the category of finitely generated left S, (m)-
modules is a highest weight category. The standard and simple modules in this highest
weight category are naturally labeled by partitions of m. Denote the standard, respectively
simple, module labeled by A by W), respectively L,.

It was conjectured by Leclerc and Thibon [19], and proved by Varagnolo and Vasserot [25],
that the decomposition matrix for this highest weight category can be expressed in terms of
the transition matrix between the standard and canonical basis of the level one Fock space.
Let F,, be the level one Fock space for the quantum affine algebra ¥, (sl.). Tt is a Q(v) vector
space with standard basis {|\)}, labeled by all partitions. Let £ (respectively £7) be the
Z[v]-sublattice (respectively Z[v~!]-sublattice) spanned by {|\)}. Leclerc and Thibon (see
[19, Theorem 4.1]) constructed canonical basis {GT(\)} and {G~()\)} such that Gt (\) = |)\)
mod vZ[v] and G~ ()\) = |\) mod v~ 1Z[v1]. Set

GH () =Y AN, G = ean(o)n).
A B

The polynomials dy , and e , have the following properties: they are non-zero only if A and
1 have the same r-core, dy z(v) = exa(v) = 1,and d) ,(v) = O unless A < p, and ey ,(v) =0
unless ;¢ < A. Then, assuming that » > 1, [25, Theorem 11] says that

[W/\ : L‘u] = d)\/”u/(l), [L)\ . W#] = 6)\#(1).
Rouquier has shown in [22, Theorem 6.11] that there is an equivalence of highest weight
categories O,, 1, = S, (m)-mod provided k ¢ % + Z. Under the condition & > 0, this
equivalence® sends A(\) to Wy and L()\) to Ly. It is noted in [22, Remark 6.9] that the

restriction k ¢ 1 + Z is probably unnecessary. Therefore, to make our presentation clearer,
the following assumption is made:

3Note that Rouquier’s rational Cherednik algebra is parameterized by h = —k.
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Assumption 6.3.1. For all k > 0, there is an equivalence of highest weight categories
Omk — Sy(m)-mod, sending A()) to M) and L()) to L.

Thus,
AN : L)) = dyv (1), and (L) : A(p)] = ex,(L). (6.32)

6.4. For the remainder of section 6 we break with convention and represent the character of
the irreducible &,,,-module labeled by A by sy(z). The reasons for this are, firstly, that we
wish to use plethystic substitutions and, secondly, in section 6.7 we will apply the Calaque-
Enriquez-Etingof functor, which is based on Schur-Weyl duality. This way, the formulae
become more manageable. Using plethystic substitutions and the vector space isomorphism
A()N) ~ C[x] ® A, one can write

Therefore

thGW(L()\)) _ Z e)\M(l)tﬁ(k’u)Su [(1 f t):| . (6.4.1)

uFm
Remark 6.4.2. 1t follows from [12, Proposition 3.5.10] that

sﬂ[ Z } = t"WH, ()" H(Z;t,t7Y).
Therefore
Z n 1= _ _
<Su [ﬂ—t)} ’S)‘(Z)> =1 (H)Hu(t) IKA,u(t’t 1) = H,(t) le\,;L(tvt)-

In the special cases A = (m) and A = (1™) we have

<su [(11)] ,s(m)(z)> = "W H, )7, (6.4.3)
and

<sﬂ [(ft)] ,5(1m)(z)> — (1) (6.4.4)

6.5. Combinatorics of r-cores and quotients. As previously noted, e, ,(v) = 0 unless A
and y have the same r-core. We focus on the block of O,,, ;, labeled by the r-core (0). In this
case it is shown in [20] that the numbers e, ,(1) can be expressed in terms of Littlewood-
Richardson coefficients.

In order to do this we require the notions of r-quotients and r-signs. Let P,, = Z™ be
the weight lattice for GL,,(C) and P, the set of integral dominant weights. Write P,,, =
{MXM > ... >\, >0} C B, so that P, is identified with the set of all partitions with at
most m parts. The extended affine Weyl group @m = P, X G, acts on P,, in the natural

way. Let &, (r) denote the same group but now acting on P, by
(5,0) - A=5-A+71v, V(50)€ Gp x Pp=06,(r),\ € Pp.

If i € Py, then the entries of i + p are a set of S-numbers for p in the sense of [15, §2.7]. The

result [15, Lemma 2.7.13] says that if there exists some 1 < i < msuch that0 < (u+p);—7r #

(i + p)j forall j # i then (p1,...,pui —17,...) +p=15-(A+p) for some s € &, and A € P,,.

Moreover, the partition ) is a partition obtained from y by removing an r-rim-hook. This
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implies that A, © € Py, have the same r-core if and only if 1 + p € ém(r) - (A + p). Write
core(u) € Py, for the r-core of p.

Definition 6.5.1. Let i be a partition with at most m parts. There exists a unique s € &,,
and A € N such that
p+p=s-(core(p) +p) +7- A

Foreach j € {0,...,r—1}, the sub-sequence of X consisting of those \; such that s- (core(u)+
p)i = j —m mod r defines a partition u7).

e The r-multi-partition quo(u) := (), ..., u"=1) is called the r-quotient of p.

e The r-sign of puis e, () := (—1)%).

e We define R

Gy, ={pFm|p+pe6y(r) p}
to be the set of all partitions of m with r-core (0).

Remark 6.5.2. Let p be a partition whose r-core is (0). If r is odd then r divides n(u) — n(u')
and if r is even then r/2 divides n(u) — n(y'). To see this, consider an r-rim-hook. Its
content, starting from the top left box and going down to the bottom right box is a sequence
of integers i,i — 1,7 — 2,...,i — r + 1. Therefore the sum of its content is i — @ The
claim now follows from the fact, as shown in the proof of Lemma 6.2.1, that n(y’) — n(u) is
the content sum of y. In particular, this implies that x(k, 1) € 1Z for all yu with r-core (0).

6.6. Littlewood-Richardson coefficients. Let u = (@, ..., ur=1)) be an r-multi-partition.
The Littlewood-Richardson coefficients are defined by
62 = <SM(O> TS -1, Sy) = [VM(O) Q- @V, : WAl
Forn € Nand k € Q, define
GE i) 1= Y en() ot Hu(t) T Kot 1), (6.6.1)
e,

where ) is a partition of n, r is the denominator of k£ and v is a partition of nr.

Proposition 6.6.2. Let k € Q. and \ - n. Let r be the order of exp(2m+/—1k). Then
X" (L(rA) =Y G\ vit) - Xu, (6.6.3)

vkEm

where m := nr.

Proof. Assume first that r > 1. The r-core of 7\ is (0). Therefore e, ,(1) = 0 unless 1 + p €

S,(r) - pand p - m. By making use of the Frobenius morphism on quantum groups, it is
shown in [20, Theorem 3.5] that

eran(1) = er(1)Chuo(y, T+ p € Sm(r) - p, pkm.
Therefore

A
X LEA) = D (1) equo ™™ su | 7 | - (6:6:4)
(1-1)
HEUT,
Combine equation (6.6.4) with the main equation in remark 6.4.2 to get equation (6.6.3).

If » = 1 then the combinatorics of the canonical basis does not make sense. However, in
this case the Hecke algebra of type A at ¢ = exp(27ik) = 1 is just the group algebra and
hence semi-simple. Therefore results of [7] imply that both category O and the quantized
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Schur algebra are also semi-simple. At the same time, cz\luo(u) = cﬁ = 0\ forall A\, p F m.

Therefore equation (6.6.3) is still valid. O

The definition of G¥(\,v;u) as the character of a W-isotypic component of an alternating
sum of standard modules shows that G¥()\,v;u) can be expressed as a rational function
whose denominator is [[/~, (1 — u?). It also implies that, as a power series in u, GE(\, v;u) €
u“N[[u]]. Note that when each partition in quo(x) has at most one part, céuo(#) = K, the
Kostka number. In the simplest case, where A = (1), one can argue as in the proof of [9,
Proposition 2.5.3] to show that

Lemma 6.6.5. Let k = I/m with | > 0 and h.c.f. (I, m) = 1 and choose . & m. Then

d 4
Gr((1), p;t) = (1ttl) " Sp [11 ”

where d = %‘ml

6.7. The Calaque-Enriquez-Etingof functor. Let 1 denote the identity matrix, viewed as a
basis of the centre of g so that g = C - 1 @ sl,,. Let {e, }, be an orthonormal basis of sl,, with
respect to the trace form and write {x, }, for the basis of g* defined by z,(eg) = do 3. The
vectorial representation of g will be denoted V. Let det denote the determinant represen-
tation for GL,, and fix m = n - r for some r € N. We denote by Z;(g)-mod the category
of G-equivariant (in the sense of [17, Definition 3.1.3]), coherent Z(g)-modules. The ratio-
nal Cherednik algebra H,, ;. is isomorphic to H,,(k) @ Z(Al), where H,,(k) is the rational
Cherednik algebra of type A,,_1. Similarly, Z(g) = Z(sl,) ® Z(A'). This factorization al-
lows us to extend the functor defined by Calaque, Enriquez and Etingof for sl,, to a functor
for g. Define z; := ﬁ S xiiand Op = ﬁ o, i so that {xq}a U {z1} is an orthonor-
mal basis of g*. Combining [1, Proposition 6.1] and [1, Proposition 8.1] gives:

Lemma 6.7.1. Let M € Z¢(g)-mod. The formulae

1 & 1 . :
ﬁle — 1 ®id, z; — i = WZ:}Z&@(@S)*egL‘H))? Vi<i<m-—1,
=1 «

1 1 . 4
ﬁzyi'—Wh@id, yi—yz’+1HWZ(%@?(@EZ)—@SH)), Vi<i<m-—1,
=1 «
and s;; — si;, V1 < i # j < mdefine an action of H_ 1 on (M @ V™ @ det )¢,
J J m,

Following [1], define

Ep : 96(g)-mod — Hpp-Mod, M — (M @ VE™ @ det ™),

where k = % The functor F,, is exact.

The Fourier transform is an automorphism F : H,,, — H,, defined by F(z;) = u;,
F(yi) = —zjand F(w) = w for all w € &,,,. If L is a left H,,, ;-module then F(L) is also a left
H,» x-module with action f el = F(f) - [, for f € H,, , and [ € L. Define F};, = F o F},,.

Let O, be the set of all nilpotent elements with Jordan type A e.g. O, is the orbit of
regular nilpotent elements and O(;») = {0}. As is explained in (7.2), the Z(g)-module M
the unique simple Z(g)-module supported on the closure of Oy. Let Z(N)-mod be the cat-
egory of G-equivariant, coherent 7(g)-modules set-theoretically supported on the nilpotent
cone N. The simple objects in Z(N)-mod are M, such that A - n and it is shown in [1,
Theorem 9.1].
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Theorem 6.7.2 (89, [1]). Let k = 1, then the functor F}\, restricts to a functor

T

F} : 9a(N)-mod — Oy, 1
such that F};,(My) = L(r)).

7. THE HARISH-CHANDRA MODULE AND CHEREDNIK ALGEBRAS

For subsection (7.1) to (7.3) let G be any connected complex reductive group as in (2.1).

7.1. The Harish-Chandra module M. Harish-Chandra defined the radial parts map rad :
P2(g)¢ — 2(t)"V such that rad restricts to the Chevalley map Clg]“ = C[{]", P(x) — P(t),
and Sym(g)¢ = Sym(t)"V, P(9,) + P(—0;), respectively. Let ad : g — Z(g x t) be the map
induced by the adjoint action of G on g.

Definition 7.1.1. The Harish-Chandra module M is the cyclic left Z(g x t)-module, gener-
ated by uo, such that

ad(g) - uo =0, (f®l-1®rad(f)) -uo=0, Vfe 2(g)".

The above definition of the Harish-Chandra module is not the same as the definition given
in [14]. However, it is shown in [6, Remark 4.1.2] that the two definitions are equivalent. It
is shown in [14, Theorem 4.2] that M is a simple, holonomic module. Let C* act on g x tby
dilations. The action of G x W x C* on g x t lifts to an action of G x W x C* on Z(g x t). The
induced action of G x W x C* on gr"4 2(g x t) ~ & x T is the specialization t — ¢! of the
H x W-action defined in (2.1). Since the ideal defining M is a homogeneous G' x W-stable
ideal, G x W x C* also acts on M making it a quasi-G x W x C*-equivariant (g x t)-module
(in the sense of [17, Definition 3.1.3]).

As explained in [6, §2.4], there is a canonical Hodge filtration on the Harish-Chandra
module. It is then shown in [6, Theorem 1.3.3] that there is a natural isomorphism

erHOdge M = (p*oxnorm (712)

of Ogxz-modules, where ¢ is the composition X,orm — X — & x T. The Hodge filtration
defines a Z-grading on gr'°8° M. Moreover, since the Hodge filtration is canonical, each

filtered piece F°" M is G x W x C*-stable and hence gi''°%° M is a H x W-module. The
isomorphism (7.1.2) is H x W-equivariant.

7.2. The sheaf M"!. Letj:g <> g x t, v ~— (z,0), be the inclusion map and write M"! :=
Jj*M. LetIrr(W) be a set parameterizing the isomorphism classes of irreducible W -modules.
For each 1 € Irr (W) we write x, for the corresponding irreducible W-module. Since W acts
trivially on g, there is a decomposition

M= B M,®x..
pElrr(W)

It is shown in [14, Theorem 5.3] that each M, is a simple, holonomic Z(g)-module sup-
ported on the closure of a nilpotent orbit in g. Moreover, the modules M, are pairwise
non-isomorphic. Therefore there exists an orbit O,, and irreducible, G-equivariant local sys-
tem L, on O, such that M, corresponds under the Riemann-Hilbert correspondence to the
perverse sheaf 1C(O,, L,). The rule u — (O, L,) is one incarnation of Springer’s corre-
spondence. When G = G'L,, it follows from [12, Proposition 3.4.14] that the correspondence
just sends the partition p to the orbit O, of nilpotent matrices with Jordan type ;1 and the
trivial local system Ly on O,. Since each piece F, °*°M of the Hodge filtration on M is
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a C[t]-module there is a canonical quotient filtration F¢g"° M™! on M"!. Each piece of this
filtration is H x W-stable. This implies that each M, inherits from M a canonical filtration,
which we will also refer to as the quotient filtration.

7.3. Euler grading. For a vector space V, let euy denote the first order differential operator
in 2(V') with constant term zero corresponding to the Euler vector field along V. A 2(V)-
module .Z is said to be monodromic if the action of euy is locally finite. The Euler operator
defines a grading on monodromic Z(V')-modules. The differential of the action of C* on
2(g x t) induced from the action by dilations on g X t is given by 1 — eugy. Let K be a
reductive group acting on V. Recall (c.f. [17, Definition 3.1.3]) that the Z(V)-module £ is
said to be K-equivariant there is an action of K on £ such that the differential of this action
coincides with the composition of the morphism ad : Lie(K) — Z(V) with the action map
2(V) — Endc(L).

For a }Z-graded vector space L we let L[i] denote the space L with grading shifted by i
so that L[i]y = Lg_;.

Proposition 7.3.1. Choose yv € Irr(W) and fix d := —%. Then the quasi-G x C*-equivariant
2(g)-module M, [d] is actually G x C*-equivariant.

Proof. It follows from the definition of M, given above that it is a G-equivariant %(g)-
module. Therefore we just need to show that it is also C*-equivariant.

First we show that M([d] is a C*-equivariant (g x t)-module. For this we just have to
show that if § € M|d] is homogeneous, A - § = A"y for some n € Z then eugy( - § = ny.
To begin with, we consider the action of eugy¢ on ug. The Killing form on g induces a non-
degenerate bilinear pairing on g x t. Let {z}, respectively {y3}, be an orthonormal basis on
g, respectively t. Since [02,22] = 42,0, + 2, the elements

[e2age?

1 ) dim g ~1 )

and
1— dim t 1 —
By=2) yh Ha=) ysdy,+—— Fa=—) 0,
B B B
form sly-triples in 2(g)® and 2(t)" respectively. Following [14, Lemma 7.1.1] and using
the fact that rad(E;) = E», rad(F) = F; we get
0= [E1®1—1®E2,F1®1—1®F2] “Ug = (Hl—I—HQ)-UO:(eugxt—d)'Uo.
Now choose a homogeneous lift y in 2(g x t) of § = y - up. Then A - y = A"~y and hence
CUgxt - Y = [eugxt;y] cug —d-ug=n-y.
It is shown in [14, Proposition 4.8.1] that Mol — M/t M. Since eugy¢-t- M C t- M,
the operator eugy¢ acts on MM Moreover, the fact that euy - M C t- M shows that the

action of eugy¢ on M"! equals the action of euy; on M™!. Thus M"![d] is a C*-equivariant
2(g)-module, as required. O

7.4. From now on, we return to the case of G = GL,,,so W = G,,.

Let P, denote the weight lattice of GL,(C) and Q,, the root lattice. Recall that Q;} =
PN Q. Denote by 7, the set of all weights v € P,/ such that v, = 1 and |[v| =0 mod n.
There is a natural bijection (—)' : Q = J,, u' := p + ((1 — pn)"). For brevity write
GO vit) == G (i),
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Theorem 7.4.1. Let \ - n, then
XGXEUB(MA; q) — q_

dim

= 3" g uhig™h) su(2). (7.4.2)
HEQE

Proof. For p € P, let (My), = (My ® V)¢ be the p-isotypic component of M,. As a

G-equivariant Z(g)-module, M, is a direct summand of a certain quotient of Z(g). This

implies that (M)),, # 0 only if u € Q;}. Write

X (Msq) = D XU (M) @) - 5u(2)-
peQ
By Theorem 6.7.2 and Schur-Weyl duality,

Fr (My) = D (M) ® Xpup oy = Llr),

m

where the sum is over all u € Q;} such that p; > —r for all i. Therefore, if we fix u € Q; and
letr =1 — p,, then

(M) = (L(rA) @ x,,1) ™.
This is an equality of graded vector spaces and we just need to match up the grading. The
Euler operator eug acts on the left hand side and the operator h acts on the right. Using the
fact that Hy, p = Hp(k) @ 2(Al) and that 2(g) = 2(sl,) ® 2(A'), together with the fact
that #(h) = —h, it follows from [1, Proposition 8.7] that we have an equality of operators

eug + diglg = —h on the space (M)),. This implies that
dim
XU (M) @) = a2 XP((LrA) @ x,) 7507 ).
Equation (7.4.2) now follows from equation (6.6.3). 0

Remark 7.4.3. If the Lie group GL,(C) is replaced by SL, (C) then there exist non-trivial ir-
reducible G-equivariant local systems on some nilpotent orbits O,. Therefore the number of
simple modules in the category Zsy, (N) is greater. One can repeat the above arguments to
get a formula for the G x eug-character of these simple modules in terms of the polynomials
G(\, 15 ¢71) as in Theorem 7.4.1. The details are left to the interested reader.

7.5. Relation to Hesselink’s character formula. Let Sym g denote the algebra of constant
coefficient differential operators in Z(g). When A = (1"), My is the unique simple % (g)-
module supported on {0}. This module can be naturally identified with Symg. Using
Kostant’s Theorem, Hesselink [13] showed that

x 1 -
x“© (Symg;q) = W Z Kpo(q b su(2),
=1 neQy

where the C*-action corresponds to the grading that places Sym* g in degree —k. This differs
from the grading on M~y coming from M by a shift. The fact that Sym g is the cyclic
2(g)-module generated by vy and satisfying the relation g* - v9 = 0 implies that euy - v9 =
— dim g - vg and hence x“*C” (Sym g; ¢) = ¢4™ 9. xE*Us(Sym g; q). Comparing this equation
with equation (7.4.2) and remebering that t = ¢~ ' produces the identity*

g

dim
t 2 Kpuo(t)
[T, (1 —t)

4There seems to be a mistake in the corresponding formula [1, Corollary 8.10].
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7.6. Recall (2.2) the map u : €,orm — ® and the coherent sheaf 2" on € porm, SEE 85.5.

Proposition 7.6.1. There is a canonical H x W-equivariant isomorphism

gvrquo Mnil ~ 1, <%nil7 (762)
of coherent sheaves on &.
Proof. The statement of the proposition is proved as part of the proof of [8, Theorem 2]. Let
Y1, ..., Yn be homogeneous algebraically independent generators of C[t]. Then it is shown in
[8, Claim 1] that y1, .. ., y, form a regular sequence for gr''°!8° M. Equipped with this fact,

the proof of [16, Theorem 4.7] shows that gr1" Ml ~ grtiodee Aq /¢ grfodse A1 Now the
proposition follows from the isomorphism (7.1.2). O

Note that the proof of Proposition 7.3.1 implies that the modules M and M, are mon-
odromic. Proposition 7.6.1 implies that there is a H-equivariant isomorphism of sheaves
griiede M, ~ 220! for each i € Trr(W).

We obtain the following result.

Corollary 7.6.3. Let A be a partition of n. The graded G-character of 3" is

dim t _
X @B =q" Y Gt sul2). (7.6.4)
HeQ:

Proof. Proposition 7.3.1 and Theorem 7.4.1 imply that
> G utig) - su(2).

dim t

X (Mysq) = ¢

HEQs
Therefore equation (7.6.4) follows from the G x C*-equivariant isomorphism (7.6.2). O
Corollary 7.6.5. The graded &,,-character of (%" is
X CXEn (il G Zq "), (g (7.66)
Arn
Proof. Since
X (@) q) = DX (BN 0)
AFn

Corollary 7.6.3 implies that

X ni dim t n _
X©E (@M% a) =47 Y G (17 x,
AFn
where we have used the fact that (0)7 = (1"). In this situation G(), (17);t) = GL(A, (1))
and the proof of Proposition 6.6.2 (in the case = 1) shows that
GO (1) = 02 (s [ 2| ) = 0 ()

Noting that x(1,\) = § + n(A) — n()\') and the fact that Hy/(t) = H,(t), we get the required
formula. O

Remark 7.6.7. It follows from [6, Corollary 1.5.3] that I'(€yorm, "G = CJt], where the action
of C* on tis expanding. This agrees with equation (7.6.6) since g "N H (¢ s just the
graded character of (C[t] ® x)®", which can be seen from the corresponding formula for

the fake polynomial [23, Theorem 3.2]. We will give yet another derivation of the character
formula (7.6.6) in (7.6.9).

32



We now have, at least for those weights u* | p € P,_1, two different expressions for
the character of the various G-isotypic components of #. The first expression comes from
the geometry of the isospectral commuting variety and the Hilbert scheme. The second
expression comes from the theory of Cherednik algebras. Comparing these formulae via the
Calaque-Enriquez-Etingof functor produces the following rather interesting and nontrivial
identities.

Theorem 7.6.8. Let n € P,,_1 and A+ n, then
im t

o, [Ba(g g )] = ¢ "V HNGH GO, (1) g
and

1—t"
Proof. Comparing equation (5.5.3) with equation (7.6.4) produces the first equality. Then
comparing this with equation (7.5.1) and noting that B(ym)(q,¢ ) = (1—¢™")/(1—¢!) and
Hamy(g™') =TT, (1 — ¢~%) produces the second identity. O

Remark 7.6.9. If we take i = (0) in equation (5.5.3) then we get yet another proof of the
identity x©” ((Z3)¢) = ¢ "N Hy(¢71) ™! (c.f. remark 7.6.7).

7.7. Filtrations on simple H,, ;-modules. An interesting consequence of the fact that the
simple Z(g)-modules M, have a canonical filtration coming from the Hodge filtration on
M is that the simple H,,, ,-modules L(r)) also have a canonical filtration. Define a filtration
on H,, by putting the y; and group elements in degree zero and the x; in degree one. Then
the associated graded of H,, s, is the skew group ring C[b* x h] x &,,, where b is an m-
dimensional vector space such that the symbol of z; becomes a linear function on h and y; a
linear function on h*. Now fix 7 > 0, m = nr and k = 1/r. Recall that FJ"° M), denotes the
filtration on M inherited from the Hodge filtration on M. Define FJ*" L(r\) by

FEnL(rA) i= Ff (F°M,).

The quotient filtration on M is compatible with the order filtration on Z(g). Baring in
mind that the Fourier transform swaps z; with y;, it is then clear from Lemma 6.7.1 that the
filtration F{*" L(r\) is compatible with the filtration on H,, .

Lemma 7.7.1. The Oy« ,-module gr°*" L(r\) is coherent.

Proof. The filtration Fy F(M,) on M, defined by Fj, F(M,) = F(EFM°M,) is good with
respect to the “opposite” order filtration on Z(g), where g is in degree zero and g* is in
degree one. Therefore gr 7 (M) is a finitely generated C[®]-module. Since G is reductive,
Hilbert’s Theorem (c.f. [18, Zusatz 3.2]) implies that (gt F(M,) @ VE™ @ det ") is a finitely
generated C[®]“-module. The reductivity of G also implies that

(gt F(My) @ VE™ @ det )% ~ g™ L(r)\).

Since M, is supported on the null cone N, C[g*]“ acts locally nilpotently on gr F(M).
Hence gr®" L(r)) is a finitely generated C[g]“-module. The equation [1, (43)] shows that
the action of C[h]"" on gr®" L(r)) factors through a surjective morphism C[h]"V — C[g]®.
This implies that gr°" L(r)) is a finitely generated C[h]"-module. O

The isomorphism F, (M) =~ L(r\) means that the C*-action on M defines a C*-action
on L(r\). This is related to the grading coming from the operator h by

x© (L(rA);q) = g2 X" (L(rA);q7 ).
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Since the filtration FJ'"° M, respects the G x C*-action on M, the filtration FS*"L(r\) re-
spects the G,,, x C*-action on L(r\). Define an action of C* x C* on h* x h by making the
tirst copy of C* act by dilations on h* and the second copy of C* acts by dilations on f. Then
grt L(rA) isa &, x C* x C*-equivariant Oy« x-module.

Proposition 7.7.2. The bigraded &,,-character of gr*" L(r\) is

@y [Bo(: )] - kaw(a:1) - Xpr (o)
[Ty, (1 — t1H@) g=al@)) (1 — =) gl +ale))
TEp

XGmX(C xC (g“’rcan L(T‘)\)) —
PELn,r;
v<A.

where I, , is the set of all n € P,y such that p; < rforalli=1,...,n—1.

Proof. The compatibility of the Hodge filtration with the action of H means that we have an
equality of W x C* x C*-modules

ST L(r)) = (G M\ @ VO™ @ det ") = (M @ VO™ @ det "),

Via Schur-Weyl duality, this implies that

X EE @ LrA) = D X (B) - X o)
o

where the sum is over the set of all 1 € P,,—; such that * = n — (+") for some partition n
of m with at most n parts. One can check that this set is precisely Z,, ,. Now the equation
follows from (5.5.2). O

It would be interesting to have an equivalent definition of the filtration F¢**L(r\) that
does not involve the functor F},.

8. APPENDIX BY ELIANA ZOQUE:
T-ORBITS OF PRINCIPAL NILPOTENT PAIRS

8.1. Let g = sl,,. It has been proved in [5] that every principal nilpotent pair is associated to
the Young diagram of a partition y of size n. We consider an n-dimensional vector space V'
with a basis indexed by the boxes in the Young diagram of p. Consider V' = (v; j) where v; ;
corresponds to the square in the i-th row and j-th column. If (i, j) is outside the diagram
we define v; ; = 0. Let e = (eq, e2) be the principal nilpotent pair of V' defined by e v; j =
Vit+1,5, €2V 5 = Vi j+1-

The main goal of this Appendix is to prove the following result.

Theorem 8.1.1. T - e is dense in (g1,0 ® go,1) N €.

Letx = (z1,22) € (91,09 g0,1) N €. The pair x admits the same associated semisimple pair
as e, therefore by Lemma 5.7 in [5] it is conjugate to a pair of the form &, e, for a certain
collection of skew-diagrams A = {1, Ao, ..., A, } with >, |A;x| = n. The skew-diagrams
in A are subdiagrams of ;» which can be described as follows: In the Young diagram of p
draw the edge joining the squares in positions (4, j), (i + 1, j) (resp. (4,7), (¢,j + 1)) if and
only if z1v; ; # 0 (resp. xav; j # 0). These lines divide the diagram into the skew-diagrams
{A1, A2, ..., A} Such a decomposition into a disjoint union of skew-diagrams is called
admissible. Let A\; be the subdiagram that contains the lower left corner (0, 0).

Lemma 8.1.2. If {1, Aa, ..., A} and m > 1 there exists s > 1 so0 that {\; U} U{\ |2 <71 <
m, r # s} is also admissible.
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FIGURE 1. Impossible configurations

FIGURE 2. Possible configurations

Proof. The commutativity of 1 and x2 imply that the configurations in Figure 1 are impos-
sible in any 2 x 2 square.

Only the configurations shown in Figure 2 are possible in an admissible configuration.

We are to prove that it is possible to delete some lines on the boundary of A\; and obtain
another admissible configuration.

Divide the boundary of A; in the points P, ... P, where it meets other lines. The end-
points of the boundary of \; are located on the left and lower sides of the diagram of 1, let
Py and P,1; be those points. The boundary of A\ can be divided into the segments joining
Pand Py, for0 <i<r.

The configurations where the points Fy, ..., P.41 are shown in Figure 3. Note that in
each of these cases there is at least one line segment on the lower left square that can be
erased to obtain an admissible configuration. Those segments are dotted in Figure 3. Since
the lines at Py and P, can be safely removed, it follows that there is a whole segment that
can be removed to obtain an admissible configuration.

FIGURE 3. Possible points of intersection

O

Example 8.1.3. Let \; be as shown in Figure 4. The segments that can be removed are the
ones that join P, with P; and Py with Ps.

Proof of Theorem 8.1.1. Let x € (g1,0 @ go,1) N €, we can assume that x = @kzl ey, with
A={\1, Ao, ..., A} as above.
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FIGURE 4. )\; in Example 8.1.3

We will prove that x € (T - e) by induction on m. Clearly m = lifanonlyifx € T - e.
If m > 1 we can assume that s = 2 in Lemma 8.1.2. We are to prove that every open set in
(91,0 @ go,1) N €" containing x contains a pair conjugated to ex,ux, © P>z €,

Let (27, 25) = x" = (ex,un, @ @kz:& ex,) —x, e,

, {vm,j if (i,5) € M1, (i 4 1,7) € Ao
L1V =

0 otherwise
s = J Vit A (G7) €A1, (47 + 1) € Ao
2 0 otherwise

0

Clearly x’ € € since 2| x5, = x5z} = 0. Also, X'+ x,x € € and therefore [2), z2] + [z1, 2] =
0. Then the line {x + 7x’ |7 € C} is contained in (g1,0 ® go,1) N €" and intersects every open
set at a point other than x. It is clear that for 7 # 0, x4+ 7x’ is conjugate to ey, x, ® P~ 3 €z, -
This completes the induction. -
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