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DOMINANCE AND TRANSMISSIONS
IN SUPERTROPICAL VALUATION THEORY

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

ABSTRACT. This paper is a sequel of [[KR1], where we defined supervaluations on a
commutative ring R and studied a dominance relation ¢ > 1 between supervaluations
¢ and ¥ on R, aiming at an enrichment of the algebraic tool box for use in tropical
geometry.

A supervaluation ¢ : R — U is a multiplicative map from R to a supertropical
semiring U, cf. [IR1], [IR2], [IKR1], with further properties, which mean that ¢ is a sort
of refinement, or covering, of an m-valuation (= monoid valuation) v : R — M. In the
most important case, that R is a ring, m-valuations constitute a mild generalization of
valuations in the sense of Bourbaki [B], while ¢ > v means that ¢ : R — V is a sort
of coarsening of the supervaluation . If ¢(R) generates the semiring U, then ¢ > 1) iff
there exists a “transmission” a: U — V with ¥ = a o ¢.

Transmissions are multiplicative maps with further properties, cf. [IKR1, §5]. Every
semiring homomorphism « : U — V is a transmission, but there are others which lack
additivity, and this causes a major difficulty. In the main body of the paper we study
surjective transmissions via equivalence relations on supertropical semirings, often much
more complicated than congruences by ideals in usual commutative algebra.
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INTRODUCTION

We set forth a study in supertropical valuation theory begun in [IKR1]. Generalizing
Bourbaki’s notion of a valuation on a commutative ring [B], we there introduced m-
valuations (= monoid valuations) and then supervaluations on a commutative semiring.
These are certain maps from a semiring R to a “bipotent semiring” M and a “supertropical
semiring” , respectively.

To repeat, if M is a bipotent semiring, here always commutative, then the set M is
a totally ordered monoid under multiplication with smallest element 0, and the addition
is given by x + y = max(x,y). Then an m-valuation on R is a multiplicative map
v : R — M, which sends 0 to 0, 1 to 1, and obeys the rule v(a + b) < v(a) + v(b). We
call v a valuation, if moreover the semiring M is cancellative. {In the classical case of
a Krull valuation v, R is a field and M = G u {0}, with G the valuation group of v in
multiplicative notation.}

A supertropical semiring U is a — here always commutative — semiring such that
e := 141 is an idempotent of U and some axioms hold ([IKR1, §3]), which imply in
particular that the ideal M := eU is a bipotent semiring. The elements of M\{0} are
called ghost and those of 7(U) := U\M are called tangible. The zero element of U is
regarded both ghost and tangible. For z € U we call ex the ghost companion of z. For
x,y € U we have the rule

Y if ex < ey,
T+Y=< T if exr > ey,
ex if ex =ey.

Thus the addition in U is uniquely defined by the multiplication and the element e. We
also mention that ex = 0 implies x = 0. We refer to [IKR1, §3] for all details.

Finally, a supervaluation on R is a multiplicative map ¢ : R — U to a supertropical
semiring U sending 0 to 0 and 1 to 1, such that the map ep : R — eU, a — ep(a), is an
m-valuation. We then say that ¢ covers the m-valuation v := ep.

If o : R — U is a supervaluation then U’ := p(R) U ep(R) is a sub-semiring of U and
is again supertropical. In practice we nearly always may replace U by U’ and then have
a supervaluation at hands which we call surjective.

Given a surjective supervaluation ¢ : R — U and a map o : U — V to a supertropical
semiring V', the map «a o ¢ is again a supervaluation iff « is multiplicative, sends 0 to 0, 1
to 1, e to e, and restricts to a semiring homomorphism from eU to eV. {We denote the
elements 1+ 1 in U and V both by “e”.} We call such a map o : U — V a transmission.
Any semiring homomorphism from U to V is a transmission, but usually there exist also
many transmissions which are not additive.

The study of transmissions is the central topic of the present paper. Transmissions
are tied up with the relation of dominance defined in [IKR1, §5]. If ¢ : R — U and
1 1 R — V are supervaluations and ¢ is surjective, then ¢ dominates 1/, which we denote
by ¢ = 1, iff there exists a transmission o : U — V with ¢ = a o .

Already in [IKR1] we studied dominance for supervaluations which cover a fixed, say,
surjective m-valuation v : R — M. We called two such supervaluations ¢, 1) equivalent if
¢ =1 and ¥ = ¢. The set Cov(v) of equivalent classes [¢] of supervaluations ¢ : R — U
covering v (having varying target U with eU = M) turns out to be a complete lattice
under the dominance relation [IKR1, §7].
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The bottom element of Cov(v) is the class [v], with v viewed as a supervaluation.
The top element is given by a surjective supervaluation ¢, : R — U(v), which we could
describe explicitly in the case that v is valuation, i.e., M is cancellative [IKR1, Example
4.5 and Corollary 5.14].

We come to the contents of the present paper. If v : R — M is an m-valuation and
v : M — N is a homomorphism from M to a bipotent semiring N, then v o v clearly
again is an m-valuation, called a coarsening of v. This generalizes the usual notion of
coarsening for Krull valuations. It is of interest to look for relations between the lattices
Cov(v) and Cov(y ov). §1 gives a first step in this direction. Given v: M — N and a
supertropical semiring U with ghost ideal M we look for transmissions o : U — V which
cover 7, i.e., V has the ghost ideal N and a(x) = y(x) for x € M. Assuming that v is
surjective, we prove that there exists an initial such transmission o = ay, : U — U,,.
This means that any other transmission o : U — V' covering ~ is obtained from a by
composition with a transmission 3 : U, — V' covering the identity of N. This allows us
to define an order preserving map

Y« : Cov(v) — Cov(yov),

sending a supervaluation ¢ : R — U to 7.(p) := ay, o . In good cases oy, has a
“pushout property” (cf. Definition 1.2), that is even stronger than to be initial, and oy,
can be described explicitly (cf. Theorem 1.11).

We defined in [IKR1, §2] strong valuations and in [IKR1, §9] strong supervalua-
tions, which by definition are covers of strong valuations. Tangible strong supervaluations
seems to be the most suitable supervaluations for applications in tropical geometry, hence
our interest in them. Given a strong strong supervaluation v : R — M we proved that
the set Covys(v) of tangible strong supervaluations is a complete sublattice of Cov(v)
[IKR1, §10]. In particular this set is not empty. In §2 of the present paper we study the
behavior of such supervaluations covering v under the map ~, from above. It turns out
that v, (Covis(v)) = Covis(y o).

Denoting a representative of the top element of Covy s(v) by @,,, we observe that v, ([%,])
is most often different from [@.,,]. On the other hand, v, ([¢y]) = [¢¥you]. This indicates
that it is not advisable to restrict supervaluation theory from start to strong supervalua-
tions, even if we are only interested in these.

The rest of the paper is devoted to an analysis and examples of surjective transmissions.
After a preparatory §3, in which the construction of a large class of supertropical semirings
is displayed, we study in §4 “transmissive” equivalence relations.

We call an equivalence relation £ on a supertropical semiring U transmissive, if F
is multiplicative (= compatible with multiplication), and the set of E-equivalence classes
U/E admits the structure of a supertropical semiring such that the natural map 7p :
U — U/E is a transmission. (There can be at most one such semiring structure on the
set U/E.) Every surjective transmission o : U — V has the form « o g with a (unique)
transmissive equivalence relation E and an isomorphism p : U/E-5V . Thus having a hold
on the transmissive equivalence relations means understanding transmissions in general.

In all following U denotes a supertropical semiring. The main result of §4 is an axiomatic
description of those transmissive equivalence relations £ on U, for which the ghost ideal of
U/E is a cancellative semiring (Theorem 4.7, Definition 4.5). We also give a criterion that
the transmission 7g is pushout, as defined in §1 (Theorem 4.13), and we analyse, which
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“orbital” equivalence relations, defined in [IKR1, §8], are transmissive. These exhaust all
transmissive equivalence relations on U, if U is a supertropical semifield, i.e., all tangibles
# 0 are invertible in U, and all ghosts # 0 are invertible in eU.

We call a transmissive equivalence relation on U homomorphic if the map ng : U —
U/E is a semiring homomorphism. In §5 we discuss a very special and easy, but important
class of such equivalence relations. Then in the final section §6 we look at homomorphic
equivalence relations in general.

Given a homomorphic equivalence relations ® on M := eU we classify all homomorphic
equivalence relations £ on U which extend ®. Here additivity of F, i.e., compatibility
with addition, causes the main difficulty. Thus, to ease understanding, we first perform
the classification program for additive equivalence relations (Theorem 6.6"), and then add
considerations on multiplicativity to find the homomorphic equivalence relations (Theo-
rem 6.11).

We close the paper with examples of homomorphic equivalence relations using the
classification, and also indicate consequences for other transmissive equivalence relations.

Notations. Given sets X, Y we mean by Y < X that'V is a subset of X, with'Y = X
allowed. If E is an equivalence relation on X then X /E denotes the set of E-equivalence
classes in X, and mp : X — X/E is the map which sends an element x of X to its
E-equivalence class, which we denote by [x]g. If Y < X, we put Y/E :={[z]g | x € Y}.

If U is a supertropical semiring, we denote the sum 1+ 1 in U by e, more precisely by
ev if necessary. If v € U the ghost companion ex is also denoted by v(x) or x¥, and
the ghost map U — eU, x — v(x), is denoted by vy. If a: U — V is a transmission,
then the semiring homomorphism eU — eV obtained from a by restriction is denoted by
o and 1s called the ghost part of a. Thus o o vy = vy o a.

Ifv: R — M is an m-valuation we call the ideal v='(0) of R the support of v, and
denote it by supp(v). If ¢ : R — U is a supervaluation covering v, we most often denote
the equivalence class [p] € Cov(v) abusively again by ¢

1. INITIAL TRANSMISSIONS AND A PUSHOUT PROPERTY
We state the main problem which we address in this section.

Problem 1.1. Assume that U is a supertropical semiring with ghost ideal eU = M, and
v : M — M' is a semiring homomorphism from M to a bipotent semiring M'. Find a
supertropical semiring U' with ghost ideal eU’ = M' and a transmission o : U — U’
covering v, i.e., ¥ =~ (cf. [IKR1, Definition 5.3]), with the following universal property.
Given a transmission B : U — V into a supertropical semiring V', with ghost ideal N :=
eV, and a semiring homomorphism 6 : M’ — N, such that ¥ = 0y, there exists a unique
transmission n : U — V' such that  =noa and n” = 9.

We indicate this problem by the following commuting diagram

U—>U’ >

Hji

M — M

where the vertical arrows are inclusion mappings.
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We call such a map a : U — U’ a pushout transmission covering . This terminology
alludes to the fact that our universal property means that the left square in the diagram
above is a pushout (=cocartesian) square in the category STROP, whose objects are
the supertropical semirings, and whose morphisms are the transmissions. To see this,
just observe that a map p : L. — W from a bipotent semiring L to a supertropical
semiring W is transmissive iff p is a semiring homomorphism from L to eWW followed by
the inclusion eWW — W.

It is now obvious that, for a given homomorphism ~v : M — M’ Problem 1.1 has at
most one solution up to isomorphism over M’ and U. More precisely, if both o : U — U’
and «aq : U — Uj are solutions, there exists a unique isomorphism p : U’ — Uj of semirings
over M’ with a; = o o p.

We may cast the universal property above in terms of « alone and then arrive at the
following formal definition.

Definition 1.2. We call a map o : U — V between supertropical semirings a pushout
transmassion if the following holds:

1) « is a transmission.
2) If 6 : U — W is a transmission from U to a supertropical semiring W and
0 : eV — eW is a semiring homomorphism with ¥ = § o o, then there exists a
unique transmission n: U — W with n” = ¢d and f =no a.
We then also say that V' is “the” pushout of U along 7.

The notion of a pushout transmission can be weakened by demanding the universal
property in Definition 1.2 only for W = V and ¢ the identity of eV. This is still interesting.

Definition 1.3. We call a transmission o : U — V' between supertropical semirings an
initial transmaission, if, for any transmission 5 : U — W with eW = eV and ¥ = o”,
there exists a unique semiring homomorphism* n: V — W over eV = eW with 8 = noa.

Given a supertropical semiring U and a semiring homomorphism ~ : eU — N with N
bipotent, it is again clear that there exists at most one initial transmission a : U — V
covering v (in particular, eV = N) up to isomorphism over U and N.

We turn to the problem of existence, first for initial transmissions and then for pushout
transmissions. In the first case we can apply results on supervaluations from [IKR1, §4
and §7], due to the following easy but important observation.

Proposition 1.4. Let o : U — V be a map between supertropical semirings and vy : eU —
eV a semiring homomorphism. The following are equivalent:
a) « is a transmission covering -y.
b) « is a supervaluation on the semiring U with a(ey) = ey covering the strict m-
valuation v :=yovy : U — eV.

We then have the commuting diagram

U 2 Vv
VU\L \ iuv
eU i eV .

'Every transmission 1 with n” injective is a homomorphism [IKR1, Proposition 5.10.iii].
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Proof. We have to compare the axioms SV1-SV4 in [IKR1, §4] plus the condition a(e) = e
with the axioms TM1-TM5 in [IKR1, §5]. The axioms SV1-SV3 say literally the same
as TM1-TM3, and the condition «a(e) = e is TM4.

We now assume that « fulfills TM1-TM4. For every x € U we have a(ex) = a(e)a(r) =
ea(z). That « is a transmission covering v means that a(z) = y(z) for all z € eU. This is
equivalent to a(ex) = y(ex) for all x € U; hence to the condition ea(z) = v o vy(x) for
all x € U. But this means that « is a supervaluation covering vy o vy. U

Theorem 1.5. Given a supertropical semiring U with ghost ideal M := eU and a sur-
jective homomorphism ~v : M — M’ to a bipotent semiring M', there exists an initial
transmission o : U — U’ covering .

Proof. We introduce the strict surjective valuation
v=~vouvy:U —» M.

By [IKR1, §7] there exists an initial surjective supervaluation ¢, : U — U(v) covering v.
(In particular, eU(v) = M'.) The other surjective supervaluations ¢ : U — V' covering vy
are the maps 7 o ¢, with 7" running through the set of all MFCE-relations on U(v), as
explained in [IKR1, §7].

Let f := ¢,(ev) and e := ey(,) = 1y. Proposition 1.4 tells us that 77 o ¢, is the initial
transmission covering - iff f ~7 e and moreover T is finer than any other MFCE-relation
on U(v) with this property. Now we invoke the following easy lemma, to be proved below.

Lemma 1.6. If W is a supertropical semiring and X s a subset of W, there exists a
unique finest MFCE-relation E on W with x ~g ewx for every x € X.

We apply the lemma to W = U(v) and X = {f}, and obtain a finest equivalence
relation 7" on U(v) with f ~p ef. But

ef = vuw) o po(er) = viey) = e.
Thus, 7" is the unique finest MFCE-relation on U(v) with f ~r e, and T gives us the
wanted initial transmission o = 7y 0 @,. ]

Proof of Lemma 1.6. The set M of all MFCE-relations F' on W with x ~p ex for all
x € X is not empty, since it contains the relation E(vy ). The relation E := A M, i.e.,
the intersection of all F' € M, has the desired property. O

Notation 1.7. We denote “the” initial transmission in Theorem 1.5 by oy, the semir-
ing U" by U,, and the equivalence relation E(oy.) by E(U, 7).

This notation is sloppy, since ay, is determined by U and v only up to isomorphism.
But E(U,~) truly depends only on U and . The ambiguity for ay ., can be avoided if
is surjective, due to the following lemma.

Lemma 1.8. Ifa : U — V s an initial transmission covering a surjective homomorphism
v: M — M, then « itself is a surjective map.

Proof. V} := a(V) is a subsemiring of V and thus a supertropical semiring itself. Replacing
V by V; we obtain from « a surjective transmission oy : U — Vj. Since « is initial there
exists a unique transmission 7 : V' — V; over M’ with a; = na. Also a = ja; with j the
inclusion from V; to V. By the universal property of a we conclude from o = jna that jn
is the identity on V. This forces V = V. O
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Thus, if v is surjective, we have a canonical choice for U, and oy, namely, U, =
U/E(U,v) and ay, = TEw,y). Usually we will understand by U, and oy, this semiring
and transmission.

In light of Theorem 1.5 our main Problem 1.1 can be posed as follows: Given U and 7,
is ayy 1 U — U, a pushout transmission?

We assume in the following that v : M — M’ is surjective and M’ is a cancellative
bipotent domain; hence v = vy o vy is a strict surjective valuation. In this case we will
obtain a positive solution of the problem. The point here is that we can give an explicit
description of U, and oy, which allows us to check the pushout property.

We already have an explicit description of ¢, : U — U(v), given in [IKR1, §4]. Thus
all we need is an explicit description of the finest MFCE-relation 7" on U(v) with f ~7 e.
We develop such a description in a more general setting.

Assume that U is a supertropical semiring, e := ey, and f is an idempotent of U.
The ideal L := fU of U is again a supertropical semiring with unit element f (under
the addition and multiplication of U), since L is a homomorphic image of U. We have
er,=f+[f=ef

If F is an equivalence relation on the set L, there is a unique finest equivalence relation
on U extending F. It can be described as follows. Let x1, 29 € U. Then x1 ~g x5 iff either
1 = T or x1 € L, x5 € L and 1 ~p 5. We call F the minimal extension of the
equivalence relation F' to U.

Lemma 1.9. Let F' be an equivalence relation on fU, and let E denote the minimal
extension of F' to U.

a) If F' is multiplicative, then E is multiplicative.

b) If F is fiber conserving, so is E.

Proof. Assume that z1,xy are elements of U with z1 ~p 5. Assume (without loss of
generality) that also x1 # x9. Then x1, 25 € fU and z7 ~p 5.
If F is multiplicative then, for any z € U,
112 = 21(f2) ~p x2(f2) = T22;
hence x1z ~g x5z. Thus F is multiplicative.
If F is fiber conserving, then
ex1 = (ef)r1 = (ef)r2 = exs.
Thus E is fiber conserving. 0

Proposition 1.10. Assume that U is a supertropical semiring, e := ey, and f is an
idempotent of U. We define a binary relation E on U by decreeing (x1,22 € U)

x1 ~p Ty iff either 1 =1x9 or x1,x2€ fU and ex, = exs.

a) E is an MFCE-relation on U.
b) Ifef = e, then e ~g f, and E is finer than any other multiplicative equivalence
relation E' on U with e ~p f.

Proof. a) We apply the preceding lemma with F' the relation E(vy) (cf. [IKR1, Exam-
ple 6.4] on the supertropical semiring L := fU. The minimal extension of F to U is
the relation E defined in the proposition. Indeed, for x,,x5 € L we have 1 ~p x5 if
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efry = efwxy. Since fx; = z; (i = 1,2), this means that ex; = exs. By Lemma 1.9 the
relation E is MFCE.

b) Assume now that ef = e, i.e., e € L. Then e ~p f by definition of E. Let £’ be
any multiplicative equivalence relation on U with e ~g f. If 21,25 € U and 1 ~g x5 we
want to conclude that xy ~g zo. We may assume that x; # x5. Then z1,29 € fU and
er) = exy. Now z; ~p ex; (i = 1,2); hence x1 ~p x9, as desired. O

We are ready for a solution of Problem 1.1 in the case that v : M — M’ is surjective and
M’ is a cancellative bipotent semidomain; hence v = yoyy is a strict surjective valuation.
As before, let T denote the finest MFCE-relation on U(v) with f ~p e for e := ey, and
f = wy(ev). Recall from the proof of Theorem 1.5 that ef = e. Thus Proposition 1.10
applies. We spell out what the proposition says in the present case.

For that we write the semiring U(v) and the map ¢, in a way different from [IKRI,
84]. Let U denote a copy of U disjoint from U with copying isomorphism z — 2. We use
this to distinguish an element = € U\q, with ¢ := supp v, from the corresponding element
in 7(U(v)). Thus we write

U(v) = (0\a) O M’
with q := {2 ‘ z e U, y(epx) = 0}, and @, (x) = 2 for x € U\q, ¢,(x) = 0 for x € q. Notice
that fU(v) = (M\§) 0 M’ with M := {& | 2 € M}.

According to Proposition 1.10 the equivalence relation T has the following description.
Let y1,y2 € U(v) be given with y; # yo. Then yy ~1 yo iff y1 = 21, yo = To, with either
21,29 € M and vy(epx1) = v(epxe) or z1,z2 € U and y(eyx1) = y(eyxs) = 0. We may
choose U, = U(v)/T and oy, = mr o ¢,. The transmission a := «y, is a surjective
map from U to U, and the equivalence relation E(«) is the relation E(U, ) defined in
Notation 1.7. Thus F := E(U,~) has the following description: If 21,29 € U and 1 # 9
then

r1 ~p Ty < y(eyr1) = y(evxs), and if z1 € T(U) or 29 € T(U), vy(epx1) = 0.
Having found E(U,y) we now redefine
U,:=U/E(U,~), AUy = TEU)-

We arrive at the following theorem.

Theorem 1.11. Let U be a supertropical semiring, e := ey, M := eU, and assume that

v: M — M’ is a surjective homomorphism from M to a cancellative bipotent semidomain
M'. Then E := E(U,~) can be described as follows (x1,22€ U):

1 ~g T2 ’Lﬁ T, = Ta,
or 7y(exy) = y(exz), exy = x1, exy = Iy,
or y(exy) = y(exy) = 0.
Scholium 1.12. Thus this binary relation E on U is a multiplicative equivalence relation,

and the multiplicative monoid U/E can be turned into a supertropical semiring in a unique
way such that mg : U — U/E is a transmission. It is the initial transmission covering .

Most often 7 is not a homomorphism, cf. §6 below.

Theorem 1.13. If v is surjective and M' is a cancellative bipotent semidomain, then
ayy 18 a pushout transmission.
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Proof. Let a := ay,y =g : U - U/E with E := E(U, 7). Assume that § : M’ — N is
a homomorphism from M’ to a bipotent semiring N and g : U — V is a transmission
covering v : M — N, i.e., with ey = dyey. (In particular eV = N.)

We want to verify that § respects the equivalence relation E, i.e., given x1, x5 € U, that

zy ~p x2 implies  J(z1) = B(z2).

We may assume that x; # zo. If 27 or x9 is tangible then ~vy(ex;) = 7y(exs) = 0;
hence ey fB(z;) = dy(ex;) = 0 for ¢ = 1,2. This implies f(x;) = f(x2) = 0. Assume now
that both z; and xo are ghost. Then y(ex;) = 7v(ex2); hence dy(ex;) = dvy(exs), ie.,
evf(x1) = eyf(x2). But both B(x1) and [(zy) are ghost or zero. Thus f(x;) = [(x2)
again.

Since « is surjective, it follows that we have a well-defined map p : U/E — V with
B = pa. Now [IKR1, Proposition 6.1.ii] tells us that p is a transmission, since both a and
[ are transmissions and « is surjective. We have

vypa = vyl = dyvy = dvy/pa.

Since « is surjective, this implies that vy p = dvy g, i.e., p covers 4. The pushout property
of «v is verified. 0

Remark 1.14. If v is surjective, but M’ is not assumed to be cancellative, we have a
description of E(U,~) in [IKR3, §4], which is nearly as explicit as the description above
in Theorem 1.11, but then often oy is not a pushout transmission.

Assume now that U is any supertropical semiring, M := eU, and v : M — M’ is an
injective semiring homomorphism from M to a bipotent semiring M’. Then Problem 1.1
can be solved affirmatively in an easy direct way, as we explicate now.

We may assume, without loss of generality, that M is a subsemiring of M’ and - is the
inclusion from M to M’. We define a semiring U’ as follows. As a set, U’ is the disjoint
union of the sets U and M"\M. We have U c U', M' c U, Uu M' =U", U~ M = M.
Let v denote the ghost map from U to M, v = vy. We define addition and multiplication
on U by taking the given addition and multiplication on U and on M’ and putting

r-z=z-x=v(x) 2

x if v(zr) >z

trz=z+a=
rreTmeTy {zifu(x)gz

for x € U, z € M'. In the cases that v € M and z € M’, or x € U and z € M, these new
products are the same as the ones in M’ or U, respectively. Thus we have well-defined
operations - and 4+ on U’. One checks in any easy and straightforward way that they obey
all of the semiring axioms. Thus U’ is now a commutative semiring with 1y» = 1. It
clearly obeys the axioms (3.3"), (3.3”), (3.3) in [IKR1]. Thus U’ is supertropical. We have
eyr = €y, eU' = M’, T(UI) = T(U)

Definition 1.15. We call U’ the supertropical semiring obtained from U by extension
of the ghost ideal M to M'. We also say, more briefly, that U’ is a ghost extension
of U.

Let a denote the inclusion U < U’. It is obvious that « is a transmission covering the
inclusion v : M — M'. We verify that « is a pushout transmission.
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Let 0 : M" — N be a homomorphism from M’ to a bipotent semiring N and §: U — V
a transmission covering d. This means that eV = N, and
(1) B(x) = 6(z) for z € M.
Clearly, we have a unique well-defined map p : U' — V with p|U =  and
(2) p(x) = d(z) for z € M'.
We have p(0) =0, p(1) =1, p(eyr) = ey. One checks easily that p is multiplicative.
We now know that p is a transmission covering J. We have proved the following theorem.

Theorem 1.16. Assume that M’ is a bipotent semiring and M is a subring of M'. Assume
further that U is a supertropical semiring with ghost ideal M, and U’ is the supertropical
semiring obtained from U by extension of the ghost ideal M to M'. Then the inclusion
mapping U — U’ is a pushout tranmission covering the inclusion mapping M — M'.

Combining Theorems 1.13 and 1.16, we obtain the most comprehensive solution of
Problem 1.1 that we can offer in this section.

Theorem 1.17. ? Let v : M — M’ be a homomorphism between bipotent semirings,
and assume that the bipotent semiring v(M) is cancellative. {N.B. This holds if M' is
cancellative.} Let U be a supertropical semiring with eU = M. Then oy, : U — U, is a
pushout transmission.

Proof. We have a factorization 7 = i o 7, with 4 the map « — ~v(z) from M to the
subsemiring (M) of M’, and ¢ the inclusion from (M) to M'. By Theorems 1.13 and
1.16 there exist pushout transmissions o : U — U and 8 : U — U’ covering 7 and i,
respectively. Now look at the commutative diagram

T

M — (M) M’

where the vertical arrows denote inclusions. Here the left and the right square are pushout
diagrams in the category STROP of supertropical semirings and transmissions. Thus also
the outer rectangle is a pushout in this category (cf., e.g., [ML, p.72, Execr.8)), i.e., fa
is a pushout transmission. If oy, : U — U, is any prechosen initial covering of «y, there
exists an isomorphism p : U" — U, over M’ with pfa = ay,. Thus also ay is a pushout
transmission. O]

2. PUSHOUTS OF TANGIBLE SUPERVALUATIONS

If p: R— U and ¢ : R — V are supervaluation on a semiring R, and ¢ dominates
1, then we also say that ¢ is a coarsening of ¢ . Recall that this happens iff there
is a transmission « : U — V with ¥ = a o ¢. If in addition ¢ is surjective, i.e., U =
¢(R) U ep(R), which is no essential loss of generality, then « is uniquely determined by
¢ and ¢, and we write o = ., (cf. [IKR1, §5]).

Assume now that v: R — M is a surjective m-valuation and ¢ : R — U is a surjective
supervaluation covering v (in particular M = eU). Moreover, let v : M — N be a
surjective homomorphism to another (bipotent) semiring N.

?In §5 and [IKR3, §1] we will meet pushout transmissions which are not covered by this theorem.
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Definition 2.1. We say that a surjective supervaluation v : R — V 1is the initial
coarsening of ¢ along v, if 1V is a coarsening of ¢ and o, is the initial transmission
covering 7y (cf. Definition 1.8). In the notation 1.7; which we will obey in the following,
this means that V- = U, and o, = oy . We then write ¢ = 7,(p).

In this way we obtain a map
Y4 : Cov(v) — Cov(yv)

between complete lattices.
[We could define such a map =, also if v : M — N is not necessarily surjective. But in
the present section this will give no additional insight.]

In the following, we will tacitly assume that all occurring supervaluations are surjective.

We write down a functional property of the initial transmissions oy, which will give
us simple properties of the maps v,. The map v : M — N is always assumed to be a
surjective homomorphism between bipotent semirings (as before).

Proposition 2.2. Let U and V' be supertropical semirings with eU = eV = M and let
A :U — V be a transmission over M, hence a homomorphism?.

(a) Then there exists a unique transmission from U, to V. over N, denoted by A,
such that

Ayoau, = ayy oA
We thus have a commuting diagram

AV,y

1% v,
LT
v—" U,
M i N

with inclusion mappings M — U and N — U,.
(b) If £ : V — W is a second homomorphism over M then

5“/)‘7 = (f/\)%

Proof. a): ay,A: U — V, is a transmission covering 7. Now use the universal property
of the initial transmission oy .
b): &M, 1 U, — W, is a transmission over N such that

§ AUy = vy A = awadA.

By the uniqueness part in a) we conclude that &\, = (§A),,. OJ
As an immediate consequence of part b) we have

Corollary 2.3. The map 7, : Cov(v) — Cov(yv) is order preserving in the weak sense,
i.e., o =1 implies V() = 7. (V). O

3Any transmission U — W, which is injective on eU, is a homomorphism, cf. [IKR1, Proposition
5.10.iii].
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Corollary 2.4. Ifp : R — U and 1 : R — V are supervaluations covering v (in particular
eU = eV = M) with ¢ = 1 then

V@) ne) = (Qpp)y
Proof. We have 1 = A\p with X := oy . From this we conclude that

Ve (w) = OéV,’y)‘Sp = )"yaU,’ySO = >‘77* (90)
Thus A, is the transmission from v, (¢) to v.(¥). O

Starting from now we assume that the bipotent semirings M and N are cancellative;
hence v: R — M and yv : R — N are valuations. We define

p:=7710), q:=v7"0)=supp(v), ¢ :=v"'(p) = supp(yv).
Notice that p, q, q’ are prime ideals of M and R, respectively.
Given any supertropical semiring U with e = M, we now know that oy, : U — U, is
a pushout transmission (Theorem 1.13). Consequently, if ¢ € Cov(v), we now call v, ()
the pushout of ¢ along v (instead of “initial coarsening of ¢ along ~”).
The good thing is that we now have an explicit descriptions of U, and oy, which we
recall from Theorem 1.11.
We start with a multiplicative equivalence relation F(U,~) on U established in Theo-
rem 1.11. To repeat, for z,y in U
T ~puy) Y S either z =y,
or both z,y € M and v(z) = v(y),
or ex € p, ey € p.
The restriction E(U,~)|M is the equivalence relation E(v) given by v : M — N. We
identify every class [z]|gw,), * € M, with the image v(x) € N and then have
M/E(U,~) = N.
As proved in §1, we may choose! U, = U/E(U,~) and then have

Wy = TEws) = [2]pw)-
Let x € T(U). If ex ¢ p, then [z]pw,) = {z}, but if ex € p, then [z]|gw,) = 0 € N.
Thus we see that T (U,) = U,\N is the bijective image of {x € T(U) | ex ¢ p}. We identify
[2] 5,y With x, if z lies in this set, and then have

TW,) ={xeTU)ex¢p}, U,={reTU)]|er¢p} 0N

Notice that the multiplicative monoid 7 (U.,) has become a submonoid of 7 (U), since
E(U,~) is multiplicative, but the sum of two elements of 7 (U, ), computed in the semiring
U,, can be very different from their sum in U.

After all these identifications we have

Lemma 2.5. For any x € U,
T ifreT(U),ex ¢p,
ayy(z) = < 0 ifxeT(U),exep,
v(z) if xe M.

4Recall that oy : U — U, is the solution of a universal problem.
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Given a surjective valuation v : R — M, as before, we denote by Cov(v) the set of all
(equivalence classes of) tangible supervaluations covering v. It is an upper set, and hence
a complete sublattice of the lattice Cov(v) with the same top element ¢, : R — U(v) as
Cov(v) (cf. [IKR1, §10]).

Let D(M) denote the unique supertropical semiring U such that eU = M and vy maps
T(U) bijectively onto M\{0}. The bottom element of Covy(v) is given by the unique
tangible supervaluation v : R — D(M) covering v (cf. [IKR1, Example 9.16]).

Returning to an arbitrary covering ¢ : R — U of v, we read off from Lemma 2.5
the v4(¢p) is tangible if ¢ is tangible. This implies

Proposition 2.6. v, (Covi(v)) < Covy(yv).
We further have the following important fact.

Theorem 2.7. The pushout of the initial covering ¢, : R — U(v) of v is the initial
covering @, : R — U(vyv) of yv. In particular U(yv) = U(v),.

Proof. Recall that T (U(v)) = R\q and T(U(yv)) = R\q' with q = supp(v) and q' =
supp(yv) = v~ !(p). Thus it is fairly obvious that U(yv) = U(v),. If a € R, we have

Ya(pw)(@) = avy(po(a));

hence, by Lemma 2.5, v.(p,)(a) = ¢(a) if v(a) = ep,(a) ¢ p, while v.(p,)(a) = 0 if
v(a) € p. These are precisely the values attained by ... O

We focus on the restriction
Vet : Covi(v) — Covy(yv)

of 7, to tangible supervaluations. It maps the top element ¢, of Covi(y) to the top
element ., of Covi(yv). But it almost never maps the bottom element ¢ of Covy(v) to
the bottom element 70 of Covy(yv), as we will see below.

Our goal now is to exhibit a sublattice of Covy(v) which maps bijectively onto v, (Covy(v))
under the pushout map .. For that we need a construction of general interest.

In the following we always assume that eU = M and T (U) is closed under multiplica-
tion.

Given an ideal a of M we introduce the equivalence relation
Et(a) = Et’U(a) = Et N E(M\Cl),

with Ey and E(M\a) the MFCE-relations defined in [IKR1, Examples 6.4.v and 6.12].
Clearly Fi(a) is a ghost separating equivalence relation.

E := Ei(a) has the following explicit description: Let z,y € U be given. If z € M, or
if xeT(U), but ex ¢ a, then x ~py iff = y. If z € T(U) and ex € a, then x ~p y iff
yeT(U) and ex = ey.

Definition 2.8.

(a) We call the supertropical semiring U/Ei(a) consisting of the Ei(a)-equivalence
classes the t-collapse (= tangible collapse) of U over a and we denote this
semiaring by ¢y qo(U).
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(b) We call the natural semiring homomorphism
WEt(a) U — Ct7a(U)

the t-collapsing map of U over a, and we denote this map by 7, or myav if
necessary.
(¢) If ¢ : R — U is a tangible supervaluation covering v, we call the supervaluation

w/Ei(a) = T qa0 ¢

the t-collapse of ¢ over a, and we denote this supervaluation by c; q(p).

(d) Finally, we say that U is t-collapsed over a, if m , is an isomorphism, for
which we abusively write ¢, ,(U) = U, and we say that ¢ is t-collapsed over a if
ca(@)) = ¢ (which happens iff ¢, o(U) = U, since our supervalutions are assumed
to be surjective).

We describe the semiring ¢ ,(U) more explicitly. Without essential loss of generality

we assume that e7(U)y = M.
If Z is any subset of M, let U|; denote the preimage of Z under the ghost map vy,

Ulz = {xzelU|exeZ}.

Now, if U is t-collapsed over a, every z € U has a unique tangible preimage under v;;.
We denote this preimage by Z, and then have

~

U =a0a
with a = {Z | z € a}.
In general we identify

¢ta(U)lana = Ul

This makes sense since [7]g, ) = {x} for any x € U|yn,. We then have
ca(U) = (Uma v M) U a

and

Ula 0 M = M\a.

After these identifications the following is obvious.

Lemma 2.9.
(i) If x € U then

~

x if e M orex¢a,
mal®) = { (ex) ifexrea

(ii) If p € Cov(U) and a € R, then

ca(p)(a) =

{ p(a)  ifv(a)¢a,
J;) if v(a) € a.
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We now look at the map
Cta @ Covi(v) = Covi(v)

which sends each ¢ € Covy(v) to its t-collapse ¢ (@) over a. It is clearly order preserving,
and is idempotent, i.e., (¢;4)* = ¢;o. We denote its image by Covy.q(v). Its elements are
the t-collapsed tangible supervaluations over a that cover v.

Using the description of suprema and infima in the complete lattice Cov(v) in [IKRI,
§7], it is an easy matter to verify the following

Proposition 2.10. Covi(v) is a complete sublattice of Cov(v), and
¢tq @ Covi(v) — Covy(v)

respects suprema and infima in Covy(v). Thus, also Covi.q(v) is a complete sublattice

of Cov(v).

Remark 2.11. Independently of this proposition it is clear that Covyq(v) is a lower set
in Covi(v) with top element ¢ 4(p,). It follows that

Coviea(v) = {1 € Cov(v) | cralpn) = =70 }.

This proves again that Covy . q(v) is a complete sublattice of Cov(v).

We return to the surjective homomorphism v : M — N and now choose for a the prime
ideal p = v71(0) of M.
Proposition 2.12. Let V := ¢;,(U).
(i) The homomorphism 7y, : U — V induces an isomorphism (m,), @ U,—>V, over
N. More precisely, using the identifications from above we have U, = V., and then
(Tep) 15 the identity of U.,.
(ii) aU;Y = O{V;y @) 7rt7p.
(iii) If ¢ € Covi(v) then 7. () = ya(crp(©)).
Proof. We have the identification
TWUlwmp) = TV ]anp)
(see above). On the other hand, ay, maps Ul, to {Ox}, and ay, maps V|, to {On}.
Finally
= avylu =7
Thus it is evident that, under our identifications, U, = V., and then ay, = oy, o m,.
Reading this equality as
idU.y O Qu~y = QyyO Ty

we conclude by Proposition 2.2.a that (m,), = idy,. Finally, if ¢ € Cov(v), then

Valop(p)) = avyocp(p) = avy(Tp(p) = ava(p) = 71x(0).
O

Lemma 2.13. Let U, V be supertropical semirings with eU = eV = M, and A : U -V a
transmission over M with \(T(U)) < T(V). Assume further that U is t-collapsed over p.
Finally assume that A, : U, — V., is injective. Then X\ : U — V is injective.



16 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

Proof. The upper square of the of the diagram in Proposition 2.2.a restricts to a commut-
ing square

T(Ulny) ——— T(U,)
T(V]ang) ——— T(V5)

Here the vertical arrows are restrictions of the maps A and A,. The vertical arrow on the
right is an injective map by assumption. Thus, also the left vertical arrow is an injective
map. The restriction A\|7(U]|,) is a priori forced to be injective, since U is t-collapsed
over p. Finally A restricts to the identity on M. Thus, A\ is injective. 0

We now are ready for the main result of this section

Theorem 2.14. As before assume that T (U) is closed under multiplication.

(a) The pushout map
Vg : Covi(v) — Covi(yv)

restricts to a bijection from Covy ., (v) to v« (Covi(yv)). Consequently ,(Covi(yv))
is a sublattice of Covy(yv) isomorphic to Covy,p(v).
(b) If ¢, 1 € Covi(v) then v.(p) = 7. (V) iff ¢ and ¥ have the same t-collapse over p.

Proof. a): Since we know already that v,| Covy.,(v) is a lattice homomorphism (Propo-
sition 2.10), it suffices to verify the following: If ¢, € Covi(v) are t-collapsed over p and
¢ =9, but ¢ # 1, then 1. () # 7. (¥).

We have a unique surjective transmission A := oy, : U — V with 1 = Ap. This implies
Y6 (¥) = Ayvs(p) by Corollary 2.4. If A, were an isomorphism then also A would be an
isomorphism by Lemma 2.13 above. But this is not true. Thus A, is not an isomorphism,
and this means that v, (¢) # 7. (p).

b): We know by Proposition 2.12 that v,.(¢) = v«(cp(¥0)). Thus v.(p) = v.(¢) iff
s (Cip () = 7a(cip (). By part a) this happens iff cip(p) = cip(1). N

We turn to the image of the map 7, : Covi(v) — Covi(yv). Here we will put emphasis
on strong supervaluations. Thus we now assume in addition that the surjective valuation
v: R — M is strong.

If p: R — U is a strong supervaluation covering v, then v,(¢) = ay, o ¢ is again a
strong supervaluation, as follows from [IKR1, Lemma 10.1.ii] and the definition of “strong”
[IKR1, Definition 9.9]. Thus

Y+ (Covis(p)) < Covis(yv).

We have seen that 7,(¢,) = ¢4, but we can only state that the pushout 7,(%,) of the
initial strong supervaluation % : R — U(v) is dominated by @., : R — U(yv). On the
other side, the pushout 7, (?) of the bottom element v : R — D(M) of both Cov(¢) and
Cov¢(v) dominates 40 : R — D(N). Using the abbreviations

Q= QU )y, Q1= agey 4 B = AD(M),y

we thus have a commuting diagram
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U(v) * - U(v), = Ulyo)
U(yv)
U(v) . (U(v))y
/' / D) L D(M),
’ D(N)
R M ! N

v

with surjective transmissions over M and N respectively as vertical arrows.
The following questions immediately come to mind.

Questions 2.15.
(1) Can we expect that ©.,, = 7.(P,)?
(2) Can we expect that Yo = 7,(0) ¢
(3) Is v (Covy(v)) conver® in Covy(yv)?
(4) Is v (Covis(v)) convex in Covyg(yv)?

Recall that Covys(yv) is convex in Covi(yv), and Covy(yv) is convex in Cov(yv), as we
have seen in [IKR1, §10].

Question (2) has a negative answer: If z € N\{0}, then the tangible fiber of
{r € D(M), | ex = z} is the union of the tangible fibers of D(M) over the points of
7~!(z), and thus will quite often contain more than one point. The other questions will
be answered here completely only in a special case to which we turn now.

Assume that R\q is a group under multiplication. Then we can give a very explicit
description of the map v, ¢, and even ~,.

Now M\{0} = v(R\q) and N\{0} = v(M\{0}) are groups, i.e., M and N are bipotent
semifields. This forces p =0 and q = ¢'.

Since p = 0 we conclude from Theorem 2.14 and Proposition 2.12 that -, is an isomor-
phism of the lattice Cov(v) onto its image 7, (Covy(v)), By [IKR1, §8] the MFCE-relations
on U(v) except E(vy) are orbital, hence do not identify any tangibles with ghosts. Thus
Cov(v) = Covi(v) U {v} (as essentially observed in [IKR1, §8]). We have 7, (v) = v, and
we conclude that 7, is an isomorphism from Cov(v) onto its image.

We have M = I' u {0} with I" an ordered abelian group. Let
A=y (1y).

A subset Y of a poset X is called convex in X if y <z < zfory,z€Y, z € X implies that z € Y.
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This is a convex subgroup of I', since v : M — N is an order preserving monoid homo-
morphism. The map ~ induces an isomorphism from M/A =T'/A u {0} onto N. In the
following we assume without loss of generality that N = M /A and v is the map z — Ax
from M to N. Excluding a trivial case we assume that A # 1.

Returning to the notation from the end of [IKR1, §10] we have

o, ={ae R|v(a)ely} and o}, ={aeR|v(a)e A},

further m, = {a € R | v(a) < 1y} and m,, = {a € R | v(a) < A}. {v(a) < A means
v(a) < 0 for every 6 € A.}

If H is a subgroup of o} then H is also a subgroup of o
Thus H gives us a transmission

THuw :UW) — U(v)/E(H)

*

. - .
Su» Since oy is a subgroup of o7,

over M and a transmission

Ty : Ulw) — Uy)/E(H)
over N. {Previously both maps sloppily had been denoted by 7y.}
Theorem 2.16. If H is any subgroup of o}, then

(@) (THUw)y = THU@Hw),
(b) Ve (QDU/H) = SO’YU/H'

Proof. a): Let V := U(v)/E(H). We are done by Proposition 2.2.a if we verify that

THU(y) © QU()y = Oy © THU(w)-
This is easily verified by use of Lemma 2.5.

b): We know (Theorem 2.7) that
Pyw = Vs (o) = QAU (v),y © Pu

Thus

Qo'yv/H = 7TH,U('yv) < O[U(v),’y O Py-
On the other hand

Yo/ H) = avy(pu/H) = avyoThuw) © ¢o.
By step a) we conclude that indeed
Ve (pu/H) = ¢y0/H.
UJ

We learned before ([IKR1, §8]) that the elements ¢ of Covy correspond uniquely with
the subgroups H of o} via ¢ = ¢,/H, and now conclude by Theorem 2.16 that

7#(Covi(v)) = {pp/H | H < o7}
(“ <7 means subgroup). On the other hand
Covi(y0) = {pn/H | H < 0%},
Thus, 7. (Covy(v)) is an upper set of the complete lattice Cov¢(yv) with bottom element
7%(0) = Py/og.
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This element is definitely different from

Yo = (Pw/oftm
since 0, /0% = A. Thus question 2.15.(2) has a negative answer (which we know already),
while question 2.15.(3) has a positive answer.
How about question 2.15.(1)? The top element of Covi4(v) is ,. We saw in [IKRI,
§10] that g, = ¢,/1 + m,, and now conclude by Theorem 2.16 that

1%(@0) = Py/(1+my).
But
Pro = P/ (1 +my),
and m,, is definitely smaller than m,. Thus @, Z 7.(®,). Question 2.15.(1) has a
negative answer.
Returning to the general situation, but still with v : R — M strong, we should expect
that ¥, Z 7«(®¥,) except in rather pathological cases. Indeed, it seems often possible

to pass from v : R — M to a strong valuation v : R — ]\7, with R a semifield by a
localization process (which we did not discuss), and to argue in Cov(?).

Concerning applications, the strong supervaluations seem to be more important than
the others. But the fact that v,(,) differs from @, while v.(p,) = ¢4, indicates
that it would not be advisable in supervaluation theory to restrict the study to strong
supervaluations from the start, as said already in the Introduction.

3. SUPERTROPICAL PREDOMAINS WITH PRESCRIBED GHOST MAP

For later use we give a generalization of Construction 3.16 in [IKR1] of supertropical
predomains. It merits independent interest.

Theorem 3.1. Assume that M is a cancellative bipotent semidomain. Assume further
that U = (U,- ) is an abelian monoid, and (M,- ) is a monoid ideal of U (i.e., M
is a subsemigroup of U and UM < M). Assume finally that a monoid homomorphism
p: U — M is given (i.e., p is multiplicative and p(1y) = 1) with p(x) = x for every
x € M and p~'(0) = {0}. Then the following hold:

i) 0.2 =0 for every x € U, and U\{0} is closed under multiplication.
ii) On U there exists a unique addition (+) extending the addition on M such that
(U, +,- ) is a supertropical semiring with M the ghost ideal and p the ghost map
of U= (U,+,-).
iii) U = (U, +,-) is a supertropical predomain, and for x1, w5 € U we have the rule®
T if p(z1) > p(x2),
T+ Ty =1 2y if p(x1) < p(as), (3.1)
p(x1) if p(z1) = p(z2).
Proof. We proceed in several steps.
(a) If x € U, then p(z - 0) = p(z)p(0) = p(x) -0 = 0. Thus z -0 = 0.

(b) If z,y € U\{0}, then p(x) # 0, p(y) # 0; hence p(zy) = p(x)p(y) # 0, and zy # 0.
Thus, U\{0} is closed under multiplication.

6Recall that every bipotent semiring has a natural total ordering [IKR1, §2].
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(c) We are forced to define addition on U by the rule (3.1) above (cf. [IKR1, Theorem
3.11]). Clearly this extends the given addition on M. We have 1y + 1y = p(1y) =

1ar.
(d) Write 1y = e, 1y = 1. For 2 € U we have

e-x=ple-x)=ple) p(x) =e-pr) =p)
Thus, p(z) = e - x for every z € U.
(e) We start out to verify that U is a semiring. Obviously, the addition on U is
commutative, and it is easily checked that the addition is also associative. For
r e U we have x + 0 = z if p(x) > 0, and x + 0 = 0 if p(z) = 0 iff x = 0. Thus,
0 = 0,7 is the neutral element of the addition on U.

(f) It remains to verify distributivity. Let x1,x9,2 € U be given. If z; = 0 then
r1z =0, 1 + 9 = T9; hence
T12 + X9z = 0+ Toz = 292,
and thus
112 + Toz = (1 + X2)2.
The same holds if x5 = 0, and clearly also if z = 0.
Assume now that x1, 29,z € G := M\{0}. If p(x1) < p(x2) then p(z12) < p(z22)

since p(z;2) = p(x;)p(z) and the monoid G is cancellative. Thus, z; + x5 = 3,
T12 + T22 = X2z, and we see again that

(X1 4+ 22)2 = 212 + X92.
By symmetry this also holds if p(z1) > p(z2). In the case p(z1) = p(x2), we have
p(x12) = p(222), 21 + T2 = p(1), and
112 + 192 = p(x12) = ex12 = p(x1)z = (11 + X2)2.
Now distributivity is proved in all cases.

(g) We have proved that U is a semiring with  + x = ex = p(z) for every z € U, and
thus M = p(U) = eU. The axioms (3.3'), (3.3"), (3.4) from [IKR1, §3] are now
evident. Thus, U is supertropical and vy = p. The semiring U is a supertropical
predomain.

O

Theorem 3.1 supersedes Construction 3.16 in [IKR1] since here we do not need to
assume that U\M is closed under multiplication. Every supertropical semiring U with
eU a cancellative bipotent semidomain arises in the way indicated in the theorem.

Example 3.2. We discuss again the construction of the supertropical semiring U = U(v)
for a valuation v : R — M, given in [IKR1, Example 4.5]. Let q := v'(0) the support
of v, and let U denote the disjoint union of the sets R\q and M. We introduce on U a
multiplication @ as follows: For x,y € R\q and z,w € M, put

rQy=1ay, zOz=z0z=v(r)z, zOQW=zw.

It is immediate that in this way U becomes an abelian monoid with U ©® M < M. The
map p : U — M given by p(xz) = v(x) for x € R\q, p(z) = z for z € M is a monoid
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homomorphism and p~*(0) = {0}. Theorem 3.1 tells us that with the addition

T if p(r) > py)
Ty =1y if p(z) <ply)
p(z) if plx) =ply)

the monoid U becomes a supertropical semiring. The map ¢ : R — U with ¢(a) = a for
a€ R\q, p(a) =0 for a € q turns out to be a supervaluation covering v.

4. TRANSMISSIVE EQUIVALENCE RELATIONS

If a surjective transmission o : U — V' is given, V' can be identified with the set U/E(«)
of equivalence classes of the equivalence relation E(a) 7 in such a way that o = TE(a)-
We now pose the following problem: For which equivalence relations E on a supertropical
semiring U can the set U/E be equipped with the structure of a (supertropical) semiring
in such a way that 75 : U — U/E is a transmission?

We first study the case U = eU.

U is a bipotent semiring, in other words, U is a totally ordered monoid with absorbing
smallest element 0, cf. [IKR1, §1].

Assume more generally that M is a totally ordered set and F is an equivalence relation
on M. We want to install a total ordering on the set M /E in such a way that the map

g M — M/E, x— [z]E,

is order preserving (in the weak sense; © < y = 7mr(z) < 7g(y)). Thus we want that, if
51,&2 (S M/E and I € gl, T9 € 52, then

T < T2 = & < &y,

or, equivalently,
§1>€2 = T1 > Tay.
It is clear that such a total ordering on M/FE exists iff the following holds. Given

&1,8 € M/E, either x1 < x5 for all x; € &, x9 € &, or 11 > x5 for all ;1 € &, x5 € &, Or
&1 = &. More succinctly, this condition can be written as follows:

(OC) : If xy,29,23, 24 € M, and 1 < 29, 3 < Xy, T1 ~p T4, T2 ~F5 T3,

then z; ~ xs.

(Hence all x; are E-equivalent.)

If an equivalence relation E on the totally ordered set M obeys the rule (OC), we call
E order compatible.

It is sometimes useful to view order compatibility as a convexity property. A subset Y
of M is called convex (in M), if for any y;,y, € Y and z € M with y; < x < ys, also
re M.

Remark 4.1. An equivalence relation E on the totally ordered set M is order compatible
iff every equivalence class of E is convex in M.

"Recall that E(«) is defined by z ~E() Y iff a(z) = ay).
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Proof. a) If y3 < x < yo and 4; ~p ya, then (OC) implies y; ~g x. (Take there xo = x3.)

b) Assume that the equivalence classes of F are convex. We verify (OC). Let 1, x9, x3, 24 €
M be given with x1 < x5, 3 < x4, and 1 ~g 74, T3 ~g T3.

Case 1. x9 < x4. Now 11 < 29 < x4, and hence 21 ~g xo.

Case 2. x5 > x4. Now 23 < x4 < 9, and hence x4 ~g 2o, and thus again 1 ~g 5. [

We present a proposition which is quite obvious from the initial considerations on order
compatibility given above.

Proposition 4.2. Let M be a bipotent semiring and E an equivalence relation on the
set M. There exists a (unique) structure of a (bipotent) semiring on the set ® M/E such
that the natural map 7 : M — M/E, x — |x|g is a semiring homomorphism iff E is
multiplicative and order compatible. In this case the multiplication on M/E is given by
the rule (z,y € M)

[x]e - [y]e = [ - yle,
and the ordering by the rule (§,n € M/E)

E<n < dre& yen with x<uy.

Proof. Just notice that a map between bipotent semirings is a semiring homomorphism iff
it is multiplicative, sends 0 to 0, 1 to 1, and is compatible with the orderings (cf. [[KR1,
§1]). OJ

We turn to equivalence relations on supertropical semirings instead of just bipotent
semirings.

Definition 4.3. Let U be a supertropical semiring. We call an equivalence relation E
on U transmissive if on the set U/E there exists a semiring structure such that U/E is
supertropical and the map 7 : U — U/E, x — |x]|g is transmissive.

We point out that, if F is transmissive, the semiring structure on U/E is uniquely
determined by the semiring structure of U and the relation E. This is clear from the
following reasoning.

Assume a surjective transmission « : U — V is given. Let E := E(a). Since the
map « is multiplicative, the equivalence relation E has to be multiplicative, and the
multiplication on V' is determined by U and «, since a(z) - a(y) = a(zy). We have

a(ey) = ey, and « restricts to a surjective homomorphism el — eV of bipotent semirings.
Thus, the restricted equivalence relation E|eU is order compatible, and the ordering on
eV is determined by the ordering of eU and the map «.

It follows that the addition on V' is also determined by U and «, since it can be expressed
in terms of the multiplication on V, the element ey = a(ey) and the ordering of eV (cf.
[IKR1, Theorem 3.11]).

Notice also that, if x € U and ex ~g 0, then  ~p 0, since ea(x) = a(ex) = 0 implies
a(x) =0.

We summarize these considerations as follows:

8Recall that, for any set Y < U we write Y/E := {[y|g | ye Y}.
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Proposition 4.4. Let U be a supertropical semiring, M := eU, and assume that E is a
transmissive equivalence relation on U. Then the following is true:

TE1l: E s multiplicative.

TE2: The equivalence relation E|M is order compatible.

TE3: If zeU and ex ~g0, then x~pg0.

The structure of the supertropical semiring U/E is uniquely determined by the following
data.

a) If x,y € U, then [z]g - [y]r = [2y]E.
b) The ghost ideal of U/E is

M/E = {|z]g | v € U}.
c) If z,y € M, then
<y = [z]le<[yle

Definition 4.5. We call an equivalence relation on U which has the properties TE1-TES3
a TE-relation.

Not every T E-relation is transmissive as will be clear from [IKR3]. Something “non-
universal” has to be added to guarantee that a given T E-relation is transmissive. We
now show one such condition.

Definition 4.6. We call a multiplicative equivalence relation EE on U ghost-cancellative
if the following holds.

Ve,y,z€elU: Ifxz~pyz, and z+#p0, then x~pguy. (Canc)

This means that the monoid (M /E)\{0} is cancellative. {If U = M, we usually say
“cancellative” for “ghost-cancellative”.}

We arrive at the main result of this section.

Theorem 4.7. Let U be a supertropical semiring and M = eU its ghost ideal. Assume
that E is a TE-relation on U. Assume also that E is ghost-cancellative. Then E 1is
transmissive.

Proof. Let U denote the set U/E, and, for any x € U, let & = [2]g. Proposition 4.2 tells
us that, due to TE'l and T E2, we have the structure of a bipotent semiring on the set

M = M/E :={z | v e M},

such that the map M — M, x — Z, is a semiring homomorphism. It has the unit
element € (e := ey) and the zero element 0. The assumption (Canc) means that M is
cancellative. We have U - M < M. The map p : U — M, p(z) := éx = e is a monoid
homomorphism with p(Z) = Z for x € M. The assumption T'E3 means that p=*(0) = {0}.
Thus, Theorem 3.1 applies and gives us the structure of a supertropical semidomain on
the set U with ghost map v = p and ghost ideal M.

It remains to prove that the map 7g : U — U, z — 7, is a transmission. We have to
check the axioms T'M1-T'M5 in [IKR1, §5]. The first four axioms T'M 1-T'M4 are evident.
TMS5 holds, since indeed the map M — M, x +— Z, is a semiring homomorphism. OJ
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This theorem allows a second approach to the key result of §1, Theorems 1.11 and 1.13,
which seems to be faster than the route taken in §1 (but perhaps gives less insight).

Example 4.8. We return to the assumptions of Theorems 1.11 and 1.13: U is a su-
pertropical semiring, and 7y is a surjective homomorphism from M := eU to a cancellative
bipotent semidomain M'. We define a binary relation F := F(U,~) on U, decreeing

Ty ~p Ty & either x1 =uxy, or 7(er) =y(exs), x1 = exy, To = exs,
or y(exy) = y(exy) = 0.

One verifies directly in an easy way that F is an equivalence relation. Clearly F' is
multiplicative. The restriction

FIM :=F n (M x M)

is order compatible, since vy preserves the ordering (in the weak sense). For x € U we have
x ~p 0 iff y(ex) = 0 iff ex ~g 0. Thus axioms TE1-TE3 are valid. The semiring M /F
is 1isomorphic to M’ wvia vy, and hence is a cancellative semidomain. Now Theorem 4.7
tells us that the map mp 1s transmissive.

Then the proof of Theorem 1.13 gives us that g is a pushout transmission. {One
does not need to know for this that mp is initial.} Alternatively, one may use a more
general result on pushout transmissions given below (Theorem 4.13). In particular, in
Notation 1.7,

FU,~) = EU,").

In [IKR1, §8] we introduced orbital equivalence relations. Typically a relation F(U,~),
as just considered, is almost never orbital. We now ask for those orbital equivalence
relations which are transmissive.

Lemma 4.9. Let M be a totally ordered set and H an (abelian) semigroup® which operates
on M in an order preserving way. {If v,y € M, h € H, and x <y, then hx < hy.} We
introduce on M an equivalence relation E := E(H) as follows:

r~py < dg,he H:gx=hy.
Assume that for every x € M the orbit Hx is convex in M. Then E is order compatible.

Proof. We verify that every equivalence class of E is convex, and then will be done (cf. Re-
mark 4.1). Let z1,29,y € M be given with z; < y < x9, and x; ~g x9. There exist
elements hq, hy in H with hyxy = hoxo. This implies

hoxy < hoy < hoxo = hyzy.
Since Hxy is convex, there exists some hg € H with hoy = hzxy; hence y ~g 7. ]

If G is a (totally) ordered (abelian) cancellative semigroup, we denote the group en-
velope of G (given in the well-known way by fractions Z—; with g1,92 € G) by (G). We

equip (G) with the unique ordering which extends the given ordering of G and is com-
patible with multiplication.

9All semigroups occurring in this paper are assumed to be abelian.
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Theorem 4.10. Let U be a supertropical semiring with ghost ideal M := eU, and let H
be a submonoid of

SWU):={xeU | 2T(U)<cT(U)}.
Finally, let
q:={zeM|3JheH :hx=0}={xeM|x~y0}

which is an ideal of M. Assume that M is a semidomain.

a) The semigroup H operates on M, and hence on M\q, by multiplication in an order
preserving way. FEither q is a lower set and a prime ideal of M, or q = M.

b) If q # M, and the monoid M\q is cancellative, and the submonoid vy(H) = He
of M\q is convex in the ordered abelian group (M\q), then E(H) is transmissive.

c) If g = M, then U/E is the null ring, and hence E(H) is again transmissive.

Proof. a) If 1,29 € M, h € H, and x; < x9, then x1 + x9 = x9; hence hxy + hxy = has,
and thus hxy < haxy. f x € q, y € M and y < x, there exists some h € H with hx = 0.
We have hy < hx; hence hy = 0, and thus y € q. Thus q is a lower set of M. Clearly,
h(M\q) < M\q for every h € H.

If z,y € M are given with zy € q, then there exists some h € H with hxy = 0. Since M
is a semidomain, it follows that hx = 0 or y = 0, and hence = € q or y € q. This proves
that the ideal q of M is prime.

b) We will use Theorem 4.7. The equivalence relation F(H) is multiplicative. For any
x € U with ex ~p 0, there exists some h € H with e(hx) = h(ex) = 0. This implies
hx =0, and hence x ~y 0. Thus E(H) obeys TE1 and TE3.

We verify TE2 by proving that every equivalence class of E(H)|M is convex. Let
1, T2, x3 € M be given with 1 < 9 < x3 and 1 ~g x3. We need to be convinced that
Tr1 ~Hg Ta.

Case 1. x1 € q, i.e., x1 ~g 0. Then z3 ~p 0. Since q is a lower set, we conclude that
T9 ~p 0, and hence 1 ~y xs.

Case 2. x1 ¢ q. Now all z; lie in M\q, since M\q is an upper set. We verify that
for every x € M\q the orbit Hz is convex in M\q. Then Lemma 4.9 will tell us that
the restriction of E(H) to M\q is order compatible. This will imply that 1 ~g 9, as
desired.

Let z,y € M\q and hy, hy € H be given with hix < y < hox. In the ordered abelian
group (M\q), we have h; < yz ! < hy. By our convexity hypothesis, this implies yz ! =
hs € H. Thus y = hyxr € Hx, as desired. T'E2 is verified.

It remains to check that E(H) is ghost-cancellative. Let z,y,z € M be given with
xz ~gyz, 2 #g 0. Thus 2z ¢ q. We have elements hy, hy in H with hjzz = hoyz.

If x € q, then hoyz € q, and hence y € q, since q is prime. Thus x ~py y in this case.
The same holds if y € q. Assume finally that =,y € M\qg. The assumption that the monoid
M\q is cancellative implies that h;x = hoy; hence, © ~y y again.

Now Theorem 4.7 tells us that indeed F(H) is transmissive.

c) If ¢ = M then ex ~p 0 for every z € U, and hence © ~g 0 by an argument from (b)
above. Thus U/E(H) = {0}. O

Example 4.11. In the case that U is a supertropical semifield, M = T" v {0} with I' an
ordered abelian group, the situation addressed in Theorem 4.10 reads as follows:
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Let H be a subgroup of T (U) whose image A := He in 1" is convex inI'. Then U/E(H)
is just the orbit space U/H (in the traditional sense), and q = {0}. We have

TW/H)=TWU)/H, GWU/H)=T/A, eym= He.
The map g from U to U/E(H) sends an element x of U to Hx. It is a transmission. It
covers the semiring homomorphism
va : T'u {0} - T'/A U {0},

which sends an element g of I to gA and 0 to 0.

If A +# {e}, then wg is not a semiring homomorphism. Indeed, we can choose elements
x,y € T(U) with Hr = Hy, but ex < ey. Then x +y = y; hence my(x +y) = Hy, while
ma(z) + mH(y) = eHy = A(ey). Notice also that the transmission Ty is not initial, since
E(H) is different from the relation E(U,~vy) described in Example 4.8.

We return to transmissive equivalence relations in general.

Definition 4.12. We call a transmissive equivalence relation E on a supertropical semir-
ing U initial (resp. pushout) if the transmission g : U — U/E is initial (resp. pushout)
(cf. Definitions 1.2 and 1.3).

We now bring a condition which guarantees that a given transmissive equivalence re-
lation £ is pushout. The proof will follow essentially the same arguments as used in
Theorem 1.13 in the case considered there and reconsidered in Example 4.8.

Theorem 4.13. Assume that E is a transmissive equivalence relation on a supertropical
semiring U with the following additional property:

IfxeTU),yeU, and x ~g y, then either t =y or x ~g 0 (and hence y ~g 0).
Then E is pushout.

Proof. Let M := eU, and let vg : M — M /FE denote the ghost component of the trans-
mission 7 : U — U/E.

In order to verify the pushout property of mg, assume that 6 : M/E — N is a homo-
morphism from M /FE to a bipotent semiring N and 5 : U — V is a transmission covering
d ovg. {In particular, eV = N}.

We look for a transmission 1 : U/E — V covering § with nong = (.

M—>M/E—-

e
We are forced to define the map n by the formula
n([z]e) = B(x)  (zel).

In order to prove that 7 is a well-defined map, we have to verify for x,y € U with x ~g y

that 5(z) = 5(y).
Case 1. x € M, ye M. Now

B(z) = 0ve(z) = ([z]r)
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and B(y) = 6(|y]g)- Since x ~g y, we conclude that (z) = B(y).

Case 2. x € T(U). If x = y, then, of course, B(x) = [(y). Otherwise z ~g 0, y ~g 0
by the hypothesis of the theorem; hence ex ~g 0, ey ~g 0. By the settled first case, we
conclude that ef(z) = f(ex) = 0, which implies S(z) = 0. In the same way, 8(y) = 0.
Thus 5(z) = (y) again.

The case that y € T(U) is now settled, too. Thus, 7 is indeed a well-defined map. We
have nmp = 5.

Since both f and 7 are transmissions, and 7 is surjective, we know by [IKR1, Propo-
sition 6.1.ii] that 7 is a transmission. By assumption 3(x) = 6([x]g) for every x € M. But
also B(x) = n([x]g). Thus n covers 0. The pushout property of 7g is verified. O

5. THE EQUIVALENCE RELATIONS F(a)

We study a class of transmissive equivalence relations which turns out to be particularly
well accessible.

If Ris aring and a is an ideal of R we have the well-known equivalence relation “mod a”
at our disposal. We write down the obvious analogue of this relation for semirings.

Definition 5.1. Let R be a semiring and a an ideal of R. We define an equivalence
relation E(a) on R as follows, writing ~q instead of ~pa) -

T~y < dabea:x+a=y-+b.

For # € R we denote the equivalence class [x]g() more briefly by [z]., and denote the
map x — [7], from R to the set R/E(a) usually by 7, instead of mg().

If z,y,2 € R and © ~, vy, then clearly x + 2 ~, y + z and zz ~, yz. Thus, we have a
well-defined addition and multiplication on the set R/E(a), given by the rules (z,y € R)

[x]a + [y]a = [m + y]aa
[z]a - [y]a == [2Y]a

With these compositions R/FE(a) is a semiring and 7, is a homomorphism from R onto
R/E(a), ct. [RS].

Theorem 5.2. If R is supertropical, then for any ideal a of R the relation E(a) is trans-
missive.

Proof. Any homomorphism between supertropical semirings clearly obeys the axioms
TM1-TM5 from [IKRI1, §5], hence is a transmissive map. Thus our task is only to prove
that the semiring U/FE(a) is supertropical.

We verify directly the axioms (3.3'), (3.37), (3.3) from [IKR1, §3] for the semiring
U/E(a), i.e.,

(33)a: 14+1+1+1~41+1,
(33)a: THT~Y+Y=>T+T ~T+7Y,
(3-3)at Ta(x) # Maly) = 7a(@) + Ma(y) € {ma(2), ma(y)}-

Clearly (3.3"), holds since (3.3) of [IKR1] holds for R, and (3.3), holds since (3.3) of
[IKR1] holds for R and m4(z) + ma(y) = ma(z + y).
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We turn to (3.3),. We are given a,be a withz+2+a =y+y+b. Weadd ¢ := e(a+Db)
to both sides and obtain z + = + ¢ = y + y + ¢. Since ¢ + ¢ = c it follows that
(x+ce)+(x+c)=(y+c)+ (y+c).
Now (3.3") for R gives us
(z+c)+ (x+c)=(x+c)+ (y+c).
Thus x + x ~, x + vy, as desired. O
Let again R be any semiring. In contrast to the case of rings, different ideals a, b of R
may give the same relation E(a) = E(b), but this ambiguity can be tamed.
Clearly a; := [0], is again an ideal of the semiring R. It consists of all x € R with
T + a € a for some a € a. We call a; the saturum of a, and we write a; = sat a. We call
a saturated (in U), if a = a;.
Proposition 5.3. Let R be any semiring and a,b ideals of R.
i) E(a) = E(sata);
ii) E(a) c E(b) iff sat a < sat b;
iii) sata is the unique biggest ideal a' of R with E(a") = E(a).

Proof. a) If a < b then E(a) ¢ E(b). Conversely, if E(a)  E(b), then [0], < [0]s, i.e.,
sata < sat b.
b) Let a; := sata. If z ~,, y, then there exist z,w € a; with z + z = y + w, and there
exist a,b e a with z+a € a, w+ b€ a. It follows that
r+(z+a)+b=y+ (w+0b)+a,
which tells us that z ~; y. Thus E(a;) = E(a).
c) If sat a < sat b, then

E(a) = E(sata) c E(satb) = E(b).
Now the claims i) and ii) are evident.
d) If E(a") = E(a), then it follows from ii) that sat a’ = sat a, and hence o’ c sata. O

Assume now that U is a supertropical semiring with ghost ideal M := eU. Then we can
give a very precise description of the relation E(a) for any ideal a of U.

Theorem 5.4. Let a be an ideal of U. The equivalence classes of the relation E(a) are the
set [0], = sat a and the one-point sets {x} with x € U\ sata. More precisely the following
holds:

i) If ex > ea (i.e., ex > ea Ya € a), then [z], = {x}.
ii) If ex < ea for some a € a, then x ~, 0.

Proof. 1) Assume that ex > ea and x ~, y. There exist elements a, b in a with z+a = y+b.
Now ex > ea, and hence z +a = x. From ex = ey + eb we conclude that ex = max(ey, eb).
But ex > eb. Thus ex = ey, and y + b = y. We have x = y.

ii) If ex < ea for some a € a, then x + a = a, and hence z ~, 0. If ex = ea for some
a € a, then z + a = ea, and hence again x ~, 0. O
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The set ea is an ideal of both U and M; hence, it gives us a relation Ey(ea) on U and
a relation Ejs(ea) on M. It further gives us ideals saty(ea) and satys(ea) of U and M,
respectively.

Corollary 5.5. Let a be an ideal of U.

i) saty a is the set of all x € U with ex < ¢ for some c € eq.

ii) a is saturated in U iff ea is a lower set of M and every x € U with ex € a is itself
an element of a.

iii) saty(ea) = saty(a).

iv) satyr(ea) = saty(a) n M = esaty(a).

v) Ey(a) = Ey(ea).

vi) The restriction Ey(a)|M = Ey(a)n (M x M) of the relation Ey(a) to M coincides

with Ey(ea).

Proof. (i) is evident from Theorem 5.4, since saty(a) = [0],, and (ii), (iii) are evident
from (i). We then obtain (iv) by applying (i) to both U and M. {More generally, eb =
b~ M for any ideal b of U.} Claim (v) is clear, because the description of Fy(a) does not
change if we replace a by ea. Finally, we read off (vi) by applying Theorem 5.4 to both U
and M. O

Corollary 5.6. If a and b are ideals of U, then Ey(a) < Ey(b) or Ey(b) < Ey(a).

Proof. We may assume from the start that a and b are saturated. Now ea and eb are lower
sets of M. Thus, ea < eb or eb < ea. This implies that a = b or b < a (cf. Corollary 5.5.1),
hence E(a) < E(b) or E(b) < E(a). O

Example 5.7. The unique maximal saturated proper ideal of U is
a:={zrelU|ex<el.

It is easily seen to be a prime ideal (provided U is not the null ring), but perhaps a is not
a mazimal ideal of U. Take for ezample U = M = Ny = N U {0}, where N is the ordered
monoid {1,2,3,...} with standard multiplication and standard ordering. Now a = {0},
but M\{1} is the only mazimal ideal of M.

From Corollary 5.5 we can read off further facts about saturated ideals, which will be
needed later on.
Scholium 5.8. As before, U is a supertropical semiring, and M := eU.

a) An ideal of U is saturated, iff ea(= an M) is saturated in M, and moreover every
x € U with ex € a is an element of a.

b) If ¢ is a saturated ideal of M, then a := {x € U | ex € ¢} is a saturated ideal of U
and ea = c.

c) The saturated ideals a of U correspond uniquely with the ideals ¢ of M which are
lower sets via

c=ea(=anM), a={reU |exec}
Proof. a) Clear from Corollary 5.5.ii,iv.

b) We have ¢ < a, and hence ¢ = ea. Now use a).

c) Now evident, taking into account Corollary 5.5.ii. 0]
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The saturated ideals of U form a chain (Corollary 5.6). We ask: which of these ideals
are prime ideals? In particular, given a saturated ideal a # U, does there exist a saturated
prime ideal p D a? If “Yes”, which is the smallest one?

These questions can be pushed to the ghost level by the following simple observation.

Lemma 5.9. Assume that a is an ideal of U with e ¢ a. Then a is a prime ideal of U, iff
ea(=an M) is a prime ideal of M and every x € U with ex € ea is an element of a.

Proof. a) If a is prime in U, then ea = a n M is prime in M. Moreover, if z € U and
ex € ea, then ex € a. Since e ¢ a, it follows that x € a.

b) Assume that ea is prime in M and z € a for every z € U with ex € ea. Let y,z € U
be given with yz € a. Then (ey)(ez) € ea; hence, ey € a or ez € a, implying y € a or z € a.
Thus a is prime. O]

N.B. The condition e ¢ a is important here. For example, if 7(U) is closed under
multiplication, then a := eU is prime in U, but a n M = M is not prime in M.

Proposition 5.10.

i) The prime ideals a of U with e ¢ a correspond uniquely with the prime ideals ¢ of
M wvia ¢ = ea(=an M) and

a={reU|exec}
ii) a is a saturated prime ideal of U iff ea is a saturated prime ideal of M.

Proof. i) is clear by Lemma 5.9. Now ii) follows by Scholium 5.8.a. (Notice that if a is a
saturated ideal of U and a # U, then e ¢ a, since 1 + e =e.) O

Theorem 5.11. Let a be a saturated ideal of U and a # U. Then
b:={rxelU|IneN:ex" €a}
1s a prime ideal of U. It is the smallest prime ideal containing a, and it coincides with the
radical v/a of a, defined by
Va:={zeU |IneN:z"€ea}.
Proof. a) If ¢ is an ideal of M, let
Ve={reM|IneN:z"ec}.
In this notation
b={xeU]|exeea}.
By Proposition 5.10 it is clear that it suffices to prove that y/ea is the smallest saturated

prime ideal of M containing ea. We have e ¢ a, since otherwise the relation 1 + e = e
would imply that 1 € sata = a. Thus e ¢ ¢, hence e ¢ +/c.

b) Let ¢ := ea. This is a saturated ideal of M, i.e., an ideal of M which is a lower set of
M (cf. Scholium 5.8). Clearly M - \/c < 4/c, and hence /¢ is an ideal of M. Let z € 4/c,
y € M and y < x. Choosing some n € N with 2" € ¢, we have y™ < z"; hence, y" € ¢, and
y € 4/c. Thus /¢ is a lower set of M. The ideal 4/c is saturated in M.

c) Let x,y € M be given with zy € y/c. Assume that y < z. We have y? < zy, and
hence y? € /¢, implying y € /c. This proves that /¢ is prime in M.
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d) Let p be a prime ideal of M containing c. If 2 € y/¢ then 2™ € ¢ < p for some n € N,
and hence x € p.

e) If z € U and ex™ € a for some n € N, then 2™ € a since 2" + ez = ex™ and a is
saturated. Thus b = \/a. O

Our proof that Ey(a) is transmissive (Proposition 4.4) does not rely on the criterion
Theorem 4.7 (nor on any other theory). In particular, it is not necessary to assume that
Ey(a) is ghost-cancellative (i.e., the ghost ideal M /Ey(a) of U/Ey(a) is cancellative, cf.
§2). In fact, the following theorem tells us that this often does not hold.

Theorem 5.12. Assume that M = eU is a cancellative semidomain. Let a be a saturated
ideal of U with a # U. The following are equivalent:

(1) The ghost ideal M /Ey(a) of U/Ey(a) is a cancellative semidomain.
(2) ea is a prime ideal of M.
(3) a is a prime ideal of U.

Proof. a) We first study the case that U is ghost, i.e., U = M. Condition (1) means the
following.
Ve,yxe M : xz~,yz, 2¢0 = T ~q9.
If this holds, then taking y = 0 we see that a is a prime ideal. This proves (1) = (2).
Assume now that a is prime. Let x,y, z € M be given with zz ~, yz and z ¢ a.
Case 1. x € a. Then yz € a. Since a is prime, we conclude that y € a. Thus, z ~, 0 ~, ¥.
Case 2. = ¢ a. Now xz ¢ a. Taking into account Theorem 5.4 we obtain xz = yz. Since
M is cancellative, this implies z = y. Thus = ~, y in both cases. This proves (2) = (1).

b) Let now U be any supertropical semiring. The ideal ea is saturated in M (cf.
Scholium 5.8), and M/Ey(a) = M /Ey(ea) (cf. Corollary 5.5.vi).

Applying what has been proved to M and ea, we see that M /Ey(a) is cancellative iff
ea is prime in M. By Proposition 5.10.ii this is equivalent to a being prime in U. U

Example 5.13. Let M := [0, 1] be the closed unit interval of R with the usual multipli-
cation and the addition x +y := max(x,y). M is a cancellative bipotent semidomain. We
choose some 6 €]0,1[. Then a := [0,0] is an ideal and a lower set of M, and hence is a
saturated ideal of M. But a is not prime, since the half open interval 10,1] is not closed
under multiplication. In fact, the only saturated prime ideals of M are {0} and [0, 1].

The bipotent semiring M /E(a) can be identified with the subset {0}u]6d,1] of [0,1]
equipped with the new multiplication

xy if xy>40
Ty = :
0 iof xzy<¥6
and the addition
@y = max(z,y).
Theorem 5.14. If a is any ideal of a supertropical semiring U, then the transmissive

equivalence relation E(a) is pushout (i.e., the transmission m, is pushout, cf. Defini-
tion 4.12).

Proof. We may assume that a is saturated. Looking at the description of E(a) in Theo-
rem 5.4, we realize that the hypothesis in Theorem 4.13 holds for £ = E(a). Thus, E(a)
is pushout. O
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It follows that, in the terminology of Notation 1.7,
E(a) = E(U,7,)

with v, the map z — [z], from M to M /E(a) covered by m,. Notice that Theorem 5.14 is
not covered by the central result Theorem 1.13 in §1, since we do not assume cancellation
for M/E(a).

We draw a connection from the relations F/(a) to other equivalence relations.
Theorem 5.15. Let E be a T E-relation (e.g., E is a transmissive equivalence relation).

The set q := [0]g is a saturated ideal of U with E(q) < E. Moreover, q is the biggest ideal
a of U with E(a) c E.

Proof. a) If x ~p 0, then zz ~g 0 for any z € U. Thus U - q < q.
b) From eq — q we conclude that eq = g n M = [0]g n M. This is convex in M and
contains 0, hence is a lower set of M.

¢) By axiom TE3 every x € U with ez € q is an element of q.

d) Let z,y € q be given, and assume without loss of generality that ex < ey. Then
e(r +y) = ey € q, and hence z + y € q. This completes the proof that q is an ideal of U.
We conclude from ¢) and Scholium 5.8.a that this ideal is saturated.

e) The equivalence classes of E(q) are q = [0] g and one-point sets (Theorem 5.4). Thus,
certainly F(q) c E. If E(a) € E then

acsata=[0], < [0]z = q.
U

Notation 5.16. If E. F are equivalence relations on a set X with E < F, we denote by
F/E the equivalence relation induced by F on the set X /E. Thus, for z,y € X,

[2]Ee ~F/E lyle < x~py.

Proposition 5.17. Let E be a transmissive equivalence relation on U and q := [0]g. We
know by Theorem 5.15 that q is an ideal of U and E(q) < E. Let

E := E/E(q).
i) E is transmissive.
ii) E is pushout iff E is pushout.
Proof. i) We have the factorization 7g = 7 o 7. Since mp and 7, are transmissive and

7 1s surjective, we conclude that 75 is transmissive (cf. [IKR1, Proposition 6.1.ii or
Corollary 6.2]).

ii) We have a natural commuting diagram of transmissions

.

with v, and 5 the ghost components of m; and vz, respectively. Theorem 4.13 tells us
that the left square is pushout in the category STROP. Since 7, is surjective, it follows
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that the outer rectangle is pushout iff the right square is pushout (e.g. [ML, p. 72,
Exercise 8]). This gives the second claim. O

6. HOMOMORPHIC EQUIVALENCE RELATIONS
Let R be a semiring.

Definition 6.1. We call an equivalence relation E on R additive, if
Ve,y2e R:x ~gy=x+2~gy+2,
and multiplicative, if
Vr,y,2€ R:x ~pgy= 22z ~p yz.
We call E homomorphic, if E is both additive and multiplicative.

If E is homomorphic, we have a well-defined addition and multiplication on the set
R/E, given by the rules (z,y € R) :

[2]e + [yle = [e +yle,  [2]s- [y]e = [2y]e,
and these make R/FE a semiring. Moreover, we can say that an equivalence relation E
on R is homomorphic, iff there exists a (unique) semiring structure on the set R/E, such
that 75 : R > R/E, v — [x]g, is a homomorphism.
In the following, U is always a supertropical semiring and M := eU is its ghost ideal.

Examples 6.2. We have already seen two instances of homomorphic equivalence relations
on U, namely, the MFCE-relations and the relations E(a) with a an ideal of U.

On the other hand, if v : M — M’ is a homomorphism from M to a cancellative bipotent
semiring M’ the transmissive equivalence relation E := E(U,~) (c¢f. Theorem 1.11) will
usually not be additive, hence not homomorphic. Indeed, if x1,29 € M, z € T(U) and
er) < ez < exg, Ty ~p Ty, i.€., Y(x1) = y(x2), but y(x1) # 0, then 1+ 2z =z € T(U) and
To+ 2z =1x9€ M; hence, x1 + 2 #g 9 + 2.

We have the following remarkable fact, a special case of which occurred already in
Theorem 5.2.

Theorem 6.3. Every homomorphic equivalence relation on U is transmissive. {In other
terms, every homomorphic image of a supertropical semiring is again supertropical.}

Proof. As in the proof of Theorem 5.2, we see that the only problem is to prove that
the semiring U/E is supertropical. For this only the axiom (3.3") from [IKR1, §3] needs
serious consideration.

Given x,y € U with ex ~g ey, we have to verify that ex ~g x+y. We may assume that
ex < ey. Now, if ex = ey, then ex = x +y. If ex < ey, then z +y =y and ex + y = v,
hence

rT+y=er+y ~gey+y=ey ~gex.
Thus, indeed ex ~g x + y in both cases. 0

We seek a more detailed understanding of the homomorphic equivalence relations on
a supertropical semiring U. As an intermediate step we analyze the additive equivalence
relations on U.

Proposition 6.4. Let E be an equivalence relation on U. The following are equivalent.
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(1) E is additive.
(2) E obeys the following rules.
AEl: x~py=ex ~pey.
AE2: E|M is order compatible.
AE3: Ifer <ey and ex ~g ey, then ex ~g .
Proof. We write ~ for ~g . (1) = (2):
a) If x ~ gy, then
er=r+r~Yy+r~y+y=ey.
b) We verify that every equivalence class of E|M is convex, which will prove order

compatibility of E|M (cf. Remark 4.1). Let xy, 29,y € M and assume that z; ~ xo and
r1 <y < x9. Then

Yy=2x1+ty~2T2+y =T
hence also y ~ z7.

c¢) Assume that ex < ey and ex ~g ey. Then
Yy=er+y~ey+y=ey~ex.

(2) = (1) : Given xy,x9,2z € U with x; ~ x9, we have to verify that z; + z ~ xs + 2.
We may assume that ex; < exs.
We distinguish six cases.

1) If ez < exy, we have z + x; = z; (1 = 1,2).

)
2) If ez > exq, we have z + 2, = z (i = 1,2).
3) If exy = ez < exq, then z + 1 = exy, 2 + 19 = x9. By AE3, we have ex; ~ z5.
4) If ey < ez < ewq, then z + 2y = 2z, z + 9 = x9. By AE3, we have ex; ~ z,
er1 ~ TIa.
5) If ex; < ez = exs, then z + 1 = 2, 2 + 9 = exy. By AE3, ex; ~ z. By AEL,
€Ty ~ ery.

6) If ex; = ez = exs, then z + 11 = ez and z + 25 = ez.

We see that in all six cases indeed z + 21 ~ 2z + Z. O

Example 6.5. Assume that E is fiber conserving, i.e., x ~g y implies ex = ey ([IKR1,
Definition 6.3]. Then E is additive. Indeed, the conditions AE1-AE3 hold trivially, AE3
being empty.

Theorem 6.6. Fvery additive equivalence relation E on U arises in the following way.
Choose a partition (M; | i € I) into non-empty convex subsets of M. Let J denote the set
of all indices i € I such that M; has a smallest element a; and a; # 0. Choose for every
i € J an equivalence relation E; on the fiber {x € U | ex = a;}. If x,y are elements of U
with ex < ey, define

x~py: < There exists some 1 € I with ex,ey e M;;
and in case 1 € J, either ex > a;
orer =a; and x ~p, ex,
orer=ey =a; and T ~pg, Y.

If v,y e U and ex > ey, define, of course, xt ~gpy: <y ~p x.



DOMINANCE AND TRANSMISSIONS IN SUPERTROPICAL VALUATION THEORY 35

Proof. Given an additive equivalence relation £ on U, this description of F holds with
(M; | i € I) the set of equivalence classes of E' | M, indexed in some way, and E; := E | M;
for i € J, due to the properties AE1-AE3 stated in the Proposition 6.4. Conversely, if data
(M; |iel)and (E; | je J) are given, as indicated in the theorem, it is fairly obvious that
the binary relation defined there is an equivalence relation obeying AE1-AE3. {Notice
that the fiber Uy over 0 € M is the one-point set {0}. Thus, we may omit the index i with
0 € M; in the set J.} Proposition 6.4 tells us that F is additive. 0J

When dealing with additive equivalence relations, we now strive for a more intrinsic
notation than the one used in Theorem 6.6.

As noticed above (Remark 4.1), an additive (= order compatible) equivalence relation
® on M is the same thing as a partition of M into convex subsets, namely, the partition
of M into the equivalence classes of ®,

®=(|§eM/P).
Notation 6.7.
a) Given an additive equivalence relation ® on M, define
L(®):={zeM |xz+#0 and x <y for every y € M with v ~¢ y}.

Thus, L(®) consists of those x € L which are the smallest element of [z]s.
b) If E is an additive equivalence relation on U, define

L(E) := L(E|M).

Of course, L(®) and L(E) may be empty. Clearly, [0]¢ N L(®) = & and [0]p n L(E) =
.

We can rewrite Theorem 6.6 as follows:

Theorem 6.6’. Given an additive equivalence relation ® on M and for every a € L :=
L(®) an equivalence relation E, on the set

Uy ={xeU]|er=a},

there exists a unique additive equivalence relation E on U with E|\M = ® and E|U, = E,
for every a € L. It can be described as follows:
Let x,y € U and ex < ey.

1) If ex ¢ L, then
r~pY < €T ~p €Y.
2) If ex = a€ L, but ey > a, then
T~pY & ex~gpey and x ~p, ex.

3) If ex = ey =ae€ L, then

T~gY < T ~EF, Y.

We want to analyze under which conditions on the data ® and (E, | a € L(®)) the
additive relation E will also be multiplicative, hence homomorphic. For this we need still
another preparation, namely, a study of the set

AE) :={zeU |z ~pex}.
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It turns out that it is appropriate to start with an even weaker property of E than
additivity.

Definition 6.8. We call an equivalence relation E on the supertropical semiring U ghost
compatible, if the condition AE1 from above holds, i.e.,

Ve,yelU:x ~gy=ex ~gey.
Clearly, every multiplicative and every additive equivalence relation is ghost compatible.

Lemma 6.9.
a) If E is any equivalence relation on U, then M < A(E) and A(E) + A(E) < A(E).
b) If E is ghost compatible, then
AE)={zeU | 3zeM:x ~p z}.
c) If E is multiplicative, then A(E) is an ideal of U.

Proof. a): It is trivial that M < A(FE). Let x,y € A(E) be given with ex < ey (without loss
of generality). If ex < ey, then z+y =y € A(E). If ex = ey, thenz+y = ey € M < A(E).

b): Assume that z € U, z € M, and © ~p 2. Then ex ~p ez = z, since E is ghost
compatible. It follows that x ~g ex.

c): If x ~p ex, then zzx ~g ezx for every z € U, since E is multiplicative. Thus
U-A(E) c A(E). It follows by a) that A(E) is an ideal of U. O

Remark 6.10. If E is additive, then, using the data from Theorem 6.6', we have
AE)=f{weU|ex¢ Lyu| J{rels |z ~g, a}.
aeL

Theorem 6.11. Assume that E is an additive equivalence relation on U with the data
o= FE|M, A:=AF), L:=L(P), E,:=E|U,
for a e L. The following are equivalent:

a) E is multiplicative (hence homomorphic).
b) ® is multiplicative. 2 is an ideal of U. For any a € L, x,y € U\ with ex = ey = a,
and z € U with za € L :

T ~Eg, Y = 2T ~g, 2Y.

Proof. a) = b): evident.

b) = a): Let z,y,z € U be given with x ~g y. We have to verify that zz ~g yz. Since
E is ghost compatible and ® is multiplicative, exz ~g eyz.

Case 1. z € A ory € A Due to Lemma 6.9.b, the set A = A(E) is a union of
equivalence classes of F/. Thus both = and y are in 2(. Since 2l is assumed to be an ideal,
zx and zy are in A, and then

2 ~p €ZX ~p exy ~p 2Y.

Case 2. z ¢ A and y ¢ A. Now ex € L, ey € L. Since ex ~¢ ey, it follows that
ex =ey =-a€ L. Thus x ~g, y. If za ¢ L, then zx and zy are in 2, and we conclude
as above that zoz ~p zy. If za € L, we conclude from = ~p, y by assumption b) that
2 ~p,, 2Y.

Thus, zz ~g zy in all cases. O
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We introduce a special class of ghost-compatible equivalence relations, and then will
identify the homomorphic relations among these.

Definition 6.12. Let ® be an equivalence relation on the set M, and let A be a subset of
U containing M. We define an equivalence relation E := E(U, 2, ®) on U as follows:

T1 ~p Ty < Fither x1 = xo,
orxi e, ro €A, and exy ~4 exs.
O

The equivalence classes of E' = E(U,2, @) are the sets {x € A | ex € £}, with £ running
through M /®, and the one point sets {z} with x € U\. Clearly E is ghost compatible
and E|M = ®.

There is a structural characterization of E(U, 2, ®).

Proposition 6.13. Let £ := E(U, A, @) with ® an equivalence relation on M and 2 a
subset of U containing M.
i) A(E) =2
ii) E is the finest ghost compatible equivalence relation on U with E|M > ® and
A(E) o L.
Proof. 1): If x € A, then clearly z ~g ex. But, if x ¢ 2, then x # ez, and hence x %£p ex.

ii): Let F' be a ghost compatible equivalence relation on U with F|M > ® and A(F) o
2. Let x € U be given. We verify that [z]g < [z].

Case 1. x ¢ A. Now [z]g = {z} < [z]p.

Case 2. x € Let y ~p x. Then y € A and ex ~¢ ex. Thus, v ~p ex, y ~p ey,
ex ~p ey. We conclude that y ~p x. Thus again [z]g < [z]p. O

Theorem 6.14. Let again E := E(U,2, ®) with ® an equivalence relation on U and A
a subset of U containing M.

i) E is multiplicative iff ® is multiplicative and A is an ideal of U.
ii) E is additive, iff ® is order compatible and A contains every x € U with ex ¢ L(®P).
iii) Thus, E is homomorphic, iff ® is homomorphic and 2 is an ideal containing
vy (M\L(®)).
Proof. a) We know that
A=AFE)={zeU |JzeM:x ~p 2},
and that 20 + 2 < 2L

b) If E is multiplicative, then, of course, ® is multiplicative, and 2l is an ideal by
Lemma 6.9.c. If F is additive, then ® is additive, which means that ® is order compatible.
Also then A contains every x € U with ex ¢ L(®) by Property AE3 in Proposition 6.4. If
FE is homomorphic, then all these properties hold.

c¢) Assume now that ® is multiplicative, and 2 is an ideal of U. We want to prove that £
is multiplicative. Let x,y, z € U be given with z ~p y. We want to verify that xz ~p yz.
If z € A, then y € A and ex ~4 ey; hence, exz ~5 eyz. Since xz,yz € A, we conclude
that xz ~g yz. If x ¢ A, then x = y, and hence xz = yz.

d) Assume that ® is order compatible and x € 2 for every z € U with ex ¢ L(P). We
want to prove that F is additive, and we use the criterion of Proposition 6.4 for this.
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Clearly, E obeys the axioms AE1 and AE2 there. It remains to check AE3. Let z,y e U
be given with ex < ey and ex ~p ey, i.e., ex ~¢ ey. Then ey ¢ L(P). By our assumption
on A = A(FE) it follows that y € 2, i.e., y ~g ey. We conclude that ex ~g y, as desired.
Thus E is indeed additive.

e) We have proved claims i) and ii) of the theorem. They implies iii). O

We discuss the special case that ® is the diagonal of M, & = diag M. In other words,
x ~¢ y iff x = y. We write more briefly E(U, ) for E(U,%, diag M). Repeating Defini-
tion 6.12 in this case we have

Definition 6.15. Let 2 be any ideal of the supertropical semiring U containing the ghost
ideal M of U. The equivalence relation E = E(U,2) on U is defined as follows: Let
x,yeU.

IfxgA: x~pysx=1y.

Ifred: x~py<syeld exr=ey. 0

Clearly L(diag M) = M\{0}. Thus, Theorem 6.14 tells us that the equivalence relation

E(U, %) is homomorphic. This also follows from [IKR1, §6], since E(U,2A) is obviously an
MFCE-relation.

Thus, the set U/E with E := E(U,2l) is a supertropical semiring, the addition and
multiplication being given by (z,y € U) :

[2]e + yle == [z + yle,  [z]e-[yle = [zyle.
Every equivalence class [x]g of E contains a unique element of the set
V= (U\)u M,

namely, the element x, for = ¢ 2, and the element ex, for x € 2. Notice that V is closed
under addition (Remark 6.10.b).

Identifying the set U/E of equivalence classes of £ with the set of representatives V/,
we arrive at the following theorem.

Theorem 6.16. Let 2A be an ideal of U containing M and V := (U\A) u M. On V we
define an addition + and multiplication ® as follows:

x +y is the sum of x and y in U.
vy if wy ¢,
Ty = )
exy if xyeA.

Then V = (V,+,®) is a supertropical semiring, and the map o : U — V with a(x) = z
for x € U\, a(x) = ex for x € A is a surjective semiring homomorphism. It gives the
equivalence relation E(a) = E(U,2A).

Of course, this can also be verified in a direct straightforward way.

Remarks 6.17.

(i) The sub-semiring M of U is also a sub-semiring of V' (in its given semiring struc-
ture). In particular, ey = ey .
(ii) M s also the ghost ideal of V, and the ghost map vy is the restriction of vy to V.
(iii) We have 1y = 1y if 1y ¢ A, and 15, = 1y if 1y € A. In the latter case V = M.
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Example 6.18. Let L be a subset of M with M\L an ideal of M. Define
A=A, :={zelU|exe M\L} UM = v, (M\L) U L.

Then A is an ideal of U containing M. It is easily checked that E(U,2l) is the equivalence
relation on U which we considered in [IKR1, Example 6.13]. We have

V =(M\L)uv;'(L).

If L-L c L, thenV -V < V; hence, the supertropical semiring V' is a sub-semiring of U,.
This is the case considered in [IKR1, Example 6.12].

Definition 6.19. We call an equivalence relation E on U strictly ghost separating
if no x € T(U) is E-equivalent to an element y of M. Under the very mild assumption
that E is ghost compatible, this means that A(E) = M (cf. Lemma 6.9.).*°

The restriction of £(U,2() to the supertropical semiring V' = (U\) u M from above is
always ghost separating. Moreover, we have the following facts.

Proposition 6.20. Assume that F' is a multiplicative equivalence relation (and hence A(F)
is an ideal of U ), and A is an ideal of U with M < A < A(F).
i) E(U,2A) c F.
ii) The equivalence relation F := F/E(U,2) on U := U/E(U,2) is again multiplica-
tive, and A(F) is the image of A(F) in U, i.e., A(F) = A(F)/E(U,2.).
iii) F is strictly ghost separating iff A = A(F).
iv) If we identify U with the semiring V := (U\2) U M, as explicated above, then
F=F|V.
v) F is transmissive iff F is transmissive.
vi) F is homomorphic iff F is homomorphic.

Proof. Let E := E(U, ).

a) We claim that for any =,y € U with z ~g y also x ~r y. Now, if = ¢ 2, then x = y.
If z € A, then y € A and ex = ey. Since A < A(F), it follows that © ~p ex, y ~ ey, and
then that x ~p y. Thus x ~p y in both cases. This proves E c F.

b) Claims ii) — iv) of the proposition are fairly obvious. v) follows from [IKR1, Corol-
lary 6.2] since 7p = 7mp o g, and g is a surjective homomorphism. vi) is again obvi-
ous. U

We now exhibit a case where we have met the equivalence relation E(U, 2, ®) before.
First a very general observation.

Remark 6.21. Every a of U with e -a < a is closed under addition. The reason is, that

for any x,y € U the sum x + y is either x or y or ex. Thus every subset a of U with
U-aca (ie, a a monoid ideal of U) is an ideal of U. If a and b are ideals of U then
aub=a+0b.

Assume that ® is a homomorphic equivalence relation on M. It gives us the homomor-
phism 7g from M to the bipotent semiring M /®. We define

ap :={reU | ex ~¢ 0}

10We reserve the label “ghost separating” for a slightly broader class of equivalence relations to be
introduced in [IKR3].
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which is an ideal on U, and define
2[:=Mua¢,=M+aq>,

which is an ideal of U containing M. It is the set of all x € U with x = ex or ex ~¢ 0.
If necessary we more precisely write ay g, Aye instead of ag, Ap. Starting from Defini-
tion 6.12 it can be checked in a straightforward way that the multiplicative equivalence
relation

E = EU,Us, D)
has the following description (z,y € U):

r~py < eitherz=y
or T =ex, Yy = ey, ex ~g ey
or ex ~g ey ~g 0.

Thus E' is the equivalence relation F(U, ) defined in Example 4.8 with v := 7, If M /P
is cancellative the we know from Theorem 1.11 and Example 4.8 that E(U, g, ) is
transmissive. There are other cases where this also holds, cf. Remark 6.23 below.

We now apply Proposition 6.20 to the relation

F = E(U,Ql v a0, (I))

for 2 any ideal of U containing M. Let U denote the supertropical semiring U/E(U,21),
whose ghost ideal has been identified above with M = eU. It again can be checked in a
straightforward way that the equivalence relation F'/E(U, ) on U is just the relation

E(U, Q‘U,@? (I)) = F(U, 7Tq>),
in the notation of Example 4.8. Thus we arrive at the following result.

Theorem 6.22. Let ® be a homomorphic equivalence relation on M = eU and 2 an
ideal of U which contains M. Let ® := A U agp = A + ag with ag := {x € Ulex ~¢ 0}.

(a) Then U := U/E(U,) is a supertropical semiring (as we know for long) and
E(U,D,®)/E(U,2) is the multiplicative equivalence relation F(U,mg).

(b) E(U,D,®) is transmissive iff F(U, ws) is transmissive.

(c) Tn particular E(U,D, ®) is transmissive if M /® is cancellative.

Remark 6.23. Looking at Theorem 6.14 and Proposition 6.20.vi we can also state the
following: F(U,D,®) is homomorphic iff F(U,wg) is homomorphic iff v;;' (M L(®)) < D.

Remark 6.24. The question might arise whether the E(U, 2, ®) is transmissive for any
ideal A > M of U if, say, M/® is cancellative. The answer in general is “No”: If
E(U, A, ®) is transmissive then 20 must contain the ideal ap. The reason is that for any
transmission a : U — V and x € U with a(ex) = 0 we have a(z) = 0 since a(ex) = ea(x).
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