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ANALYTIC VARIETIES WITH FINITE VOLUME

AMOEBAS ARE ALGEBRAIC

FARID MADANI AND MOUNIR NISSE

Abstract. In this paper, we study the amoeba volume of a given
k−dimensional generic analytic variety V of the complex algebraic torus
(C∗)n. When n ≥ 2k, we show that V is algebraic if and only if the
volume of its amoeba is �nite. Moreover, in this case, we establish a
comparison theorem for the volume of the amoeba and the coamoeba.
Examples and applications to the k−linear spaces will be given.

1. Introduction

Some fundamental questions concerning the complex logarithm lead us to
study certain mathematical objects called amoebas and coamoebas, which
are natural projections of complex varieties. They have strong relations to
several other areas of mathematics such as real algebraic geometry, trop-
ical geometry, complex analysis, mirror symmetry, algebraic statistics and
several other areas. Amoebas degenerate to piecewise-linear objects called
tropical varieties, (see [M1-02], [M2-04], [M3-00], [FPT-00], [NS-11], [PR-04]
and [PS-04]). The behavior of an amoeba at the in�nity is called the loga-
rithmic limit set of the variety, and its analogous for coamoebas is called the
phase limit set of the variety. For a k-dimensional complex algebraic variety,
the phase limit set contains an arrangement of k-dimensional �at tori, which
plays a crucial role in the geometry and the topology of both amoeba and
coamoeba. Moreover, these objects are used as an intermediate link between
complex algebraic geometry and tropical geometry. In this paper, we under-
line that the geometry of the amoeba a�ects the algebraic structure of the
variety.
It was shown by Passare and Rullgård [PR-04] that the area of complex
algebraic plane curve amoebas are �nite. In [MN-11], we proved that the
volume of the amoeba of a generic k-dimensional algebraic variety of the
complex algebraic torus (C∗)n with n ≥ 2k, is �nite. There now arises the
reverse question: let I be an ideal in the ring of holomorphic functions on Cn

andW be the set of zeros of I, which we assume generic of dimension k ≤ n
2 ,

where the genericity in our context means that the Jacobian of logarithmic
map restricted to our variety is of maximal rank. If we suppose that the
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2 FARID MADANI AND MOUNIR NISSE

volume of the amoeba of V = W ∩ (C∗)n is �nite, then, is V algebraic?
Theorem 1.1 gives an a�rmative answer to this question.
The Main theorem of this paper is the following:

Theorem 1.1. Let V be a generic k-dimensional analytic variety in (C∗)n
with n ≥ 2k. The following assertions are equivalent:
(i) The variety V is algebraic;
(ii) The volume of A (V ) is �nite.

This paper is organized as follows. In Section 3, we prove a comparison
theorem, asserting that up to a rational number, the amoeba volume is
bounded above and below by the coamoeba volume. In Section 4, using
the geometry and the combinatorial structure of the logarithmic limit and
the phase limit sets, we prove Theorem 1.1 in the special case of curves.
The method used to prove this case is actually the crucial step to show the
main result in general. In Section 5, we show Theorem 1.1 for varieties of
higher dimensions. In Section 6, we give some examples of plane and spatial
complex curves, underlying the importance of the �niteness of their amoeba
areas. Finally, in Section 7, we give an application of the comparison theorem
to the k−dimensional a�ne linear spaces in (C∗)2k. We compute the amoeba
volumes of k−dimensional real a�ne linear spaces in (C∗)2k.

2. Preliminaries

Let W be a complex variety of Cn de�ned by an ideal I of holomorphic
functions on Cn. We say that a subvariety V of the complex algebraic torus
(C∗)n is analytic if there exists a complex variety W as above such that
V = W ∩ (C∗)n. All the analytic varieties considered in this paper are
de�ned as above. The amoeba A of V is by de�nition (see M. Gelfand,
M.M. Kapranov and A.V. Zelevinsky [GKZ-94]) the image of V under the
map :

Log : (C∗)n −→ Rn

(z1, . . . , zn) 7−→ (log |z1|, . . . , log |zn|).
It is well known that the amoeba of a variety of codimension one is closed and
its complement components in Rn are convex (see [FPT-00] ). A. Henriques
gives an analogous de�nition for the convexity of amoeba complements of
higher codimension varieties as follows:

De�nition 2.1. A subset A ⊂ Rn is called l-convex if for all oriented a�ne
(l + 1)-plane L ⊂ Rn, the induced homomorphism Hl(L ∩ A) −→ Hl(A)
does not send non-zero elements of H̃+

l (L ∩ A) to zero, where H̃l(X) (resp.

H̃+
l (X)) denotes the reduced homology groups associated to the corresponding

augmented complexes (resp. elements of Hl(L ∩A) such that their image in

H̃l(L \ p) ∼ Z are non-negative for all p ∈ L ∩A).
Also, he proves that if V is a variety of codimension l, L is an l-plane of
rational slope and c is a non-zero (l−1)-cycle in Hl−1(L\A ), then its image
in Hl−1(Rn\A ) is non-zero and Rn\A is (l−1)-convex (see [H-03] Theorem
4.1).

Let V be an analytic variety of the complex algebraic torus. We denote
by L∞(V ) its logarithmic limit set which is the boundary of the closure of
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r(A (V )) in the n−dimenstional ball Bn, where r is the map de�ned by (see
Bergman [B-71]):

r : Rn −→ Bn

x 7−→ r(x) = x
1+|x| .

If V is an algebraic variety of dimension k, then its logarithmic limit set is
a �nite rational spherical polyhedron of dimension k − 1 (i.e., a �nite union
of �nite intersections of closed hemispheres and can be described in terms of
a �nite number of inequalities with integral coe�cients). More precisely, we
have the following structure theorem (see [B-71] and [BG-84]):

Theorem 2.1 (Bergman, Bieri-Groves). The logarithmic limit set L∞(V )
of an algebraic variety V in (C∗)n is a �nite union of rational spherical
polyhedrons. The maximal dimension of a polyhedron P in this union is
such that dimR P = dimR L∞(V ) = dimC V − 1.

The argument map is the map de�ned as follows:

Arg : (C∗)n −→ (S1)n

(z1, . . . , zn) 7−→ (arg(z1), . . . , arg(zn)).

where arg(zj) = zj

|zj | . The coamoeba of V , denoted by coA , is its image

under the argument map (de�ned for the �rst time by Passare on 2004). On
2009, Sottile and the second author [NS-11] de�ned the phase limit set of
V , P∞(V ) , as the set of accumulation points of arguments of sequences in
V with unbounded logarithm. If V is an algebraic variety of dimension k,
P∞(V ) contains an arrangement of k-dimensional real subtori.

3. Comparison between Amoeba and Coamoeba volumes

For a given map f , we denote by Jac(f) the Jacobian matrix of f and by

J(f) the determinant of Jac(f) when it exists.

Proposition 3.1. Let V be a k-dimensional complex submanifold in (C∗)n.
The maps Log and Arg are well de�ned on V and

(1) ∂Log =
1

Arg
∂Arg , ∂̄Log =

−1
Arg

∂̄Arg

Proof. We denote by {zj}1≤j≤n the complex coordinates on Cn and by
{tj}1≤j≤k the complex coordinates on V given by a local chart (Ω, f) (i.e.
∀z ∈ Ω, tj = fj(z)), where Ω is an open set of V and f is a holomorphic

function from an open set of Cn to Ck. Since V is a complex submanifold
of (C∗)n, the injection map ı : V ↪→ (C∗)n is holomorphic. By de�nition, for
any z ∈ V we have ı(z) = eLogzArg z. Since ı is holomorphic, ∂̄ı(z) = 0 for
any z ∈ V (i.e. ∀j ≤ k, ∂t̄j ı(z) = 0 ). It implies that for any j = 1, . . . , k
and z ∈ Ω we have

∂t̄j Log (z) = − 1
Arg (z)

∂t̄j Arg (z), ∂tj Log (z) =
1

Arg (z)
∂tj Arg (z),

where the second equality holds by conjugating the �rst one. The statement
of the proposition follows. �

An immediate consequence of Proposition 3.1 is the following:
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Corollary 3.1. Let V be a k-dimensional complex submanifold in (C∗)n.
The set of critical points of the maps Log and Arg are the same and the
map Log ◦ Arg−1 conserves locally the volumes (i.e. for any regular value
θ ∈ coA (V ), we have |J(Log ◦Arg−1)(θ)| = 1).

Proof. Let
S = {z ∈ V | rank Jac Log z < min(n, 2k)}

be the set of critical points of Log . Using Proposition 3.1, we conclude that
the Jacobian matrices of Log and Arg have the same rank at any point in
V . Hence, the set of critical points of Arg is also S.
We know that there exists an open set U ⊂ V \ S such that the map Arg :
U → coA (V )\Arg (S) is a di�eomorphism. Using Proposition 3.1, it follows
that |J(Log ◦Arg−1)(θ)| = 1 for any θ ∈ coA (V ) \ArgS.

�

As an application of corollary 3.1, we have the following comparison theorem.

Theorem 3.1. Let V be a generic analytic variety of (C∗)n of dimension
k ≤ n

2 . Let A , coA be the amoeba and coamoeba of V respectively. We
suppose that Log : V → A and Arg : V → coA are locally �nite coverings.
We de�ne the following two rational numbers

p =
min

θ∈coA \ArgS
#Arg−1{θ}

max
y∈A \LogS

#Log−1{y}
, P =

max
θ∈coA \ArgS

#Arg−1{θ}

min
y∈A \LogS

#Log−1{y}
.

Then,
p vol(coA ) ≤ vol(A ) ≤ P vol(coA ).

In particular, the volume of A is �nite.

We have the following result that the authors had already proven in [MN-11]
using another method:

Corollary 3.2. The amoeba of a k-dimensional generic complex algebraic
variety in (C∗)n, with 2k ≤ n, has �nite volume.

Proof. If V is a generic complex algebraic variety in (C∗)n of dimension
k ≤ n

2 , then Log : V → A and Arg : V → coA are locally �nite coverings.
Therefore, the statement follows from Theorem 3.1, since the volume of the
coamoeba is always �nite. �

Proof of Theorem 3.1. We have V = Vreg ∪ Vsing, where Vreg is the regular
part of V , which is a k-dimensional complex submanifold in Cn and Vsing
is the singular part of V , which is an analytic subset of pure dimension
less or equal to k − 1. By Sard's theorem, the 2k-measure of Log (Vsing)
and Arg (Vsing) are zero. Hence, without loss of generality, we may assume
that V = Vreg is a k-dimensional complex submanifold endowed with the
induced metric ı∗E2n, where E2n is the standard Euclidean metric on Cn and
ı : V → Cn is the injection map. Let

S = {z ∈ V | rank Jac Log z < 2k}
be the set of critical points of Log . Using Proposition 3.1, we conclude that
the Jacobian matrices of Log and Arg have the same rank at any point in V .
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Hence, the set of critical points of Arg is also S. Using again Sard's theorem,
the 2k-measure of LogS and ArgS is zero. It yields vol(A ) = vol(A \LogS)
and vol(coA ) = vol(coA \ ArgS). The sets A \ LogS and coA \ ArgS
are 2k-dimensional real immersed submanifolds of Rn and Tn respectively.
They are endowed with the induced metric ı∗En. Let U1 and U2 be two open
sets in V \ S such that Log : U1 → A \ LogS and Arg : U2 → coA \ArgS
are di�eomorphisms. By construction, we have the following identities:

vol(A ) = vol(A \ LogS, ı∗En) = vol(U1,Log ∗En),

vol(coA ) = vol(coA \ArgS, ı∗En) = vol(U2,Arg ∗En).

Following the construction in [MN-11] (see Section 3) and the identities
above, the volume of A and coA are given by

vol(A ) = vol(U1,Log ∗En) =
∫
U1

∣∣ψ2k

∣∣
Log ∗Endv,(2)

vol(coA ) = vol(U2,Arg ∗En) =
∫
U2

∣∣ψ2k

∣∣
Arg ∗Endv,(3)

where dv is the restriction of the volume form of Cn to V and ψ2k is the
2k−vector �eld in Λ2kTV , such that dv(ψ2k) = 1. In local complex coordi-
nates {tj}1≤j≤k, the volume form dv and ψ2k are given by

dv = ikdt ∧ dt̄, ψ2k = (−i)k ∂
∂t
∧ ∂

∂t̄
,

where dt = dt1 ∧ · · · ∧ dtk and ∂
∂t = ∂

∂t1
∧ · · · ∧ ∂

∂tk
. It yields that∣∣ψ2k

∣∣2
Log ∗En =

∣∣∣∣∂Log
∂t

∧ ∂Log
∂t̄

∣∣∣∣2
En

=
∑

I⊂{1,...,n},#I=2k

∣∣J(Log I)
∣∣2,

∣∣ψ2k

∣∣2
Arg ∗En =

∣∣∣∣∂Arg
∂t

∧ ∂Arg
∂t̄

∣∣∣∣2
En

=
∑

I⊂{1,...,n},#I=2k

∣∣J(Arg I)
∣∣2,

where Log I(z) = (log |zi1 |, . . . , log |zi2k
|) for all z ∈ V and I = {i1, . . . , i2k}

and J(Log I) is the Jacobian determinant of Log I with respect to {tj , t̄j}1≤j≤k.
We have from Proposition 3.1,

∣∣J(Log I)
∣∣ =

∣∣J(Arg I)
∣∣ for any I ⊂ {1, . . . , n}

of cardinality 2k. We deduce that∣∣ψ2k

∣∣
Log ∗En =

∣∣ψ2k

∣∣
Arg ∗En .

It remains to compare between the volume of A and coA , given by (2), (3).
Since Log : V → A and Arg : V → coA are locally �nite coverings,

1
M1

∫
V \S

∣∣ψ2k

∣∣
Log ∗Endv ≤ vol(A ) ≤ 1

m1

∫
V \S

∣∣ψ2k

∣∣
Log ∗Endv,

1
M2

∫
V \S

∣∣ψ2k

∣∣
Arg ∗Endv ≤ vol(coA ) ≤ 1

m2

∫
V \S

∣∣ψ2k

∣∣
Arg ∗Endv,

where M1 = max
y∈A \LogS

#Log−1{y}, m1 = min
y∈A \LogS

#Log−1{y},

M2 = max
θ∈A \ArgS

#Arg−1{θ} and m2 = min
θ∈A \ArgS

#Arg−1{θ}. We conclude
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that
m2

M1
vol(coA ) ≤ vol(A ) ≤ M2

m1
vol(coA ).

�

4. Analytic curves with finite area amoebas are algebraic

The purpose of this section is to prove the following:

Theorem 4.1. Let C ⊂ (C∗)n be a generic analytic curve de�ned by an
ideal of holomorphic functions I(C ) with n ≥ 2. The curve C is algebraic if
and only if the area of its amoeba is �nite

In order to prove Theorem 4.1, we start by proving a series of three lemmas.

Lemma 4.1. Let C be a curve as in Theorem 4.1, and assume that the
area of its amoeba is �nite. Then, the logarithmic limit set L∞(C ) has the
following properties:

(i) Each point s ∈ L∞(C ) has a rational slope (i.e., there exists λ ∈ R
such that λ ·

−→
Os ∈ Zn);

(ii) The logarithmic limit set L∞(C ) is a �nite set.

Proof. (i) Assume on the contrary that L∞(C ) contains a point s, such that

the vector
−→
Os has an irrational slope. Let s = (u1, . . . , un) and

R −→ Rn

x 7−→ (u1x+ a1, . . . , unx+ an)

be the parametrization of the straight line Ds in Rn of direction s, and
asymptotic to the amoeba A (C ). Under this assumption, the phase limit set
P∞(C ) contains a subset of dimension at least two. Indeed, there exists an
a�ne line in the universal covering of the real torus (S1)n, parametrized by
y 7→ (u1y1+b1, . . . , unyn+bn), such that the closure of its projection in (S1)n

is a 2-dimensional torus Ts contained in the phase limit set P∞(C ). This
implies that there exists a regular open subset U ⊂ coA (C ), which is covered
in�nitely many times under the argument map. Namely, if we denote by Arg
(resp. Log ) the restriction of the argument (resp. logarithmic) map to the
curve C , i.e., Arg = Arg |C (resp. Log = Log |C ), then Arg−1(U) = ∪∞i=1Vi,
where Vi are open, regular and disjoint sets in C . In fact, let U be a regular
open subset of coA (C ) contained in Ts. Let Ṽ1 be a connected component

of Arg−1(U) and V1 = Log (Ṽ1). Let I2 be a segment in Ds \ V 1, such that
Arg (Log−1(I2)) intersects U . Indeed, I2 exists because the immersed circle

of slope s in the real torus (S1)n is dense in Ts. Let Ṽ2 be the connected

component of Arg (Log−1(U)), such that Log (Ṽ2) contains I2 and V2 =
Log (Ṽ2). By construction, V1 ∩ V2 is empty. We do the same thing to V2,
and we obtain an in�nite sequence of open subsets V1, V2, . . . in the amoeba,
such that Vi ∩ Vj = φ for each i 6= j and the area of Vi is equal to the
area of U for each i, since the map Log ◦ Arg−1 conserves the volume (see
Corollary 3.1). This is a contradiction with the �niteness of the area of the
amoeba. Hence, s cannot be irrational.
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(ii) If L∞(C ) is not �nite, then it contains an accumulation point; because
Sn−1 is compact. Let s ∈ L∞(C ) be an accumulation point. Namely, there
exists a sequence of points sm ∈ L∞(C ) such that limm→+∞ sm = s, where
each sm has a rational slope and up to a multiplication by a real number,
−→
Osm = (u(m)

1 , . . . , u
(m)
n ), with u(m)

j =
a
(m)
j

b
(m)
j

, where a
(m)
j and b

(m)
j are integers.

The sequence {sm} converges and is not stationary. This means that there

exists 1 ≤ j ≤ n such that the sequence {b(m)
j } is unbounded. The circles

corresponding to that slopes, have length greater or equal to 2πb(m)
j . Hence,

if U is a regular subset of measure di�erent from zero in the coamoeba, then

it is covered in�nitely many times under the argument map since the b
(m)
j

tend to in�nity. This contradicts the fact that the area of the amoeba is
�nite. So, L∞(C ) is �nite.

�

Lemma 4.2. Let C ⊂ (C∗)n be a generic analytic curve, such that the area
of its amoeba is �nite and let s be a point in L∞(C ). The number of ends

E of the amoeba A (C ), such that r(E ) ∩ Sn−1 = {s}, is �nite.

Proof. Assume on the contrary that the number of ends E of the amoeba
A (C ), such that r(E ) ∩ Sn−1 = {s}, is in�nite. Hence, two cases can hold.
The �rst case: the number of corresponding circles of s in (S1)n is �nite.
Then, there exists at least a circle C covered by the argument mapping
in�nitely many times. Take a regular open set U ⊂ coA (C ) containing a
segment in C. Then, the number of connected components of Arg−1(U)
is in�nite and Log (Arg−1(U)) has also an in�nite number of connected
components with the same area as U . This is in contradiction with the
assumption.
The second case: the number of corresponding circles of s in (S1)n is in�nite.
Then, there exists a circle C which is an accumulation circle with the same
slope s, because the real torus is compact. Using the same reasoning as
above, we obtain a contradiction.
This implies that the number of ends of the amoeba with the same slope is
�nite.

�

Lemma 4.3. Let C be a generic curve in (C∗)n. If Sn−2 is a subsphere of
Sn−1 = ∂Bn, invariant under the involution −id, then L∞(C ) intersects
the interior of each connected component of Sn−1 \ Sn−2.

Proof. Using Henriques theorem [H-03], we know that the complement com-
ponents of amoebas are l−convex, if codimV = l+ 1. Lemma 4.3 is a conse-
quence of this fact. If C is generic (it is not contained in a complex algebraic
torus of smaller dimension), then the intersection of the closed half spaces
in Rn bounded by the hyperplanes normal to the directions s ∈ L∞(C ) is
compact. �

Let C ⊂ (C∗)n be a generic analytic curve with de�ning ideal I(C ) such that
the area of its amoeba is �nite. Let s ∈ L∞(C ) with slope (u1, . . . , un), and
Ds be a straight line in Rn directed by s and asymptotic to the amoeba A .
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We denote by H (Ds) the holomorphic cylinder which is the lifting of Ds

and asymptotic to the end of C corresponding to s.

Lemma 4.4. Let C ⊂ (C∗)n be a generic analytic curve as above. Then, the
ideal I(C ) is generated by a set of holomorphic functions {f1, . . . , fq} such
that for any j = 1, . . . , q, we have fj = hjgj, where hj are holomorphic func-
tions without zeros in a neighborhood of H (Ds), and gj are entire functions
where the terms of their power series have powers in the closed half space
{α ∈ Rn |

∑n
i=1 αiui ≤ 0}.

Proof. Without loss of generality, by Lemma 4.2, we may assume that the
amoeba contains only one end corresponding to s ∈ L∞(C ). If we do not
have such a decomposition of the fj 's, then s is an accumulation point and
this cannot happen because the area of the amoeba is �nite by assumption.
So, there exist holomorphic functions hj , gj and U(s) a neighborhood of a
holomorphic cylinder on which the hj 's do not vanish. Namely, the holo-
morphic cylinder is the lifting in (C∗)n via the logarithmic map of a straight
line in Rn of slope (u1, . . . , un). This holomorphic cylinder is such that the
closure in Bn of the retraction by r (de�ned in Section 2) of the image under
the logarithmic map of one of its ends, intersects the boundary of Bn pre-
cisely on s. The functions gj 's are entire and their power series expansion is
of the form

∑
aαz

α with
∑n

i=1 uiαi ≤ 0. Without loss of generality, we may
assume that C is an irreducible curve. Hence, C is contained in the zero
locus of the gj 's. In other words, our curve C is contained in the curve with
de�ning ideal Is spanned by the gj 's. �

Proof of Theorem 4.1. If the area of the amoeba of C is �nite, then using
Lemma 4.3, and doing the same thing for each vertex in L∞(C ) as in Lemma
4.4 we obtain polynomials p1, . . . , pq such that C is contained in Cr, where
Cr is the algebraic curve de�ned by the ideal generated by p1, . . . , pq. Hence,
C is an irreducible component of Cr. This means that C is algebraic. If the
curve is algebraic, then using Corollary 3.2, we deduce that the area of the
amoeba of C is �nite. �

Corollary 4.1. Let C be a generic analytic curve in (C∗)n. Then L∞(C )
is the union of a �nite number of isolated points with rational slopes and a
�nite number of geodesic arcs with rational end slopes. In particular, if C is
not algebraic, then the number of arcs in L∞(C ) is di�erent from zero.

This is a consequence of the proof of Lemma 4.1. The arcs are geodesic (i.e.,
contained in some circle invariant under the involution x 7→ −x) because the
contrary means that the phase limit set contains a �at torus of dimension at
least three and this contradicts the fact that the dimension of the coamoeba
is equal to two.

Corollary 4.2. Let f be an entire function in two variables. There exist a
holomorphic function h which does not vanish in the complex algebraic torus
and a polynomial p, such that f = hp if and only if the area of the amoeba
of the holomorphic curve in (C∗)2 de�ned by f is �nite.
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5. Proof of the Main theorem

In this section, we generalize the result of Section 4 to k-dimensional analytic
varieties in the complex algebraic torus (C∗)n with n ≥ 2k. The following
result generalizes Lemma 4.1 to higher dimensions.

Proposition 5.1. Let V be a k−dimensional generic analytic variety in
(C∗)n, with n ≥ 2k. Assume that the volume of its amoeba is �nite. Then
its logarithmic limit set L∞(V ) is a �nite rational spherical polyhedron of
dimension k − 1.

Proof. If L∞(V ) is not a rational spherical polyhedron and v is a vertex of
L∞(V ) with irrational slope u, then the phase limit set P∞(V ) contains
a torus of dimension at least (k − 1) + 2 = k + 1, which is the closure
of an immersed circle of slope u. Using the fact that the map Log ◦ Arg−1

preserves the volumes (see Corollary 3.1), which is already used in the curve,
we deduce that the volume of A (V ) is in�nite. Indeed, if U is a regular subset
of the coamoeba coA (V ) with nonvanishing volume, then it is covered via
the argument map in�nitely many times. This is in contradiction with the
assumption on the volume of the amoeba A (V ). Therefore, L∞(V ) is
rational.
Now, suppose that dim(L∞(V )) > k − 1. Then, it contains a point of
irrational slope in some l−cell with l ≥ k. Hence, its phase limit set contains
a torus of dimension at least l+ 1 ≥ k + 1. By the same argument as in the
proof of Lemma 4.1, we obtain a contradiction with the assumption on the
volume of the amoeba.
It remains to show that L∞(V ) is �nite. Otherwise, it contains an accumu-
lation (k − 1)-cell, which means that P∞(V ) contains a torus of dimension
at least k + 1 (here k + 1 = (k − 1) + 1 + 1, where k − 1 is the dimension
of the cells, to which we add one dimension for the circle corresponding to
the direction s and one dimension for the accumulation direction). Using
the same reasoning as in Lemma 4.1 (ii), we get a contradiction with the
assumption on the amoeba volume. �

De�nition 5.1. Let s be a vertex of L∞(V ). A polyhedron P is in the
direction of s, if for any point x ∈ P , there exists a vector vx in P with
starting point x and slope s.

The following lemmas are the analogous of Lemma 4.2 and Lemma 4.4 in
higher dimension and their proofs are similar.

Lemma 5.1. Let V ⊂ (C∗)n be a generic k-dimensional analytic variety
with de�ning ideal I(V ), such that n ≥ 2k and the volume of its amoeba is
�nite. Let s ∈ Vert(L∞(V )) be a vertex and Σs be the open sub-complex of
L∞(V ) with only one vertex s. Then, there is a �nite number of polyhedrons
P of dimension k, asymptotic to the amoeba A (V ) in the direction of s and

such that r(P ) ∩ Sn−1 ⊂ Σs.

Proof. If the number of polyhedrons P of dimension k, asymptotic to the
amoeba A (V ) in direction s and such that r(P ) ∩ Sn−1 ⊂ Σs, is in�nite,



10 FARID MADANI AND MOUNIR NISSE

then there exists a sequence of parallel polyhedrons {Pm} satisfying the same
property. Hence, there are two possibilities:
(i) the number of their corresponding k-dimensional real tori in (S1)n is
�nite, which means that at least one of them is covered under the argument
map in�nitely many times. This contradicts the fact that the volume of the
amoeba is �nite.
(ii) the number of their corresponding k-dimensional real tori in (S1)n is
in�nite, which means that they contain at least one accumulation k-torus (of
course parallel to all of them). This is a contradiction with the assumption
on the volume of the amoeba. �

Let V ⊂ (C∗)n be a generic k-dimensional analytic variety with de�ning
ideal I(V ), such that the volume of its amoeba is �nite. Let s be a vertex
of L∞(V ) with slope (u1, . . . , un), and Ps be the �nite set of polyhedrons
in the direction of s and asymptotic to the amoeba A (V ). We denote by
H (Ps) the union of the holomorphic cylinders which are the lifting of the
polyhedrons in Ps and asymptotic to the ends of V corresponding to s.

Lemma 5.2. Let V ⊂ (C∗)n be a generic k-dimensional analytic variety such
that n ≥ 2k and with �nite volume amoeba. Then, the ideal I(V ) is generated
by a set of holomorphic functions {f1, . . . , fq} such that for any j = 1, . . . , q,
we have fj = hjgj, where hj are holomorphic functions without zeros in a
neighborhood of H (Ps), and gj are entire functions where the terms of their
power series have powers in the closed half space {α ∈ Rn |

∑n
i=1 αiui ≤ 0}.

Proof. The proof of this lemma is similar to the proof of Lemma 4.4. If we
have not such decomposition, then the L∞(V ) is at least of dimension k,
and this contradict the fact that the volume of the amoeba is �nite. �

End of the proof of Theorem 1.1 . The implication (i)⇒ (ii) is a consequence
of Corollary 3.2. Without loss of generality, we may assume that V is ir-
reducible. So (ii) ⇒ (i) is a consequence of Proposition 5.1, Lemma 5.1,
Lemma 5.2 and Lemma 4.3. �

6. Examples

1. Let C be the complex plane curve in (C∗)2 given by the zeros of the
holomorphic function f(z1, z2) = z2− ez1 . Since the complex rank of Jac(f)
is one, C is a Riemann surface. A parametrization of C is given by t ∈ C∗ 7→
(t, et) ∈ (C∗)2. The amoeba A (C ) is the set of points in R2 delimited by
the graphs of the two functions x 7→ ±ex (see Figure 1). The set of critical
points of Log restricted to C is S = {(x, ex) ∈ (R∗)2}. The map Log is 2-
sheets covering over its regular values. However, the map Arg is not a locally
�nite covering (i.e., #Arg−1θ = +∞ for any regular value θ ∈ coA ). Since
the closure of the coamoeba is compact, its area is always �nite. But, the
amoeba has an in�nite area. This means that the assumption on Theorem
3.1 is necessary.
Moreover, we can check that the logarithmic limit set of C has 1-dimensional
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connected component and one isolated point of rational slope. The phase
limit set of C is the whole torus.

Figure 1. The amoeba of the plane holomorphic curve given
by the parametrization g(t) = (t, et).

2. Let C be the complex plane curve in (C∗)2 parametrized by

ρ : D −→ (C∗)2

t 7−→ (cos t, sin t),

where D = {t = a+ ib | (a, b) ∈ (]0, 2π[\{π2 , π,
3π
2 })× R} is the fundamental

domain. We can check that C is contained in the algebraic curve with
de�ning polynomial p(x, y) = x2 + y2 − 1. On the other hand, we know
that the last curve is irreducible. Hence, C is algebraic and de�ned by the
same polynomial. The critical points of Log are ρ((]0, 2π[\{π2 , π,

3π
2 })×{0}).

The logarithmic limit set consists of three points with coordinates (−1, 0),
(0,−1) and (

√
2

2 ,
√

2
2 ). The phase limit set consists of three pairs of circles

with distinct slopes given by −∞, 0 and 1.

3. Let C be the complex plane curve in (C∗)2 parametrized by

ρ : D −→ (C∗)2

t 7−→ (t, et, t+ 1).

The logarithmic limit set of C is the union of two points and an arc in
the sphere S2. Its phase limit set is an arrangement of two circles and a
2-dimensional �at torus. The curve C is not algebraic and the area of its
amoeba (see Figure 2) is in�nite.

7. Amoebas of k−dimensional affine linear spaces

Let k and s be two positives integers and P(k) ⊂ (C∗)k+s be the a�ne
linear space of dimension k given by the parametrization

ρ : (C∗)k −→ (C∗)k+s

(t1, . . . , tk) 7−→ (t1, . . . , tk, f1(t1, . . . , tk), . . . , fs(t1, . . . , tk)),

such that fj(t1, . . . , tk) = bj +
∑k

i=1 ajiti, where aji and bj are complex
numbers for i = 1, . . . , k and j = 1, . . . , s. First of all, we may assume
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Figure 2. The amoeba of the spatial holomorphic curve
given by the parametrization g(t) = (t, et, t+ 1).

that f1(t1, . . . , tk) = 1 +
∑k

i=1 ti. Moreover, we assume that the a�ne linear
spaces are in general position.

De�nition 7.1. Let V ⊂ (C∗)n be an algebraic subvariety and conj be the
involution on Cn given by conjugation on each coordinate. We say the variety
V is real if it is invariant under conj, i.e., conj(V) = V. The real part of V
denoted by RV is the set of points in V �xed by conj.

In this section, we assume n = 2k + m, where m is a nonnegative integer
(i.e., s = k +m). The goal of this section is to prove the following theorem:

Theorem 7.1. Let P(k) be a generic linear space in (C∗)2k+m and θ be
a regular value of the argument map. Then, the cardinality of Arg−1(y) is
equal to one.

Before we give the proof of this theorem, let us start by looking at the case
k = 1.

Remark 7.1. Without loss of generality, we may assume that P(1) is the
line in (C∗)2+m given by the parametrization:

ρ : C∗ −→ (C∗)2+m

t1 7−→ (t1, f1(t1), . . . , f1+m(t1)),

such that f1(t1) = 1+t1 and fj(t1) = bj+aj1t1, where aj1 and bj are complex
numbers for j = 2, . . . , 1 + m. Let y = (y1, . . . , y2+m) be a regular value of
the logarithmic map. The number of points t1 ∈ C∗ with |t1| = ey1 and
|f1(t1)| = ey2 is at most two (because the intersection of two circles cannot
exceed two points; the �rst circle has the center at the origin and radius
ey2 and the second circle has the center at (1, 0) and radius ey1). It is clear
that if y is regular, then this number is equal two. Otherwise, the circles are
tangent and then y is critical. Indeed, if we make a small perturbation of t1
in some direction, the point goes out of the amoeba, which means that y is in
the boundary of the amoeba. Moreover, we can check that these two points
are conjugate. So, if the number is equal two, then |fj(t1)| should be equal to
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|fj(t1)| for any j = 1, . . . , 1+m. This means that |bj+aj1t1| = |bj+aj1t1|, or
equivalently cos(arg(aj1) +arg(t1)−arg(bj)) = cos(arg(aj1) +2π−arg(t1)−
arg(bj)). Hence, arg(aj1) − arg(bj) = 0 mod (π), which is equivalent to
aj1

bj
∈ R∗ for any j and then the curve is real. Otherwise, the cardinality of

Log−1(y) is equal to one.

Proof of Theorem 7.1. Let θ = (θ1, . . . , θk, ψ1, . . . , ψk+m) be a regular value
of the argument map. If ρ(t) ∈ P(k) belongs to the inverse image by the
argument map of θ, then arg(tj) = θj for each j = 1, . . . , k and arg(fl(t)) =
ψl for each l = 1, . . . , k+m. The k-plane P(k) is parametrized by ρ as above.
For each l, we can always view fl, bl and the aljtj 's as vectors in the plane C,
such that their arguments are in the increasing order. If we put them in the
plane with this order, we obtain a convex polygon. We can check that if there
exist t 6= t′ with ρ(t) and ρ(t′) in P(k) and Arg (ρ(t)) = Arg (ρ(t′)) = θ,
then the inverse image of θ by Arg has dimension strictly greater than zero.
Therefore, θ is not regular. In fact, if |tj | 6= |t′j | for some j, then for any

(λ|tj | + (1 − λ)|t′j |)eθj , with λ ∈ [0, 1], there exist ts = µse
θs with µs ∈ R+,

s ∈ {1, . . . , k} \ {j} and Arg (fl) = ψl for each l = 1, . . . , k + m. This
means that the dimension of Arg−1(θ) is at least one. We conclude that the
cardinality of Arg−1(θ) is equal to one for any regular point θ. �

In the case of k-dimensional real linear spaces of (C∗)2k, the second author,
and Passare [NP-11] prove that each regular value of the logarithmic map is
covered by 2k points and the volume of the coamoeba is equal to π2k. Hence,
the numbers p and P of Theorem 3.1 are equal to 1

2k in this case.

Corollary 7.1. Let A (k) be the amoeba of a k-dimensional real linear space
of (C∗)2k. Then

vol(A ) =
π2k

2k
.
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