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Second main theorems and unicity of
meromorphic mappings with moving

hypersurfaces

Si Duc Quang

Abstract. In this article, we establish some new second main theorems for meromorphic

mappings of Cm into Pn(C) and moving hypersurfaces with truncated counting functions.

As an application, we prove a uniqueness theorem for these mappings sharing few moving

hypersurfaces without counting multiplicity. This result is an improvement of the results

of Dulock - Min Ru [2] and Dethloff - Tan [4]. Moreover the meromorphic mappings

maybe algebraically degenerate.

1 Introduction

In 2004, Min Ru [8] showed a second main theorem for algebraically nondegenerate mero-

morphic mappings and a family of hypersurfaces in weakly general position. After that,

with the same assumptions, T. T. H. An and H. T. Phuong [1] improved the result of

Min Ru by giving an explicit truncation level for counting functions. Applying the second

main theorem of An - Phuong, Dulock and Min Ru [2] proved a uniqueness theorem for

meromorphic mappings sharing a family of hypersurfaces in weakly general position.

Recently, in [3] Dethloff and Tan generalized and improved the second main theorems

of Min Ru and An - Phuong to the case of moving hypersurfaces. They proved that

Theorem A (Dethloff - Tan [3]) Let f be a nonconstant meromorphic map of Cm into

Pn(C). Let {Qi}q
i=1 be a set of slow (with respect to f) moving hypersurfaces in weakly

general position with deg Qj = dj (1 ≤ i ≤ q). Assume that f is algebraically nondegen-

erate over K̃{Qi}q
i=1

. Then for any ε > 0 there exist positive integers Lj (j = 1, ...., q),

depending only on n, ε and dj (j = 1, ..., q) in an explicit way such that

|| (q − n− 1− ε)Tf (r) ≤
q∑

i=1

1

di

N
[Lj ]

Qi(f)(r) + o(Tf (r)).

2010 Mathematics Subject Classification: Primary 32H30, 32A22; Secondary 30D35.
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Here, the truncation level Lj is estimated by

Lj ≤
dj ·

(
n+M

n

)
tp0+1 − dj

d
+ 1,

where d is the least common multiple of the d′js, d = lcm(d1, ..., dq), and

M =d · [2(n + 1)(2n − 1)(nd + 1)ε−1 + n + 1],

p0 =[
(
(

n+M
n

)2 · (q
n

)
− 1) · log(

(
n+M

n

)2 · (q
n

)
)

log(1 +
ε

2
(

n+M
n

)
N

)
+ 1]2,

and tp0+1 <

((
n + M

n

)2

·
(

q

n

)
+ p0

)((n+M
n )

2
·(q

n)−1
)

,

where [x] = max{k ∈ Z ; k ≤ x} for a real number x.

By using this second main theorem, Dethloff and Tan proved a uniqueness theorem for

meromorphic mappings sharing slow moving hypersurfaces (see Theorem 3.1 [4]). However

in their result, the number of moving hypersurfaces is too big. An essential reason comes

from the fact that the truncation levels given in Theorem B actually are very weak.

Morever their proof of the uniqueness theorem is too complicate.

We also would like to note that, in all mentioned results on second main theorem of

Min Ru, An - Phuong and Dethloff - Tan the algebraically nondegeneracy condition of

the meromorphic mappings can not be removed.

Our aim in the present paper is to show some new second main theorems for meromor-

phic mappings and slow moving hypersurfaces with better truncation levels for counting

functions. Moreover the mappings maybe algebraically degenerate. Namely, we prove the

following theorems.

Theorem 1.1. Let f be a meromorphic mapping of Cm into Pn(C). Let Qi (i = 1, ..., q)

be slow (with respect to f) moving hypersurfaces of Pn(C) in weakly general position with

deg Qi = di, q ≥ nN + n + 1, where N =
(

n+d
n

)
− 1 and d = lcm(d1, ..., dq). Assume that

Qi(f) 6≡ 0 (1 ≤ i ≤ q). Then we have

|| q

nN + n + 1
Tf (r) ≤

q∑
i=1

1

di

N
[N ]
Qi(f)(r) + o(Tf (r)).

Theorem 1.2. Let f be a meromorphic mapping of Cm into Pn(C). Let Qi (i = 1, ..., q)

be slow (with respect to f) moving hypersurfaces of Pn(C) in weakly general position with

deg Qi = di, q ≥ N + 2, where N =
(

n+d
n

)
− 1 and d = lcm(d1, ..., dq). Assume that f is

algebraically nondegenerate over K̃{Qi}q
i=1

. Then we have

|| q

N + 2
Tf (r) ≤

q∑
i=1

1

di

N
[N ]
Qi(f)(r) + o(Tf (r)).
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As an application of these second main theorems, we prove the following uniqueness

theorem for meromorphic mappings sharing slow moving hypersurfaces without counting

multiplicity.

Theorem 1.3. Let f and g be nonconstant meromorphic mappings of Cm into Pn(C). Let

Qi (i = 1, ..., q) be a set of slow (with respect to f and g) moving hypersurfaces in Pn(C)

in weakly general position with deg Qi = di. Put d = lcm(d1, ..., dq) and N =
(

n+d
n

)
− 1.

Let k (1 ≤ k ≤ n) be an integer. Assume that

(i) dim
(⋂k

j=0 ZeroQij(f)
)
≤ m− 2 for every 1 ≤ i0 < · · · < ik ≤ q,

(ii) f = g on
⋃q

i=1

(
ZeroQi(f) ∪ ZeroQij(g)

)
.

Then the following assertions hold:

a) If q >
2kN(nN + n + 1)

d
then f = g.

b) In addition to the assumptions (i)-(ii), we assume that both f and g are algebraically

nondegenerate over K̃{Qi}q
i=1

. If q >
2kN(N + 2)

d
then f = g.

We note that the numbers of hypersurfaces in our results are smaller than that in the

results of Dulock - Min Ru [2] and Dethloff - Tan [4]. Also by introducing some new

techniques, we simplify their proofs.

Acknowledgements. This research was supported through the programme ”Ober-

wolfach Leibniz Fellows” by the Mathematisches Forschungsinstitut Oberwolfach in 2011.

The author wishes to express his gratitude to the institute.

2 Basic notions and auxiliary results from Nevan-

linna theory

2.1. We set ||z|| =
(
|z1|2 + · · ·+ |zm|2

)1/2
for z = (z1, . . . , zm) ∈ Cm and define

B(r) := {z ∈ Cm : ||z|| < r}, S(r) := {z ∈ Cm : ||z|| = r} (0 < r < ∞).

Define

vm−1(z) :=
(
ddc||z||2

)m−1
and

σm(z) := dclog||z||2 ∧
(
ddclog||z||2

)m−1
on Cm \ {0}.

2.2. Let F be a nonzero holomorphic function on a domain Ω in Cm. For a set α =

(α1, ..., αm) of nonnegative integers, we set |α| = α1 + ...+αm and DαF =
∂|α|F

∂α1z1...∂αmzm

.

We define the map νF : Ω → Z by

νF (z) := max {k : DαF (z) = 0 for all α with |α| < k} (z ∈ Ω).

3



We mean by a divisor on a domain Ω in Cm a map ν : Ω → Z such that, for each a ∈ Ω,

there are nonzero holomorphic functions F and G on a connected neighborhood U ⊂ Ω

of a such that ν(z) = νF (z) − νG(z) for each z ∈ U outside an analytic set of dimension

≤ m− 2. Two divisors are regarded as the same if they are identical outside an analytic

set of dimension ≤ m − 2. For a divisor ν on Ω we set |ν| := {z : ν(z) 6= 0}, which is

either a purely (m− 1)-dimensional analytic subset of Ω or an empty set.

Take a nonzero meromorphic function ϕ on a domain Ω in Cm. For each a ∈ Ω, we

choose nonzero holomorphic functions F and G on a neighborhood U ⊂ Ω such that

ϕ =
F

G
on U and dim(F−1(0) ∩ G−1(0)) ≤ m − 2, and we define the divisors ν0

ϕ, ν∞ϕ

by ν0
ϕ := νF , ν∞ϕ := νG, which are independent of choices of F and G and so globally

well-defined on Ω.

2.3. For a divisor ν on Cm and for a positive integer M or M = ∞, we define the counting

function of ν by

ν [M ](z) = min {M, ν(z)},

n(t) =


∫

|ν| ∩B(t)

ν(z)vm−1 if m ≥ 2,∑
|z|≤t

ν(z) if m = 1.

Similarly, we define n[M ](t).

Define

N(r, ν) =

r∫
1

n(t)

t2m−1
dt (1 < r < ∞).

Similarly, we define N(r, ν [M ]) and denote it by N [M ](r, ν).

Let ϕ : Cm −→ C be a meromorphic function. Define

Nϕ(r) = N(r, ν0
ϕ), N [M ]

ϕ (r) = N [M ](r, ν0
ϕ).

For brevity we will omit the character [M ] if M = ∞.

2.4. Let f : Cm −→ Pn(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (w0 : · · · : wn) on Pn(C), we take a reduced representation

f = (f0 : · · · : fn), which means that each fi is a holomorphic function on Cm and

f(z) =
(
f0(z) : · · · : fn(z)

)
outside the analytic set {f0 = · · · = fn = 0} of codimension

≥ 2. Set ‖f‖ =
(
|f0|2 + · · ·+ |fn|2

)1/2
.

The characteristic function of f is defined by

Tf (r) =

∫
S(r)

log ‖f‖σm −
∫

S(1)

log ‖f‖σm.

4



2.5. Let ϕ be a nonzero meromorphic function on Cm, which are occasionally regarded

as a meromorphic map into P1(C). The proximity function of ϕ is defined by

m(r, ϕ) :=

∫
S(r)

log max (|ϕ|, 1)σm.

The Nevanlinna’s characteristic function of ϕ is defined as follows

T (r, ϕ) := N 1
ϕ
(r) + m(r, ϕ).

Then

Tϕ(r) = T (r, ϕ) + O(1).

The function ϕ is said to be small (with respect to f) if || Tϕ(r) = o(Tf (r)). Here, by the

notation ′′|| P ′′ we mean the assertion P holds for all r ∈ [0,∞) excluding a Borel subset

E of the interval [0,∞) with
∫

E
dr < ∞.

We denote by M (resp. Kf ) the field of all meromorphic functions (resp. small mero-

morphic functions) on Cm.

2.6. Denote by HCm the ring of all holomorphic functions on Cm. Let Q be a homoge-

neous polynomial in HCm [x0, . . . , xn] of degree d ≥ 1. Denote by Q(z) the homogeneous

polynomial over C obtained by substituting a specific point z ∈ Cm into the coeffi-

cients of Q. We also call a moving hypersurface in Pn(C) each homogeneous polynomial

Q ∈ HCm [x0, . . . , xn] such that the common zero set of all coefficients of Q has codimen-

sion at least two.

Let Q be a moving hypersurface in Pn(C) of degree d ≥ 1 given by

Q(z) =
∑
I∈Id

aIω
I ,

where Id = {(i0, ..., in) ∈ Nn+1
0 ; i0 + · · · + in = d}, aI ∈ HCm and ωI = ωi0

0 · · ·ωin
n . We

consider the meromorphic mapping Q′ : Cm → PN(C), where N =
(

n+d
n

)
, given by

Q′(z) = (aI0(z) : · · · : aIN
(z)) (Id = {I0, ..., IN}).

The moving hypersurfaces Q is said to be ”slow” (with respect to f) if || TQ′(r) = o(Tf (r)).

This is equivalent to ||T aIi
aIj

(r) = o(Tf (r)) for every aIj
6≡ 0.

Let {Qi}q
i=1 be a family of moving hypersurfaces in Pn(C), deg Qi = di. Assume that

Qi =
∑
I∈Idi

aiIω
I .

We denote by K̃{Qi}q
i=1

the smallest subfield of M which contains C and all aiI
aiJ

with

aiJ 6≡ 0. We say that {Qi}q
i=1 are in weakly general position if there exists z ∈ Cm such
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that all aiI (1 ≤ i ≤ q, I ∈ I) are holomorphic at z and for any 1 ≤ i0 < · · · < in ≤ q the

system of equations {
Qij(z)(w0, . . . , wn) = 0

0 ≤ j ≤ n

has only the trivial solution w = (0, . . . , 0) in Cn+1.

2.7. Let f be a nonconstant meromorphic map of Cm into Pn(C). Denote by Cf the set

of all non-negative functions h : Cm \ A −→ [0, +∞] ⊂ R, which are of the form

h =
|g1|+ · · ·+ |gl|

|gl+1|+ · · ·+ |gl+k|
,

where k, l ∈ N, g1, ...., gl+k ∈ Kf \ {0} and A ⊂ Cm, which may depend on g1, ...., gl+k, is

an analytic subset of codimension at least two. Then, for h ∈ Cf we have∫
S(r)

log hσm = o(Tf (r)).

Lemma 2.8 (Lemma 2 [3]). Let {Qi}n
i=0 be a set of homogeneous polynomials of degree d

in Kf [x0, ..., xn]. Then there exists a function h1 ∈ Cf such that, outside an analytic set

of Cm of codimension at least two,

max
i∈{0,...,n}

|Qi(f0, ..., fn)| ≤ h1||f ||d.

If, moreover, this set of homogeneous polynomials is in weakly general position, then there

exists a nonzero function h2 ∈ Cf such that, outside an analytic set of Cm of codimension

at least two,

h2||f ||d ≤ max
i∈{0,...,n}

|Qi(f0, ..., fn)|.

2.9. Lemma on logarithmic derivative (Lemma 3.11 [9]) . Let f be a nonzero

meromorphic function on Cm. Then∣∣∣∣∣∣∣∣ m

(
r,
Dα(f)

f

)
= O(log+ T (r, f)) (α ∈ Zm

+ ).

2.10. Assume that L is a subset of a vector space V over a field R. We say that the set

L is minimal over R if it is linearly dependent over R and each proper subset of L is

linearly independent over R.

Repeating the argument in (Prop. 4.5 [5]), we have the following:

Proposition 2.11. Let Φ0, ..., Φk be meromorphic functions on Cm such that {Φ0, ..., Φk}
are linearly independent over C. Then there exists an admissible set

{αi = (αi1, ..., αim)}k
i=0 ⊂ Zm

+
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with |αi| =
∑m

j=1 |αij| ≤ k (0 ≤ i ≤ k) such that the following are satisfied:

(i) {DαiΦ0, ...,DαiΦk}k
i=0 is linearly independent over M, i.e., det (DαiΦj) 6≡ 0.

(ii) det
(
Dαi(hΦj)

)
= hk+1 ·det

(
DαiΦj

)
for any nonzero meromorphic function h on Cm.

3 Second main theorems for moving hypersurfaces

In order to prove Theorem 1.1 we need the following.

Lemma 3.1. Let f be as in Theorem 1.1. Let {Qi}n(N+1)
i=0 be a set of homogeneous

polynomials in Kf [x0, ..., xn] of common degree d in weakly general position, where N =(
n+d

n

)
− 1. Assume that Qi(f) 6≡ 0 (0 ≤ i ≤ n(N + 1)). Then there exist a subset B of

{Qi(f) ; 0 ≤ i ≤ n(N +1)} and subsets I1, ..., Ik of B such that the following are satisfied:

(i) I1 is minimal, Ii is independent over Kf (2 ≤ i ≤ k).

(ii) B =
⋃k

i=1 Ii, Ii ∩ Ij = ∅ (i 6= j) and ]B ≥ n + 1.

(iii) For each 1 ≤ i ≤ k, there exist meromorphic functions cα ∈ Kf \ {0} such that∑
Qα(f)∈Ii

cαQα(f) ∈

(
i−1⋃
j=1

Ij

)
Kf

.

Proof. Denote by V d
f the vector space of all homogeneous polynomials of degree d in

Kf [x0, ..., xn]. It is seen that dim V d
f =

(
n+d

n

)
= N + 1.

• We set A0 = {Qi(f) ; 0 ≤ i ≤ n(N + 1)}. We are going to construct the subset B0

of A0 as follows:

Since ]A0 > N + 1 = dim V d
f , the set A0 is linearly independent over Kf . Therefore,

there exists a minimal subset I0
1 over Kf of A0. If ]I0

1 ≥ n+1 or (I0
1 )Kf

∩(A0 \ I0
1 )Kf

= {0}
then we stop the process and set B0 = I0

1 , A1 = A0 \B0.

Otherwise, since (I0
1 )Kf

∩ (A0 \ I0
1 )Kf

6= {0}, we now choose a subset I0
2 of A0 \ I0

1

such that I0
2 is the minimal subset of A0 \ I0

1 satisfying (I0
1 )Kf

∩ (I0
2 )Kf

6= {0}. By the

minimality, the subset I0
2 is linearly independent over Kf . If ](I0

1 ∪ I0
2 ) ≥ n + 1 or

(I0
1 ∪ I0

2 )Kf
∩ (A0 \ (I0

1 ∪ I0
2 ))Kf

= {0} then we stop the process and set B0 = I0
1 ∪I0

2 , A1 =

A0 \B0.

Otherwise, by repeating the above argument, we have a subset I0
3 of A0 \ (I0

1 ∪ I0
2 ).

Continuiting this process, there exist subsets I0
1 , ..., I

0
k such that: I0

i is a subset of

A0 \
⋃i−1

j=1 I0
j , I0

j is linearly independent over Kf (2 ≤ j ≤ k), (I0
i )Kf

∩
(⋃i−1

j=1 I0
j

)
Kf

6= {0},

]B0 ≥ n + 1 or (B0)Kf
∩ (A0 \B0)Kf

= {0}. Also, by the minimality of each subset

I0
i (2 ≤ i ≤ k), there exist nonzero meromorphic functions c0

α ∈ Kf such that∑
Qα(f)∈I0

i

c0
αQα(f) ∈

(
i−1⋃
j=1

I0
j

)
Kf

.

7



• If ]B0 ≥ n + 1, by setting B = B0, Ii = I0
i then the proof is finished.

Otherwise, we have (B0)Kf
∩ (A0 \B0)Kf

= {0}. We set A1 = A0 \ B0. Then

dim(A1)Kf
≤ N + 1 − dim(B0)Kf

≤ N and ]A1 ≥ nN + 1 > N ≥ dim(A1)Kf
. Simi-

larly, we construct the subset B1 of A1 with the same properties as B0.

• If ]B1 ≥ n + 1 then the proof is finished. Otherwise, by repeating the same argument

we have subsets A3, B3 and I3
i .

Continuiting this process, we have the following two cases:

Case 1. By this way, we may construct subsets B1, ..., BN with ]Bi ≤ n (1 ≤ i ≤ N).

We set BN+1 = A0 \
⋃N

i=0 Bi. Then ]BN+1 ≥ n(N + 1) + 1 − n(N + 1) = 1. Then

dim (BN+1)Kf
≥ 1. On the other hand, it is easy to see that

dim (BN+1)Kf
= dim (A0)Kf

−
N∑

i=0

dim (Bi)Kf
≤ N + 1− (N + 1) = 0.

This is a contradiction. Hence this case is impossible.

Case 2. At the step k− th (k ≤ N), we get ]Bk ≥ n + 1. Then similarly as above, the

proof is finished. �

Lemma 3.2. Let f be as in Theorem 1.1. Let {Qi}n(N+1)
i=0 be a set of homogeneous

polynomials in Kf [x0, ..., xn] of common degree d in weakly general position, where N =(
n+d

n

)
− 1. Assume that Qi(f) 6≡ 0 (0 ≤ i ≤ n(N + 1)). Then we have

|| Tf (r) ≤
n(N+1)∑

i=0

1

d
N

[N ]
Qi(f)(r) + o(Tf (r)).

Proof. By Lemma 3.1, we may assume that there exist the subsets

Ii = {Qti+1(f), ..., Qti+1
(f)} (1 ≤ i ≤ k)

and functions ci ∈ Kf \{0} (t2+1 ≤ i ≤ tk+1), where t1 = −1, which satisfy the assertions

of Lemma 3.1.

Since I1 is minimal over Kf , there exist c1j ∈ R \ {0} such that

t2∑
j=0

c1jQj(f) = 0.

Define c1j = 0 for all j > t1. Then
∑tk+1

j=0 c1jQj(f) = 0.

Since {c1jQj(f)}t2
j=1 is linearly independent over Kf , there exists an admissible set

8



{α11, ..., α1t2} ⊂ Zm
+ (|α1j| ≤ t2 − 1 ≤ N) such that

A1 ≡

∣∣∣∣∣∣∣∣∣
Dα11(c11Q1(f)) · · · Dα11(c1t2Qt2(f))
Dα12(c11Q1(f)) · · · Dα12(c1t2Qt2(f))

...
...

...
Dα1t2 (c11Q1(f)) · · · Dα1t2 (c1t2Qt2(f))

∣∣∣∣∣∣∣∣∣

≡f t1
0 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dα11

(
c11Q1(f)

Q0(f)

)
· · · Dα11

(
c1t2Qt2(f)

Q0(f)

)
Dα12

(
c11Q1(f))

Q0(f)

)
· · · Dα12

(
c1t2Qt2(f)

Q0(f)

)
...

...
...

Dα1t2

(
c11Q1(f)

Q0(f)

)
· · · Dα1t1

(
c1t2Qt2(f)

Q0(f)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ (Q0(f))t2 · Ã1 6≡ 0.

Now consider i ≥ 2. We set cij = cj 6≡ 0 (ti + 1 ≤ j ≤ ti+1), then
∑ti+1

j=ti+1 cijQj(f) ∈(⋃i−1
j=1 Ij

)
Kf

. Therefore, there exist meromorphic functions cij ∈ Kf (0 ≤ j ≤ ti) such

that
∑ti+1

j=0 cijQj(f) = 0.

Define cij = 0 for all j > ti+1. Then
∑tk+1

j=0 cijQj(f) = 0.

Since {cijQj(f)}ti+1

j=ti+1 is linearly independent over Kf , there exists {αij}ti+1

j=ti+1 ⊂ Zm
+

(|αij| ≤ ti+1 − ti − 1 ≤ N) such that

Ai = det

(
Dαij

(
cisQs(f)

))ti+1

j,s=ti+1

= (Q0(f))ti+1−ti · det

(
Dαij

(
cisQs(f)

Q0(f)

))ti+1

j,s=ti+1

=Q0(f)ti+1−ti · Ãi 6≡ 0.
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Consider an tk+1 × (tk+1 + 1) minor matrixes T and T̃ given by

T =



Dα11(c10Q0(f)) · · · Dα11(c1tk+1
Qtk+1

(f))
Dα12(c10Q0(f)) · · · Dα12(c1tk+1

Qtk+1
(f))

...
...

...
Dα1t2 (c10Q0(f)) · · · Dα1t2 (c1tk+1

Qtk+1
(f))

Dα2t2+1(c20Q0(f)) · · · Dα2t2+1(c2tk+1
Qtk+1

(f))
Dα2t2+2(c20Q0(f)) · · · Dα2t2+2(c2tk+1

Qtk+1
(f))

...
...

...
Dα2t3 (c20Q0(f)) · · · Dα2t3 (c2tk+1

Qtk+1
(f))

...
...

...
Dαktk+1(ck0Q0(f)) · · · Dαktk+1(cktk+1

Qtk+1
(f))

Dαktk+2(ck0Q0(f)) · · · Dαktk+2(cktk+1
Qtk+1

(f))
...

...
...

Dαktk+1 (ck0Q0(f)) · · · Dαktk+1 (cktk+1
Qtk+1

(f))



T̃ =



Dα11

(
c10Q0(f)

Q0(f)

)
· · · Dα11

(
c1tk+1

Qtk+1
(f)

Q0(f)

)
...

...
...

Dα1t2

(
c10Q0(f)

Q0(f)

)
· · · Dα1t2

(
c1tk+1

Qtk+1
(f)

Q0(f)

)
Dα2t2+1

(
c20Q0(f)

Q0(f)

)
· · · Dα2t2+1

(
c1tk+1

Qtk+1
(f)

Q0(f)

)
...

...
...

Dα2t3

(
c20Q0(f)

Q0(f)

)
· · · Dα2t3

(
c2tk+1

Qtk+1
(f)

Q0(f)

)
...

...
...

Dαktk+1

(
ck0Q0(f)

Q0(f)

)
· · · Dαktk+1

(
cktk+1

Qtk+1
(f)

Q0(f)

)
...

...
...

Dαktk+1

(
ck0Q0(f)

Q0(f)

)
· · · Dαktk+1

(
cktk+1

Qtk+1
(f)

Q0(f)

)



.

Denote by Di (resp. D̃i) the determinant of the matrix obtained by deleting the (i+1)-th

column of the minor matrix T (resp. T̃ ). It is clear that the sum of each row of T
(resp.T̃ ) is zero, then we have

Di = (−1)iD0 = (−1)i
k∏

i=1

Ai = (−1)i(Q0(f))tk+1

k∏
i=1

Ãi

= (−1)i(Q0(f))tk+1D̃0 = (Q0(f))tk+1D̃i.
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Since ](
⋃k

i=1 Ii) ≥ n + 1 and Q0, ..., Qtk+1
are in weakly general position, by Lemma 2.8

there exists a function Ψ ∈ Cf such that

||f(z)||d ≤ Ψ(z) · max
0≤i≤tk+1

(
|Qi(f)(z)|

)
(z ∈ Cm).

Fix z0 ∈ Cm. Take i (0 ≤ i ≤ tk) such that |Qi(f)(z0)| = max0≤j≤tk |Qj(f)(z0)|. Then

|D0(z0)| · ||f(z0)||d∏tk+1

j=0 |Qj(f)(z0)|
=

|Di(z0)|∏tk+1

j=0
j 6=i

|Qj(f)(z0)|
·
(
||f(z0)||d

|Qi(f)(z0)|

)
≤ Ψ(z0) ·

|Di(z0)|∏tk+1

j=0
j 6=i

|Qj(f)(z0)|
.

This implies that

log
|D0(z0)|.||f(z0)||d∏tk+1

j=0 |Qj(f)(z0)|
≤ log+

(
Ψ(z0) ·

(
|Di(z0)|∏tk+1

j=0,j 6=i |Qj(f)(z0)|

))
≤ log+

(
|Di(z0)|∏tk

j=0,j 6=i |Qj(f)(z0)|

)
+ log+ Ψ(z0).

Thus, for each z ∈ Cm, we have

log
|D0(z)|.||f(z)||d∏tk+1

i=0 |Qi(f)(z)|
≤

tk+1∑
i=0

log+

(
|Di(z)|∏tk

j=0,j 6=i |Qj(f)(z)|

)
+ log+ Ψ(z)

=

tk+1∑
i=0

log+

(
|D̃i(z)|∏tk

j=0,j 6=i

∣∣∣∣Qj(f)(z)

Q0(f)(z)

∣∣∣∣
)

+ log+ Ψ(z).(3.3)

Note that
D̃i∏tk+1

j=0,j 6=i

Qj(f)

Q0(f)

= det



Dα11

(
c10Q0(f)

Q0(f)

)
Q0(f)

Q0(f)

· · ·
Dα11

(
c1tk+1

Qtk+1
(f)

Q0(f)

)
Qtk+1

(f)

Q0(f)
...

...
...

Dαktk+1

(
ck0Q0(f)

Q0(f)

)
Q0(f)

Q0(f)

· · ·
Dαktk+1

(
cktk+1

Qtk+1
(f)

Q0(f)

)
Qtk+1

(f)

Q0(f)


(The determinant is counted after deleting the i-th column in the above matrix)

By the lemma on logarithmic derivative, for each i and c ∈ Kf we have

∣∣∣∣∣∣∣∣ m

(
r,

Dα

(
cQj(f)

Q0(f)

)
Qj(f)

Q0(f)

)
≤ m

(
r,

Dα

(
cQj(f)

Q0(f)

)
cQj(f)

Q0(f)

)
+m(r, c)

≤ O

(
log+ TcQj(f)

Q0(f)

(r)

)
+Tc(r) = o(Tf (r))
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Therefore, we have∣∣∣∣∣∣∣∣ m

(
r,

D̃i∏tk+1

j=0,j 6=i

Qj(f)

Q0(f)

)
= o(Tf (r)) (0 ≤ i ≤ tk).

Integrating both sides of the inequality (3.3), we get∣∣∣∣∣∣∣∣ ∫
S(r)

log ||f ||dσm +

∫
S(r)

log

(
|D0|∏tk+1

i=0 |Qi(f)|

)
σm

≤
tk+1∑
i=0

∫
S(r)

log+

(
|D̃i|∏tk+1

j=0,j 6=i |
Qj(f)

Q0(f)
|

)
σm +

∫
S(r)

log+ Ψ(z)σm

≤
tk+1∑
i=0

m

(
r,

D̃i∏tk+1

j=0,j 6=i

Qj(f)

Q0(f)

)
+o(Tf (r)) = o(Tf (r)).

By Jensen formula, the above inequality implies that

|| dTf (r) + ND0(r)−N 1
D0

(r)−
tk+1∑
i=0

NQi(f)(r) ≤ o(Tf (r)).(3.4)

We see that a pole of D0 must be pole of some cis or pole of some nonzero coefficients aiI

of Qi and

N 1
D0

(r) ≤ O(
∑
i,s

N 1
cis

(r) +
∑
aiI 6≡0

N 1
aiI

(r)) = o(Tf (r)).

Therefore, the inequality (3.4) implies that

|| dTf (r) ≤
tk+1∑
i=0

NQi(f)(r)−ND0(r) + o(Tf (r)).(3.5)

Here we note that Di = (−1)iD0, then ν0
Di

= ν0
D0

.

We now assume that z is a zero of some functions Qi(f). Since tk+1 + 1 ≥ n + 1 and z

can not be zero of more than n functions Qi(f), without loss of generality we may assume

that z is not zero of Q0(f). Then

ν0
Dαsts−1+j (csiQi(f))

(z) ≥ min
β∈Zm

+ with αsts−1+j−β∈Zm
+

{ν0

DβcsiD
αsts−1+j−β

Qi(f)
(z)}

≥ min
β∈Zm

+ with αsts−1+j−β∈Zm
+

{
max{0, ν0

Qi(f)(z)− |αsts−1+j − β|} − (β + 1)ν∞csi
(z)
}

≥ max{0, ν0
Qi(f)(z)−N} − (N + 1)ν∞csi

(z)

for each 1 ≤ i ≤ tk+1, 1 ≤ j ≤ ts − ts−1, 1 ≤ s ≤ k + 1, where t0 = 0..

12



Put I(z) = (N + 1)
∑k

s=1

∑tk
i=0(ts − ts−1)ν

∞
csi

(z). Then

νD0(z) ≥
tk+1∑
i=0

max{0, ν0
Qi(f)(z)−N} − I(z).(3.6)

We note that if z is not zero of a function Qi(f) with i 6= 0, replacing D0 by Di and

repeating the same above argument we again get the inequality (3.6). Hence (3.6) holds

for all z ∈ Cm. It follows that

tk+1∑
i=0

ν0
Qi(f)(z)− νD0(z) ≤

tk−1∑
i=0

min{N, ν0
Qi(f)(z)}+ I(z).

Integrating both sides of the above inequality, we get

tk+1∑
i=0

NQi(f)(r)−ND0(r) ≤
tk+1∑
i=0

N
[N ]
Qi(f)(r) + o(Tf (r)).

Combining this and (3.5), we get

|| Tf (r) ≤
n(N+1)∑

i=0

1

d
N

[N ]
Qi(f)(r) + o(Tf (r)).

The lemma is proved. �

Proof of Theorem 1.1.

We first prove the theorem for the case where all Qi (i = 1, ..., q) have the same degree

d. By changing the homogeneous coordinates of Pn(C) if necessary, we may assume that

aiI1 6≡ 0 for every i = 1, ..., q. We set Q̃i =
1

aiI1

Qi. Then {Q̃i}q
i=1 is a set of homogeneous

polynomials in Kf [x0, ..., xn] in weakly general position.

Consider (nN +n+1) polynomials Q̃i1 , ..., Q̃inN+n+1
(1 ≤ ij ≤ q). Applying Lemma 3.2,

we have

∣∣∣∣ Tf (r) ≤
nN+n+1∑

j=1

1

d
N

[N ]

Q̃i(f)
(r) + o(Tf (r)) ≤

nN+n+1∑
j=1

1

d
N

[N ]
Qi(f)(r) + o(Tf (r)).

Taking summing-up of both sides of this inequality over all combinations {i1, ..., inN+n+1}
with 1 ≤ i1 < ... < inN+n+1 ≤ q, we have∣∣∣∣∣∣∣∣ q

nN + n + 1
Tf (r) ≤

nN+n+1∑
j=1

1

d
N

[N ]
Qi(f)(r) + o(Tf (r)).

The theorem is proved in this case.
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We now prove the theorem for the general case where deg Qi = di. Then, applying the

above case for f and the moving hypersurfaces Q
d
di
i (i = 1, ..., q) of common degree d, we

have ∣∣∣∣∣∣∣∣ q

nN + n + 1
Tf (r) ≤

q∑
j=1

1

d
N

[N ]

Q
d/di
i (f)

(r) + o(Tf (r))

≤
q∑

j=1

1

d

d

di

N
[N ]
Qi(f)(r) + o(Tf (r))

=

q∑
j=1

1

di

N
[N ]
Qi(f)(r) + o(Tf (r)).

The theorem is proved. �

Proof of Theorem 1.2.

By repeating the argument as in the proof of Theorem 1.1, it suffices to prove the

theorem for the case where all Qi have the same degree.

By changing the homogeneous coordinates of Pn(C) if necessary, we may assume that

aiI1 6≡ 0 for every i = 1, ..., q. We set Q̃i =
1

aiI1

Qi. Then {Q̃i}q
i=1 is a set of homogeneous

polynomials in Kf [x0, ..., xn] in weakly general position.

Consider (N + 2) polynomials Q̃i1 , ..., Q̃iN+2
(1 ≤ ij ≤ q). We see that dim(Q̃ij ; 1 ≤

j ≤ N +2)K̃{Qi}
q
i=1

≤ N +1 < N +2. Then the set {Qi1 , ..., QiN+2
} is linearly independent

over K̃{Qi}q
i=1

. Hence, there exists a minimal subset over K̃{Qi}q
i=1

, for instance that is

{Q̃i1 , ..., Q̃it}, of {Q̃i1 , ..., Q̃iN+2
}. Then, there exist nonzero functions cj (1 ≤ j ≤ t) in

K̃{Qi}q
i=1

such that

c1Q̃i1 + · · ·+ ctQ̃it = 0.

Since Qi1 , ...., QiN+2
are in weakly general position, t ≥ n + 2. Setting Fj = cjQj(f), we

have

F1 + · · ·Ft−1 = −Ft.

Choose a meromorphic functions h so that F = (hF1 : · · · : hFt−1) is a reduced represen-

tation of a meromorphic mapping F from Cm into Pn(C). It is seen that

Nh(r) ≤
t−1∑
j=1

(N 1
cj

(r) + NaijI1
(r)) = o(Tf (r)).

On the other hand, by the minimality of the set {Q̃i1 , ..., Q̃it}, then F is linearly nonde-
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generate over C. Applying the second main theorem for fixed hyperplanes, we get

|| TF (r) ≤
t∑

j=1

N
[t−2]
hFj

(r) + o(TF (r))

≤
t∑

j=1

(N
[t−2]

Q̃ij
(f)

(r) + N [t−2]
cj

(r)) + tN
[t−2]
h (r) + o(TF (r))

=
t∑

j=1

N
[t−2]
Qij

(f)(r) + o(Tf (r)) ≤
N+2∑
j=1

N
[N ]
Qij

(f)(r) + o(Tf (r)).

It follows that

|| Tf (r) =
1

d
TF (r) + o(Tf (r)) ≤

N+2∑
j=1

1

d
N

[N ]
Qij

(f)(r) + o(Tf (r)).

Taking summing-up of both sides of this inequality over all combinations {i1, ..., iN+2}
with 1 ≤ i1 < ... < iN+2 ≤ q, we have∣∣∣∣∣∣∣∣ q

N + 2
Tf (r) ≤

q∑
j=1

1

d
N

[N ]
Qi(f)(r) + o(Tf (r)).

The theorem is proved. �

4 Uniqueness theorem for meromorphic mappings shar-

ing moving hypersurfaces

In order to prove Theorem 1.3 we need the following.

Lemma 4.1. Let f and g be nonconstant meromorphic mappings of Cm into Pn(C). Let

Qi (i = 1, ..., q) be slow (with respect to f and g) moving hypersurfaces in Pn(C) in weakly

general position with deg Qi = di. Put d = lcm(d1, ..., dq) and N =
(

n+d
n

)
− 1. Then the

following assertions hold:

(i) If q > 2N(nN+n+1)
d

then || Tf (r) = O(Tg(r)) and || Tg(r) = O(Tf (r)).

(ii) If both f and g are algebraically nondegenerate over K̃{Qi}q
i=1

and q > 2N(N+2)
d

then

|| Tf (r) = O(Tg(r)) and || Tg(r) = O(Tf (r)).

Proof. (i) It is clear that q > nN + n + 1. Then applying Theorem 1.1 for f , we have
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|| q

nN + n + 1
Tg(r) ≤

q∑
i=1

1

di

N
[N ]
Qi(g)(r) + o(Tg(r))

≤
q∑

i=1

N

di

N
(1)
Qi(g)(r) + o(Tg(r))

≤
q∑

i=1

N

di

N
(1)
Qi(f)(r) + o(Tg(r))

≤qN Tf (r) + o(Tg(r)).

Hence || Tg(r) = O(Tf (r)). Similarly, we get || Tf (r) = O(Tg(r)).

(ii) By applying Theorem 1.2 instead of Theorem 1.1 in the proof of the first assertion,

we will get the proof of the second one. �

Proof of Theorem 1.3. We assume that f and g have reduced representations f = (f0 :

· · · : fn) and g = (g0 : · · · : gn) respectively.

a) By Lemma 4.1 (i) , we have || Tf (r) = O(Tg(r)) and || Tg(r) = O(Tf (r)). Suppose

that f and g are two distinct maps. Then there exist two index s, t (0 ≤ s < t ≤ n)

satisfying

H := fsgt − ftgs 6≡ 0.

Set S =
⋃
{
⋂k

j=0 ZeroQij(f) ; 1 ≤ i0 < · · · < ik ≤ q}. Then S is either an analytic subset

of codimension at least two or an empty set.

Assume that z is a zero of some Qi(f) (1 ≤ i ≤ q) and z 6∈ S. Then the condition (iii)

yields that z is a zero of the function H. Also, since z 6∈ S, z can not be zero of more than

k functions Qi(f). Therefore, we have

ν0
H(z) = 1 ≥ 1

k

q∑
i=1

min{1, ν0
Qi(f)(z)}.

This inequality holds for every z outside the analytic subset S of codimension at least

two. Then, it follows that

NH(r) ≥ 1

k

q∑
i=1

N
[1]
Qi(f)(r).(4.2)

On the other hand, by the definition of the characteristic function and Jensen formula,

we have

NH(r) =

∫
S(r)

log |fsgt − ftgs|σm

≤
∫

S(r)

log ||f ||σm +

∫
S(r)

log ||f ||σm

= Tf (r) + Tg(r).
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Combining this and (4.2), we obtain

Tf (r) + Tg(r) ≥
1

k

q∑
i=1

N
[1]
Qi(f)(r).

Similarly, we have

Tf (r) + Tg(r) ≥
1

k

q∑
i=1

N
[1]
Qi(g)(r).

Summing-up both sides of the above two inequalities, we have

2(Tf (r) + Tg(r)) ≥
1

k

q∑
i=1

N
[1]
Qi(f)(r) +

1

k

q∑
i=1

N
[1]
Qi(g)(r)

=
1

k

q∑
i=1

N
[1]

Q
d/di
i (f)

(r) +
1

k

q∑
i=1

N
[1]

Q
d/di
i (g)

(r)

≥
q∑

i=1

1

kN
N

[N ]

Q
d/di
i (f)

(r) +

q∑
i=1

1

kN
N

[N ]

Q
d/di
i (g)

(r).(4.3)

From (4.3) and applying Theorem 1.1 for f and g, we have

2(Tf (r) + Tg(r)) ≥
q∑

i=1

1

kN
N

[N ]

Q
d/di
i (f)

(r) +

q∑
i=1

1

kN
N

[N ]

Q
d/di
i (g)

(r)

≥ d

kN

q

nN + n + 1
(Tf (r) + Tg(r)) + o(Tf (r) + Tg(r)).

Letting r −→ +∞, we get 2 ≥ d
kN

q
nN+n+1

⇔ q ≤ 2kN(nN+n+1)
d

. This is a contradiction.

Hence f = g. The assertion a) is proved.

b) By Lemma 4.1 (ii) , we have || Tf (r) = O(Tg(r)) and || Tg(r) = O(Tf (r)). Suppose

that f and g are two distinct maps. Repeating the same argument as in a), we get the

following inequality, which is similar to (4.3),

2(Tf (r) + Tg(r)) ≥
q∑

i=1

1

kN
N

[N ]

Q
d/di
i (f)

(r) +

q∑
i=1

1

kN
N

[N ]

Q
d/di
i (g)

(r).(4.4)

From (4.4) and applying Theorem 1.2 for f and g, we have

2(Tf (r) + Tg(r)) ≥
q∑

i=1

1

kN
N

[N ]

Q
d/di
i (f)

(r) +

q∑
i=1

1

kN
N

[N ]

Q
d/di
i (g)

(r)

≥ d

kN

q

N + 2
(Tf (r) + Tg(r)) + o(Tf (r) + Tg(r)).

Letting r −→ +∞, we get 2 ≥ d
kN

q
N+2

⇔ q ≤ 2kN(N+2)
d

. This is a contradiction.

Hence f = g. The assertion b) is proved. �
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