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INVARIANTS OF CLOSED BRAIDS VIA COUNTING

SURFACES

MICHAEL BRANDENBURSKY

Abstract. A Gauss diagram is a simple, combinatorial way to present
a link. It is known that any Vassiliev invariant may be obtained from
a Gauss diagram formula that involves counting subdiagrams of certain
combinatorial types. In this paper we present simple formulas for an
in�nite family of invariants in terms of counting surfaces of a certain
genus and number of boundary components in a Gauss diagram associ-
ated with a closed braid. We then identify the resulting invariants with
partial derivatives of the HOMFLY-PT polynomial.

1. Introduction.

In this paper we consider link invariants arising from the HOMFLY-PT poly-
nomials. The HOMFLY-PT polynomial P (L) is an invariant of an oriented
link L (see e.g. [6], [8], [11], [15]). It is a Laurent polynomial in two variables
a and z, which satis�es the following skein relation:

aP

(
+

)
− a−1P

(
−

)
= zP

(
0

)
.

The HOMFLY-PT polynomial is normalized in the following way. If Or is an

r-component unlink, then P (Or) =
(
a−a−1

z

)r−1
. The Conway polynomial

∇ may be de�ned as ∇(L) := P (L)|a=1. This polynomial is a renormalized
version of the Alexander polynomial (see e.g. [5], [10]). All coe�cients of ∇
are �nite type or Vassiliev invariants.

One of the mainstream and simplest techniques for producing Vassiliev in-
variants are so-called Gauss diagram formulas (see [7], [14]). These formulas
generalize the calculation of a linking number by counting subdiagrams of
special geometric-combinatorial types with signs and weights in a given link
diagram.

Until recently, explicit formulas of this type were known only for few in-
variants of low degrees. The situation has changed with works of Chmutov-
Khoury-Rossi [3] and Chmutov-Polyak [4]. In [3] Chmutov-Khoury-Rossi
presented an in�nite family of Gauss diagram formulas for all coe�cients of
∇(L), where L is a knot or a two-component link. Each formula for the
coe�cient cn of zn is related to a certain count of orientable surfaces of a
certain genus, and with one boundary component. The genus depends only
on n and the number of the components of L.

1



2 MICHAEL BRANDENBURSKY

In a recent paper [1] the author showed that the n-th coe�cient of the

polynomial zP
(1)
a (L)|a=1, where P

(k)
a (L)|a=1 is the k-th partial derivative of

the HOMFLY-PT polynomial P w.r.t. the variable a evaluated at a = 1,
can be obtained by a certain count of orientable surfaces of some genus with
one and two boundary components. And again the genus depends only on
n and the number of the components of L.

This leads to a natural question: how to produce link invariants by counting
orientable surfaces with an arbitrary number of boundary components? In
this paper we are going to show that the n-th coe�cient of the polynomial

zkP
(k)
a (L)|a=1 can be obtained by a similar count of orientable surfaces of a

certain genus with one up to k+1 boundary components, see Theorem 4.1.

Plan of the paper. In Section 2 we review Gauss diagrams and Gauss
diagram formulas. We de�ne a notion of multi-based arrow diagrams and
formulate our main result in terms of Gauss diagrams. In Section 3 we show
that our invariant satis�es certain skein relation. In Section 4 we give a proof
of the main Theorems 4.1, and give an example. Section 5 is used for �nal
remarks.

Acknowledgments. The author would like to thank Michael Polyak and
Hao Wu for helpful conversations. Part of this work has been done during
the author's stay in Mathematisches Forschungsinstitut Oberwolfach. The
author wishes to express his gratitude to the institute. He was supported by
the Oberwolfach Leibniz fellowship.

2. Gauss diagrams and arrow diagrams

In this section we recall a notion of Gauss diagrams, arrow diagrams and
Gauss diagram formulas. We then de�ne a special type of arrow diagrams
which will be used to de�ne Gauss diagram formulas for coe�cients of poly-
nomials derived from the HOMFLY-PT polynomial.

2.1. Gauss diagrams of links. Gauss diagrams (see e.g. [7], [14]) provide
a simple combinatorial way to encode oriented links.

De�nition 2.1. Given a link diagram D, consider a collection of oriented
circles parameterizing it. Unite two preimages of every crossing of D in a
pair and connect them by an arrow, pointing from the overpassing preimage
to the underpassing one. To each arrow we assign a sign (local writhe)
of the corresponding crossing. The result is called the Gauss diagram G
corresponding to D.

We consider Gauss diagrams up to an orientation-preserving di�eomorphisms
of the circles. In �gures we will always draw circles of the Gauss diagram
with a counter-clockwise orientation. A classical link can be uniquely recon-
structed from the corresponding Gauss diagram [7].



INVARIANTS OF CLOSED BRAIDS VIA COUNTING SURFACES 3

Example 2.2. Diagrams of the trefoil knot and the Hopf link, together with
the corresponding Gauss diagrams, are shown in the following picture.

+

+

+

+

+

Two Gauss diagrams represent isotopic links if and only if they are related by
a �nite number of Reidemeister moves for Gauss diagrams shown in Figure
1, where ε = ±1. See e.g. [2, 12, 13].

Ω1 : ε Ω2 :
ε

−ε

Ω3 :

+

+

+

+

++

Figure 1. Reidemeister moves of Gauss diagrams.

2.2. Gauss diagrams of closed braids. Recall that the Artin braid group
Bm on m strings has the following presentation:

Bm = ⟨σ1, . . . , σm−1| σiσj = σjσi, |i− j| ≥ 2; σiσi+1σi = σi+1σiσi+1⟩,
where each generator σi is shown in Figure 2a. Let w be a word on m strings

��������

�
�
�
�
��
��
��
��
�
�
�
�

α

aa1 2 am

a b

1 mi i+1

Figure 2. Artin generator σi and a closure of a braid α.

in generators σ±1
1 , . . . , σ±1

m−1. We take the corresponding "geometric word",
connect it opposite ends by nonintersecting curves as shown in Figure 2b and
get an oriented link diagram D. Let us remove from D a small neighborhood
around each intersection point. We de�ne an arc in D to be a connected
component of the resulting graph, and label the arcs of D shown in Figure
2b by letters a1, ..., am. Two words w and w′ on m strings represent the same
element in Bm up to conjugation, if and only if the associated diagrams D
andD′ can be obtained one from another by a �nite sequence of moves shown
in Figure 3, see e.g. [9]. Note that the moves shown in Figure 3 may also
involve labeled arcs.
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Figure 3. Reidemeister moves of braid diagrams.

Ω1 : a

a

a

amam

+ m+1

m

− m+1

Ω2 :

ε

−ε

ε

−ε

ai aj

ai aj ai aj

ajai

−ε

ε

−ε

ε

aj
ai ajia

ε

−ε

ε

−ε

Ω3 :

+

+

+

+

++

Figure 4. Reidemeister moves of braid Gauss diagrams.
The move Ω2 may involve arcs labeled by ai and aj . In this
case we require that |i− j| = 1. The move Ω3 may involve la-
beled arcs as well, i.e. two corresponding arcs may be labeled
by some ai.

Let D be any diagram associated with a braid α ∈ Bm. A corresponding
braid Gauss diagram Gm is a Gauss diagram G together with the corre-
sponding arcs labeled by letters a1, ..., am, where an arc in G is a connected
component of the complement of all arrows in G. Similarly to the case of
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Gauss diagrams, two braid Gauss diagrams represent isotopic links if and
only if they are related by a �nite number of moves shown in Figure 4.

De�nition 2.3. Let k ≥ 1 be any integer and Gm a braid Gauss diagram
associated with a braid α ∈ Bm. A colored braid Gauss diagram Gk,m is a
diagram G together with the following assignment of k base points ∗1, ..., ∗k
and m − k natural numbers between 1 and k to the arcs labeled by letters
a1, ..., am:

• For each 1 ≤ i ≤ k there exists exactly one arc aj such that the
base point ∗i is placed on this arc, and the arc a1 always contains
basepoint ∗1.

• Let 1 ≤ i1 < i2 ≤ k. If ∗i1 and ∗i2 are placed on arcs aj1 and aj2 ,
then j1 < j2, i.e. the assignment of base points is in ascending order.

• After we placed base points ∗1, ..., ∗k on arcs aj1 , ..., ajk , let aj be
a non-based arc. Denote by jl the maximal number from the set
{j1, ..., jk} such that j > jl. Now, to arc aj we assign exactly one

number from the set {1, ..., l}.

We denote by Gk,m a set of all colored braid Gauss diagrams associated with
k and Gm. Note that Gk,m is empty whenever k > m.

2.3. Arrow diagrams and the corresponding surfaces. An arrow di-

agram is a modi�cation of a notion of a Gauss diagram, i.e. it consists of
a number of oriented circles with several arrows connecting pairs of distinct
points on them, see Figure 5. An arrow diagram is based if a base point
is placed on an arc of A. We consider these diagrams up to orientation-
preserving di�eomorphisms of the circles.

Figure 5. Based connected arrow diagrams.

Given an arrow diagram A, we de�ne an oriented surface Σ(A) as follows.
Firstly, replace each circle of A with an oriented disk bounding this circle.
Secondly, glue 1-handles to boundaries of these disks using each arrow as a
core of a ribbon. See Figure 6.

Figure 6. Constructing a surface from an arrow diagram.
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De�nition 2.4. By the genus and the number of boundary components of
an arrow diagram A we mean the genus and the number of boundary com-
ponents of Σ(A). An arrow in A is called separating, if the boundary of the
corresponding ribbon belongs to di�erent boundary components of Σ(A).

Remark 2.5. Let A be an arrow diagram with n arrows and r circles.
Then the Euler characteristic χ of Σ(A) equals to χ(Σ(A)) = r − n. If A
is connected, n ≥ r − 1. If A has odd number of boundary components,
n ̸= r(mod2), otherwise n = r(mod2).

Example 2.6. The arrow diagram with one circle in Figure 5 is of genus
one, while the other arrow diagram in the same �gure is of genus zero. Both
of them have one boundary component.

De�nition 2.7. An arrow diagram A with k boundary components is multi-

based if k base points ∗1, ..., ∗k are placed on k di�erent arcs of A, such that
each arc belongs to a di�erent boundary component of A, see Figure 7. Let
1 ≤ j ≤ k. We say that a boundary component of A is called j-th boundary
component if there exists an arc, which belongs to this component, with a
base point ∗j on it.

3
2

1

Figure 7. Multibased arrow diagram with 3 boundary components.

2.4. Gauss diagram formulas. M. Polyak and O. Viro suggested [14] the
following approach to compute link invariants using Gauss diagrams.

De�nition 2.8. Let A be a based arrow diagram with r circles and let G be
a based Gauss diagram of an r-component oriented link. A homomorphism

ϕ : A → G is an orientation preserving homeomorphism between each circle
of A and each circle of G, which maps the base point of A to the base point
of G and induces an injective map of arrows of A to the arrows of G. The
set of arrows in Im(ϕ) is called a state of G induced by ϕ and is denoted by
S(ϕ). The sign of ϕ is de�ned as sign(ϕ) =

∏
α∈S(ϕ) sign(α). A set of all

homomorphisms ϕ : A → G is denoted by Hom(A,G).

Note that since the circles of A are mapped to circles of G, a state S of
G determines both the arrow diagram A and the map ϕ : A → G with
S = S(ϕ).

De�nition 2.9. A pairing between an arrow diagram A and G is de�ned
by

⟨A,G⟩ =
∑

ϕ∈Hom(A,G)

sign(ϕ).

We set ⟨A,G⟩ = 0, whenever A and G have di�erent number of circles.
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For an arbitrary arrow diagram A the pairing ⟨A,G⟩ does not represent a
link invariant, i.e. it depends on the choice of a Gauss diagram of a link.
However, for some special linear combinations of arrow diagrams the result is
independent of the choice of G. Using a slightly modi�ed de�nition of arrow
diagrams Goussarov, Polyak and Viro showed in [7] that each real-valued
Vassiliev invariant of knots may be obtained this way. In other words they
showed that each real-valued Vassiliev invariant of knots may be computed
as a certain count with weights of subdiagrams of a based Gauss diagram.
For example, all coe�cients of the Conway polynomial ∇ may be obtained
using suitable combinations of arrow diagrams. More precisely, in [3] it was
shown that the coe�cient cn of zn in ∇ can be obtained by a certain count
of arrow diagrams with one boundary component and certain genus, where
the genus depends only on n and the number of circles in G.

In [1] we showed that the n-th coe�cient of the polynomial zP
(1)
a |a=1 can be

obtained by a certain count of arrow diagrams with one and two boundary
components and certain genus. And again the genus depends only on n and
the number of circles in G. In what follows we are going to show that, in
case when G is a braid Gauss diagram of a link, the n-th coe�cient of the

polynomial zkP
(k)
a |a=1 can be obtained by a similar count of arrow diagrams

with one up to k+1 boundary components and a certain genus. Hence we
need to adopt De�nition 2.8 to the case of multi-based arrow diagrams and
colored braid Gauss diagrams.

De�nition 2.10. Let A be a multi-based arrow diagram with r circles and
k boundary components and let Gk,m be a colored braid Gauss diagram of
an r-component closed braid on m strings. A homomorphism ϕ : A → Gk,m

is an orientation preserving homeomorphism between each circle of A and
each circle of Gk,m, which maps each base point ∗i of A to each base point ∗i
of Gk,m and induces an injective map of arrows of A to the arrows of Gk,m.
In addition we require that if a non-based arc a of Gk,m is labeled by some
j, then a is an image of some arc which lies in the j-th boundary component
of A. The notion of state and pairing is de�ned as before.

2.5. Descending arrow diagrams. In this subsection we de�ne a special
type of multi-based arrow diagrams.

De�nition 2.11. Let A be a multi-based arrow diagram with k boundary
components. As we go along the �rst boundary component of Σ(A) starting
from the base point ∗1, we pass on the boundary of each ribbon once or
twice. Then we continue to go along the second boundary component of
Σ(A) starting from the base point ∗2 and so on until we pass all boundary
components of Σ(A). Arrow diagram A is descending if we pass each ribbon
of Σ(A) �rst time in the direction of its core arrow.

Remark 2.12. In order to de�ne the notion of descending arrow diagrams
we used the fact that all arrow diagrams are multi-based. The position of
base points in an arrow diagram is essential to de�ne an order of the passage.

From now on we will work only with multi-based arrow diagrams.
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Example 2.13. Arrow diagram with two boundary components in Figure
8a is descending and arrow diagram with three boundary components in
Figure 8b is not descending.

2
12

3

a b

1

Figure 8. Descending and non-descending arrow diagrams.

Denote by Dn,k the set of all descending arrow diagrams with n arrows and
k boundary components.

Example 2.14. The set D2,1 is presented below.

D2,1 :=

Let Gm be any braid Gauss diagram. We denote by w(Gm) the writhe of
Gm, i.e. the sum of signs of all arrows in Gm. For each pair of natural
numbers j, k denote by

f
(k)
j (Gm) :=

(
a−m−w(Gm)+1(a2 − 1)j−1

)(k−1)
|a=1.

Let G ∈ Gk,m. A state S(ϕ) corresponding to ϕ : A → G for a descending
diagram A with k boundary components will be also called descending.

De�nition 2.15. For a pair k, j such that 1 ≤ j ≤ k set

Dn,k,j(Gm) :=
∑

G∈Gj,m

∑
A∈Dn+j−k,j

⟨A,G⟩

and denote by

Dn,k(Gm) :=

k∑
j=1

f
(k)
j (Gm)Dn,k,j(Gm).

De�ne the following polynomial:

Pk(Gm) :=
∞∑
n=0

Dn,k(Gm)zn.

Remark 2.16. Let Gm be any braid Gauss diagram of a link L. Note that

if k = 1, then f
(1)
1 (Gm) = 1 and Dn,1(Gm) = Dn,1,1(Gm) is exactly the sum

with signs of all descending arrow diagrams with one base point and with
one boundary component inside Gm. It follows by Theorem of Chmutov-
Khoury-Rossi [3] that Dn,1(Gm) is the n-th coe�cient cn(L) of the Conway
polynomial ∇(L). Hence P1(Gm) is nothing but ∇(L).
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3. Skein relation

In this section we show that each Dn,k,j(Gm) satis�es Conway skein relation
for each n and 1 ≤ j ≤ k. The fact that Dn,1,1(Gm) satis�es Conway skein
relation was proved in [1, 3], i.e.

+ −

Figure 9. A Conway triple of Gauss diagrams.

Theorem 3.1. [1, 3] Let Gm,+, Gm,− and Gm,0 be braid Gauss diagrams

which di�er only in the fragment shown in Figure 9. Then

(1) P1(Gm,+)− P1(Gm,−) = zP1(Gm,0).

Here we de�ne a notion of a separating state. This notion will be used in
the proof of Theorem 3.7.

i i

jj

i<j

i

i j

j

a b

Figure 10. Descending labeling.

De�nition 3.2. Let Gm be a braid Gauss diagram and G ∈ Gk,m. A
descending separating state S of G is a state S of G, together with a labeling
of all arcs of G by numbers from 1 to k such that:

• An arc with a basepoint ∗i is labeled by i.

• Each arc near α ∈ S is labeled as in Figure 10a.

• Each arc near α /∈ S is labeled as in Figure 10b.

Let G ∈ Gk,m. Then every descending separating state S in G de�nes a new
Gauss diagram GS with labeled circles as follows:
We smooth each arrow in G which belongs to S, as shown in Figure 11,
and denote resulting smoothed Gauss diagram by GS . Each circle in GS is
labeled by i, if it contains an arc labeled by i.

Now we return to arrow diagrams. Let A ∈ Dn,k. We denote by σ(A) the
set of separating arrows in A and label the arcs of circles in A by i if the
corresponding arc belongs to the i-th boundary component of Σ(A). Note
that for each G ∈ Gk,m the homomorphism ϕ : A → G induces a descending
separating state S of G, by taking S = ϕ(σ(A)) and labeling each arc of G
by the same label as the corresponding arc of A.
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Figure 11. Smoothing of an arrow.

De�nition 3.3. Let S be a descending separating state of G ∈ Gk,m, A ∈
Dn,k, and ϕ : A → G. We say that ϕ is S-admissible, if a descending
separating state induced by ϕ coincides with S.

De�nition 3.4. Let S be a descending separating state of G ∈ Gk,m, and
A ∈ Dn,k. We de�ne an S-pairing ⟨A,G⟩S by:

⟨A,G⟩S :=
∑

ϕ:A→G

sign(ϕ),

where the summation is over all S-admissible ϕ : A → G. We set

Dn,k(G)S :=
∑

A∈Dn,k

⟨A,G⟩S .

Every descending separating state S of G de�nes Gauss diagrams {Gi
S}ki=1

as follows: Gi
S consists of all circles of GS labeled by i, and its arrows are

arrows of G with both ends on these circles. All arrows with ends on circles
of GS with di�erent labels are removed. The base point of Gi

S is the base
point ∗i of G.

Each Gi
S corresponds to link Li

S which is de�ned as follows. We smooth all
crossings which correspond to arrows in S, as shown below:

We obtain a diagram of a smoothed link LS with labeling of components
induced from the labeling of circles of GS . Denote by Li

S a sublink which
consists of components labeled by i.

It follows from Remark 2.16 that for every n ≥ 0 we have

Dn,1(G
i
S) = cn(L

i
S).

Using this together with the de�nition of Dn,k(G)S we get

Lemma 3.5. Let Gm be a braid Gauss diagram of a link L and G ∈ Gk,m

Then for every n ≥ 0 and a descending separating state S of G we have

Dn,k(G)S = sign(S)
∑ k∏

j=1

cij (L
j
S),

where the summation is over indices i1, ..., ik such that
∑k

j=1 ij = n − |S|.
Here |S| is the number of arrows in S and sign(S) =

∏
α∈S sign(α).
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Summing over all G ∈ Gj,m and over all descending separating states S of
G, we obtain

Corollary 3.6. Let Gm be a braid Gauss diagram of a link L. Then for

every n ≥ 0 and 1 ≤ j ≤ k

Dn,k,j(Gm) =
∑

G∈Gj,m

n+j−k∑
l=0

∑
S,|S|=l

Dn+j−k,j(G)S or

Dn,k,j(Gm) =
∑

G∈Gj,m

n+j−k∑
l=0

∑
S,|S|=l

sign(S)
∑

i1,...,ij

j∏
t=1

cit(L
t
S),

where the third summation is over all descending separating states S of

G ∈ Gj,m, and the fourth summation is over all indices i1, ..., ij such that∑j
t=1 it = n+ j − k − l.

At this point we establish the skein relation for Dn,k,j(Gm).

Theorem 3.7. Let Gm,+, Gm,−, Gm,0 be a Conway triple of braid Gauss

diagrams, see Figure 9. Then

(2) Dn,k,j(Gm,+)−Dn,k,j(Gm,−) = Dn−1,k,j(Gm,0)

Proof. Let G+ ∈ (G+)j,m, G− ∈ (G−)j,m, G0 ∈ (G0)j,m be a corresponding
triple of colored braid Gauss diagrams, i.e. if an arc in G+ or in G− or in G0

is labeled by some ai, then it is colored by the same number or a basepoint
in view of De�nition 2.3. Denote the arrows of G+ and G− appearing in
Figure 9 by α+ and α−, respectively.

i i

ii

ii

i i

_

+i

i

i

i

i

i

_

j

j

+

_

+i

i j

j i

jj

ii

j j

jj

i i

jj

i i

i
i<j

cba

i<j

Figure 12. Correspondence of separating states of G0 and G±.

Let us look at labels of descending separating states of G± and G0 on four
arcs of the shown fragment. If labels of all four arcs are the same, we may
identify states of G± and G0 with the same arrows and labels of arcs, see
Figure 12a. Lemma 3.5 and Theorem 3.1 imply, that for every such state S

Dn+j−k,j(G+)S −Dn+j−k,j(G−)S = Dn+j−k−1,j(G0)S .

If labels on two arcs near the head of α± coincide, but di�er from labels near
the tail of α±, by Lemma 3.5 we have Dn+j−k,j(G+)S −Dn+j−k,j(G−)S = 0
for any such state S of G±, and there is no corresponding state of G0. See
Figure 12b (for i ̸= j).
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There is one more case when labels of two arcs near the head of α± are
di�erent. Such a state S of G0 corresponds either to a descending separating
state S ∪ α+ of G+, or to a descending separating state S ∪ α− of G−, see
Figure 12c. By Lemma 3.5 we have Dn+j−k,j(G+)S∪α+ = Dn+j−k−1,j(G0)S
in the �rst case and Dn+j−k,j(G−)S∪α− = −Dn+j−k−1,j(G0)S in the second
case. Summing over all G+ ∈ (G+)j,m, G− ∈ (G−)j,m, G0 ∈ (G0)j,m, over
all descending separating states of G+, G−, G0 and using Corollary 3.6, we
obtain the statement of the theorem. �

For a pair k, j such that 1 ≤ j ≤ k set

Ak,j(Gm) :=

∞∑
n=0

Dn,k,j(Gm)zn+j−k.

It follows from De�nition 2.15 that

(3) Pk(Gm) =

k∑
j=1

f
(k)
j (Gm)zk−jAk,j(Gm).

Moreover, the following Corollary follows immediately from Theorem 3.7.

Corollary 3.8. Let Gm,+, Gm,−, Gm,0 be a Conway triple of braid Gauss

diagrams, then

Ak,j(Gm,+)−Ak,j(Gm,−) = zAk,j(Gm,0).

4. Main theorem

For a link L and k ≥ 0 denote by Pk(L) := zkP
(k)
a (L)|a=1.

Theorem 4.1. Let Gm be a braid Gauss diagram of a link L, then for k ≥ 0

Pk+1(Gm) = Pk(L).

We will prove this theorem at the end of the section. At this point we show
that the polynomials Pk+1 and Pk satisfy the same skein relation. The skein
relation for the polynomial Pk follows directly from the skein relation of
HOMFLY-PT polynomial, i.e.

Pk(L+)− Pk(L−) + kzPk−1(L+) +
k−1∑
i=0

(−1)k−1−ik!

i!
zk−iPi(L−) = zIk(L0).

(4)

Lemma 4.2. Let Gm be a braid Gauss diagram of a link L. Then for every

k ≥ 0 we have

Pk+1(Gm,+)− Pk+1(Gm,−) =

zPk+1(Gm,0)− kzPk(Gm,+)−
k−1∑
i=0

(−1)k−1−ik!

i!
zk−iPi+1(Gm,−).

(5)
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Proof. It follows from (3) and Corollary 3.8 that

Pk+1(Gm,+)− Pk+1(Gm,−)− zPk+1(Gm,0) =

−
k+1∑
j=1

(
f
(k+1)
j (Gm,0)− f

(k+1)
j (Gm,+)

)
zk+1−jAk+1,j(Gm,+)−

k+1∑
j=1

(
f
(k+1)
j (Gm,−)− f

(k+1)
j (Gm,0)

)
zk+1−jAk+1,j(Gm,−).

(6)

Now

f
(k+1)
j (Gm,0)− f

(k+1)
j (Gm,+) =

(
a−w(Gm,+)−m+2(a2 − 1)j−1

)(k)
|a=1−(

a−w(Gm,+)−m+1(a2 − 1)j−1
)(k)

|a=1 = kf
(k)
j (Gm,+).

Note that f
(k)
k+1(Gm,+) = 0 and Ak+1,j(Gm,+) = Ak,j(Gm,+). Hence we

obtain
(7)

k+1∑
j=1

(
f
(k+1)
j (Gm,0)− f

(k+1)
j (Gm,+)

)
zk+1−jAk+1,j(Gm,+) = kzPk(Gm,+).

Similarly we have

f
(k+1)
j (Gm,−)− f

(k+1)
j (Gm,0) =

(
a−w(Gm,−)−m+1(a2 − 1)j−1

)(k)
|a=1−(

a−w(Gm,−)−m(a2 − 1)j−1
)(k)

|a=1 =

k−1∑
i=0

(−1)k−1−ik!

i!
f
(i+1)
j (Gm,−).

It follows that

k+1∑
j=1

(
f
(k+1)
j (Gm,−)− f

(k+1)
j (Gm,0)

)
zk+1−jAk+1,j(Gm,−) =

k+1∑
j=1

k−1∑
i=0

(−1)k−1−ik!

i!
f
(i+1)
j (Gm,−)z

k+1−jAk+1,j(Gm,−) =

k−1∑
i=0

(−1)k−1−ik!

i!
zk−i

i+1∑
j=1

f
(i+1)
j (Gm,−)z

i+1−jAi+1,j(Gm,−) =

k−1∑
i=0

(−1)k−1−ik!

i!
zk−iPi+1(Gm,−),

(8)

where the second equality follows from the fact that for j > i + 1 we have

f
(i+1)
j (Gm,−) = 0, and for i < k we have Ak+1,j(Gm,−) = Ai+1,j(Gm,−).

Combining equalities (6), (7) and (8) we conclude the proof of the lemma. �

Let Gm be a braid Gauss diagram with r circles. Of course r ≤ m. Recall
that Gm contains m arcs labeled by letters a1, ..., am. Let {mi}ri=1 be a
unique subset of the set {i}mi=1 which is de�ned as follows:
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• Each circle C in Gm contains kc arcs labeled by ac1 , ..., ackc . Let
mc = min{ac1 , ..., ackc}. There are exactly r such numbers, i.e. one
for each circle. We place them in an ascending order and the i-th
number in this ascending sequence is denoted by ami . In particular,
it follows that a1 = am1 < am2 < ... ≤ am.

The sequence {mi}ri=1 de�nes an obvious ordering of circles of Gm, i.e. the
circle of Gm which contains an arc labeled by ami is called the i-th circle.

De�nition 4.3. A braid Gauss diagram Gm is called totally ascending, if
for each pair i, j such that 1 ≤ i ≤ j ≤ r the following holds.

• When we walk on the i-th circle of Gm starting from an arc labeled
by ami until we return to this arc, we pass all arrows that connect
i-th and j-th circles �rst at the arrowhead.

Remark. Note that if a totally ascending braid Gauss diagram Gm on r
circles represents a link L. Then L is an r-component unlink Or.

Lemma 4.4. Let Gm be a totally ascending braid Gauss diagram of an r-
component unlink Or. Then

r = m+ w(Gm).

Proof. The proof of this lemma may be obtained by induction on m. It is
elementary and is left to the reader. �

Corollary 4.5. Let Gm be a totally ascending braid Gauss diagram of an

r-component unlink Or. Then for every k ≥ 0 we have

Pk+1(Gm) = Pk(Or).

Proof. By de�nition

Pk(Or) =

{ (
a−r+1(a2 − 1)r−1

)(k) |a=1 · zk−r+1 if 1 ≤ r ≤ k + 1

0 otherwise .

The diagram Gm is totally ascending, hence

Dn,k+1,j(Gm) =

{
1 if j = r and n+ r − k − 1 = 0

0 otherwise .

It follows that

Pk+1(Gm) =

{
f (k+1)
r (Gm) · zk−r+1 if 1 ≤ r ≤ k + 1

0 otherwise .

By de�nition f
(k+1)
r (Gm) :=

(
a−m−w(Gm)+1(a2 − 1)r−1

)(k) |a=1. Lemma 4.4
states that −m− w(Gm) = −r and the proof follows. �

Now we are ready to prove our main theorem.

Proof of Theorem 4.1. We prove this theorem by induction on k. If k = 0,
then by Remark 2.16 P1(Gm) = P0(L) := ∇(L).
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Now let us assume that Pk(G
′
m) = Pk−1(L

′) for any G′
m which represents

a link L′. We have to show that for any Gm which represents some link L
we have Pk+1(Gm) = Pk(L). We prove this statement by induction on the
number of arrows of the braid Gauss diagram Gm of an r-component link L.

If Gm has no arrows, then it represents an r-component unlink, it is totally
ascending and by Corollary 4.5 we have Pk+1(Gm) = Pk(Or).

Let us assume that Pk+1(G̃m) = Pk(L̃) for each link L̃ and every braid Gauss

diagrams G̃m with less than d arrows, which represent L̃.

Let Gm be a diagram with d arrows. We can pick an arrow in Gm and
use the skein relation (5) to simplify Gm. By induction hypothesis, each
Pi(Gm,−), Pk(Gm,+) and Pk+1(Gm,0) in the right hand side of (5) coincides
with Pi−1(Gm,−), Pk−1(L+) and Pk(L0) respectively.

We can make our braid Gauss diagram Gm totally ascending by changing the
appropriate arrows using the relation (5). Hence we can represent Pk+1(Gm)
as Pk+1(G

′
m), for some totally ascending braid Gauss diagram G′

m, plus some
terms of the form Pk+1(Gm,0), where Gm,0 has less than d arrows, and plus
some terms of the form Pi(G

′′
m) for 1 ≤ i ≤ k, where G′′

m has d arrows. The
diagram G′

m represents an r-component unlink Or and by Corollary 4.5 we
have Pk+1(G

′
m) = Pk(Or). By (4), (5) and the induction hypothesis

Pk+1(Gm) = Pk(L).

�
Example 4.6. Let G2 be a braid Gauss diagram of the trefoil knot T shown
in Figure 13 and let G2 and G1 be the unique colored braid Gauss diagrams
in the sets G2,2 and G1,2 shown in Figures 14a and 14b respectively. We are
going to calculate P3(G2).

a

a1

a

c
b

2

Figure 13. Trefoil T , braid Gauss diagram G2 with labeled arrows.

Recall that Dn,3,j(G2) :=
∑

G∈Gj,2

∑
A∈Dn+j−3,j

⟨A,G⟩ for each 1 ≤ j ≤ 3,

and Dn,3(G2) =
∑3

j=1 f
(3)
j (G2)Dn,3,j(G2). Note that Dn,3,j(G2) = 0 for

j > 2 because in this case the set Gj,2 is empty. In edition, we have

Dn,3,1(G2) =
∑

A∈Dn−2,1

⟨A,G1⟩ and Dn,3,2(G2) =
∑

A∈Dn−1,2

⟨A,G2⟩.
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2

1

b

a

c

1

b

a

c

1

ba

Figure 14. Colored braid Gauss diagrams G2 and G1.

There is a unique descending state of G1 with 0 arrows. The only other
descending state of G1 is {a, b}. It follows that D2,3,1(G2) = D4,3,1(G2) = 1
and Dn,3,1(G2) = 0 if n ̸= 2, 4. The only descending states of G2 with 1
arrow are {a} and {c}, and the only descending state of G2 with 3 arrows
is {a, b, c}. Hence D2,3,2(G2) = 2, D4,3,2(G2) = 1 and Dn,3,2(G2) = 0 if
n ̸= 2, 4. It follows that Dn,3(G2) = 0 if n ̸= 2, 4. In order to calculate

D2,3(G2) and D4,3(G2) we need to compute f
(3)
1 (G2) and f

(3)
2 (G2). We have

w(G2) = 3, hence

f
(3)
1 (G2) := (a−4)(2)|a=1 = 20 and f

(3)
2 (G2) := (a−4(a2−1))(2)|a=1 = −14.

It follows that D2,3(G2) =
∑3

j=1 f
(3)
j (G2)D2,3,j(G2) = 20 · 1 − 14 · 2 = −8

and D4,3(G2) =
∑3

j=1 f
(3)
j (G2)D4,3,j(G2) = 20 · 1 − 14 · 1 = 6. Hence

P3(G2) = 6z4−8z2. Indeed, one may check that P (T ) = a−2z2+2a−2−a−4,

so P2(T ) := z2P
(2)
a (T )|a=1 = 6z4 − 8z2.

5. Final Remarks

1. It is possible to give a direct prove of Theorem 4.1, i.e. without using
HOMFLY-PT polynomial. Recall that by Markov's theorem two braids α
and β represent the same link if and only if α can be obtained from β by a
�nite sequence of Markov moves.

• Conjugation in the braid group, i.e. replace α ∈ Bm by γαγ−1 where
γ ∈ Bm.

• Stabilization move, i.e. replace α ∈ Bm by ασn or by ασ−1
n . Desta-

bilization move, i.e. perform the converse operation.

In the language of braid Gauss diagrams it means that we have to prove the
invariance of Pk+1(Gm) under moves shown in Figure 4. The proof is very
similar to the proof of main theorem in [1].

2. We have de�ned Pk+1(Gm) in terms of counting descending arrow dia-
grams in a braid Gauss diagram Gm. Alternatively, we can de�ne Pk+1(Gm)
in terms of counting ascending arrow diagrams in a braid Gauss diagram Gm.

De�nition 5.1. Let k ≥ 1 be any integer and Gm a braid Gauss diagram
associated with a braid α ∈ Bm. A ⋆-colored braid Gauss diagram G⋆

k,m is a
diagram G together with the following assignment of k base points ∗1, ..., ∗k
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and m − k natural numbers between 1 and k to the arcs labeled by letters
a1, ..., am:

• For each 1 ≤ i ≤ k there exists exactly one arc aj such that the
base point ∗i is placed on this arc, and the arc am always contains
basepoint ∗1.

• Let 1 ≤ i1 < i2 ≤ k. If ∗i1 and ∗i2 are placed on arcs aj1 and aj2 ,
then j1 > j2, i.e. the assignment of base points is in descending
order.

• After we placed base points ∗1, ..., ∗k on arcs aj1 , ..., ajk , let aj be
a non-based arc. Denote by jl the minimal number from the set
{j1, ..., jk} such that j < jl. Now, to arc aj we assign exactly one

number from the set {1, ..., l}.

We denote by G⋆
k,m a set of all ⋆-colored braid Gauss diagrams associated

with k and Gm.

De�nition 5.2. Let A be a multi-based arrow diagram with k boundary
components. As we go along the �rst boundary component of Σ(A) starting
from the base point ∗1, we pass on the boundary of each ribbon once or
twice. Then we continue to go along the second boundary component of
Σ(A) starting from the base point ∗2 and so on until we pass all boundary
components of Σ(A). Arrow diagram A is ascending if we pass each ribbon
of Σ(A) �rst time in the opposite direction of its core arrow. The notion of
state and pairing is de�ned as in Subsection 2.4.

Example 5.3. Arrow diagram with three boundary components shown be-
low is ascending.

3
2

1

Denote by An,k the set of all ascending arrow diagrams with n arrows and k
boundary components. Let Gm be any braid Gauss diagram. For a pair k, j
such that 1 ≤ j ≤ k set

An,k,j(Gm) :=
∑

G∈G⋆
j,m

∑
A∈An+j−k,j

⟨A,G⟩.

Denote

An,k(Gm) :=
k∑

j=1

f
(k)
j (Gm)An,k,j(Gm) P ⋆

k (Gm) :=
∞∑
n=0

An,k(Gm)zn.

Theorem 5.4. Let Gm be a braid Gauss diagram of a link L, then for k ≥ 0

P ⋆
k+1(Gm) = Pk(L).

The proof of this theorem is identical to the proof of our main theorem and
is left to the reader.
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