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SPHERICAL ARC-LENGTH AS A GLOBAL CONFORMAL

PARAMETER FOR ANALYTIC CURVES IN THE

RIEMANN SPHERE

PAUL GAUTHIER, VASSILI NESTORIDIS AND ATHANASE PAPADOPOULOS

Abstract. We prove that for every analytic curve in the complex plane
C, Euclidean and spherical arc-lengths are global conformal parameters.
We also prove that for any analytic curve in the hyperbolic plane, hy-
perbolic arc-length is also a global parameter. We generalize some of
these results to the case of analytic curves in Rn and Cn and we discuss
the situation of curves in the Riemann sphere C ∪ {∞}.

AMS Mathematics Subject Classification: 30B40, 32B15

Keywords: Analytic curve, regular curve, global parameter, conformal pa-
rameter, arc-length, analytic extension, maximal extension, spherical arc-
length, hyperbolic arc-length.

1. Introduction

The subject of this paper is the interaction between real analytic curves
and complex geometry. The results are in the direction of those obtained in
the papers [7, 8].

In the papers [2] and [3], the authors obtained results on the parametriza-
tion of an analytic Jordan curve induced by the Riemann mapping theorem
from the open unit disc D onto the interior of that curve. A natural ques-
tion was addressed, namely, whether the same results are valid when the
arc-length parametrization of the curve is used. This led two of the authors
of the present paper to prove that arc-length is a global conformal parameter
for any analytic curve [7, 8]. Thus, nothing changes in the results of [2, 3] if
we use the arc-length parametrization of the curve considered.

On the other hand, it may happen that with a particular conformal
parametrization of an analytic curve, it is not clear whether one can further
extend this curve analytically to a domain larger than its domain of defini-
tion. It was shown in [7] and [8] that in order to be sure whether such an
extension is possible or not, one may simply use the arc-length parametriza-
tion, and examine whether the extendability for this parametrization is pos-
sible.

In the present paper, we show that also spherical arc-length is a global
conformal parameter for any analytic curve in C. Moreover, for analytic
curves in the upper half-plane model of hyperbolic geometry, we show that
hyperbolic length is also a global conformal parameter. These results are
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proved in §2 and are corollaries of a more general theorem involving holomor-
phic functions in several complex variables, where each variable is replaced
by a derivative of the complexification of the function γ defining the ana-
lytic curve or by the complex conjugate of a derivative of γ evaluated at the
complex conjugate z of the variable z in C.

In §3, we extend the result of §2 to analytic curves in Rn and Cn. Essen-
tially, the same methods of proof work.

In §4, we consider the notion of analytic curve in the Riemann sphere
C∪{∞}. The more general form of this definition is that locally the function
γ is the restriction of an injective meromorphic function. We show that
the spherical arc-length of such a curve is a global conformal parameter. It
follows that the maximal extension of such a curve parametrized by spherical
arc-length is always defined on an open subinterval of R = (−∞,+∞) and
cannot contain the point +∞. This contrasts with what happens if we
use other parametrizations, for instance the Euclidean arc-length. We note
that these parametrizations by Euclidean arc-length or spherical arc-length
should define strictly increasing functions, and in most cases we are led to
allow the parameter to take negative values, although we call it arc-length
parameter or spherical arc-length parameter (see [8], beginning of §,3, where
this question is discussed).

Finally, we mention that our definitions are special cases of more general
definitions of analytic curves on Riemann surfaces, but we do not insist on
that in the present paper.

In this paper, by a conformal mapping we mean a locally conformal map-
ping, that is, holomorphic and locally injective. (Equivalently, the map is
holomorphic with nonzero derivative, [1].)

2. Analytic curves in C

Definition 2.1. Let I ⊂ R be a nonempty interval of an arbitrary type
which is not a singleton and let γ : I → C be a continuous map. We say
that γ is an analytic curve if γ is differentiable on I and γ′(t) 6= 0 for all
t ∈ I and if for every t0 ∈ I there exists δ = δt0 > 0 and a power series∑∞

n=0 an(t − t0)n, an ∈ C, which is convergent on (t0 − δ, t0 + δ) and such
that γ(t) =

∑∞
n=0 an(t− t0)n for all t ∈ I ∩ (t0 − δ, t0 + δ).

It follows from this definition that γ is locally injective and that its max-
imal analytic extension is defined on an open subinterval of R, see [8]. It
is also true that if we restrict γ to a compact interval I0 such that γ|I0 is
injective, then γ has an injective holomorphic extension to an open neigh-
borhood V ⊂ C of I0 (see [7], [8]). In fact, this local extendability to an
injective holomorphic function is equivalent to the definition of an analytic
curve [1, 4, 6].

Let γ : [a, b]→ C be an analytic curve and N ≥ 1 a natural number. We
consider the image in C2N of [a, b] by the map

Γ(t) =
(
γ(t), γ(t), γ′(t), γ′(t), . . . , γ(N)(t), γ(N)(t)

)
.

(Note that since t is real, we have t = t, but the above notation is also meant
to deal with the case where t is complex, which we shall consider shortly.)

We denote by J ⊂ C2N the image of [a, b] by the map Γ.
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We now consider an open subset Ω of C2N containing J , and a holomor-
phic map

F : Ω→ C
such that F (J) ⊂ (0,+∞).

We set

S(t) =

∫ t

a
F
(
Γ(u)

)
du

and we let [A,B] be the image of [a, b] by S. Then, S is a strictly increasing
and continuous function from [a, b] onto [A,B]. Therefore it has an inverse

t = S−1(s),

and we can consider a new parametrization of the initial curve γ by setting

δ(s) = γ(S−1(s)).

Theorem 2.2. The curve δ is analytic.

In other words, the curve γ remains analytic with respect to this new
parametrization.

Proof. Since the map γ is locally injective, we can restrict γ to a smaller
interval to obtain an injective map. Without loss of generality we may
assume that γ is injective on [a, b]. Therefore the curve γ has an injective
holomorphic extension on a neighborhood V ⊂ C of [a, b]. We again call γ
this extension.
F (Γ(t)) is defined on [a, b]. There exists a neighborhood V1 of [a, b] in C

which is contained in V , such that the the following function has a holomor-
phic extension in that neighborhood:

G(z) = F (γ(z), γ(z), γ′(z), γ′(z), . . . , γ(N )(z), γ(N)(z).

We can choose this neighborhood V1 of [a, b] in C (the domain of z) to be
convex, e.g. a rectangle. Thus, the function G has a holomorphic primitive
(which we shall also call S) in V1, and the primitive may be chosen so that
it coincides with S at the point a (that is, it takes the value 0 at that point).
Thus, this function S is an extension, on V1 of the initial function S defined
on [a, b].

The restriction of S to [a, b] is injective. The derivative of S is F (Γ(t))
and is nonzero on [a, b], since we have F (J) ⊂ (0,+∞). We then prove as in
the papers [7] and [8] that we can take a smaller neighborhood of [a, b] which
is a rectangle such that the restriction of S to that rectangle is injective.

This shows that the new parametrization of the initial curve δ is an ana-
lytic function. The proof is complete. �

Theorem 2.2 also follows from the following lemma:

Lemma 2.3. Let f be analytic on [0, b]. Then

S(t) =

∫ t

0
f(u)du

is analytic and hence extends holomorphically to a neighborhood of [0, b].
If f > 0, then this extension is locally conformal in a (possibly smaller)
neighborhood of [0, b].
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Proof.

S′(t) = f(t) =
∞∑
k=0

ak(t− t0)k, |t− t0| < δ0,

S(t) =

∞∑
k=0

ak
k + 1

(t− t0)k+1, |t− t0| < δ0.

�

Note that if f is positive, then S′ is also positive, so the extension is
locally conformal in a smaller neighborhood.

Now, let γ : [0, b] → C be an analytic curve. Let Γ : [0, b] → Cn be

the analytic curve Γ = (γ, γ′, . . . , γ(n)). Suppose F is holomorphic on a
neighborhood of J = f([0, b]) and positive on J. Define the length (or F -
length) of γ([0, t]) as

S(t) =

∫ t

0
(F ◦ Γ)(u)du.

We may apply the lemma to S, with f = F ◦ Γ. We obtain that length is a
conformal parameter. Thus, we get another proof of Theorem 2.2.

We now give three applications of Theorem 2.2, in the form of examples.

Example 2.4 (Euclidean arc-length). We consider the particular case where
F is the function

F (z) =
√
z3z4

for z = (z1, z1, z3, z4) ∈ C4, with F defined on

Ω = {(a1, z2, z3, z4) ∈ C4 : Rez3 > 0, Rez4 > 0.}
Note that in this case we have z3z4 6∈ (−∞, 0], therefore the square root
function is well defined and holomorphic, and the function F ◦Γ is (locally)
conformal.

Then, we have

(F ◦ Γ)(t) = |γ′(t)| =
√
γ′(t).γ′(t)

and

G(z) =

√
γ′(z).γ′(z).

Theorem 2.2 gives another proof of Theorem 3.1 of [8] whose statement is
the following:

Theorem 2.5. Arc-length is a global conformal parameter for any analytic
curve in C.

Example 2.6 (Spherical arc-length). The derivative of spherical arc-length
with respect to the parameter t of a curve is given by the following formula:

|γ′(t)|
1 + |γ(t)|2

=

√
γ′(t).γ′(t)

1 + γ(t)γ(t)
.

Thus, in this case the function F of Theorem 2.2 is:

F (z1, z2, z3, z4) =

√
z3z4

1 + z1z2
,



SPHERICAL ARC-LENGTH AS A GLOBAL CONFORMAL PARAMETER 5

defined on

{(z1, z2, z3, z4) ∈ C4 : Rez3 > 0, Rez4 > 0, Rez1z2 > −1/2}.
Theorem 2.2 implies in this case the following:

Theorem 2.7. For any analytic curve in C, spherical arc-length is a global
and conformal parameter.

Example 2.8 (Hyperbolic arc-length). We consider an analytic curve γ in
the hyperbolic plane H2, and we use the upper half-space model:

H2 = {w = x+ iy : y = Im(w) > 0}.
The derivative of arc-length is given by the formula√(

dx
dt (γ(t))

)2
+
(dy
dt (γ(t))

)2
y(γ(t))

=
|γ′(t)|

γ(t)− γ(t)

2i

=

√
γ′(t).γ′(t)

γ(t)− γ(t)
2i.

Therefore, here we consider the function

F (z1, z2, z3, z4) =

√
z3z4

z1 − z2
2i

defined on

{(z1, z2, z3, z4) ∈ C4 : Rez3 > 0, Rez4 > 0, Im
(z1 − z2

2i

)
> 0}.

Note that Re(z1 − z2) < 0 is equivalent to Im
(
z1−z2

2i

)
> 0.

We deduce the following:

Theorem 2.9. In hyperbolic space, hyperbolic arc-length is a global and
conformal parameter.

3. Analytic curves in Rn

Definition 3.1. Let I ⊂ R be a nonempty interval of arbitrary type which
is not a singleton. We say that γ : I → Rn is analytic if the following two
conditions are satisfied:

(1) For every t ∈ I, the derivative γ′ exists in Rn and γ′(t) 6= 0.
(2) For every t0 ∈ I, there exists δ = δt0 > 0 and a sequence am ∈ Rn

such that
∑∞

m=0(t− t0)mam converges in (t0 − δ, t0 + δ) and γ(t) =∑∞
m=0(t− t0)mam for any t ∈ I ∩ (t0 − δ, t0 + δ).

Let γ : I → Rn be an analytic curve, with components γ = (γ1, γ2, ..., γn);
that is,

γ(t) = (γ1(t), γ2(t), ..., γn(t)).

Then for any given point t0 ∈ I, we have γ′j(t0) 6= 0 for some 1 ≤ j ≤ n.
Therefore γj is injective in a neighborhood of t0. Consequently, γ is locally
injective.

We consider the complexification Cn of Rn, taking

Rn = (x1, . . . , xn)

and
Cn = (x1 + iy1, . . . , xn + iyn).
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Each γj can be extended on a neighborhood of [a, b] in C to a holomorphic
mapping with values in C = {xj + iyj}. Taking the intersections of these
neighborhoods for i = 1, . . . , n, we see that γ extends to a holomorphic
mapping (which we also call γ) from a neighborhood U of [a, b] ⊂ C to Cn.

By choosing a smaller neighborhood of [a, b], we can assume that the
extension γ is locally injective. Indeed, since γ|I is locally injective, we may
restrict our attention to an interval I0 on which the curve γ is injective. If
the extension of γ from I0 to a small neighborhood of I0 were not injective,
then there would exist a nested sequence of open sets Uk whose intersection
is I0, and points zk 6= wk in each Uk such that γ(zk) = γ(wk). Without loss
of generality, we can assume that zk → z ∈ I0 and wk → w ∈ I0. Therefore,
γ(z) = γ(w). Since γ is injective on I0, z = w. But γ′j(z) 6= 0 for some
1 ≤ j ≤ n. Therefore the extension of γj is injective on a neighborhood of
z, which implies that γ is injective on a neighborhood of z. This contradicts
the fact that for every k, we have γ(zk) = γ(wk).

Let γ : [a, b] → Rn be an analytic curve in Rn and let N be a natural
number. Set

Γ(t) =
(
γ(t), γ′(t), γ′′(t), . . . , γ(N)(t)

)
and

J = Γ([a, b]) = {
(
γ(t), γ′(t), γ′′(t), . . . , γ(N)(t)

)
: t ∈ [a, b]} ⊂ RnN .

Let Ω ⊂ CnN be an open subset containing J , where we have the identifica-
tion

Rm = {(Rez1, . . . ,Rezm); (z1, . . . , zm) ∈ Cm}

with m = nN . Let F : Ω → C be a holomorphic function in Ω such that
F (J) ⊂ (0,+∞). Finally, let us set

S(t) =

∫ t

a
F (Γ(t))dt, a ≤ t ≤ b.

The function t 7→ S(t) is continuous and bijective from [a, b] to [A,B], for
some A,B in R, and it defines a new parametrization of the curve γ, namely,
δ = γ ◦ S−1, where S−1 : [A,B]→ [a, b] is the inverse of S.

We have the following:

Theorem 3.2. The function δ is also analytic.

The proof of Theorem 3.2 is similar to that of Theorem 2.2. It can be
done first in the case where γ is injective and the result follows easily in the
general case where γ is locally injective

Remark 3.3. Since in this section γj takes real values for t real, its holomor-

phic extension, denoted also by γj , satisfies γj(z) = γj(z); that is why in this
section we do not need extra variables for the conjugates of the derivatives
of γj evaluated at z.

Using a similar technique we can obtain a theorem similar to Theorem
3.2, but for analytic curves in Cn.
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4. Extendability with respect to spherical arc-length

Consider an analytic curve γ : (a, b)→ C (−∞ ≤ a < b ≤ +∞) under its
maximal extension form with respect to arc-length.

If the set of limit points of γ(t) when t → b has more than one element,
then, obviously, any reparametrization we choose for γ will not be extendable
beyond b.

Suppose now that the set of limit points of γ(t) when t→ b is a singleton.
If this point is in C, then no matter what parametrization we choose for
the curve, it will not be extendable beyond b, since γ is endowed with the
maximal parametrization by arc-length (Theorem 3.1 of [8]).

The remaining case is when γ(t) converges to ∞ as t → b (that is, for
any compact subset K of the complex plane, we have γ(t) ∩K = ∅ for all t
large enough). Thus, we have to consider the case where b = +∞. In this
case, using the arc-length parameter, the curve cannot be extended through
b since b is not in R (and arc-length becomes infinite). But we can use
instead the spherical arc-length, and it may happen that the spherical arc-

length is finite. Thus, we consider the curve
1

γ(t)
and we examine whether

this curve is extendable using the spherical arc-length parametrization. This
may happen indeed, and we give an example.

Consider a straight line, say R, and let γ : (−∞,+∞) → C be the in-
clusion map γ(t) = t. Then γ is parametrized by arc-length. We have
limt→+∞ γ(t) =∞.

By an easy computation, the spherical arc-length of the real axis is equal
to π. Indeed, we have in the case considered |γ′(t)| = 1, and the spherical
length becomes∫ +∞

−∞

dt

1 + t2
= arctan

]+∞
−∞ =

π

2
− (−π

2
) = π.

Thus, the parametrization of γ by the arc length parameter on (−∞,+∞)
can be replaced by the spherical arc-length parametrization as a function
defined on the interval (−π

2 ,
π
2 ). The corresponding function is

δ : (−π
2
,
π

2
)→ R ⊂ C

given by δ(u) = tanu. The limit of the map
1

γ
when t → +∞ is obviously

0. We have limu→−π
2

1
δ(u) = 0.

Thus, δ can be continued to a second real line: when the initial real line
where δ is defined approaches +∞, then the second real line will approach
−∞. The domain of definition using the spherical arc-length parametriza-
tion, instead of being (−π

2 ,
π
2 ) will become (−π

2 ,
3π
2 ).

Continuing in this way to the right and to the left, we find that the
domain of definition of δ is (−∞,+∞). The image of this curve γ is winding
countably many times around the real axis, equipped with the spherical
parmetrization by arc-length.

This gives an example of curves which are non-extendable using the Eu-
clidean arc-length. The introduction of spherical arc-length allows to go
over the point ∞.
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We note that the spherical arc-length parameter for the curves γ and 1
γ is

the same because the map z 7→ 1/z is an isometry for spherical arc-length.
Finally, we note that the curve δ : (−∞,+∞)→ C ∪ {∞} is not extend-

able, no matter what parametrization we use, because the set of limit points
at +∞ is R ∪ {∞}, which is not a singleton.

From the example of the real line that we gave, one can see that it
may happen that an analytic curve γ : (c,+∞) → C (c > 0) satisfying
limt→+∞ γ(t) =∞ extends analytically to (c,+∞)∪{∞}∪(−∞, c′) (c′ < 0)
where we identify the points +∞, ∞ and −∞. For this to hold, it suffices
that 1

γ(t) extends analytically from (0, 1/c) to (1/c′, 1/c) with 1
γ( 1
t
)

∣∣
t=0

= 0.

We conclude that the point ∞ can be in the interior of the domain where a
conformal parameter for an analytic curve in C ∪ {∞} varies.

Our previous definitions may be unified as follows:

Definition 4.1. A curve γ in C ∪ {∞} is said to be analytic with respect
to a parametrization with parameter t if for every value t0 ∈ R∪{∞} in the
range of the parameter t there exists an open set ∆ in the space where the
parameter varies (which may be an interval, the union of two intervals with
the point ∞ common to them, etc.) containing a point t0, an open set V
in C ∪ {∞}, such that t0 ∈ ∆ ⊂ V , and an injective meromorphic function
φ : V → C ∪ {∞} such that φ|∆ = γ|∆.

The example of the real line γ(t) = t, t ∈ R, shows that for some
parametrization of γ the point ∞ = +∞ = −∞ can be in the interior
of the set where the parameter t can be extended and still give an analytic
curve. However, we claim that this cannot happen if the parameter t is
the spherical arc-length. The reason is that spherical arc-length is a global
conformal parameter for any analytic curve in C∪{∞}. Indeed, if γ can be
extended through the point∞ = +∞ = −∞, its spherical length is equal to
that of 1

γ( 1
t
)

around 0, which must be finite. This contradicts the fact that t

is the spherical arc-length and approaches infinity at an interior point where
the parameter varies.

From the previous discussion, we deduce the following

Theorem 4.2. Spherical arc-length is a global conformal parameter for any
analytic curve in C ∪ {∞}.

Finally, we mention that all the previous definitions are special cases of
the definition of analytic curve on a Riemann surface, a subject we shall
develop elsewhere.
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