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THE INITIAL AND TERMINAL CLUSTER SETS OF AN

ANALYTIC CURVE

P. M. GAUTHIER

Abstract. For an analytic curve γ : (a, b) → C, the set of values
approached by γ(t), as t↘ a and as t↗ b can be any two continuua of
C ∪ {∞}.

1. Introduction

For −∞ ≤ a < b ≤ +∞, and a Riemann surface X, we say that
γ : (a, b) → X is a real-analytic curve, if it is real-analytic for every lo-
cal coordinate of X. That is, for every t0 ∈ (a, b) and every local coordinate
z at γ(t0), The function z ◦γ is representable by a power series in an interval
centered at t0. Analytic curves in Riemann surfaces were studied in [3], how-
ever, in this note, we consider only the case that X is the Riemann sphere
C = C∪{∞}. Thus, γ is analytic if and only if γ can be developed in a power
series in an interval about each t0 ∈ (a, b), for which γ(t0) is finite and 1/γ
can be developed in a power series about each point t0, where γ(t0) = ∞.
A real-analytic curve γ is said to be regular if its derivative never vanishes,
by which we mean that (z ◦ γ)′ has no zeros, for every local coordinate z.
For brevity, we shall say (as many authors do) that γ is an analytic curve
to mean that γ is a regular real-analytic curve. We denote by C(γ, a) and
C(γ, b) respectively the initial and terminal cluster sets:

C(γ, a) = {w ∈ C : ∃ tn ∈ (a, b), tn → a, γ(tn)→ w},
C(γ, b) = {w ∈ C : ∃ tn ∈ (a, b), tn → b, γ(tn)→ w}.

Both cluster sets are continua in C, that is, nonempty compact connected
sets. A degenerate continuum is a continuum consisting of a single point.
Our principal result is that the initial and terminal cluster sets can be arbi-
trarily prescribed continua in C. For characterizations of other cluster sets,
see Theorems 4.3-4.5 and also page 165 in [1].

It is also of interest to know whether an analytic curve can be extended
in some sense (which we now specify). A notion of extendability for an
analytic curve was introduced by Nestoridis and Papadopoulos in [5]. Let
us say that an analytic curve γ(t), a < t < b, can be extended initially, if
there is an analytic curve σ(s), L < s < R, a value A ∈ (L,R), and an
analytic change of parameter t : (A,R) → (a, b), such that σ(s) = γ(t(s)),
for A < s < R. We say that σ is an initial analytic extension of γ. A terminal

Date: November 5, 2016.
1991 Mathematics Subject Classification. 30B40.
Key words and phrases. Analytic curves, cluster sets.
This research was supported through the programme “Research in Pairs” by the Math-

ematisches Forschungsinstitut Oberwolfach in 2016 as well as by NSERC (Canada) .
1



2 P. M. GAUTHIER

analytic extension is defined analogously. Let us say that an analytic curve
is maximal as an analytic curve (or analytically maximal) if it has neither
an intiial nor a terminal analytic extension.

It is a pleasure to thank Vassili Nestoridis for suggesting I write this paper
and for helpful conversations.

2. Results and preparatory lemmas

Theorem 2.1. For any two continua K− and K+ of the Riemann sphere,
there exists an analytic curve γ : (−∞,+∞) → C, which is the restriction
of an entire function, such that

C(γ,−∞) = K−

and
C(γ,+∞) = K+.

Moreover, the curve γ is maximal as an analtyic curve.

For distinct points z1 and z2 in C, we denote by [z1, z2] the line segment
from z1 to z2. Also, we denote by [+i,+i∞) and [−i,−i∞) the closed half-
lines {z = x + iy : x = 0, +1 ≤ y < +∞} and {z = x + iy : x = 0, −∞ <
y ≤ −1} respectively.

Corollary 2.2. For any two continua K− and K+ of the Riemann sphere,
there exists an analytic curve g : (−∞,+∞) → C, which extends to a (lo-
cally) conformal mapping G on the doubly-slit plane

C \
(
[+i,+i∞) ∪ [−i,−i∞)

)
,

for which
C(g,−∞) = C(G,−∞) = K−

and
C(g,+∞) = C(G,+∞) = K+.

Moreover, the curve g is maximal as an analtyic curve.

Lemma 2.3. For t1 < t2 < t3, and non colinear points z1, z2, z3 ∈ C,
consider the parametrisations σ1 : [tj , tj+1] → [zj , zj+1] of the segments
[zj , zj+1], given by

σj(t) = zj +
t− tj

tj+1 − tj
(zj+1 − zj), for j = 1, 2.

For each ε > 0, and all sufficiently small delta > 0, there is a C1-smooth
curve σδ : [t1, t3]→ C, with nonvanishing derivative, such that

σδ(t) =

{
σ1(t) if t1 ≤ t ≤ t2 − δ;
σ2(t) if t2 + δ < t ≤ t3;

σ′δ(t) 6= 0, for t ∈ [t1, t3]; and |σδ(t)− σj(t)| < ε, for t ∈ [tj , tj+1], j = 1, 2.

Proof. By linear motions, we may assume t1 = −1, t2 = 0, t3 = 1, z1 =
−1 + ic, z2 = 0, z3 = 1 + ic and σ1(t) = t − ict, σ2(t) = t + ict. We can
smooth on the interval [−1, 1], by taking the even function σδ, which for
0 ≤ t ≤ 1 is defined by

σδ(t) = t+ ic
(
t2 + δ(2− δ)

)
/2.
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Since
|σδ(t)− σj(t)| ≤ c

(
δ2 + δ(2− δ)

)
/2 + cδ,

we indeed have |σδ(t)− σj(t)| < ε, for all sufficiently small δ. �

A different proof of the lemma can be given by constructing a circle C
tangent to the segments [z2, z1, ] and [z2, z3], whose center lies on the bisector
of the acute angle formed by these segments. Denote by w1 and w2 the
points of tangency and replace the two segments [w1, z2] and [z2, w2] by the
smaller of the two arcs of C \ {w1, w2}. We form a curve without corners:
the concatenation of the segment [z1, w1], the circular arc from w1 to w2

and the segment [w1, z3]. With an appropriate parametrisation of the arc,
this curve is analytic. By choosing the center close to the vertex z2, we can
make this curve as close to the original polygonal curve as we wish.

Step 1: A sequence with prescribed cluster set
Let K be a continuum in C. Of course, it is easy to construct a sequence in

C with K as cluster set, but we wish this sequence to have special properties.
We begin with the following well-known fact.

Lemma 2.4. Let K be a connected metric space. Let δ > 0 and p, q ∈ K.
Then, there exists n ∈ N and {p1, p2, . . . , pn ∈ K}, with p1 = p, pn = q and
dist(pj , pj+1) < δ, j = 1, . . . , n− 1.

Suppose first that K is a nondegenerate continuum in C. Let zj ∈ K ∩
C, j = 1, 2, . . . , be a dense sequence of distinct points in K. By Lemma 2.4,
and by induction, there is an increasing sequence n(j) ∈ N and a sequence
pn ∈ K, such that pn(j) = zj and

|pn − pn+1| <
1

j
, for n(j) ≤ n < n(j + 1).

By inserting nearby points (possibly not in K,) we may assume that no three
consecutive points are colinear. Moreover, by occasionaly inserting at most
two nearby points, we may assume that that there are subsequences pn(k)
and pn(`), both of which approach every point of K, such that every segment
[pn(k), pn(k)+1] is horizontal (with [pn(k) as left end point and every segment
[pn(`), pn(`)+1] is vertical (with pn(`) as lower point).

Now, suppose K is a degenerate continnum in C (that is, a point). We
repeat the above procedure, where now we begin with an arbitrary sequence
zj of distinct points in C, which converges to K.

We recapitulate this construction in the following lemma.

Lemma 2.5. For any two continua K− and K+ of the Riemann sphere,
there exists a double sequence {pn, n ∈ Z} in C, such that the cluster set
of the sequence p0, p−1, . . . , is precisely K− and the the cluster set of the
sequence p0, p1, · · · , is precisely K+. No three consecutive points are colinear.
There are subsequences pn(i) and pn(j) of p0, p−1, . . . both of which approach

every point of K− such that every segment [pn(i), pn(i)+1] is horizontal and
every segment [pn(j), pn(j)+1] is vertical. Similarly, There are subsequences

pn(k) and pn(`) of p0, p1, . . . both of which approach every point of K+ such
that every segment [pn(k), pn(k)+1] is horizontal (with pn(k) as left end point)
and every segment [pn(`), pn(`)+1] is vertical (with pn(`) as lower point).
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Step 2:
A polygonal curve with prescribed initial and terminal cluster sets

Suppose ηn is a linear mappig of [n, n + 1] onto the segment [pn, pn+1]
We define a curve η : (−∞,+∞)→ C by setting η =

∑∞
n=−∞ ηn, where the

sum represents concatination. Such a curve is said to be a polygonal curve
with nodes pn,

Lemma 2.6. For any two continua K− and K+ of the Riemann sphere,
there exists a polygonal curve η : (−∞,+∞)→ C, for which

C(η,−∞) = K− and C(η,+∞) = K+.

No three consecutive nodes are colinear. There are sequences sn(i) and sn(j)
of real numbers tending to −∞, such that at these values η has a non-
vanishing derivative, with arg(η′(sn(i)) = 0 and arg(η′(sn(j)) = π/2. More-

over, the sequences η(sn(i)) and η(sn(j)) have K− as set of limits. There are

analogous sequences sn(k) and sn(`) with respect to K+.

Proof. By Lemma 2.5 there is a sequence pn;n = 0, 1, 2, . . . , associated to
K+ and a sequence pn;n = 0,−1,−2, . . . , associated to K−. Let ηn be a
linear mapping of the interval [n, n+ 1] onto the segment [pn, pn+1] and put
η =

∑
ηn. Since the lengths of the segments [pn, pn+1] tend to 0, as n→∞,

it follows that the cluster set of η at −∞ is K− and the cluster set of η at
+∞ is K+.

We construct the sequence sn(i) as follows. Let {n(i)} be the sequence
from Lemma 2.5. From the previous paragraph, ηn(i) is a linear mapping
of the interval [n(i), n(i+ 1)] onto the horizontal segment [pn(i), pn(i)+1]. As
sn(i) we choose the mid-point of the open interval (n(i), n(i + 1)). Clearly,
the sequence sn(i) has the required properties. The other three sequences
sn(j), sn(k) and sn(`) are constructed similarly. �

Step 3: A smooth curve with prescribed initial and terminal clus-
ter sets

Now we shall smooth the polygonal curve η.

Lemma 2.7. For any two continua K− and K+ of the Riemann sphere,
there exists a smooth curve σ : (−∞,+∞)→ C, for which

C(σ,−∞) = K− and C(σ,+∞) = K+.

The curve γ has the same values as the polygonal curve η in a neighborhood
of the values sn(i), sn(j), sn(k) and sn(`).

Proof. We begin with the polygonal curve η =
∑
ηn from Lemma 2.6. We

replace each ηn by a smoothing σn of ηn obtained by Lemma 2.3, such that

|σn(t)− ηn(t)| < |n+ 1|−1, for t ∈ [n, n+ 1], n ∈ Z.

The concatination σ =
∑
σn has the required properties. Indeed, it has

the required initial and terminal cluster sets, because |σ(t) − η(t)| → 0, as
t → ∞. Each time we invoke Lemma 2.3, we may choose δ so small that
σ(t) = η(t) in an interval about the mid-point of the parameter interval
(n, n+ 1). The four sequences consist of such mid-points. �
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3. Proof of Theorem 2.1

By a theorem of Hoischen [4] (see also [2, Cor. 1.4] for an elementary
proof), for each C1-smooth function σ : (−∞,+∞) → C and each contin-
uous function ε : (−∞,+∞) → (0,+∞), there is an entire function f such
that

|f (j)(t)− σ(j)(t)| < ε(t), for all t ∈ (−∞,+∞), j = 1, 2.

If σ is the curve from Lemma 2.7 and the function ε tends to zero, as
t→∞, then the curve γ(t) = f(t), for t ∈ (−∞,+∞), has the same initial
and terminal cluster sets as the curve σ. That is, γ has K− and K+ as initial
and terminal cluster sets.

Moreover, we claim that the curve γ cannot be extended to −∞ or +∞
analytically for any reparametrization of the increasing parameter, provided
we choose ε to decrease sufficiently rapidly. In fact, this is obvious in the
case that the corresponding cluster set is non-degenerate. The following
proof is thus only of interest if one or both of the initial and terminal cluster
sets are degenerate continua (singletons).

Since σ′(t) 6= 0, it follows that arg σ′ is uniformly continuous on compact
subsets of (−∞,+∞). Hence we may choose ε to decrease so rapidly that
arg γ′(t) is close to zero for t = sn(i) and t = sn(k) and is close to π/2 for t =
sn(j) and t = sn(`). It follows that arg γ′(t) diverges as t→ −∞ and as t→
+∞. Consequently, γ cannot be extended analytically to any larger Riemann
surface by any analytic reparametrization, for such an extension would have
to be conformal and (by definition) preserve angles. In particular, if K−

or K+ is a point P on the Riemann sphere, then γ cannot be extended
analytically through P by any analytic reparametrisation.

This concludes the proof of Theorem 2.1.

4. Proof of the corollary

Let f and γ be the entire function and analytic curve obtained from
Theorem 2.1, where γ is the restriction of f to the real line. Let Ω be a
neighborhood of the real line, in which f ′ is zero-free. We may assume that
Ω has the form of a “strip” w = u+ iv : |v| < ϕ(u). We may assume that ϕ
decreases to zero so rapidly that |f(u+iv)−γ(u)| < 1/(1+u) for |v| < ϕ(u).
This assures us that f has the same initial and terminal cluster sets in the
strip Ω as γ has on the real line.

Let h be the conformal mapping of C \
(
[+i,+i∞)∪ [−i,−i∞)

)
onto the

strip Ω, which sends −∞ to −∞, +∞ to +∞, 0 to 0 and the real line to
itself. The locally conformal function G = f ◦ h and its restriction g to the
real line, have the required properties. Indeed, since h is an order preserving
homeomorphism of the real line, g = γ ◦h has the same initial and terminal
cluster sets as γ. Similarly, G = f ◦ h has the same initial and terminal
cluster sets as f in Ω, which are the same initial and terminal cluster sets
as those of γ.

There remains to check that g cannot be analytically extended. We note
that g′(u) = γ′(h(u))h′(u), and h′(u) is real and positive, so arg h′(u) = 0.
Thus, arg g′(u) = arg γ′(h(u)) + arg h′(u) = arg γ′(h(u)). Since arg γ′(t)
diverges as t→ −∞ and as t→ +∞ the same holds for arg g′(u), as u→ −∞
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and as u→ +∞. Thus, g cannot be extended analytically and this concludes
the proof of the corollary.

5. Examples of maximal analytic curves

If the initial cluster set of a curve is a singleton {P}, we call P the initial
end of the curve. Similarly, if the terminal cluster set of a curve is a singleton,
we call it the terminal end of the curve. A particular case of Theorem 2.2 is
that, for any two points (not necessarily distinct) k− and k+ of the Riemann
sphere, there is a maximal analytic curve, having k− and k+ as initial and
terminal ends respectively. We now give a few explicit examples of maximal
analytic curves having both initial and terminal ends. As in the general
case, proved above, the reason that these curves are maximal is that the
argument of the tangent γ′(t) diverges as t→ ±∞.

Example 1. Both ends are finite and equal.

γ(t) = e−t
2+it, −∞ < t < +∞.

Example 2. Both ends are finite and distinct. Consider the function

ψ(s) = s exp

(
1

1− s2

)
, −1 < s < +1.

The function ψ is analytic with positive derivative and hence has an analytic
inverse. η : (−∞,+∞)→ (−1,+1). The analytic curve

γ(t) = η(t) + i(η2(t)− 1) sin
(
exp

(
−(η2(t)− 1)−1

))
has ±1 as ends. As x↘ 0, exp(−x−1) approaches 0 much faster and so the
argument of γ′(t), does not have a limit, as t→ ±1.

Example 3. One end is finite and one is infinite.

γ(t) = et+it, −∞ < t < +∞.
Example 4. Both ends are infinite.

γ(t) = et
2+it, −∞ < t < +∞.
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