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On the Markov inequality in the Ly-norm with the
Gegenbauer weight

G. Nikolov, A. Shadrin

Abstract

Let wy (t) := (1 —t*)*/2, where A > —1, be the Gegenbauer weight function, let | - ||, be

the associated Lo-norm,
1 1/2
1l = {/ (@) s (@) dx} ,
-1

and denote by P, the space of algebraic polynomials of degree < n. We study the best constant
¢n(A) in the Markov inequality in this norm

[IPllws < enM)pnllwy s Pn € Pa,

namely the constant

/
Cn()\) ‘= sup Hanw)\ .
pnePn 1P llwy

We derive explicit lower and upper bounds for the Markov constant ¢, (\), which are valid for
allnand A

MSC 2010: 41A17
Key words and phrases: Markov type inequalities, Gegenbauer polynomials, matrix norms

1 Introduction

Let wy(t) := (1 — t2)*~1/2, where A > —1, be the Gegenbauer weight function, let || - ||.,, be the

associated Lo-norm,
1/2

1o ={ [ 11 P sy

and denote by P,, the space of algebraic polynomials of degree < n. In this paper, we study the
best constant ¢,, () in the Markov inequality in this norm

||p;le,\ < eaNIpnllws Pn € Pn, (1.1)

namely the constant

/
CTI(A) = sup ||pn||w>\ '
pnePn ||Dnllwy

Our goal is to derive good and explicit lower and upper bounds for the Markov constant ¢, (\)
which are valid for all n and ), i.e., to find constants ¢(n, A) and ¢(n, A) such that

c(n, A) < cen(X) <e(n,\),

¢(n,\)
c(n,\)*

with a small ratio



It is known that, for a fixed ), ¢, (\) grows like O(n?), and that the asymptotic value

c«(A) := lim en()

n—oo N2
isequal to 1/(2j 23 ), with j,, being the first positive zero of the Bessel function J,,, see [2, Thms.

1.1-1.3], whereby it can be shown that ¢, (\) behaves like O(A~!). There is also a number of more
precise results.
For A = % (the constant weight wy = 1), it follows from the Schmidt result [4] that
1
—(n+3)° <ea(z) <
For A = 0, 1 (the Chebyshev weights wq(z) = ﬁ and wy (z) = V1 — z?, respectively), Nikolov
[3] proved that

(n+2)%.

3~

0.472135n2 < ¢,(0) < 0.478849(n + 2)2

(1.2)
0.248549n° < ¢, (1) < 0.256861(n + 2)2.
In [1], we obtained an upper bound valid for all n and A,
1 2 1
CMM<(R+)M+ A+1) (13)

- 2v2) + 1 ’

however, the already mentioned asymptotics c.(\) = O(A~1) shows that this result is not optimal.
The main result of this paper is lower and upper bounds for ¢, (\) which are uniform with
respect to n and A. They show, in particular, that

[en(N)]? < %n(n +2))3.

For n = 1, 2 the exact values of the Markov constant are easily computable:

M =2(1+2), [V = %ﬁw

Therefore, we consider below the case n > 3. Our main result is

(1.4)

Theorem 1.1 Forall \ > —% and n > 3, the best constant c,,(X\) in the Markov inequality

1P llws < en(N)l|Pallws » Pn € P,
admits the estimates
1 n?(n+ )32
A0+1D)(A+2)
(n+A)*(n +2X)? 2
2\ + 1)(2A + 5) [en ()]
where ' = min {0, A}, \/ = max {0, \}.

n(n+ 2\ +2)3
A+2)(A+3)’ -
(n+ X+ X\ +2)

< ;
220+ 1)vV2A £ 5

< en (WP

As a consequence, we can specify the following bounds for the asymptotic value ¢, ()\):

Corollary 1.2 For any A > —3, the asymptotic Markov constant ¢, (\) = li_>m n~2c,(\) satisfies the
n—oo

inequalities
! —La<
1 <O < 220+ V22X F 5 2 -
(2A + 1)(2\ +5) * 1 Y
A+2)(A+3)’ ’

where \* =~ 25.



The lower bound in (1.5) follows from that in (1.6) and is less accurate, we put it in this form
to make the comparison between the two bounds in (1.5) more obvious.

The upper bound in (1.6) does not have the right order O(n?/A?) in X (for A fixed), however
this bound serves not only for the case —3 < A < 2, but for a fixed A € [2, \*] and n > ng(\) it is
also better than the one in (1.5).

In the next corollary, we set A = 0,1 in the upper estimate (1.6), and that improves the upper
estimates in (1.2) for the Chebyshev weights. When coupled with the lower estimate from (1.2),
this gives rather tight bounds.

\/1177 and wi(z) = /1 — 22, we have

Corollary 1.3 For the Chebyshev weights wq(z) =

0.472135n% < ¢, (0) < 0.472871 (n + 2)?,
0.248549 12 < ¢, (1) < 0.250987 (n + 4)?.

The lower and upper estimates in (1.5) have different orders with respect to A. However we
can get a perfect match with slightly less accurate constants.

Theorem 1.4 Forall X\ > 7and n > 3, the best constant c,,(\) in the Markov inequality satisfies

1 n(n+2X)3

1 n(n +2X\)3
16 A2

< [071()‘)}2 < 22

(1.7)

Corollary 1.5 For the Markov constant c,,(\) we have the following asymptotic estimates:

i) Vn < Jim_ \(ﬁ) <V3n;
i) (n—3)(n—1) < lim c,(\)-2V2A+1 < (n+ 2y,

Part ii) follows from (1.6). Though part i) does not formally follow from Theorem 1.4, it follows
from a part of its proof.

Let us describe briefly how these results are obtained.

It is well-known that the squared best constant in the Markov inequality in the Ly-norm with
arbitrary (and possibly different) weights for p and p’ is equal to the largest eigenvalue of a certain
positive definite matrix, in our case we have

[cn()‘)]Z = max(Bn) (1.8)

where the matrix B, is specified in Sect. 2. We obtain then lower and upper bounds for jimax(By)
using three values associated with the matrix B,, and its eigenvalues (1) (note that p; > 0):

B,) Zzbn‘ZZMz‘;

IBloo = max 3 b
J

a) the trace

b) the max-norm

¢) the Frobenius norm
[Boll7 = [bij|> = tr (B.BL) = > i
0,J

Clearly, we have

1) Hmax <tr (Bn) ’ 11) Hmax < ||BnHoo ’ 111) Hmax < ||Bn||F ) (19)



and generally fimax < ||By|/+, where || - || is any matrix norm. The upper estimate (1.3) cited from
[1] is exactly the first inequality pmax < tr (B,,), and as we noted, this estimate is not optimal. The

better upper bounds (1.5)-(1.6) in Theorem 1.1 are obtained from (1.9.ii) and (1.9.iii), respectively.
For the lower bounds we use the inequalities

i o 2mi _ Bl
N Z/% tr (B,,) ’

Inequality (i) gives the lower estimates in (1.5)-(1.6), and combination of (i’) and (ii") yields the
lower bound in (1.7).

The paper is organised as follows. In Sect.2, following our previous studies [1], we give an
explicit form of the matrix B,, appearing in (1.8). Sects.2-4 contain some auxiliary inequalities.
In Sect. 5, we find an upper bound for the max-norm ||B,, ||, and in Sect.6 we give both lower
and upper estimates for the Frobinuis norm ||B,,||r. Finally, in Sect.7 we prove the upper and
the lower estimates in Theorems 1.1-1.4 using inequalities (1.9)-(1.10) and relation (1.8). Here we
have used the expression for tr (B,,) and for diagonal elements b;; found in [1].

The formulas for the trace, the max-norm and the Frobenius norm of a matrix are straight-
forward once the matrix elements are known, so the main technical issues are, firstly, in finding
reasonable upper and lower bounds for the entries of the matrix B,, = (;;) which are expressed
initially in terms of the Gamma function I', and, secondly, in finding reasonable estimates for their
sums. The first issue is dealt with in Sect. 3, where we show that

_ f-()
b )

and the second one in Sect. 4, where we give elementary but effective upper and lower bounds
for the integrals of the type

i')

ii,) :umax(Bn) > max bii . (1.10)

falw) =2 (@ + )™ (2 + 1)

/I f@ e, fla) = (z+7)" (@ +72)% - (@ +7)"

2 Preliminaries

In this section, we quote a result obtained earlier in [1], which equate the Markov constant ¢, ()
with the largest eigenvalue of a specific matrix B,,.

Definition 2.1 Forn € N, setm := L"“J and define symmetric positive definite matrices A,,,, Am €
R™>™ with entries ax; and a; given by

min(k,j) min(k,j5)

> a?)ﬁkﬁjv Q; r=( > &?)Ek@, 2.1)
1=1 i=1
so that
o B} a3 a3 fs e o3 81 Bm,
iy (Thia?)s (Xliad)iss o (X1 0?)8bn
A= | 388 (Th02)ms  (Slia?)s o (Shie?)88.|. @2
B (S 0?) b (Syad)tsom o (S0ia?)8



with the same outlook for :&m. The numbers «y,, 5 and ay, Bk are given by

o = (2k — 14 Nhop—1, Br:= h—ik : (2.3)
&k = (Qk' -2+ )\)hzk_g, Ek = ﬁ 5 (24)
where I(i+ 2
9 9 1+
S =Ny = - 2
hi = i (i + NG+ 1) @5)
Note that B
k=01, Br = Br—1 - (2.6)
Definition 2.2 Forn € N, set
4A,,, n=2m;
B, = N (2.7)

4A,,, n=2m — 1.
Theorem 2.3 ([1], Theorem 3.2) Let c,,(\) be the best constant in the Markov inequality (1.1). Then

[cn()‘)]Q = fimax(Bn),

where jimax(Bn) is the largest eigenvalue of the matrix B,,.

Remark 2.4 Appearance of two matrices A, and A, reflects the fact that the extreme polynomial
Dn, for the Markov inequality with an even weight function w(z) = w(—z) is either odd or even.
The latter is a relatively simple conclusion, what is not obvious though is whether p,, is of degree
exactly n and not n — 1. In [1], we proved that for the Gegenbauer weights w,

/J/max(Am) < Nmax(Am) < Nmax(Am+1)

and this implies that deg p,, = n, hence [c,,()\)]? is the largest eigenvalue of A, or A,, forn =2m
or n = 2m — 1, respectively.

We finish this section by simplifying the expressions for a;; and thus for the matrix A,, as
follows. From (2.1), we derive

min(k,j ‘ j .
Akj = ( i )a?)ﬁkﬁj = Eg (5]2 %1 ai)’ j =
i=1 E(ﬁkzz‘:lo‘i)7 >k,
so that
D S R Efa“’ St 28)
i=1 5 Okk, J >k
Respectively,
aii %an %an %"au
%an a2 %am e ’%’; a2
Ay, = %au %am asy e %3"@33
%011 %022 %033 te Amm,

Note that A,, and A,,;; are embedded. An analogous representation and embedding hold for
Am,-



3 Estimates for a;;, and &
J

We will need upper and lower estimates for the elements of matrices A, and :&m, namely

%:ajJV ]<k7

k
2 2
akaﬁkg a; aij{ 5
J
i=1

arakk, J> k.

We found expression for aj;, and @y, in [1, Lemmas 2.1(ii) and 2.2(ii)], those are quoted in Propo-

sition 3.1, and in this section we obtain inequalities for the ratios g—’;

Proposition 3.1 ([1]) The following identities hold:

k
(i) ame:=B; Y ol = cofolk), (3.1)
i 121
(i) Grx =B > a; = cofolk—3), (3.2)
=1
where
4

co fo(z) == J:(x—i—%)(a:—&—)\).

T
Proposition 3.2 Let j, k € N, j < k. Then the coefficients (3, in (2.3) satisfy the following relations:
(i) If =3 <AX<0o0r A>1,then

(%)nfz < 5]; < <%)2>\72. (33)
(i) If 0 <A <1, then ' ’
<%>2/\—2 > gig > <%)2>\—2. (3.4)

Proof. Denote the left-hand, the middle and the right-hand side terms in (3.3)-(3.4) by ¢()), m(})
and r(\), respectively. From definitions (2.3) and (2.5) we have

_ B TEi+2y D2k +2))  \-1
= B2 (2 + M2 +1) ((Qk + AT (2k + 1)) ’ (3.5)
and using the functional equation I'(t + 1) = tI'(t) we see that
(E)27 A=0,
mA) =4 = L) =m(A)=r(}), A=0,1. (3.6)
1, A=1,

We shall prove inequalities (3.3)-(3.4) for the logarithms of the values involved.
1) Let us start with the proof of the left-hand side inequalities in (3.3)-(3.4). Consider the
difference of the logarithms of the middle and the left-hand side terms,

g(A) :==logm(\) —log £(A\) = logm(A) — (2A —2) log%

We need to prove that g(A) < 0 for A € [0,1] and that g(\) > 0 otherwise. Since g(0) = g(1) =0
by (3.6), it suffices to show that g”(A) > 0 forall A > —1, i.e,, that [logm(})]” > 0.



From (3.5), we have

j+A . D@i+1)
2k+)\ T2k +1)’

logm(A) =logT'(2j + 2)\) — log'(2k + 2X) — log

therefore, using the digamma function ¢ (¢) := I"'(t)/I'(¢), we obtain

1 1
eS|
From the equation I'(¢ + 1) = ¢ I'(¢) it follows that ¢ (¢ + 1) = ¢ (¢) + 1/t, and the latter implies

logm(N)' =2 [(2) +21) — {2k +2)] — |

logm(\y = —2 3" ! N (3.7)
Z2z+2>\ 27+ X 2k+ AL '

whence
2k—1

" 1 1 1
tog (VI =4 ; o e Ee 7

and that proves the left-hand inequalities in (3.3)-(3.4).
2) We approach in the same way to the proof of the right-hand inequalities in (3.3) and (3.4),
by taking the difference of the logarithms of the middle and the right-hand terms,

JjtA
Skt
We need to show that h(A) > 0 for A € [0, 1] and that h(\) < 0 otherwise. Since h(0) = h(1) =0
by (3.6), it suffices to show that 1/(\) < 0 for A > 1 and that »”(\) < 0 for A € (—1,1].

2a) Let us show that 2/(\) < 0 for A > 1. From (3.8) using (3.7), we obtain

h(A) :=logm(\) — logr(\) = logm(A) — (2\ — 2) log (3.8)

2k—1

, 1 1 1 G+ A 1 1
S . . ~91 2\ —2 . (39
() zg;jwrw [2j+/\ 2k+>\} o8 x )[ﬁx k+)\} (39)

For the sum, since the function f(z) = (z + 2)\)~! is decreasing, we have

2k—1

2k .
1 J+A
-2 -2 dr = 2 log =¥——
Zz; 2—1—2)\ /Qj DT BN
hence
. 1 1 1 1
e | —2A=2)— - — 3.10
W) < [2j+A 2k+>\} (2 )[j+A k+>\]’ (3.10)

and for A > 1 and j < k, the right-hand side is negative. Thus, h’'(A\) < 0 for A > 1.
2b) Next, we prove that if A € (—1,1], then 2" (\) < 0. From (3.9), we derive

o 1 1 1
M) = 4 Gt [(23' N2 (21@“)2} 311)

1 1 1 1 }

sl @2 gE - oy o1

The first term in the right-hand side is estimated as follows

2k—1 1 1 1
Y2 GrmE T 42 ot lgrw - wr]

A

Q[jiA_kiAM[(jjw - (ij)z}’



where for the sum we have used the inequality Z?i2j+1 (i+2))72< I;Jk(x +2)\) "2 dz.

Next, for A € (—3,1]and z > % the function f(z) = (22 +\)~2? — (z + \) 2 is increasing, hence

for the second term in (3.11) we have

[(zjiw B (2k41—>\)2} < [(j—i—l)\)Q B (kiA)z} '

Substituting the above upper bounds in the expression (3.11)-(3.12) for A" ()), we obtain

NN Ll 20—k =)
W) < 2[5 k+A]+2A[(j+A)2 (l<:+>\)2}_ Gragkine <0 G
sincel <j <kand X € (—3,1]. O

Proposition 3.3 Let j, k € N, j < k. Then the coefficients (3, in (2.4) satisfy the following relations.
(i) If =3 <AX<0o0r A>1,then

i lioon o 32 P 1L 222

G T B o
k’—§ ﬁj k'—§+)\

(i) If 0 <A<, then

. 1 _ 2 - 1 _

,7_§ 2X2>&> j_§_|_A 22—2

(k—l> *g2*<k—l+A) ' (315

2 5 2

Proof. By equality (2.6), we have
Bi=Bi_1,  Br=By-
Then all the relations throughout (3.5)-(3.13) remain valid with the substitution
i %, k—k— % .
The only exception is inequality (3.13) which fails for j = 1,k = 2,and A € [@, 1], since the factor
[(k—1)(—3) -\ is not positive then.

Let us prove that 2(A) > 0 in this case as well. Since h(1) = 0, it is sufficient to prove that
R(X) <0for\e [@,1] and j =1, k = 2. We have

()

Jik J—%.k—%

so substituting j = &, k = 3 into (3.10), we find that for X € [3,1] 5 [¥2,1]

5 —<2A—2>[;H—3H

A

T/(A)‘ — (N

1,2

(NI
(N

Iy sl il e
2 2

= T aNGy Ty v




4 Three lemmas

In the next two sections, we deal with lower and upper estimates for the sums Z§:1 f(), in
particular for f = F,, where Fy, F; are given in (4.1) below. For that purpose, we need the
following three lemmas.

We use the following notation:

£ -1
D F) = 5+ Y F6) + 550,

Lemma 4.1 For a convex integrand f, we have

¢ @-i-% ¢ " ¢
f< [ fa)de, f0) = | f@)da.

=1

Proof. The inequalities reveal well-known properties of the midpoint and the trapezoidal quadra-
ture formulas relative to the corresponding integrals. O

Lemma 4.2 For A\ > —%, the functions
Fi(e) =22 @+ 3@+ N, F) =2 (@ +3) @+ V)P (41)

are convex on [, 00) and increasing on [1,00).

Proof. 1) For A > 1, all the factors of Fy, F» in (4.1) are convex, positive and increasing on [0, 00),
hence the statement.
2) For A € [0, 1] the functions

uy(z) := 2™z + ), ug(z) := x(x + N

are non-negative and increasing on [0,00). Further, us is convex on [0, c0), because it can be
written in the form
us(x) = (2 + MM = Mz + A,

where both terms are convex for X € [0, 1], whereas u; is convex on [}, o] because
u(x) = [2*T 4 A2 = AP 2 [()\ + Dz + A\ — 1)] > g2 [az - %1] >0, x> % .
Therefore, both F (z) = [u1(2)]?(z + 3)? and Fy(z) = [us(z)]?(z + 3)? are convex on [3, 00) and

increasing on (0, c0).
3) Let A € (—3,0]. Then

uh(z) = 2?1 [()\ + D+ )\2} >0, x>0,
and
wh(z) = (z + N [()\ F1)(z+A) — )\2] > (2 + A [()\ +1)2-A2 >0, z>1,
hence F; and F; are increasing on [1, co). Further, the function

2
n(2) = aMo+ 3@+ A) =2 2+ B4 Ao



is convex for x > 0 because all the terms are convex for A € ( %, 0], hence Fy(x) = [v1(z)]? is
convex whenever v; is nonnegative, i.e., for z > —J, thus for x > 5. Finally, for

2
va(w) = e+ e+ N = - RPTE Ry =ag,
we obtain
() =y 2N+ 20N+ g% = A2+ 1)y + 323\ — 1)] =y 2pa(y),

and it is easy to check that, for A € ( |, the quadratic polynomial p, has no real zeros. Hence,
vy is convex and so is Fy(z) = [v2(x)]? for z > 3. O

Lemma 4.3 Let o; > 0, Yimin < Vi < Ymax, 1 < @ < 1, and let
s

()T, 5::2047;.

f(@) = (z +7)" (2 +72)™

Then, for any x > xo, where xo + Ymin > 0, we have
(4.2)

L e rmaro] < from<

(@ 4 Ymax) f () .

(2 4 Ymax) [ () .

Proof. Set )
f(t) < F'(t) for zp <t < z. We have

LY al o - 100,
i=1

It suffices to show that G'(t)

- t+’7m1n:|

{1+Z t+ v

G'(t)

and similarly

/ _ 1 ¢ 't—"_’Ymax 1 > .
F(t) = s+1f(t)[1+;a’ t 1 } = s+1{1+;al}f(t)

Remark 4.4 We can refine the upper estimate as follows
ol

[ rwa < i
Indeed, with F(z) := ﬁ%[f(x)]ﬁ, it suffices to show that F'(t) > f(t) for every t > x,. We
have the equivalent relations

W2 e [f0) > g
(t)

)

and the latter is simply the inequality between the geometric and harmonic means
1 )

(H(x + %)a’> > fo’ .

Z T+7i

10



5 An upper bound for ||A,, || for A > 2

Proposition 5.1 For A > 2, we have
4

m(m+%)(m+)\)(m+%+3). (5.1)

Proof. Let us recall that
Ao = mkaXZ lak; |,
j

and, as is seen from (2.2), ax; > 0.
For a fixed k, 1 < k < m, we consider the sum of the elements in the k-th row of A,,,,

m

>k = Z
j=1
By (3.1) and by (3.3),

ajj = Cofo(j),

B; = \E+A

where
4

20+17

folz) ==

Cp =

hence
m k—1

NIEZIY
Zakj < ¢o Zfo(]) TS
S <l £ 00(12)
For the first sum, since f(x) = fo(z)(z + A\)
then Lemma 4.3 to obtain

3+A A-1 / x—i—)\
Zfo k;+>\ fol= k+/\
For the second sum, since g(z) = 1/(x + A\)*~!

gives

m

s A— A
o 35 (422 i (A -

k
Replacement in the right-hand of (5.3) yields

1A A-1
5’“<(3+) L <k A>0,

x(x +

e (22

<7
x—A+3

m /B
a]] + agk + Z :

j=k+1

= Ak
Br

5.2)

)z + ),

(5.3)
Jj=k+1

! is increasing, we apply an integral estimate and

(k+ ) fo(k) .

is decreasing (and A > 2), an integral estimate

w0t (GE3)

- 1 1 1 /k+
;akj<co(k‘+)\)f0(k) )\+3+/\—2_>\—2(m+/\) +eofolk)=tA+B. (54)
1) We estimate A as follows.
1 1 1 k4 A\ —2
A= R ENA® >\+3+)\—2_)\—2(m+)\) ]
4 2A +1 1 k4 A\ A2
= g1 FENA®) ()\+3)(>\72)_>\—2(m+)\) ]
_ 4(m +N)* fo(k) E+X\4 A+3 s k+ A \r2
3N =2) (k)3 (m+)\) _2)\+1(m+)\)
__Am+ N
= m%(k)@(y% (5.5)

11



where in the last line we set

A3 i kA

43 . folh)
220 +1 ’ m+ A

CESVER

Let us evaluate ¢, (y) and ¢ (k). On [0, 1], for a fixed A > 2, the function ¢, has a unique local
extremum, a maximum, which is attained at

o ARA+1) \xm A=1(A—=2)\x=
yA_((A+2)()\+3)) = (1-

oa(y) =y

€ [0» 1] ) 'l/})\(k) =

Then
A—2 4, A=2

Az S axe

O (y) < dalyr) (5.6)

The function ¢ () = % is increasing (since h(x) = % is increasing for a < b), thus

folk) _ _fo(m)

k)= . 5.7
D) =G50 S ot ) ©7)
Consequently, putting the estimates (5.6)-(5.7) into (5.5), we obtain
4
AL —— 0 A .
< BT R
2) For B in (5.4) we use the trivial upper estimate
4
B =cofo(k) < cofo(m) = Tl fo(m).
3) Thus, from (5.4), we derive
<A+B < —m—— -
kz::jakj_ + S N 2019 (m+)\+ 1 )fo(m)
4 3\
< =43
where we have used that % < % + 3 for A > 2. Hence,
4 A 3A
Am (oo} S N T oV/\N 1 o) 5 5 I’ .
A (/\+2)(/\+3)m(m+2)(m+)\)(m+ 5 +3) (5.8)
and (5.1) is proved. 0
Proposition 5.2 For A\ > 2, and n € N, we have
1
Bl —_ A 2\ A 9
IB. ST N 2+ 33+ 6) 59
1 .
< 2\ +2)3. 1
< (A+2)(>\+3>n(n+ A+2) (5.10)
Proof. Recall that
4A,,, n=2m
B, = N (5.11)
4A,,, n=2m-—1.
Let us rewrite (5.8) as
[Amlloo < 4c1Ky(m) = 41 K1 (), n=2m, (5.12)

12



where 1
N — A 3
o= arpoyy Km = mim s Pt Nm+F43).

We derived this upper bound from two estimates in (5.2), namely

A
a;j = co fo(k), @<(j7) , J<k.

Bi T~ \k+ A
Now, we note that, by (3.14) and (3.2), we have similar estimates
= C 1
~ 1 Br J—gztA\A
- _ 2 Ik <
Qjj Cof()(k’ 2)7 gj_(ké+A) ) ]<k7

and it is easy to see that all the inequalities for the sum ) ; ay; throughout (5.3)-(5.8) remain valid
with the substitution (j, k) — (j — 2,k — 3), hence

[Amlloe < 4c1Ki(m — 3) =41 K1(2),  n=2m—1. (5.13)
Now, from (5.11), (5.12) and (5.13), we obtain that for any n € N

IBnlloe <16c1K1(5) = cin(n+ A)(n+2X)(n+ 3\ +6)
cin(n 42X +2)3,

A

where the last inequality follows by relation between geometric and arithmetic means, namely
abe < (%£24€)3 with (a,b,¢) = (n + A, n + 2X,n + 3X + 6). This proves (5.9)-(5.10). O

6 Lower and upper estimates for ||A,, | r for A > —1
Proposition 6.1 For A\ > —%, we have

ca(m+N)m+ N +4)F(m) < [Anl} < cam+A+X + 272 FRm+1), (6.1

where X' := min {0, A}, \/ := max {0, A}, and

“T @ 1)3(2A 0 @)= b =afe@ s ) e

Proof. By the definition of the Frobenius norm,

m
”AmH%«“ = Z aij.

jk=1

Since matrices {A,, } are symmetric and embedded, we have

a};. (6.2)

Q‘Q

ST N

k k
Il — Akl = 2) e = 23
j=1 j=1

where Y’ means that the last summand is halved. Recall that by (3.1)

16

a3 = g [fo() =: caFo(j), C2 = (2A+1)2°
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1) The case A € (—%,0] U [1, 00). In that case, by (3.3),

(i>2x—2 - 57]3 - (M)2>\—27

k T8 T \E+A
so we obtain from (6.2)
k k
2¢2 ) f1() < || AklE = [Ak-1]lF <262 ) f2(d), 6.3)
j=1 j=1
where
T\ 22 -2 1
i@ = BE(p) = mem e e 64
T+ A\ 22 1
ha) = R () = FmE e 2P+ NP 65)

1

Note that, by Lemma 4.2, both functions are convex on [3,

[1,00), and that

oo0) and monotonely increasing on

J1(k) = fa(k) = Fo(k).
Set

X' := min {0, %, A} =min{0,\}, A" := max {0, %, A} =max {0, \}.

Those will play the roles of Yiax and ymin when we apply Lemma 4.3.
1a) For the upper estimate, since f, is convex and increasing, we have by Lemmas 4.1 and 4.3
fork > 2,

1 17 1 "
‘ : k—2L4 L k=24
S r0) < [ pds < S 2 - ) < S5 2 ),
j=1 3
so that, fork > 1,
~ ‘<k_%+xl )+ o E4+ N £ A+2)fo(k 1
;fz(J)_sz()+§f2()*03( + A+ A+ 2) fa (), C3~*2)\+5,
hence
IAL% = [Ax_1]|%2 < 2¢oe3 (k+ N + X+ 2)fa(k) = 2¢cac3 (k+ N + X+ 2)Fo (k). (6.6)
Then,
lAmlE =3 (1AxlE — 1 Ak-1lF) < 2¢2e8 Y g2(h),
k=1 k=1

where go(z) = (z + A + X + 2) Fy(z) is convex, and by Lemmas 4.1 and 4.3 we obtain

" mty 1 1
>_02(k) s/ g2(x) do < o (mAAFN"+3) ga(m+3) = LM A+ X"+ 52 Fo(m+3) , (67)

1

k=1 2
and this proves the upper estimates in (6.1) for A € (—3, 0] U [1, 00), with the constant ¢4 = Lescs.

1b) For the lower estimate, we get by Lemmas 4.1 and 4.3,

iy 1 L 1 k
STAG = 3HW+XAG) 2 3h0)+ [ file)ds
j=1 j=1
1 k+ XN 1+ N E+ N
> §f1(1)+mf1(k)*2/\7+5f1(1) > mfl(k),
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hence
[ARIE = [[Ak-1ll7 > 2cacs(k + N) f1(k) = 2cacs(k + X ) Fo(k) . (6.8)

Then,

A7 > 2cae3 > g1 (k)
k=1

where g1 (z) = (z + X')Fy(x) is convex, therefore, by Lemmas 4.1 and 4.3,

St = Sa+Y 0l)+ gn0m > ja()+ / " @) de - Lgr(m)
k=1 j=1
> So )+ "R gy )~ g (1) 4 Laa(m) 2 TR gy ) + Sn(m)
> L(m et X 4) g (m) = Llm o+ N)(m+ N +4) Fo(m), (6.9)

and the lower estimate in (6.1) follows, with ¢4 = iczc;),.

2) The case A € [0, 1]. In that case, by (3.14), we have

(%>2)\72 < gJ]z < (%)2)\727

SO we obtain

k k
203 £2) < IARIZ — 1Akt < 2627 A1),
Jj=1 j=1

i.e., the same inequality as in (6.3), but with f; and f> interchanged.

2a) Then the upper estimates will run in the same way only with f; instead of f>, and because
f1(k) = fa(k) = Fo(k) (6.10)

we arrive at the same inequality (6.6), so that the final upper estimate for ||A,,|% for A € [0, 1] is
the same as (6.7).

2b) Similarly, the lower estimates for A € [0, 1] will run in the same way only with f, instead
of f1, and because of (6.10) we arrive at the same inequality (6.8), so that the final lower estimate
for ||A,,||% for A € [0, 1] is also the same as (6.9). O

Proposition 6.2 Forn € Nand A\ > —1, we have

Em+8)n3(n+N2n+20)2 < |Bullz < Em+22+2)8, A>0; (6.11)
G422+ 802+ A\ (n+20)° < Byl < E(n+A+2)° Ae(-3.00 (6.12)
where
.= 1 cy = !
516 YT AN+ 1220+ 5)
Proof. Recall again that
4A,,, n=2m;
B, = N (6.13)
4A,,, n=2m—1,
and rewrite (6.1) as
caKan(m) < A% < caKsa(m), n=2m. (6.14)
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Then, for odd n = 2m — 1, by the same arguments as in the proof of Proposition 5.2, we obtain
caloa(m—3) < A2 < eKsa(m—3),  n=2m-1, (6.15)

so that, foralln € N,
n n
1604K2,A<§) < IBa|l% < 16C4K3,A(§) . (6.16)
Simplifying K x(5) we obtain

1
Ka \ (g) = 2—8n2(n + 024202 (n +2)N) (n + 2\ +8),

and this gives the lower bounds in (6.11)-(6.12) with the constant

2 _16 _ 1
Cy = 2864— 1664.
For the upper bounds we get
1
Kg,A(g) = S+ D A1+ 20+ 1) (0 + 23+ 20 4 5)°
1 5 1yn 8
< ge(nt A+ 3N +2)°,

where we used the inequality abed < (2+24<+4)4, The last term does not exceed 275(n 42X + 2)%,
if A\>0,and 27%(n+ A +2)%,if X € (—1,0).

That proves the upper bounds in (6.11)-(6.12). g
7 Proof of the main results

Firstly, we will prove Theorem 1.1 by establishing separately the lower and the upper bounds
therein.

Theorem 7.1 For the upper bounds, we have

oo 20 +2)%, A > 2
[en(V)])? < { (/\+2)(i+3) i 4 1 o1
soves (M AF N 2N A>3,

where X' = max {0, \}.
Proof. We proved in Propositions 5.2 and 6.2 that

1
||Bn||oo < L1(TL, A), A > 2, ||B7L||F < LQ(n7>\)7 A > _5’

where L, is the v-th line in (7.1), and since [c,()\)]? = pmax(B»), and the largest eigenvalue
tmax(By,) is smaller than any matrix norm, the upper bounds (7.1) follow. O

Theorem 7.2 For the lower bounds, we have

1 2 2 .
[en(N)]? > Wn (n+A)?, 2 A > 2,1 -
oo (N2 +2V)2 A> -1,

where N = min {0, A}.
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Proof. 1) The first inequality in (7.2) follows from second, since
. < : + 2N (A>0)
n =n .
4A+1)(A+2)  (

20+ 1)(2A +5)’
2) Let us prove the second inequality in (7.2) splitting the cases A > 0 and —2 < A < 0. We
proved in Proposition 6.2 that

c2n3(n+8)(n+ X)2(n + 2X)?, A > 0;
IBullz>§ 7 ) (7.3)
En*(n+A)?(n+2X)*(n+2X+8), Ae (—3,0],
where
2= L
T 4N+ 1220 +5)
Next, we will need an expression for the trace of B,,, which we obtained in [1, p. 17],
cgn(n—+2)(n+2X)(n+ 2\ +2), n = 2m;
iy = { comnr 22N ) -
cﬁ{[(n+ D)(n+ 20+ D)2 — 2[(n+ 1)(n + 21 + 1)]} . n=2m-—1,
where
_ 1
CTaeAr 1)

From (7.4) we can get a common upper bound for both odd and even n as follows. For odd n, we
obtain from (7.4)

tr(B,) < cg[(n+1)*(n+22+1)*— (n+1)?]
= cs(n+1)3(n+2\)(n+2)\ +2), A>0, (7.5)
and

tr (B,,)

IN

co[(n+1)%(n+ 21+ 1)) — (n + 2 + 1)?
= cg(n+22+17n(n+2), A€ (-3,0], (7.6)
and it is clear the both estimates (7.5)-(7.6) give upper bounds for tr (B,,) for even n = 2m in (7.4)

as well.
Set

Q
oo

1
e (2A+1)(2A+5) "
2a) Then, for A > 0, from (1.10), (7.3) and (7.5) we have

Cr =

IB.2 n3(n + 8)(n + A2(n + 2)?
toax(Bu) 2 B 2 T Pt 2N+ 2h 4 9)
= cm?(n+ N)2?pa(n)

> em*(n+2)?2,

since for A\ > 0andn > 3

n(n+8) n+2X\ < n(n+8) n

(n+12?n+22+2~ (n+1)2n+2 =~

2b) Similarly, for A € (—1,0], from (1.10), (7.3) and (7.6), we have

n2(n+ N)2(n +2X)3(n + 2\ +8)
nn+2)(n+ 2\ +1)2

= cr(n+N)*(n+2)0) % (n)

> cr(n+ N2 (n+2)0)2,

gb)\(n) =

IB,%
max B'ﬂ Z
fimax(Bn) tr (By)

v

C7
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since for A € (—3,0]and n > 3

n (n+2/\)(n+2/\+8)> n n(n+8)

= S T e 1) CntzmEIR S

This proves the lower estimates (7.3).

For the proof of Theorem 1.4, we need yet one more lower bound.

Lemma 7.3 Foralln € Nand \ > —%, we have

[en(V)]? > n(n—+ A (n+2X).

22 +1

>1.

(7.7)

Proof. For any symmetric matrix C € R™*™ its largest eigenvalue pi,ax(C) satisfies the inequal-

ity pmax(C) = supHxH:l(Cx, x) > (Ce;, e;) = ¢;i, 1 < i < m. Therefore,

[CH(A)P = .umax(Bn) > bmm = 4Gmm

and by (3.1)-(3.2), with fy(z) = z(z + 3)(z + A), we have

Aapmm = 7]”0(2) = 2)\2_1_ 1n(n+)\)(n+2)\).

We will prove Theorem 1.4 by establishing a slightly stronger statement.

Theorem 7.4 Forn > 3 and \ > 2, we have

%F(n,)\) < W) < F(n,\)

where
n(n+ A)(n+ 2X\)(n + 3\)

FnA) = A+ D)\ +2)

Proof. 1) For the upper bound, using the upper bound in (5.9), we have

(7.8)

(7.9)

2 n(n 4+ A)(n+2X)(n+ 3\ +6) _.F )
(VI STD0 T : P, N(n, )
where A+1 n430+6  A+1 3+3\+6
n
A = . < . = > 3
oA = T T e Sat3 3+ =
2) For the lower bound, we consider two cases.
2a) Ifn > 5\, we use the lower estimate (1.5)
1 n?(n+\)? 1
O i e A A
[en(N]” 2 7 A+ +2) 4 (n, Ajia(m,A),
where
n(n+ A) 1 1 5 6 1
Y1(n, A) = = > =—-=>=
! (n+20)(n+3))  (1+2)1+-2) " 1+3H(1+F 7 87 2

2b) For n < 5\, we use the estimate (7.7),

[en(N]? =

n(n 4+ A)(n+2X) >

1
20 +1 A+1

18
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where

A+2 A 1 1
A) = > =-.
el A = Ty > e 2543 8
O
Proof of Theorem 1.4. Since
Z(n +20)%2 < (n+A)(n+3)\) < (n+2))32
and . . )
— < — < —, A>T,
32 T (A +1D)(A+2) N
we derive from (7.8) that
1 n(n+2)\)3 5 n(n+2))3
i S 7 it S >
T: 2 < [en(N)]* < 2 ., A>T,
and that proves (1.7). d
Proof of Corollary 1.5. Claim i) is equivalent to
. cn(N)?
< < .
ns fim ST <

The upper estimate follows from (7.8), while the lower estimate follows from (7.7). Claim ii)
follows from estimates (1.6). d

Remark 7.5 The approach proposed here is applicable for derivation of tight two sided estimates
for the best constant in the Markov L, inequality with the Laguerre weight w,(z) = *¢™*. The
results will appear in a forthcoming paper.
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