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Locally Compact Abelian p-Groups Revisited

Wolfgang Herfort, Karl Heinrich Hofmann
and Linus Kramer

1. Introduction

Even though the structure of locally compact abelian groups is gen-
erally considered to be rather thoroughly known through a wealth of
publications, one keeps encountering corners that are not elucidated in
up-to-date literature. In a study of a particular class of metabelian lo-
cally compact groups (see [HHR17]) we encountered some issues about
noncompact locally compact abelian groups which do not appear to be
discussed in the literature even though some of them were anticipated
in Braconnier’s article on his local product [Bra48]. Here we treat some
of them, notably some aspects of totally disconnected torsion-free lo-
cally compact abelian groups which one might consider unexpected if
not pathological. However, firstly we deal with some points concern-
ing noncompact locally compact abelian torsion groups. For compact
abelian groups we often refer to the monograph [HM13]. It will be
convenient to use additive notation for abelian groups.

2. Locally Compact Abelian Torsion Groups

Let {Gj : j ∈ J} be a family of topological abelian groups each of
which contains an open subgroup Uj. According to Braconnier (see
[Bra48]) we have an important subgroup of

∏
j∈J Gj which contains

the direct sum
⊕

j∈GGj, defined as follows:

Definition 2.1. The group

{(gj)j∈J : (∃ finite F ⊆ J)(∀j∈J \ F ) gj∈Uj},
is called the local product whenever it carries the group topology for
which the subgroup

∏
j∈J Uj has its compact product topology and is

an open subgroup; it will be denoted
∏loc

j∈J(Gj, Uj).

A locally compact group is periodic if it is totally disconnected and
every element is contained in a compact subgroup. One of the first uses
of the local product was the following result of Braconnier’s:

Theorem 2.2. Any periodic locally compact abelian group is a local
product

(B)
∏
p∈π

(Gp, Cp)
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of its p-Sylow subgroups Gp as p ranges through the set π of all primes,
and where every element g ∈ Gp is contained in a compact p-subgroup
(see Definition 8.7 in [HM13]. (Here Cp is assumed to be the p-Sylow
subgroup of a compact open subgroup C of G.)

(See [Bra48]).
Clearly, a locally compact abelian torsion group G is periodic, and

so Braconnier’s Local Product Theorem 2.2 applies to it. A com-
pact abelian torsion group has finite exponent by Corollary 8.9(iii)
of [HM13]. Then the character group of a compact abelian group of
finite exponent is a discrete abelian torsion group of finite exponent
and therefore is the direct sum of cyclic groups of bounded order (see
[Fuc73]). By duality, therefore, we have the following remark:

Lemma 2.3. A compact abelian torsion group is a direct product of
cyclic groups of bounded order.

Of course, every locally compact abelian torsion group is periodic and
thus has its unique Braconnier-Sylow decomposition (B). By Lemma
2.3 the set φ := {p ∈ π : Cp 6= {1}} is finite and so

Gπ\φ :=
loc∏

p∈π\φ

(Gp, Cp) =
⊕
p∈π\φ

Gp

is a discrete torsion group, so that, algebraically and topologically, G
is the direct sum of Gπ and Gπ\φ. We summarize:

Proposition 2.4. Firstly, for any locally compact abelian torsion group
G we find a finite set φ ⊆ π of primes such that all Gp for p ∈ π \ φ
are discrete and

(1) G ∼=
∏
p∈φ

Gp ⊕
⊕
p∈π\φ

Gp

Secondly, for each p ∈ φ the group Gp has a compact open subgroup

(2) Cp ∼= Z(p)I1 × Z(p2)I2 × · · · × Z(pn)In

for a finite collection of sets Ik, k = 1, . . . , n, and Gp/Cp is discrete.

Corollary 2.5. For a locally compact abelian torsion group G the fol-
lowing conditions are equivalent:

(1) G is discrete.
(2) The only compact open subgroups of G are finite.
(3) For each prime p, the endomorphism x 7→ p·x of Gp is an open

map.
2
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Proof. Since every locally compact abelian totally disconnected group
has a compact open subgroup, (1) and (2) are clearly equivalent.

Trivially, (1) implies (3), and so we have to argue that (3) implies (2).
By Proposition 2.4 it suffices to show that for each p ∈ φ, the compact
group Cp is finite. From Proposition 2.4 (2) we know that Cp has
exponent pn for some n and thus is a finite product of powers Z(pk)Ik

for sets I1, . . . , In. Statement (3) implies that for each k = 1, . . . , n the
power

Z(pk−1)Ik = p·
( 1

pk
Z/Z

)Ik
is open in Z(pk)Ik , and that implies that Ik is finite. This proves that
Cp is finite. �

The preceding results were derived from our knowledge of compact
torsion p-groups, notably the fact that a compact abelian torsion group
has a finite exponent. What we are challenged to explain at this point
are the details of the structure of noncompact and nondiscrete locally
compact abelian torsion p-groups.

So let G be a locally compact abelian torsion p-group. Then the
socle S(G) = {g ∈ G : p·g = 0} is a well defined closed characteristic
subgroup of exponent p. So Proposition 2.4 immediately applies to the
socle of a locally compact abelian group and yields:

Corollary 2.6. Any exponent p locally compact abelian group G is a
direct product of a compact and a discrete exponent p-subgroup.

Specifically, there are sets I1 and I2 such that

G ∼= Z(p)(I1) × Z(p)I2 .

Furthermore,

rankpG = rankp S(G) = card I1 + card I2.

In forming an intuition of locally compact abelian torsion groups the
inspection of an example may be helpful right away. Before we enter the
details we recall the concept of the divisible hull of an abelian group
(see for instance [HM13], notably Proposition A1.1.33 and Corollary
A1.36):

Remark 2.7. Any abelian group A is a subgroup of a divisible group
D such that every nonzero subgroup of D meets A nontrivially and
cardD = max{ℵ0, cardA}, and the p-ranks of A and D agree for all
primes p. Such a group is called a divisible hull of A. If D1 and D2 are
divisible hulls of A inside an abelian group G, there is an isomorphism
f : D1 → D2 such that f |A = idA. If A is torsion-free then Q ⊗Z A is
a divisible hull of A (up to isomorphism).

3
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Notably in examples, it is convenient to have a notation for the
local power of a pair (A,B) of groups with B ≤ A: The local product∏loc

j∈J(Aj, Bj), where Aj = A and Bj = B for all j ∈ J we shall write

as (A,B)loc,J . We observe (A,A)loc,J = AJ and (A, {0})loc,J = A(J).

Example 2.8. Let Z(p) := 1
p
Z/Z ⊆ 1

p∞
Z/Z = Z(p∞) ∼= Qp

Zp
. Consider

G =
(
Z(p∞),Z(p)

)loc,N
. Then

(a) G is a locally compact abelian torsion p-group.
(b) G has a compact open socle S(G) = Z(p)N of rank ℵ0.
(c) The discrete factor group G/S(G) ∼= Z(p∞)(N) is a divisible torsion

p-group of rank ℵ0.
(d) The unique largest divisible group D = Z(p∞)(N) of G is countable,

dense and nonclosed.
(e) The group D∩S(G) = S(D) = Z(p)(N) is a countable GF(p)-vector

subspace of S(G) and therefore has an algebraic GF(p)-vector space
complement C of continuum dimension, that is, algebraically,
C ∼= Z(p)N.

(f) Algebraically, S(G)/S(D) ∼= Z(p)N.

The venue in which Example 2.8 takes place is the abelian divis-
ible torsion group ∆ = Z(p∞)N in which we consider the subgroup
S := Z(p)N, a GF(p)-vector space, whose dimension dimGF(p) S equals
card S = 2ℵ0 = the cardinality of the continuum, say, cardR. We
define on ∆ again the finest group topology for which S has its own
product topology and is an open subgroup in ∆. Indeed, the group
considered in Example 2.8 is an open subgroup of ∆.

We consider the Prüfer group Z(p∞) = (1/p∞)·Z/Z and the sub-
group Z(p) = (1/p)·Z/Z.

Example 2.9. The group ∆ = Z(p∞)N is a divisible locally compact
abelian group whose topology is defined by declaring the subgroup
S= Z(p)N with its compact product topology an open subgroup of ∆.
We define inside ∆ the subgroup

D :=
∞⋃
n=0

( 1

pn
Z/Z

)N ⊆ Z(p∞)N.

Then D contains precisely the elements d = (z1, z2, . . . ), zk ∈ Z(p∞),
k ∈ N for which there is an n ∈ N such that pn·d = 0, that is, D is
the torsion subgroup of ∆. Morever, S ⊆ D ⊆ ∆ and the following
statements hold:
4
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(a) D is a nondiscrete locally compact abelian divisible torsion p-group,
while D∗ := ∆/D is a discrete torsion-free divisible group, that is,
is a Q-vector group failing to be a p-group. Further, dimQD

∗ =
cardD∗.

(b) The socle S of D is a compact open subgroup, and
(c) the cardinality of D, ∆ and D∗ is the continuum 2ℵ0 , whence D∗ ∼=

Q(R).
(d) Both D/S and ∆/S are discrete divisible abelian groups alge-

braically isomorphic to D, respectively ∆.
(e) The weights w(D) and w(∆) agree and equal 2ℵ0 , while
(f) both D and ∆ are first countable.
(g) D is a divisible hull of S.
(h) Since D is an open divisible subgroup of ∆, we have ∆ ∼= D ⊕D∗

algebraically and topologically.

In particular, D is not sigma-compact.

It should be clear that many nonisomorphic variations of this theme
abound.

2.1. Pure subgroups of compact p-groups. A subgroup P of an
abelian group G is called pure, if P ∩n·G ⊆ n·P for all natural numbers
n.

Remark 2.10. Every finite subgroup A of an abelian group G is con-
tained in a pure subgroup P of the same p-rank for all p.

(See also[Fuc73, Corollary 27.8])
For finite abelian groups one knows the following, see [Fuc73, Theo-

rem 27.5]:

Remark 2.11. (Kulikoff’s Lemma) A pure subgroup of finite exponent
in an abelian group is a direct summand.

Accordingly,

Lemma 2.12. A finite subgroup of an abelian p-group of finite expo-
nent is contained in a direct summand of the same p-rank.

We want to generalize this useful fact to finite subgroups of compact
abelian torsion groups. The compact Hausdorff space of all closed
subgroups of a locally compact group G is SUB(G). We recall that
nowadays it is named the Chabauty-space of G. In the proof of the
following result it will play an essential role.

5
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Theorem 2.13. In a compact torsion p-group every finite subgroup is
contained in a finite (algebraic and topological) direct summand of the
same p-rank.

Proof. Let G be a compact abelian p-group. Let N denote the filter
basis of all compact open subgroups. Thus

(1) limN = 0.

Now let H be a finite subgroup of G. Let NH denote the set of all
N ∈ N satisfying

(2) H ∩N = {0}.
By (1) NH is cofinal in N .

By Lemma 2.12 applied to (H +N)/N ∼= H and G/N for N ∈ NH ,
there are subgroups FN and BN of G containing N such that

(3) H ⊆ FN and rankp(FN/N) = n

for n = rankpH and

(4) G/N = FN/N ⊕BN/N.

Now by the compactness of SUB(G) we find some cofinal function
j 7→ Nj : J → NH for some directed poset J such that (F,B) =
limj∈J(FNj

, BNj
) exists in SUB(G)× SUB(G).

Now we claim

(3′) H ⊆ F and rankp F = rankpH,

moreover,

(4′) G = F ⊕B.
First we prove (3′). Since the graph of the containment relation ⊆,
defined on G, is a closed subset of SUB(G)×SUB(G), the containment
H+N/N ⊆ FN for all N implies H ⊆ F . Thus n = rankpH ≤ rankp F .
By (3) there is a n-element subset XN ⊆ FN such that 〈XN +N/N〉 =
FN . Let X be a cluster point in the compact space F(G) of all closed
subsets of G (see [Bou63], Chap VIII, Exercises, §5, p.206). Then
F ⊆ 〈X〉. Hence rankp F ≤ |X| ≤ |XN | = n. Thus (3′) is proved.

Now we prove (4′). The relation (4) implies G = FN + BN which
impliesG = F+B. Now let g ∈ F∩B then g = limi fi = limi bi for some
fi ∈ FNji

and bi ∈ BNji
for a suitable cofinal function i 7→ ji : I → J .

Now let N ∈ NH . Then N is a compact open neighborhood of 0. Since
limi(bi − fi) = g − g = 0 there is a i0 ∈ I such that i0 ≤ i implies
bi − fi ∈ N . Hence bi = fi + ni with some ni ∈ N ⊆ FN and so
bi ∈ FN ∩ Bi ⊆ N . Since N is compact, g = limi bi ∈ N . But N was
6
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arbitrary in NH , the equation g = 0 follows. Hence F ∩B = {0}. This
completes the proof. �

3. Locally Compact Abelian Divisible Groups

Via duality, torsion and divisibility are juxtaposed in the context of
compact and discrete abelian groups as is illustrated in [HM13] in the
first Section of Chapter 8. We pursue this in the context of locally
compact abelian p-groups. Braconnier’s Decomposition Theorem 2.2
into primary components tells us that the restriction to p-groups is no
restriction of generality.

We recall the divisible hull of an abelian group from Remark 2.7 and
observe that for locally compact abelian p-groups there is a topological
version.

Proposition 3.1. Let A be a locally compact abelian p-group and D
an algebraic divisible hull containing A. We give D the unique group
topology for which A is an open subgroup. Then D is a locally compact
abelian p-group.

Proof. Our definition of the topology on D makes D a locally com-
pact abelian group. In order to show that D is a p-group, we take an
arbitrary element x ∈ D and must show that H := 〈x〉 is a compact
p-group. By Remark 2.7 we find a nonzero element a ∈ A ∩ 〈x〉 such
that n·x = a for some natural number n.

By Weil’s Lemma (see e.g. [HM13], Proposition 7.43), we have the
following two cases:

Case (1): H ∼= Z with the discrete topology.
Case (2): H is compact monothetic.
In Case (1), n·H = 〈n·x〉 is a nonsingleton discrete infinite cyclic

subgroup of A which is impossible since A is a locally compact abelian
p-group.

Thus D is periodic and thus by Braconnier’s Local Product Theorem
2.2 is of the form

(B) D =
∏
q∈π

(Dq, Cq)

for the q-Sylow subgroups of D and C is a compact open subgroup of
A. We know that A ≤ Dp since A is a p-group and Dp is the unique
largest p-group in D. Assume that Dq 6= {0} for a prime q. We may
consider Dq to be a subgroup of D. Then Dp ∩Dq ⊇ A∩Dq 6= {0} by
Remark 2.7. But that implies p = q, and so D = Dp, showing that D
is a p-group. In particular H is a compact monothetic p-group. �

7
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Our Examples 2.8 and 2.9 above were early hints that plausible ex-
pectations suggested by the discrete or the compact situations may fail
in the nondiscrete and noncompact locally compact one. This caution-
ary remark also applies to the following examples. The verifications of
their properties are easy exercises.

Example 3.2. Let J be any set and give QJ
p the topology generated by

the open sets of the product topology and ZJp as an open subset. Call
the resulting topological group G. Then

(a) G is a locally compact abelian group with respect to addition.
(b) ZJp is a compact open p-subgroup.
(c) G is torsion-free divisible.
(d) With respect to componentwise addition, multiplication, and scalar

multiplication with p-adic rationals, the abstract group G is in fact
a Qp-algebra.

(e) Let µp : G → G again denote multiplication by p. Then the func-
tion µp : G→ G is an open map if and only if J is finite.

(f) Let D :=
⋃∞
n=0

1
pn
ZJp . Then D is an open subgroup of G which

is proper if and only if J is infinite. It satisfies conditions (a)–(d)
with D in place of G.

(g) The subgroup D is the smallest Q-vector subspace of G containing
ZJp , namely, the divisible hull Q⊗ Zp.

(h) D is a locally compact abelian p-group in the sense that each of its
elements is contained in a compact p-group.

In the case of torsion-free groups, the divisible hull of a subgroup
A of a divisible group is unique, being (essentially) the group Q ⊗ A.
A torsion-free divisible group is a Q-vector space. We may and shall
consider A as a subgroup of Q⊗ A via the injection a 7→ 1⊗ a : A→
Q ⊗ A. If A is a locally compact abelian torsion free group, we shall
consider Q⊗A as a unique locally compact torsionfree divisible group
in such a way that A is an open subgroup of Q⊗ A.

Definition 3.3. A locally compact abelian group D which is isomor-
phic to the divisible hull

Q⊗ ZJp =
∞⋃
n=0

1

pn
·ZJp

of ZJp in QJ
p for a set J of cardinality ℵ will be called a locally compact

abelian torsion-free divisible p-group of p-rank ℵ.

Theorem 3.4. (i) A locally compact abelian torsion-free p-group G
is an open subgroup of its divisible hull D(G) = Q ⊗ G which is a
8
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torsion-free divisible p-group of p-rank ℵ for some cardinal ℵ. Morover,
D(G) = Q ⊗ C for any compact open subgroup C of G with C ∼= Zℵp
and D(G) is a subgroup of Qℵp .

(ii) The following conditions are equivalent for such a group G:

(1) rankpG is finite.
(2) G ∼= Qn

p for some n = 0, 1, 2, . . .
(3) The scalar multiplication x 7→ p·x is an automorphism of topologi-

cal groups.
(4) G is sigma-compact.

Proof. We begin by proving (i). We begin with a simple observation:
A nonsingleton discrete torsion-free group is a rational vector space,
all monothetic subgroups are isomorphic to Z, and therefore cannot be
locally compact p-group.

Now let G be a nonsingleton locally compact abelian torsion-free
p-group. Being nondiscrete and totally disconnected, there exists a
compact open subgroup C. Then C is a compact totally disconnected
and torsion-free group. Its character group therefore is a discrete di-
visible torsion group by Corollary 8.5 of [HM13]. As such it is of the
form Z(p∞)(J) for some set J by Proposition A1.41 of [HM13]. Ac-
cordingly, C ∼= ZJp . Since Zp is divisible by all natural numbers rel-

atively prime to p, it follows, that
⋃∞
n=0

1
pn
ZJp = Q·ZJp is the divis-

ible hull in QJ
p . In the torsion free case, divisible hulls are unique.

Hence
⋃∞
n=0

1
pn
·C = Q·C is the divisible hull D(C) of C and is an

open subgroup of
⋃∞
n=0

1
pn
·G = D(G). But being divisible, D(C) is

pure in D(G), whence D(G)/D(C) is a torsion-free discrete group on
the one hand and a p-group on the other and so is singleton. This
shows D(C) = D(G). We know that D(C) is a torsion-free divisible
p-group of p-rank ℵ = card J , and so this applies to D(G) as well. This
completes the proof of (i).

Proof of (ii): (1), (2), and (3) are equivalent after Example 3.2.
Clearly a finite dimensional Qp-vector space with its natural topology
is sigma-compact since Qn

p/Znp ∼= Z(p∞)n is countable. It remains to
show that G fails to be sigma compact if its rank is infinite. In that
case we observe that we have

G/C ∼= Q·ZJp/ZJp ⊇
1
p
·Zp

J

ZJp
∼= Z(p)J ,

so that G is the disjoint union of at least 2ℵ0 copies of C if J is infinite.
So G cannot be sigma-compact in this case. �

9
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In the context of the preceding proposition we return briefly to Ex-
ample 3.2. The group G = QJ

p is a locally compact abelian divisible
torsion free group containing the divisible hull D = D(G) of the com-
pact open subgroup ZJp of G. Assume now that J is infinite. Then the
containment is proper, and G is therefore of the form G = D⊕D∗ with
a discrete divisible torsion-free group D∗ ∼= G/D. Let A = Z(p∞)J

and S =
(
1
p
Z/Z

)J
its socle. Then torA =

⋃∞
n=1

(
1
pn
Z/Z

)J
, and

D∗ ∼= A/ torA ∼= QJ . The point that we observe here is that G is
not a p-group, and therefore fails to be isomorphic to the divisible hull
of a compact power of groups Zp such as, for instance D.

So we model the next example after our examples in the torsion case
in order to show that a maximal divisible subgroup of a torsion-free
locally compact abelian group need not be closed:

We let ∆ = QN
p , D = Q⊗ ZN

p , C = ZN
p and interpolate between the

compact open subgroup C and its divisible hull D the group

(∗) P = (Qp,Zp)loc,N.

Example 3.5. The group P in (∗) is a locally compact abelian torsion-
free group with compact open subgroup C and D/C∼=Z(p∞)(N). But
P is not divisible since (cn)n∈N ∈ C, cn = 1 for all n does not have a
p-th root in P .

The subgroup E := Q(N)
p is a dense proper subgroup of P which

is divisible. Hence the maximal divisible subgroup MP is dense and

proper. We note P = E + C while E ∩ C = Z(N)
p . Thus

(∗∗) P/E ∼= C/(E ∩ C) =
ZN
p

Z(N)
p

.

This last group we abbreviate by K. The following fact is noteworthy:

Lemma 3.6.

(∗∗∗) K ∼=
ZN

Z(N) .

Proof. Since ZN
p is compact and hence cotorsion and K is a homomor-

phic torsion-free image it follows that K is algebraically compact (see
[Fuc73, VII]). First of all K = D ⊕ R for D the maximal divisible
subgroup, and R reduced. By the torsion-freeness and using Kaplan-
sky’s Theorem one can provide a cardinal m0 for which D ∼= Q(m0) and
R ∼=

∏
q Aq where, for q any prime, Aq is the q-adic completion of a di-

rect sum Z(mp)
p . One verifies that ZN/Z(N) is a torsion-free algebraically

compact pure subgroup of K with corresponding cardinal invariants
10
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n0 = c and nq = c. Then the pureness of this embedding yields esti-
mates of cardinalities from below c ≤ m0 and c ≤ mp. From this and
the fact that P/E has cardinality c we deduce the equalities c = m0 and
c = mp. Hence we have an (abstract) isomorphism K ∼= ZN/Z(N). �

Returning to Example 3.5 and denoting by MK the maximal divisible
subgroup of K, and further U its full inverse image in P , we observe
that U/E ∼= MK and since divisible subgroups split we have U = E ⊕
M ′ with M ′ ∼= MK , whence U = Mp, the maximal divisible subgroup
if P .

For giving an explicit description of the maximal divisible subgroup
MK of K we use the convention p∞ = 0 and say that a sequence
` ∈ (N ∪ {∞})N in N ∪ {∞} has finite sublevel sets iff

(∀m ∈ N) |{n ∈ N : `n ≤ m}| ≤ ∞.
Now let

L = {` ∈ (N ∪ {∞})N : ` has finite sublevel sets}.
The set L is a lattice in the componentwise partial order. For each
` ∈ L set

H` = p`1·Zp × p`2·Zp × · · · ⊆ ZN
p .

The function ` 7→ H` from L into the lattice of subgroups of ZN
p is an

order reversing lattice morphism. We claim that

(i) (H` + Z(N)
p )/Z(N)

p is divisible.

For a proof we let m ∈ N and z = (p`1z1, p
`2z2, . . . ) ∈ H`. Then

F := {n ∈ N : `n ≤ m} is finite since ` has finite sublevel sets. Now
we define

`′ =

{
`′n = `n for n 6∈ F
m for n ∈ F ,

and

z′ = (p`
′
1z1, p

`′2z2, . . . ) = pm(p`
′
1−mz1, p

`′2−mz2, . . . ) = pmz′′.

But now z − pmz′′ = z − z′ ∈ Z(N)
p , and this proves Claim (i).

Now we set H =
⋃
`∈LH`. Since ` 7→ H` is monotone, H is a

subgroup of ZN
p .

Next we claim that
(ii) (H + ZN

p )/Z(N)
p = MK .

The containment ⊆ follows from (i) above. Conversely, assume that

an element z = (z1, z2, . . . ) in ZN
p is divisible modulo Z(N)

p . Then we

write z = (p`1x1, p
`
2x2, . . . ) with maximal exponents `m ∈ N ∪ {∞}.

Since z is divisible by pm for all m modulo Z(N)
p we conclude that for

11
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each m we have `n ≥ m with at most finitely many exceptions, that is,

` has finite sublevel sets and so z ∈ H` ⊆ H modulo Z(N)
p . This proves

Claim (ii).
This concludes the analysis of Example 3.5.

For a full understanding of the example we recall the following re-
mark:

Remark 3.7. Let J be an arbitrary set. The group Zp and thus also
C = ZJp is reduced, that is, does not contain any nonzero divisible
subgroup (see Proposition 4.26 of [HHR17]).

So ZN
p is reduced while in fact we argued that ZN

p /Z
(N)
p has a large

divisible subgroup.

3.1. Pure subgroups. We recall that in a torsion-free abelian group
G, the pure subgroup [C] generated in G by a subgroup C is

[C] = {g ∈ G : (∃n ∈ N) n·g ∈ C} =
∞⋃
n=1

(µGn )−1C.

(See [HM13], Proposition A1.25).

Lemma 3.8. Let G be a torsion-free locally compact abelian p-group
and C a compact-open subgroup. Then

(i) [C] = G.
(ii) G/C is a discrete torsion p-group.

Proof. (i) Since [C] is pure, G/[C] is torsion-free. The subgroup [C]
contains C and thus is open. Hence G/[C] is a discrete torsion-free
p-group and thus is singleton.

(ii) By the definition of [C], the factor group [C]/C is always a torsion
group. Thus (ii) follows from (i) at once. �

3.2. Splitting in torsion-free groups. In spite of an abundance of
counterexamples, some splitting results hold in torsion-free locally com-
pact abelian groups.

Recall that any torsion-free compact p-group is isomorphic to ZJp for
some et J , and that these groups are the projectives in the category of
compact p-groups. This is a consequence of the fact that their divisible
duals are injective in the category of discrete abelian p-groups.

Lemma 3.9. Let C = ZJp and P a closed pure subgroup. Then there
is a closed subgroup F such that C = P ⊕F , algebraically and topolog-
ically.
12
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Proof. The group C/P is a compact p-group which is torsion-free since
P is pure. Since C/P is projective, there is a morphism j : C/P → C
such that for the quotient epimorphism e : C → C/P the following
diagram is commutative

C ←−−
j

C/P

idC

y yidC/P

C −−→
e

C/P,

that is, e ◦ j = idC/P , saying that R = j(C/P ) is a retract. Thus there
is a closed subgroup R such that C = P⊕R in the category of compact
abelian p-groups. �

We can reformulated this lemma as follows:

Lemma 3.10. For any closed pure subgroup P of a compact torsionfree
p-group C there is an endomorphism q of C such that q2 = q and
P = q(C).

Proposition 3.11. Any closed divisible subgroup of a divisible, torsion-
free locally compact abelian p-group is a direct summand, algebraically
and topologically.

Proof. Let D be a divisible, torsionfree locally compact abelian group
and V be a closed divisible subgroup. From Theorem 3.4 we know that
there is a compact open subgroup C of D such that D may be identified
with Q⊗C. The subgroup P := V ∩C of C satisfies n·C∩P = n·C∩V =
n·C ∩n·V = n·(C ∩V ) = n·P since V is divisible and D is torsionfree,
and so P is a pure subgroup of C. Also C ∼= ZJ for some set J since C
is a compact torsion free p-group. Hence Lemma 3.9 and Lemma 3.10
apply and produce an endomorphism q : C → C such that q2 = q and
q(C) = P = C ∩ V . Since D is torsion free divisible and D = Q·C,
every element d ∈ D is uniquely of the form d = p−n·c for c = pn·d ∈ C,
and the endomorphism q of C extends uniquely to an endomorphism
f : D → D by f(d) = p−n·q(c). It satisfies f 2 = f . An element d′ ∈ D
is in V iff it is of the form d′ = p−n·c′ with c′ ∈ P . That is the case iff
there is a c ∈ C such that c′ = q(c) and so d′ = p−n·c′ = p−n·q(c) = f(d)
for d = p−n·c. This shows that f(D) = V and therefore that there is
a closed subgroup W of D such that D = V ⊕W (algebraically and
topologically). This proves the proposition. �

For the category of abelian groups we know for a fact that each
divisible subgroup of an abelian group is a direct summand. Now the
preceding proposition enables us to prove the following fact for the
category of torsion-free locally compact abelian p-groups:

13
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Theorem 3.12. Every closed divisible subgroup of a torsion-free lo-
cally compact abelian p-group is a direct summand (algebraically and
topologically).

Proof. Let V be a closed divisible subgroup of a torsion-free locally
compact abelian p-group G. By Theorem 3.4 (i) there is a torsion-free
divisible locally compact abelian hull

D(G) = Q⊗G =
∞⊕
n=0

p−n·G ⊇ V.

By Proposition 3.11 there is a closed subgroup W of D(G) such that
D(G) = V ⊕W in the category of locally compact abelian groups. By
the Modular Law, since V ⊆ G we have G = V ⊕ (W ∩ G) in the
category of locally compact p-groups. �

In particular, we have the following corollary.

Corollary 3.13. Any subgroup of a torsion-free locally compact abel-
ian p-group splits provided it is isomorphic to Qm

p for a natural number
m.

Proof. The group Qm
p is locally compact in its natural topology as the

topological Qm
p -vector space is locally compact. Any locally compact

subgroup of a Hausdorff topological group is closed. Hence the corollary
follows from Theorem 3.12. �

Next we shall exhibit in Example 3.17 a torsion free locally compact
abelian p-group with a quotient that is isomorphic to Qp but which
does not split, and in Proposition 3.20 we shall find a locally compact
abelian and sigma-compact p-group with a closed subgroup isomorphic
to Qp that does not split.

3.3. Splitting Qp. We recall N0 = {0, 1, 2, . . . }.

Lemma 3.14. We let k : Z(p∞) → Z(p∞)(N0) be defined by k(x) =

(x, p·x, p2·x, p3·x, . . . ) and let κ = k̂ : ZN0
p → Zp be the dual morphism,

where we identify Zp with the character group of Z(p∞) and ZN0
p with

the character group of Z(p∞)(N0). Then

(i) k is a well defined injective morphism.
(ii) κ is a surjective morphism given explicitly by

κ((z0, z1, z2, . . . )) =
∑∞

n=0 znp
n.

Proof. (i) This is immediate due to the fact that each element z in the
Prüfer group Z(p∞) has finite order.
14
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(ii) As a consequence of the duality between discrete and compact
abelian groups, κ is surjective since k is injective. We may identify the
module action (z, x) 7→ z·x : Zp × Z(p∞) → 1

p∞
Z/Z → R/Z and the

bilinear map

((z0, z1, . . . ), (x0, x1, . . . )) 7→
∞∑
n=0

zn·xn,

ZN0
p × Z(p∞)(N0) → Z(p∞) ⊆ R/Z

the dual pairings of duality, Then for z = (z0, z1, . . . ) ∈ Z(N0)
p and

x ∈ Z(p∞) we have κ(z)·x =
∑∞

n=0 p
nzn·x on the one hand and

z·k(x) = (z0, z1, z2 . . . )·(x, p·x, p2·x, . . . ) =
∑∞

n=0 zn·(pn·x)
on the other. The right hand sides agree, and this shows that k and κ
are adjoint under the duality. �

Lemma 3.15. Let C =
∏

n∈N0
p2nZp ∼= ZN0

p . There is a morphism
η : C → Zp defined by

η((x0, x1, . . . )) =
∞∑
n=0

xnp
−n.

Proof. By the definition of C, for each n = 0, 1, . . . there is a yn such
that xn = p2nyn. Therefore

∑∞
n=0 xnp

−n =
∑∞

n=0 ynp
n which converges

in Zp so that η is well defined. Let α : ZN0
p → C be the isomorphism

given by
α((y0, y1, . . . )) = (y0, p

2y1, . . . , p
2nyn, . . . ) = (x0, x1, . . . ).

Then

(η ◦ α)((y0, y1, . . . ))=η((x0, x1, . . . ))=
∞∑
n=0

ynp
n=κ((y0, y1, . . . )),

that is η = κ ◦ α−1. We saw in Lemma 3.14 that κ is a morphism and
so η is a morphism. �

Lemma 3.16. Let G be the torsion-free locally compact abelian group∏loc
n∈N0

(Zp, p2nZp), and let C denote its compact open subgroup∏
n∈N0

p2nZp ∼= ZN0
p .

Then the morphism η : C → Zp of Lemma 3.15 extends to a continuous
open surjective morphism η̃ : G→ Qp.

Proof. (a) We let S = Z(N0)
p ⊆ ZN0

p . Then G = C+S. Now η′ : S → Qp

by η′((z0, z1, . . . , zn, . . . )) =
∑

n∈N0
znp

−n ∈ Qp, as a finite sum, is a
15
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well defined algebraic homomorphism. On C ∩ S the definitions of η
and η′ agree.

(b) Now we define η∗ : C×S → Qp by η∗(c, s) = η(c)−η′(s). We also
have a surjective morphism δ : C × S → G defined by δ(c, s) = c − s.
Then ker δ = {(c, c) : c ∈ C ∩ S}, and by Part (a) of the proof, η∗

vanishes on ker δ. Hence there is a morphism η̃ : G → Qp such that
η∗ = η̃ ◦ δ. Moreover, for c ∈ C we have η̃(c) = η̃(δ(c, 0)) = η∗(c, 0) =
η(c), that is, η̃ extends η which is a continuous open morphism of the
open subgroup C of G. Therefore, η̃ is a continuous open and surjective
morphism. �

Example 3.17. (i) The quotient morphism κ̃ : G→ Qp with

(∗) G =
loc∏

n∈N0

(Zp, p2nZp)

constructed in Lemma 3.16 does not split, that is, there is no morphism
f : Qp → G such that κ̃ ◦ f = idQp .

(ii) The group G is a locally compact, sigma-compact, torsion-free,
p-group such that pG 6= G. In fact, there is a compact open subgroup
C ∼= ZN

p such that G/C is a (discrete!) countable torsion group of
infinite exponent.

Proof. (i) The subgroup C = ZN0
p is reduced by Remark 3.7, and

G/C ∼=
⊕∞

n=0 Z(p2n) is reduced as well. Hence G is reduced and so
a splitting morphism f cannot exist.

(ii) The assertions in (ii) are straightforward. �

We now wish to record the dual situation of Example 3.17 and for
this purpose we record Braconnier’s Theorem on the dual of a local
product of locally compact abelian groups. (See [Bra48], Theorem 1,
p. 10.)

Lemma 3.18. Let {(Aj, Bj) : j ∈ J} be a family of locally compact
abelian groups Aj with compact open subgroups Bj. Then the dual group
of

(1) G =
loc∏
j∈J

(Aj, Bj)

may be identified with

(2) Ĝ =
loc∏
j∈J

(Âj, B
⊥
j ),

where, as usual, B⊥j is the annihilator of Bj in Âj.
16
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Lemma 3.19. Let G be as in (∗) in Lemma 3.17. Then the character

group Ĝ may be identified with the group G described as follows:

(∗∗) G =
loc∏
n∈N0

(Qp/Zp, p−2nZp/Zp).

Then G is a locally compact abelian p-group isomorphic to

loc∏
n∈N0

(Z(p∞),Z(p2n))

where we write Z(pk) = 1
pk
·Z/Z ⊆ 1

p∞
·Z/Z = Z(p∞).

Proof. We have to show that we have a dual pairing of the groups G
and G in (∗) and (∗∗), respectively. For each n ∈ N0 we have a pairing
〈−,−〉:

(z, q + Zp) 7→ zq + Zp : Zp ×Qp/Zp → Qp/Zp ∼=
1

p∞
·Z/Z ⊆ R/Z

such that p2nZp and p−2nZp/Zp are annihilators of each other. Fix
n ∈ N; we determine for which m ∈ N the group p2mZp is annihilated
by p−2nZn. An element z ∈ Zp is in p2mZp for an m ∈ Z iff there is
an x ∈ Z×p , the group of units of Zp, such that z = p2mx; similarly

an element q + Zp ∈ Qp/Zp is in p−2nZp/Zp iff there is a y ∈ Z×p such

that q = p−2ny. Now the relation 〈z, q + Zp〉 = zq + Zp = 0 holds iff
p2mx·p−2ny = zq ∈ Zp iff m− n ≥ 0, that is, m ≥ n. That proves that
p2nZp is indeed the annihilator of p−2nZp. Then Lemma 3.18 completes
the proof of the lemma. �

It is understood that the character group of Qp may be identified
with Qp under the dual pairing

(r, s) 7→ rs+ Zp : Qp ×Qp → Qp/Zp
ι−−→R/Z,

where ι is the embedding morphism

Qp/Zp
∼=−−→ 1

p∞
·Z/Z incl−−→R/Z.

In Lemma 3.16 we had a quotient morphism η̃ : G → Qp for which
we now obtain a dual injection ι : Qp → G so that

(∀q ∈ Qp, (z0, z1, . . . ) ∈ G)

〈ι(q), (z0, z1, . . . )〉 = 〈q, η((z0, z1, . . . ))〉 =
∞∑
n=0

qznp
−n.(3.1)

17
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(Recall here that almost all zn ∈ Zp are of the form zn = p2nxn for
some xn so that almost all summands of the infinite series in equation
(3.1) read qxnp

n. Thus the convergence of the series in Zp is never in
question.) We now easily verify that equation (3.1) is satisfied if and
only if

ι(q) ∈ G =
loc∏
n∈N0

(Qp/Zp, p−2nZp/Zp)

is of the form

ι(q) = (q + Zp, qp−1 + Zp, qp−2 + Zp, . . . ) =

(
q

pn
+ Zp

)
n∈N0

.

Thus we have the following proposition:

Proposition 3.20. The group G=
∏loc

n∈N0
(Qp/Zp, p−2nZp/Zp) is a lo-

cally compact and sigma-compact p-group with a closed subgroup{(
q

pn
+ Zp

)
n∈N0

: q ∈ Qp

}
isomorphic to Qp which is not a direct summand in the category of
locally compact abelian groups.

We note that any subgroup that is isomorphic to Qp is divisible and
thus is a direct summand in the category of abelian groups. We also
remark explicitly that G itself is not divisible:

Lemma 3.21. The group G is not divisible, but p·G is dense in G.

Proof. Let C =
∏

n∈N0
p−2nZp/Zp ∼=

∏
n∈N Z(p2n). Then S := C/pC ∼=

Z(p)N and we consider the quotient

H := G/pC ∼= (Z(p∞),Z(p))loc,N.

This group has the subgroups E = Z(p∞)(N) and S = Z(p)N so that
H = E + S and so H/E ∼= S/(S ∩ E) ∼= Z(p)N/Z(p)(N). This group is
a quotient of a GF(p)-vector space of dimension 2ℵ0 modulo a vector
subspace of dimension ℵ0 and thus is isomorphic to Z(p)N. So we have
seen that G has a nondivisible quotient and therefore is nondivisible.

The character group G of G is torsion free. This implies that µGp is

injective, and so µG
p = (µGp )̂ has a dense image. �

4. Locally compact abelian p-groups of finite rank

Let us give an ad-hoc definition of the p-rank of a locally compact
abelian p-group G.
18
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Definition 4.1. For a compact abelian p-group C let its p-rank be
the minimal cardinality of a subset S of C topologically generating C.
When G is an arbitrary locally compact abelian p-group then its p-rank
will be defined as

rankp(G) := sup{rankp(C) : C compact subgroup of G}.

A few remarks and examples may illuminate this notion and connect
it with rank definitions from the literature.

Remark 4.2.

(a) For G any discrete abelian p-group our definition agrees with the
one given in [Fuc73, page 85]. Note that Fuchs considers every
abelian p-group in a natural fashion as a discrete Zp-module.

(b) When G is a finite abelian p-group then rankp(G) = dimFp G/pG,
that is, rankp(G) is just the minimal number of generators of G.

(c) For an abelian compact p-group, i.e., a pro-p group G it turns out
that

rankp(G) = rankp(G/pG).

Our definition of p-rank agrees then with the definition of rank of
the pro-p group G as given in [RZ10, page 90] for free pro-p groups.

In particular, for a cardinal ℵ, the p-rank of Zℵp agrees with the

one of Z(p)ℵ and amounts to ℵ.
We have used this definition of p-rank during Section 2.

(d) For natural numbers k and m the groups

Qk
p and Z(p∞)m

have respectively p-ranks equal to k and m.
(e) Whenever H is a closed subgroup of the locally compact abelian

p-group G then

rankp(H) ≤ rankp(G) and rankp(G/H) ≤ rankp(G).

These statements are direct consequences of the definition of p-rank.

We now prove a closedness result for the maximal divisible subgroup
of locally compact abelian p-groups of finite rank.

Lemma 4.3. Let G be a locally compact abelian p-group of finite p-
rank with its divisible subgroup D torsion-free. Then D is closed and
is algebraically and topologically isomorphic to Qk

p for some natural
number k.

Proof. Since D is torsion-free by assumption, it is algebraically isomor-
phic to a direct sum of groups isomorphic to Q. We shall inductively

19
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construct a finite number of closed subgroups Qi
∼= Qp of G, all con-

tained in D, and

D =
k⊕
i=1

Qi.

Provided this is done, it will follow that D is closed.
Indeed, given an open compact subgroup U of G, note first that

Qi ∩ U is closed in U , and so is

D ∩ U =
k⊕
i=1

Qi ∩ U.

Starting our inductive proof, remark that if D = {0}, we are done.
Suppose now that the in G closed subgroup

Wl :=
l⊕

i=1

Qi

inside D has already be found. If D = Wl then k = l and we are
done. Else there must be a subgroup X ∼= Q of D not contained
in Wl. Using Lemma 4.3 let us pass to the closure X̄ and find that
Ql+1 := X̄ ∼= Qp is contained in D. Our proof is finished, once we show
that Ql+1 ∩Wl = {0}. Suppose that there is

x ∈ Ql+1 ∩Wl.

Then, as Ql+1 and Wl are divisible, there are suitable elements y ∈
Ql+1 \Wl and w ∈ Wl \Ql+1 such that

x = pµy = pνw,

for natural numbers µ ≥ 1 and ν ≥ 1. We can choose x and w such
that µ+ ν is minimal. Then the resulting equality

p(pµ−1y − pν−1w) = 0

and the torsion freeness of D imply that either y ∈ 〈w〉 or w ∈ 〈y〉,
both a contradicton to the choice of w and y. �

For locally compact abelian p-groups of finite rank we have a com-
plete description, which we present now. Our next result is due to
V. S. Čarin, see [Čar66, Theorem 5].

Proposition 4.4. A locally compact abelian p-group G is of finite p-
rank iff it is of the form G = Qk

p⊕Z(p∞)m⊕Znp⊕F for some nonnegative
integers k, m, n and a finite p-group F , and the p-rank of G is precisely

rankpG = k +m+ n+ rankp(F ).

20
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Proof. Assume first that G has the form
G = Qk

p ⊕ Z(p∞)m ⊕ Znp ⊕ F
with k, m, n nonnegative integers and F a finite p-group. Since passing
to a subgroup or a quotient does not increase the rank, we find that

rankpG = k rankpQp +m rankp Z(p∞) + n rankp Zp + rankp F.

Since the p-groups Qp, Z(p∞) and Zp have rank 1 and F is finite, it
follows that G has finite rank equal to k +m+ n+ rankp F .

Conversely, assume now that G is a locally compact abelian p-group
of finite p-rank. We tacitly shall make use of Remark 4.2 in the sequel,
in particular the fact that the p-rank of a closed subgroup of a finite
p-rank group, as well as any factor group, is finite.

Claim: We claim first that the torsion subgroup T := tor(D) of
the maximal divisible subgroup D is closed and that G = T ⊕ R for a
closed subgroup R of G topologically and algebraically.

Indeed, for some index set I one has

T =
⊕
i∈I

Pi

with each Pi ∼= Z(p∞). Let U be a compact open subgroup of G. Then
U ∩ T is a finite rank compact group. Therefore its torsion subgroup
has finite rank as well so that U ∩ T turns out to be finite, whence it
is closed. Thus T itself is a closed subgroup of G. Then T is a discrete
subgroup of G and hence there is a compact open subgroup, say V ,
with T ∩ V = {0}.

By a Theorem of Baer, see [Fuc73, Theorem 21.3], T is a direct
summand of G and, in a decomposition

G = T ⊕R

one can stipulate R to contain the open subgroup V . It follows that R
is an open subgroup, and hence closed, so that the direct decomposition
is algebraic and topological.

From now on we may assume that the maximal divisible subgroup D
of G is torsion-free. Then, as G has finite rank, Lemma 4.3 implies that
D is closed. The factor group R := G/D is a finite rank reduced locally
compact abelian p-group. It contains an open compact subgroup, say
U . Since R/U has finite rank and is discrete, conclude that R itself
is compact of finite rank. Therefore, see [RZ10, Theorem 4.3.4], there
are a nonnegative integer n and a finite subgroup F of R such that

R ∼= Znp ⊕ F.
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As G admits, as an abstract group, a decomposition

G = D ⊕ S
with S abstractly isomorphic to R = Znp × F , we deduce that there is
a finite subgroup of G, we again denote it by F , with D ∩ F = {0}.
Since F is finite, it is closed in G and hence L := D + F is a closed
subgroup of G, topologically and algebraically isomorphic to D ⊕ F .
Let X be a minimal set of topological generators of G/L ∼= Znp . Lift

it to a subset X̃ of G of the same cardinality n. The topologically

generated Zp-submodule 〈X̃〉 maps then onto G/L.

Claim that 〈X̃〉 ∩ L = {0}. Indeed, if

g =
∑
x̃∈X̃

λx̃x̃ = d+ f

with λx̃ ∈ Zp, d ∈ D, and, f ∈ F belongs to 〈X̃〉 ∩ (D ⊕ F ) then,
passing to factor group G/L implies in G/L the relation∑

x̃

λx̃(x̃+ L) = 0.

Since X = X̃ +L/L is a basis of the free Zp-module G/L =
⊕

x∈X Zp,
deduce for every x̃ ∈ X̃ that λx̃ = 0. Therefore g = 0 showing that

(4.1) G = (D ⊕ F )⊕ 〈X̃〉 = D ⊕ F ⊕ Znp .
�
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