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ON UNIPOTENT RADICALS OF PSEUDO-REDUCTIVE GROUPS

MICHAEL BATE, BENJAMIN MARTIN, GERHARD RÖHRLE, AND DAVID I. STEWART

Abstract. We establish some results on the structure of the geometric unipotent radicals of
pseudo-reductive k-groups. In particular, let k′ be a purely inseparable field extension of k of
degree pe and let G denote the Weil restriction of scalars Rk′/k(G′) of a reductive k′-group G′. We
prove that the unipotent radical Ru(Gk̄) of the extension of scalars of G to the algebraic closure
k̄ of k has exponent e. Our main theorem is to give bounds on the nilpotency class of geometric
unipotent radicals of standard pseudo-reductive groups, which are sharp in many cases.

1. Introduction

Let G be a smooth affine algebraic k-group over an arbitrary field k. Then G is said to be pseudo-
reductive if G is connected and the largest k-defined connected smooth normal unipotent subgroup
Ru,k(G) of G is trivial. J. Tits introduced pseudo-reductive groups to the literature some time
ago in a series of courses at the Collège de France ([Tit92] and [Tit93]), but they have resurfaced
rather dramatically in recent years thanks to the monograph [CGP10], many of whose results were
used in B. Conrad’s proof of the finiteness of the Tate–Shafarevich sets and Tamagawa numbers of
arbitrary linear algebraic groups over global function fields [Con12, Thm. 1.3.3]. The main result
of that monograph is [CGP10, Thm. 5.1.1] which says that unless one is in some special situation
over a field of characteristic 2 or 3, then any pseudo-reductive group is standard. This means it
arises after a process of modification of a Cartan subgroup of a certain Weil restriction of scalars of
a given reductive group (we assume reductive groups are connected). More specifically, a standard
pseudo-reductive group G can be expressed as a quotient group of the form

G = (Rk′/k(G
′) o C)/Rk′/k(T

′)

corresponding to a 4-tuple (G′, k′/k, T ′, C), where k′ is a non-zero finite reduced k-algebra, G′ is a
k′-group with reductive fibres over Spec k′, T ′ is a maximal k′-torus of G′ and C is a commutative
pseudo-reductive k-group occurring in a factorisation

Rk′/k(T
′)

φ→ C
ψ→ Rk′/k(T

′/ZG′)

of the natural map $ : Rk′/k(T
′) → Rk′/k(T

′/ZG′). Here ZG′ is the (scheme-theoretic) centre

of G′1 and C acts on Rk′/k(G
′) via ψ followed by the functor Rk′/k applied to the conjugation

action of T ′/ZG′ on G′; we regard Rk′/k(T
′) as a central subgroup of Rk′/k(G

′) o C via the map

h 7→ (i(h)−1, φ(h)), where i is the natural inclusion of Rk′/k(T
′) in Rk′/k(G

′) .

The structure of general connected linear algebraic groups over perfect fields k is well-understood:
the geometric unipotent radical Ru(Gk̄) = Ru,k̄(Gk̄) descends to a subgroup Ru(G) of G, and the

quotient Gred := G/Ru(G) is reductive. If one further insists k be separably closed one even has

2010 Mathematics Subject Classification. 20G15.
1Note that $ is not surjective when ZG′ has non-étale fibre at a factor field k′

i of k′ that is not separable over k.
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that Gred is split, so Gred is the central product of its semisimple derived group D(G) and a central
torus, with Gred/ZG semisimple—in fact, the direct product of its simple factors.

Most of this theory goes wrong over imperfect fields k, hence in particular the need to consider
pseudo-reductive groups, whose geometric unipotent radicals may not be defined over k. In order
to understand the structure of a given smooth affine algebraic group G over k it is therefore
instructive to extend scalars to the (perfect) algebraically closed field k̄ and analyse the structure
of Gk̄, where, for example, one sees the full unipotent radical. We pursue this approach in this
paper and discuss the structure of Gk̄ where G is a standard pseudo-reductive group G arising
from a 4-tuple (G′, k′/k, T ′, C). The reductive part Gred

k̄
= Gk̄/Ru(Gk̄) is not especially interesting

in that the universal property of Weil restriction implies that Gred
k̄

has the same root system as

G′. Further results [CGP10, Thm. 3.4.6, Cor. A.5.16] even furnish us, under some restrictive
conditions, with a Levi subgroup for G: a smooth subgroup H such that Hk̄ is a complement to
the geometric unipotent radical Ru(Gk̄). However, the precise structure of Ru(Gk̄) is rather more
mysterious. While one knows that there is a composition series of Ru(Gk̄) whose composition
factors are related to the adjoint G′

k̄
-module g′ = Lie(G′

k̄
) (see Lemma 2.2), it is unclear what the

structure of Ru(Gk̄) is qua group. Since Ru(Gk̄) is a p-group, one may consider some standard
invariants, which measure the order of its elements and the extent to which it is non-abelian. One
major purpose of this paper is to show that as soon as the root system associated to G is non-trivial
and k′/k is finite inseparable of odd characteristic, then Ru(Gk̄) is highly non-abelian (in a way
that depends on the characteristic of the field amongst other things).

Recall that the exponent of a finite purely inseparable field extension k′/k in characteristic p is the
minimum integer e such that tp

e ∈ k for all t ∈ k′. If k′/k is any finite field extension then k′ is
purely inseparable over the separable closure k1 of k in k′ and we refer to k′/k1 as the inseparable
part of the extension k′/k; in this case we say that the exponent of k′/k is that of k′/k1. Lastly if
k′ =

∏
i∈I ki is a non-zero finite reduced k-algebra, with factor fields ki, its exponent is the maximal

exponent of the ki/k. If the reductive k′-group G′ is non-commutative (resp., non-trivial) then we
define eG′ (resp., ẽG′) to be the maximum of the exponents of ki/k, where we range over all i ∈ I
such that the fibre Gi of G′ over Spec ki is non-commutative (resp., non-trivial); if k′ is a field then
eG′ (resp., ẽG′) is just the exponent of k′/k, whenever G′ is non-commutative (resp. non-trivial).

Theorem 1.1. Let G be a non-commutative standard pseudo-reductive group over a field k, arising
from a 4-tuple (G′, k′/k, T ′, C) with k′ a non-zero finite reduced k-algebra. Suppose p is odd and
the centre ZG′ is smooth. Then the unipotent radical Ru(Gk̄) has nilpotency class at least peG′ − 1.

Moreover, if the inseparable parts of the factor fields ki of k′ are all primitive extensions of k, then
Ru(Gk̄) has precisely this nilpotency class. In particular, if eG′ = 1, then the nilpotency class of
Ru(Gk̄) is exactly p− 1.

Note that in particular, ZG′ is smooth if p is very good for G′ or if G′ is semisimple and of adjoint
type.

What the theorem indicates is that the precise structure of Ru(Gk̄), including its nilpotency class,
appears to depend in a very particular way on the nature of the field extension k′/k used in Weil
restriction, rather than on, for instance, the reductive group G′. Specifically, the structure appears
to depend primarily on the lattice of subfields of k′ containing k. (This is made a little more precise
in Conjecture 1.3 below.)

One gets a little further towards understanding this arrangement when considering the orders of
the elements of Ru(Gk̄) in the case that G is a Weil restriction of a reductive group. Recall that
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the exponent of a p-group R is the maximum e such that R has an element of order pe. This
definition can be extended to a smooth unipotent k-group scheme U by defining its exponent to be
the minimum e such that the pe-power map U → U factors through the trivial group scheme. This
is equivalent to asking for the minimal e such that xp

e
= 1 for all x ∈ U(A) and for all k-algebras

A.

Theorem 1.2. Let k′ be a non-zero finite reduced k-algebra and let G = Rk′/k(G
′) for some non-

trivial reductive k′-group G′. Then the unipotent radical Ru(Gk̄) of Gk̄ has exponent ẽG′.

Note that Theorem 1.2 fails in the context of a general standard pseudo-reductive group. For
instance, given a finite purely inseparable field extension k′/k with exponent e, we can take G
to be the standard group arising from the 4-tuple (G′, k′/k, T ′, C), where G′ = T ′ = 1 and C =
Rk′′/k(Gm), with k′′/k a finite purely inseparable field extension of arbitrarily large exponent f :
for then G ∼= C, and the theorem itself tells us that Ru(Gk̄) has exponent f . The proof of the
theorem we give uses an easy calculation in the case G′ is isomorphic to the multiplicative group
Gm together with the density of Cartan subgroups; one may also appeal to [CGP10, Prop. A.5.12].

If p = 2 and k′/k has exponent 1 in Theorem 1.2 then Ru(Gk̄) is abelian (see Corollary 4.2). To
sharpen this point, note that here k′/k can have arbitrarily large degree, yet the nilpotency class of
Ru(Gk̄) remains constant, equal to 1. This is evidence towards the following (see also Example 2.3).

Conjecture 1.3. Let G be a non-commutative standard pseudo-reductive group arising from a
4-tuple (G′, k′/k, T ′, C) such that k′/k is a non-zero finite reduced k-algebra. Then the nilpotency
class of Ru(Gk̄) is peG′ − 1.

One striking aspect of the conjecture, and the evidence we have collected above, is that the structure
of Ru(Gk̄) depends as little as possible on the reductive group G′ one starts with. For example,
while the nilpotency class of a Borel subgroup of G′ can grow arbitrarily with the rank of a simple
factor, nevertheless the root system of G′ does not feature in the conclusion at all. Certainly we
observe that the exponent of Ru(Gk̄) is independent of the root system, while the possible orders
of arbitrary unipotent elements of G are most definitely not.

Finally, let us remark that the proof of Theorem 1.1 reduces to a bare-hands calculation with
matrices arising from the Weil restriction Rk′/k(GL2) and may be of interest to anyone who would
like to see some examples of pseudo-reductive groups in an explicit description by matrices.

2. Notation and Preliminaries

We follow the notation of [CGP10]. In particular, k is always a field of characteristic p > 0. All
algebraic groups are assumed to be affine and of finite type over the ground ring, and all subgroups
are closed. Reductive and pseudo-reductive groups are assumed to be smooth and connected.

Let us recall the definition of Weil restriction and some relevant features. We consider algebraic
groups scheme-theoretically, so that an algebraic k-group G is a functor {k-algebras → groups}
which is representable via a finitely-presented k-algebra k[G]. Let k′ be a non-zero finite reduced
k-algebra. Then for any smooth k′-group G′ with connected fibres over Spec k′, the Weil restriction
G = Rk′/k(G

′) is a smooth connected k-group of dimension [k′ : k] dimG′, characterised by the
property G(A) = G′(k′⊗kA) functorially in k-algebras A. If H ′ is a subgroup of G′ then Rk′/k(H

′)
is a subgroup of Rk′/k(G

′). For a thorough treatment of this, one may see [CGP10, A.5]. Important
3



for us is the fact that Weil restriction is right adjoint to base change: that is, we have a bijection

Homk(M,Rk′/k(G
′)) ∼= Homk′(Mk′ , G

′)

natural in the k-group scheme M . We need two special cases. First, if M = G = Rk′/k(G
′) then

the identity morphism G → G corresponds to a map qG′ : Gk′ → G′. When k′ is a finite purely
inseparable field extension of k then by [CGP10, Thm. 1.6.2], qG′ is smooth and surjective, ker qG′

coincides with Ru,k′(Gk′) and Ru,k′(Gk′) is a descent of Ru(Gk̄) (so Ru(Gk̄) is defined over k′).
In particular, dim Ru,k′(Gk′) = ([k′ : k] − 1) dimG′. Second, if H is a reductive k-group and
M = G′ = Hk′ then the identity morphism Hk′ → Hk′ corresponds to a map iH : H → Rk′/k(Hk′).
When k′ is a finite purely inseparable field extension of k then by [CGP10, Cor. A.5.16], the

composition Hk′
(iH)k′−→ Rk′/k(Hk′)

qHk′−→ Hk′ is the identity, so we may regard H as a subgroup of
Rk′/k(Hk′) via iH ; in fact, H is a Levi subgroup of Rk′/k(Hk′).

Let k′ =
∏n
i=1 ki be a non-zero finite reduced k-algebra with factor fields ki. Then any algebraic

k′-group G′ decomposes as a product G′ =
∏n
i=1Gi where each Gi is an algebraic ki-group (it is

the fibre of G′ over Spec ki). In such a situation, we let Ru,k′(G
′) denote the unipotent subgroup∏n

i=1 Ru,ki(Gi). We denote by g′ the Lie algebra of G′.

Suppose now that H is a smooth algebraic group over k and let [g, h] = ghg−1h−1 denote the
commutator of the elements g, h ∈ H(k̄). Let {Dm(H)}m≥0 be the lower central series of H; note
that Dm(H)(k̄) is the mth term in the lower central series for the abstract group H(k̄). We say
that H is nilpotent if there exists some integer m such that Dm(H) = 1. The nilpotency class cl(H)
of H is the smallest integer m such that Dm(H) = 1. Since [Hk′ ,Kk′ ] = ([H,K])k′ for any two
smooth connected k-groups H and K (cf. [Bor91, I.2.4]), extending the base field does not change
the nilpotency class of H.

In proving Theorem 1.1 and intermediate results, we sometimes want to reduce to the case that k
is separably closed, guaranteeing that ki/k is purely inseparable for ki a factor field of k′. This also
allows us to assume that the group G′ has split reductive fibres. We denote by ks the separable
closure of k in its algebraic closure k̄, and we set k′s = k′⊗k ks, a non-zero finite reduced ks-algebra.
Even when k′ is a field, k′s need not be a field, but in this case the exponents of the field extensions
ki/ks are all equal to the exponent of k′/k, where k′s =

∏
i∈I ki.

Lemma 2.1. Let G be a standard pseudo-reductive group arising from (G′, k′/k, T ′, C). Then

(i) Gks is isomorphic to the standard pseudo-reductive group arising from (G′k′s , k
′
s/ks, T

′
k′s
, Cks).

(ii) Ru,k′(Gk′)k′s = Ru,k′s(Gk′s).

Proof. (i). We have G = (Rk′/k(G
′) o C)/Rk′/k(T

′). In order to see that

Gks
∼= (Rk′s/ks

(G′k′s) o Cks)/Rk′s/ks
(T ′k′s)

it suffices to see that: (a) the sequences

1→ Rk′/k(T
′)→ Rk′/k(G

′) o C → G→ 1

and

1→ Rk′/k(G
′)→ Rk′/k(G

′) o C → C → 1

remain exact after taking the base change to ks, with the second remaining split; and (b) the
formation of the Weil restriction Rk′/k(G

′) commutes with base change to ks.
4



These facts are standard: for (a) this follows since algebras over a field k are flat; and (b) is [CGP10,
A.5.2(1)].

(ii). Write k′s =
∏
i∈I ki. Since

Ru,k′(Gk′)k̄ = Ru(Gk̄) = Ru((Gks)k̄) = Ru((Gki)k̄) = Ru,ki(Gki)k̄,

we have Ru,k′(Gk′)ki = Ru,ki(Gki) for each i ∈ I. The result now follows. �

The following result will help us to identify the nilpotency class of Ru(G) when G is a pseudo-
reductive group.

Lemma 2.2. Let G = Rk′/k(G
′) for k′ a non-zero finite reduced k-algebra and G′ a reductive k′-

group. Then Ru(Gk̄) has a filtration whose successive quotients are G′
k̄
-equivariantly isomorphic to

subquotients of the adjoint G′
k̄
-module.

In case k′ is a finite purely inseparable field extension of k, G′ is absolutely simple and p is very
good for G′, then Lie(Ru(Gk̄)) is an isotypic G′

k̄
-module containing precisely [k′ : k] − 1 copies of

the adjoint module.

Proof. By Lemma 2.1 we may assume k is separably closed. Clearly we can assume k′ is a finite
purely inseparable field extension of k. Set q = [k′ : k]. Let f ′ : G′ → GL(g′) denote the ad-
joint representation. By the discussion in [CGP10, Sec. A.7], we may identify Lie(Rk′/k(G

′)) with
Rk′/k(g

′), and the adjoint representation f of Rk′/k(G
′) on Rk′/k(g

′) is given by the composition
Rk′/k(G

′)→ Rk′/k(GL(g′))→ GL(Rk′/k(g
′)), where the first map is Rk′/k(f

′) and the second is the
natural inclusion.

Now G′ is split over k′, so by the standard structure theory of reductive groups, there is a reductive

k-group H such that G′ = Hk′ . We obtain a representation of H via the composition H
iH→

Rk′/k(Hk′)
f→ GL(Rk′/k(hk′)), where h := LieH. We claim that

(∗) the H-module Rk′/k(hk′) is the direct sum of q copies of the adjoint module h.

In fact, one can easily show that the analogous result holds if we replace the adjoint representation
H → GL(h) in this construction with any representation ρ : H → GL(V ); we simply choose explicit
bases for V over k and for k′ over k (cf. the calculations at the start of Section 3). Note that we
need not assume here that k is separably closed.

If G′ is absolutely simple and p is very good for G′ then g′
k̄

= hk̄ is irreducible as a Gk′-module.

It follows from (∗) after extending scalars that gk̄ = Lie(Rk′/k(G
′)k̄) is the sum of q copies of the

adjoint module g′
k̄
. Since Gk̄

∼= Ru(Gk̄) oG′
k̄
, we obtain the second assertion of the lemma.

By [McN14, Thm. B] (or [Ste13, Prop. 3.3.5]), Ru(Rk′/k(G
′)k̄) has a filtration by G′

k̄
-modules for

the group G′
k̄
; more precisely, there is a filtration of Ru(Rk′/k(G

′)k̄) by vector groups Vi such that

each is G′
k̄
-equivariantly isomorphic to Lie(Vi). Since any such must consist of subquotients of g′

k̄
,

the first assertion of the lemma follows from (∗). �

Example 2.3. The result (∗) from Lemma 2.2 does not extend to an arbitrary standard pseudo-
reductive group. For example, if p = 2, G′ = SL2, k′/k is a purely inseparable field extension of
degree 2 and G is the standard pseudo-reductive group Rk′/k(G

′)/Rk′/k(µ2), then G has dimension
dimG′ · [k′ : k]− (p− 1) = 5; see [CGP10, Ex. 1.3.2]. Since there is at least one copy of the k-space
g′ = Lie(G′) corresponding to the canonical copy of G′ in Gk′ , we see that Lie(Gk̄) cannot be a
sum of copies of g′

k̄
, just for dimensional reasons. (Similar examples can be given for any G′ whose
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centre is not smooth.) Note in this example that Ru,k′(Rk′/k(G
′)) is abelian by Corollary 4.2, so

Ru,k′(G) is abelian; this gives further evidence for Conjecture 1.3.

3. Proof of Theorem 1.1.

Up until Proposition 3.2, we allow p to be any prime, not necessarily odd. We will write elements
of GL2(k′) in the form (

a11 a12

a21 a22

)
with aij ∈ k′ such that a11a22 − a12a21 ∈ (k′)×.

Let k′ have basis {1 = α1, α2, . . . , αq} as a k-vector space. Set

A =

a1
11 + α2a

2
11 + · · ·+ αqa

q
11 a1

12 + α2a
2
12 + · · ·+ αqa

q
12

a1
21 + α2a

2
21 + · · ·+ αqa

q
21 a1

22 + α2a
2
22 + · · ·+ αqa

q
22

 ,

where 1 ≤ i, j ≤ 2, 1 ≤ r ≤ q and each arij belongs to k—note that here we use r as an indexing
superscript; it does not indicate a power. Note also that we really think of A as being a variable
matrix, depending on the parameters αi and arij , which we suppress when invoking A. Then

Rk′/k(GL2)(k) is the collection of matrices A such that A is invertible, as the parameters arij run
over all elements of k.

Let V be the natural module for GL2, so that V (k′) ∼= k′ ⊕ k′ has k′-basis {b1 = ( 1
0 ) , b2 = ( 0

1 )}.
Then Rk′/k(GL2) acts on the 2q-dimensional k-vector space Rk′/k(V ). Now Rk′/k(V )(k) has k-basis
{b1, α2b1, . . . , αqb1, b2, α2b2, . . . , αqb2}, so Rk′/k(GL2) naturally identifies with a smooth subgroup
of GL2q via its action on this k-basis. In the case when k′ = k(t) is a primitive, purely inseparable
extension of k with exponent e (so that tp

e ∈ k and q = pe), then we may write αi = ti−1. Hence

we have Rk′/k(GL2) ↪→ GL2q via A 7→ Â, where

Â :=



a1
11 tqaq11 tqaq−1

11 tqaq−2
11 . . . tqa2

11 a1
12 tqaq12 tqaq−1

12 tqaq−2
12 . . . tqa2

12

a2
11 a1

11 tqaq11 tqaq−1
11 . . . tqa3

11 a2
12 a1

12 tqaq12 tqaq−1
12 . . . tqa3

12

a3
11 a2

11 a1
11 tqaq11 . . . tqa4

11 a3
12 a2

12 a1
12 tqaq12 . . . tqa4

12
...

...
...

...
...

...
...

...
...

...
...

...

aq11 aq−1
11 aq−2

11 aq−3
11 . . . a1

11 aq12 aq−1
12 aq−2

12 aq−3
12 . . . a1

12

a1
21 tqaq21 tqaq−1

21 tqaq−2
21 . . . tqa2

21 a1
22 tqaq22 tqaq−1

22 tqaq−2
22 . . . tqa2

22

a2
21 a1

21 tqaq21 tqaq−1
21 . . . tqa3

21 a2
22 a1

22 tqaq22 tqaq−1
22 . . . tqa3

22

a3
21 a2

21 a1
21 tqaq21 . . . tqa4

21 a3
22 a2

22 a1
22 tqaq22 . . . tqa4

22
...

...
...

...
...

...
...

...
...

...
...

...

aq21 aq−1
21 aq−2

21 aq−3
21 . . . a1

21 aq22 aq−1
22 aq−2

22 aq−3
22 . . . a1

22



.

Of course, Rk′/k(GL2)(k′) is obtained from Rk′/k(GL2)(k) by allowing the coefficients arij to take

values in k′. If we take H to be the k-group GL2 then the map iH : H → Rk′/k(Hk′) is given by(
a11 a12

a21 a22

)
7→
(
a11I a12I
a21I a22I

)
for aij ∈ k, where I is the q× q identity matrix. Note that as an H-module over k, (k′)2 ∼= k2q is a
sum of q copies of the natural module for H (cf. Lemma 2.2).

6



Lemma 3.1. Let G′ be the k′-group GL2 and let G = Rk′/k(G
′) for k′ a purely inseparable field

extension of k with [k′ : k] = q = pe. Then Ru(Gk̄)(k̄) is found as the subset of G(k̄) by setting

a1
ij = δij − (α2a

2
ij + · · ·+ αqa

q
ij).

Proof. The canonical map qG′ : Gk′ → G′ satisfies ker qG′ = Ru,k′(Gk′) and this is a descent of the
geometric unipotent radical. Following the concrete description of the map qG′ in [CGP10, A.5.7],

we see that on k′-points, qG′ is realised by sending Â ∈ Gk′(k′) ⊆ GL2q(k
′) back to the matrix A,

where the coefficients arij are now taken in k′. The k′-unipotent radical of Gk′ is then the kernel of
this map, thus is given by choosing the arij in such a way that the resulting matrix is the identity.

This is achieved by setting a1
ij to be as proposed in the lemma. �

Again let k′ = k(t) be a purely inseparable extension with exponent e. Then we consider the

element X := Â ∈ Ru,k′(Gk′)(k
′) ⊆ GL2q(k

′) arising from setting arij = δi1δijδ2rt
−1 + δi2δijδ1r.

Explicitly, we have

X =



0 0 0 . . . 0 tq−1 0 0 0 . . . 0 0
t−1 0 0 . . . 0 0 0 0 0 . . . 0 0
0 t−1 0 . . . 0 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . t−1 0 0 0 0 . . . 0 0
0 0 0 . . . 0 0 1 0 0 . . . 0 0
0 0 0 . . . 0 0 0 1 0 . . . 0 0
0 0 0 . . . 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 0 0 0 . . . 0 1


,

where by inspection the top-left block matrix M is given by M = t−1M ′, with M ′ a companion
matrix for the polynomial

s(x) = xq − tq.
In particular, as the minimal polynomial of X is s(x) and M is unipotent, the matrix M − I is
nilpotent of rank q − 1. Thus, over the algebraic closure k̄, it is similar to a full Jordan block.

Now let Q be the subgroup of Ru,k′(Gk′)(k
′) consisting of the matrices of the form

Y =

(
I N
0 I

)
,

where I and N are q × q matrices and I denotes the identity. As X is of the form(
M 0
0 I

)
,

it follows that X normalises Q. Let [X,Y ] = XYX−1Y −1 denote the commutator of the two
matrices X and Y . Then one checks that

[X,Y ] =

(
I (M − I)N
0 I

)
7



so that the iterated commutator is given by

(1) [X, [X, . . . , [X︸ ︷︷ ︸
n

, Y ]]] =

(
I (M − I)nN
0 I

)
.

Let ν : Q → kq be the function that maps

(
I N
0 I

)
to the first column of N . Clearly ν is X-

equivariant, and the image U := ν(Q) is a (q − 1)-dimensional subspace of kq. Explicitly, U
consists of all vectors of the form

(−ta2
12 − t2a3

12 − · · · − tq−1aq12, a
2
12, a

3
12, . . . , a

q
12)tr,

with each ar12 ∈ k′. Now since the nullity of (M − I)q−2 is q − 2, the kernel in V of (M − I)q−2

cannot contain the whole of the (q−1)-dimensional space U . This shows that the right-hand side of
(1) is non-zero for some Y ∈ Q when n = q−2. We conclude that the nilpotency class of Ru,k′(Gk′)
is at least q − 1. However, we actually have the following, essentially a verification of Theorem 1.1
in the rank 1 split case.

Proposition 3.2. Let k′ = k(t) be a purely inseparable primitive field extension of k with exponent
e, where k is a field of characteristic p > 2. Set q = pe. Then the nilpotency classes of the groups
Ru,k′(Rk′/k(GL2)k′), Ru,k′(Rk′/k(SL2)k′) and Ru,k′(Rk′/k(PGL2)k′) coincide with the integer q− 1.

To prove this we need the following two lemmas, which we also use in the proof of Theorem 1.1.

Lemma 3.3. Let k′ be a non-zero finite reduced k-algebra and let G′ be a semisimple k′-group
such that Z ′ := ZG′ is smooth. Let G′ad = G′/Z ′ and let G := Rk′/k(G

′). Then there is a natural
isomorphism

Ru,k′(Gk′) ∼= Ru,k′(Rk′/k(G
′
ad)k′).

Proof. Since Z ′ is smooth, there is a smooth isogeny giving rise to the exact sequence

1→ Z ′ → G′
π→ G′ad → 1.

By [CGP10, A.5.4(3)], Weil restriction preserves the exactness of this sequence, and so there is an
exact sequence

1→ Rk′/k(Z
′)→ G

Rk′/k(π)
−→ Rk′/k(G

′
ad)→ 1.

This gives, after base change to k′, an exact sequence

1→ Rk′/k(Z
′)k′ → Gk′

Rk′/k(π)k′−→ Rk′/k(G
′
ad)k′ → 1.

Now Z ′ is a smooth finite group scheme, so Z ′ ∼= Rk′/k(Z
′)k′ as algebraic groups. This implies

that Rk′/k(π)k′ is a smooth isogeny. It follows that the map Rk′/k(π)k̄ : Gk̄ → Rk′/k(G
′
ad)k̄ obtained

by base change to k̄ gives rise to an isomorphism from Ru(Gk̄) to Ru(Rk′/k(G
′
ad)k̄). But Ru(Gk̄)

and Ru(Rk′/k(G
′
ad)k̄) are defined over k′, so Rk′/k(π)k′ gives an isomorphism from Ru,k′(Gk′) to

Ru,k′(Rk′/k(G
′
ad)k′), as required. �

Lemma 3.4. Keep the notation and hypotheses of Lemma 3.3. Further, let C be a commutative
pseudo-reductive k-group occurring in a factorisation of the map Rk′/k(T

′) → Rk′/k(T
′/Z ′) for T ′

a maximal k′-torus of G′. Then

cl(Ru,k′((Rk′/k(G
′) o C)k′)) = cl(Ru,k′(Rk′/k(G

′
ad)k′)) = cl(Ru,k′(((Rk′/k(G

′) o C)/Rk′/k(T
′))k′)),

8



where in the final term we quotient by the usual central copy of Rk′/k(T
′) occurring in the standard

construction.

Proof. Let φ : Rk′/k(T
′) → C be the map in the factorisation. Set Z = Rk′/k(Z

′). Thanks to the
isomorphism of groups Z ′ ∼= Zk′ arising from the hypothesis on Z ′, we have by the arguments of
Lemma 3.3 a smooth isogeny

1→ Z ′ × φk′(Z ′)→ Rk′/k(G
′)k′ o Ck′ → Rk′/k(G

′
ad)k′ o Ck′/φk′(Z

′)→ 1,

or equivalently

(∗) 1→ Z ′ × φk′(Z ′)→ (Rk′/k(G
′) o C)k′ → (Rk′/k(G

′
ad) oD)k′ → 1,

where we write D in place of C/φ(Z). The argument of Lemma 3.3 yields an isomorphism

Ru,k′((Rk′/k(G
′) o C)k′) ∼= Ru,k′((Rk′/k(G

′
ad) oD)k′).

The map C → Rk′/k(T
′/Z ′) gives rise to a map κ : D → Rk′/k(G

′
ad). We claim that the map

τ : Rk′/k(G
′
ad) o D → Rk′/k(G

′
ad) × D given on the level of k̄-points by (g, d) 7→ (gκ(d), d) is

an isomorphism. To see this, first recall (g, d)(h, e) = (gκ(d)hκ(d)−1, de). Then (g, d)(h, e) 7→
(gκ(d)hκ(d)−1κ(de), de) = (gκ(d)hκ(e), de) which is the product of (gκ(d), d) and (hκ(e), e) in the
direct product as required.

With this in mind, we get

Ru,k′((Rk′/k(G
′
ad) oD)k′) ∼= Ru,k′((Rk′/k(G

′
ad)×D)k′) ∼= Ru,k′(Rk′/k(G

′
ad)k′)×Ru,k′(Dk′);

but the commutativity of D implies that cl(Ru,k′((Rk′/k(G
′
ad) oD))k′) = cl(Ru,k′(Rk′/k(G

′
ad)k′)).

This proves the first equality of the lemma.

To see the second equality, observe that Rk′/k(T
′/Z ′) ∼= Rk′/k(T

′)/Z since Z ′ is smooth. We see
that the map (Rk′/k(G

′) o C)k′ → (Rk′/k(G
′
ad) oD)k′ from (∗) takes the copy of Rk′/k(T

′)k′ onto
the copy of Rk′/k(T

′/Z ′)k′ , so the induced map of quotient groups yields an isogeny

1→ N → (Rk′/k(G
′) o C)k′/Rk′/k(T

′)k′ → (Rk′/k(G
′
ad) oD)k′/Rk′/k(T

′/Z ′)k′ → 1.

for some N . This isogeny is smooth because the canonical projections to the quotient groups are
smooth. By the argument of Lemma 3.3 again, we get an isomorphism

Ru,k′((Rk′/k(G
′) o C)k′/Rk′/k(T

′)k′) ∼= Ru,k′((Rk′/k(G
′
ad) oD)k′/Rk′/k(T

′/Z ′)k′).

Now φk′ induces a map Φ from Rk′/k(T
′/Z ′)k′ onto a smooth subgroup of D, and it is easily checked

that τ gives rise to an isomorphism

(Rk′/k(G
′
ad) oD)/Rk′/k(T

′/Z ′) ∼= Rk′/k(G
′
ad)×D/Φ(Rk′/k(T

′/Z ′)).

The commutativity of D again gives the result. �

Now we give the

Proof of Proposition 3.2. Let G be one of the groups Rk′/k(GL2), Rk′/k(PGL2) or Rk′/k(SL2), as
in the statement of the proposition. According to [CGP10, Thm. 4.1.1], one may take a standard
presentation for G as in Section 1: so G arises from the standard construction applied to the 4-tuple
(G′, k′/k, T ′, C) where G′ has simple and simply connected fibres over Spec k′. In our case, this
simply means that G′ is of type SL2. Now ZG′ is smooth since p 6= 2, so by Lemmas 3.3 and 3.4
the nilpotency classes of Ru,k′(Rk′/k(GL2)k′), Ru,k′(Rk′/k(PGL2)k′) and Ru,k′(Rk′/k(SL2)k′) are all
equal. Hence we can now assume G = Rk′/k((SL2)k′). Since we have shown in the discussion
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before Proposition 3.2 that cl(Ru,k′(Rk′/k(GL2)k′)) ≥ q − 1, we will be done if we can show that
cl(Ru,k′(Gk′)) ≤ q − 1.

For this, note that as R := Ru,k′(Gk′) is unipotent, it is nilpotent and hence each successive
quotient Di(R)/Di+1(R) of terms of the lower central series of R is non-trivial. The subgroups
Di(R) are Gk′-stable, so Gk′ acts on each quotient Di(R)/Di+1(R). Since G′ is defined over k and
is absolutely simple, we conclude from (∗) in Lemma 2.2 that the Lie algebra of R is an isotypic
G′-module with composition factors isomorphic to g′, where G′ is identified with its canonical
copy G′ ⊆ Rk′/k(G

′)k′ = Gk′ . Now each successive quotient Di(R)/Di+1(R) gives rise to a non-
trivial G′-module Lie(Di(R)/Di+1(R)). Using again the irreducibility of the adjoint module g′,
each successive quotient Di(R)/Di+1(R) must be at least 3-dimensional, as dim g′ = 3. But as
dimR = q dimG′ − dimG′ = 3(q − 1), there can only be at most q − 1 non-trivial terms in the
lower central series of R. This proves that the unipotent radical R of G has nilpotency class at
most q − 1, so by our earlier remarks, it has exactly this nilpotency class. �

Remark 3.5. The earlier matrix calculations of this section did not require any assumption on
the characteristic of k and show that the nilpotency class of Ru,k′(Rk′/k(G

′)k′) is at least q − 1
when G′ ∼= GL2. Furthermore, Theorem 1.2 (yet to be proved) will give the nilpotency class
of Ru,k′(Rk′/k(G

′)k′) as exactly 1 when q = 2 for G′ being any non-trivial reductive group, so
Proposition 3.2 holds in those cases too.

One final lemma before the proof of the main theorem sets down some useful interactions between
unipotent radicals arising from Weil restrictions across towers of field extensions and arising from
Weil restrictions of subgroups.

Lemma 3.6. (i) Let G be a reductive k-group, and let k′/k̃/k be a tower of finite purely inseparable
field extensions. Let R be the unipotent radical Ru,k̃(Rk̃/k(Gk̃)k̃). Then Rk′ naturally identifies with

a subgroup of Ru,k′(Rk′/k(Gk′)k′).

(ii) Let H be a reductive k-subgroup of the reductive k-group G, and let k′/k be a finite purely
inseparable field extension. Then we have an inclusion of unipotent radicals Ru,k′(Rk′/k(Hk′)k′) ⊆
Ru,k′(Rk′/k(Gk′)k′).

Proof. (i). We may regard Gk̃ as as a Levi subgroup of Rk′/k̃(Gk′) via (iG)k̄. Now applying

transitivity of Weil restriction, viz. Rk′/k(Gk′) = Rk̃/k(Rk′/k̃(Gk′)), we see that Rk̃/k(Gk̃) is a

subgroup of Rk′/k(Gk′). In particular, R = Ru,k̃(Rk̃/k(Gk̃)k̃) is a subgroup of Rk′/k(Gk′)k̃. Now

Gk̃ is a Levi subgroup of Rk̃/k(Gk̃)k̃, so R is a complement to Gk̃ by virtue of being the unipotent

radical of Rk̃/k(Gk̃)k̃. Base-changing the inclusion maps to k′, we get a subgroup Rk′ of Rk′/k(Gk′)k′

having trivial projection to the Levi subgroup Gk′ = (Gk̃)k′ under qG′ . Thus Rk′ is contained in
Ru,k′(Rk′/k(Gk′)k′).

(ii). The canonical map Rk′/k(Gk′)k′ → Gk′ restricts to the identity on the canonical copy of Gk′ in
Rk′/k(Gk′)k′ . Hence it commutes with restriction to the canonical copy of Hk′ in Rk′/k(Hk′)k′ ; so
the composite map Hk′ → Rk′/k(Hk′)k′ → Rk′/k(Gk′)k′ → Gk′ is an isomorphism on to its image.
In particular, the kernel Ru,k′(Rk′/k(Hk′)k′) of the map Rk′/k(Hk′)k′ → Gk′ is contained in the
kernel Ru,k′(Rk′/k(Gk′)k′) of Rk′/k(Gk′)k′ → Gk′ . �

Proof of Theorem 1.1. Recall that Ru(Gk̄) has a descent to Ru,k′(Gk′). We begin with a series of
reductions using material already in place. By [CGP10, Thm. 4.1.1], we may assume that G′ has
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simple and simply connected fibres over Spec k′. Using Lemma 3.4 we may prove the result in the
case G = Rk′/k(G

′).

By Lemma 2.1, we have Ru,k′(Gk′)k′s = Ru,k′s(Gk′s), so we can assume k is separably closed; in
particular, we can assume G is split. Clearly we can reduce to the case when k′/k is a finite purely
inseparable extension of fields. Further, using Lemma 3.3 we may assume G′ is a direct product of
simply connected simple groups.

Since Weil restriction, base change, and Ru,k′( · ) all distribute over direct products, it suffices
to treat the case that G′ is simply connected and absolutely simple. By the standard structure
theory of reductive groups, there is a split simply connected absolutely simple k-group M such that
Mk′ = G′.

First we prove that cl(Ru,k′(Gk′)) ≥ pe − 1. There must be an intermediate field k ⊆ k̃ ⊆ k′ such

that k̃/k is primitive and has exponent e. But then Lemma 3.6(i) (applied to the k-group M)
furnishes a containment Ru,k̃(Rk̃/k(Mk̃)k̃)k′ ⊆ Ru,k′(Gk′) of unipotent radicals. Hence it is enough

to show that cl(Ru,k̃(Rk̃/k(Mk̃)k̃)) ≥ p
e−1; so we can assume that k′ = k̃ is a primitive extension of

k with exponent pe. Since M is simple, simply connected and split, it must contain a k-subgroup H
that is isomorphic to SL2. It follows that Ru,k′(Rk′/k(Hk′)k′) ⊆ Ru,k′(Gk′), invoking Lemma 3.6(ii)
(applied to the inclusion of H in M). But cl(Ru,k′(Rk′/k(H)k′)) ≥ pe − 1 by Proposition 3.2 since
p is odd, so cl(Ru,k′(Gk′)) is at least pe − 1, as required.

It remains to show that when k′ is a product of extension fields of k for which the inseparable part
of the extension is primitive, then the nilpotency class of Ru(Gk̄) is at most pe − 1. Given our
reductions, it suffices to treat the case where k′ = k(t) is a primitive purely inseparable extension
with exponent e; i.e., [k′ : k] = pe. By Lemma 2.2, each term of the lower central series of Ru(Gk̄)
is a non-trivial isotypic G′

k̄
-module consisting of copies of the adjoint module g′, that module being

irreducible by our hypothesis on p. Hence each successive term is of dimension at least dim g′. But
now there are at most dim Ru(Gk̄)/dim g′ = ([k′ : k] − 1) dimG′/ dim g′ = pe − 1 non-zero terms.
This proves that the unipotent radical Ru,k′(Gk̄) of Gk̄ has nilpotency class at most pe − 1, so it
has exactly this nilpotency class. �

4. Proof of Theorem 1.2

We begin by proving Theorem 1.2 for Weil restrictions of the multiplicative group Gm. One bound
on the exponent of the unipotent radical of the Weil restriction is essentially [CGP10, Ex. 1.1.3].
The other is an easy matrix calculation.

Proposition 4.1. Let k′ be a non-zero finite reduced k-algebra with exponent e and set G =
Rk′/k(Gm)k′. Then the exponent of Ru,k′(Gk′) is e.

Proof. We can assume by Lemma 2.1 that k = ks and k′ = k′s. If k′ =
∏
i∈I ki, then since Rk′/k(Gm)

is the direct product of the Rki/k(Gm), it clearly suffices to prove the result in the case k′ is a field.

Now, as ((k′)×)p
e ⊆ k×, the pe-power map takes G into the canonical copy of Gm contained as a

subgroup (cf. [CGP10, Ex. 1.1.3]). After extension to k′ we see then that the image of the pe-power
map factors through the natural quotient map qG′ : Gk′ → Gm, the kernel of which is Ru,k′(Gk′).
This shows that the exponent of Ru,k′(Gk′) is no more than e.
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Let t ∈ k′ such that k̃ := k(t) is a purely inseparable extension of k with exponent e. As in §3, an
explicit computation identifying Rk̃/k(Gm) with a subgroup of GLpe shows that

X =


0 0 0 . . . 0 tq−1

t−1 0 0 . . . 0 0
0 t−1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . t−1 0


is an element of order q := pe in R := Ru,k̃(Rk̃/k(Gm)k̃); but from Lemma 3.6(i) we see that Rk′ is a

subgroup of Ru,k′(Gk′). Thus the exponent of Ru,k′(Gk′) is at least e, proving the proposition. �

Proof of Theorem 1.2. First we show that R has exponent at most e. We may employ Lemma 2.1
to assume k = ks. It clearly suffices to treat the case when k′ is a field. Let e be the exponent
of k′/k and let R = Ru,k′(Gk′). It is enough to show that xp

e
= 1 for all x ∈ R(k̄). Let T ′ be

a maximal torus of G′. By [CGP10, A.5.15], C := Rk′/k(T
′) is a Cartan subgroup of G, so Ck̄

is a Cartan subgroup of Gk̄. The union of the conjugates of Ck̄ contains a dense open subset U
of Gk̄, by [Spr98, Thm. 6.4.5(iii)]. Now (R ∩ U)(k̄) is nonempty (it contains the identity), so it
is dense in R(k̄). Hence it is enough to show that xp

e
= 1 for all x ∈ (R ∩ U)(k̄). The group

C is abelian, so the unipotent elements of C(k̄) are precisely the elements of Ru(Ck̄)(k̄), so any
element of (R ∩ U)(k̄) is G(k̄)-conjugate to an element of Ru(Ck̄)(k̄). Hence it is enough to show
that Ru(Ck̄) has exponent at most e. Since k = ks, T

′ is split, so C is isomorphic to a product of
copies of Rk′/k(Gm). Proposition 4.1 now implies that Ru,k′(Ck′) has exponent e, and we deduce
that R has exponent at most e.

In light of Lemma 3.6(ii), the fact that some element of Ru,k′(Rk′/k(Gm)k′) has order pe implies
the same of R, so R has exponent at least e. Thus the exponent of R is e, as required. �

We have the following corollary (cf. Conjecture 1.3).

Corollary 4.2. Let p = 2, let k′ be a non-zero finite reduced k-algebra with exponent 1 and let
G = Rk′/k(G

′) for some k′-group G′ whose fibres over Spec k′ are reductive. Then Ru(Gk̄) is
abelian.

Proof. Our hypotheses imply that ẽG′ ≤ 1. If all the fibres of G′ over the Spec k′ are trivial then
Ru(Gk̄) is trivial, hence abelian. Otherwise Theorem 1.2 applies, so Ru(Gk̄) has exponent 1, so
every non-trivial element of Ru(Gk̄)(k̄) has order 2. By a well-known result in undergraduate group
theory, this means Ru(Gk̄) is abelian. �
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