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Many problems in mathematics have remained un-
solved because of missing links between mathemati-
cal disciplines, such as algebra, geometry, analysis, or
number theory. Here we introduce a recently discov-
ered result concerning quadratic polynomials, which
uses a bridge between algebra and analysis. We study
the iterations of quadratic polynomials, obtained by
computing the value of a polynomial for a given num-
ber and feeding the outcome into the exact same poly-
nomial again. These iterations of polynomials have
interesting applications, such as in fractal theory.

1 Introduct ion

Around the year 825, the Persian mathematician Muhammad al-Khwarizmi
wrote his book Al-Kitāb al-muhtas.ar f̄i h. isāb al-ğabr wa-’l-muqābala 1 (The
Compendious Book on Calculation by Completion and Balancing). In his work
he explains in detail how to solve equations of the form

3x2 + 5x = 1. (1)

The ability to solve such equations was important already at that time. For
example, these equations arose in disputes of inheritance and legacies. Nowadays,

1 You may be familiar with some of these words: The word al-ğabr is the origin of the word
algebra and the name al-Khwarizmi gave rise to the word algorithm.
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every high school student is familiar with the general formula for the solution
of (1). The two solutions of (1) are x± = −5/6 ±

√
(5/6)2 + 1/3.

Given that we have been able to solve these equations without much difficul-
ties for almost 1200 years, it may be surprising that we want to study something
(seemingly) simple as quadratic equations in a report on modern mathematics.
However, we note that also prime numbers have been studied for at least 2300
years and they have not, by far, revealed all of their secrets. It should be clear
that, regardless of how simple or well studied a problem is, it can always hide
extremely important secrets.

In the following we will define more rigorously the main objects of this
snapshot.

1.1 Quadrat ic polynomials

A quadratic polynomial is a polynomial f(z) of the generic form

f(z) = a z2 + b z + c, (2)

but in this snapshot we only consider polynomials fc(z) of the form fc(z) = z2+c
(for instance z2 +2, z2−1, z2 +

√
3, z2 +7 i, . . .). 2 The parameter c is a complex

number. 3 We visualize C as a plane, where the element a+b i has the coordinates
a and b, see Figure 1.

Every polynomial of the form fc(z) = z2 + c, where c is a complex number,
describes a map fc from C to C. This means that, if we substitute any complex
number in place of the variable z, we obtain another complex number as the
outcome. In order to illustrate the fact that we regard fc as a map fc : C −→ C
we formally write

fc : z 7−→ z2 + c.

Of course, it is easy to calculate fc(z) for given complex numbers c and z.
As a concrete example we consider c = −29/16 and we have f−29/16(z) =

z2 − 29/16. Therefore, starting with z = 3/4 one finds

f−29/16(3/4) = (3/4)2 − 29/16 = −20/16 = −5/4.

2 For an introduction to polynomials see Snapshot 3/2016 On the containment problem by
Tomasz Szemberg and Justyna Szpond.
3 We will assume that the reader is familiar with the set R of real numbers. You can see R
as a set of all decimal numbers like 2 or 1

3 or π = 3.1415926.... For a gentle introduction to
the complex numbers, see Snapshot 4/2014 What does “>” really mean? by Bruce Reznick.
A quick reminder: Take an imaginary element i with i2 = −1. Then, the complex numbers C
are numbers of the form a+ b i, where a and b are real numbers. In C, we can calculate as we
please all four operations +, −, ×, and ÷ (the only restriction is that we cannot divide by
zero).
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Figure 1: The complex numbers −2 − i and 1 + i visualized in the complex
plane. Re stands for the real part of the complex number and Im for
its imaginary part.

But what happens if we apply the map fc to fc(z), and then to fc(fc(z)),
and so on? 4 To ease notation we will call the n-th iteration fn

c (z), which reads

fn
c (z) = fc(fc(· · · fc︸ ︷︷ ︸

n-times

(z) · · · )).

The sequence of complex numbers z, fc(z), f2
c (z), f3

c (z), . . . is called the fc-orbit
of z. A natural question to ask at this point is, what happens with the fc-orbit
of z for given numbers c and z? Without much thinking, we can anticipate
two different scenarios to occur and we distinguish them as follows. Either
the fc-orbit of z consists of infinitely many different complex numbers, or the
fc-orbit of z only contains finitely many different complex numbers. In the
latter case z is called a preperiodic point of fc. We will explain this naming in
an example.

We work again with the map f−29/16. 5 In the following, we will use 7→ to
denote the application of the map f−29/16. Starting with z = 3/4 we get:

3
4 7→ −

5
4 7→ −

1
4 7→ −

7
4 7→

5
4 7→ −

1
4 7→ −

7
4 7→ · · ·

4 These continued iterations of a given function are nothing unusual. For example, they
appear in the mathematical description of chaos, as used by meteorologists to forecast the
weather. In this snapshot, however, we will enjoy the amenity of pure mathematics, which
allows us to study mathematical problems without any real life application in mind.
5 This map is not chosen arbitrarily. It has exactly 8 different preperiodic points in the
rational numbers. It is still an open problem to find a rational number c such that fc has
more than eight preperiodic points!
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Now we are in a loop, and the element − 1
4 appears in the above f -orbit

periodically. Since the element 3
4 is in the f -orbit prior to the first number that

initiates a periodical (or repetitive) behaviour, it is called preperiodic.
This example helps us to introduce the following mathematical statement,

which we will formulate as a mathematical “helping theorem”, also called
Lemma.
Lemma 1. Given any complex numbers c and z. Then z is a preperiodic point
of fc if and only if there are different integers n and m such that fn

c (z) = fm
c (z).

In the example considered above, we have f2
−29/16(3/4) = f5

−29/16(3/4).
Among all possible preperiodic points that can exist for a specific quadratic

polynomial fc(z) for a complex number c, we are particularly interested in
studying polynomials fc(z) of which 0 or 1 are preperiodic points. Given that
the choice could have fallen on any number to start with, we note that the
numbers 0 and 1 are not arbitrary numbers. They are special numbers in the
field of both real and complex numbers. This fact stems from the properties
they enjoy when an arbitrary number is added to 0, or multiplied by either of
them. We note that we can find an arbitrary number of complex c’s for which
0 is a preperiodic point of fc. Similarly, we note that we can find an arbitrary
number of b’s for which 1 is a preperiodic point of fb. The fact that (infinitely)
many complex numbers c and b that have these properties exist is not very
surprising per se. What is more challenging, and by far less obvious, is to be
able to answer the following question, which is the core of this snapshot:
Question 1. For which complex numbers c are 0 and 1 preperiodic points of
fc(z) = z2 + c?

Surprisingly, this question is still open! However, we will discuss the major
result due to Matthew Baker and Laura DeMarco [1], which states that there
are only finitely many of such complex numbers c.

2 The case of integer parameters

One of the main difficulties in answering Question 1 is that the set of complex
numbers is huge. The Question becomes much simpler to answer if we just ask
for integers c such that 0 and 1 are both preperiodic for fc(z) = z2 + c. It is
true that there are infinitely many integers in the set of integers Z, but – in
contrast to the complex numbers – the set Z is discrete. This just means that
the integers are a set of points where each point stays away from the others:
the distance between any two integers is always greater than or equal to 1.

Using this discreteness, we can prove that any integer c such that 0 is a
preperiodic point of fc must be one of the integers −2, −1, 0, 1, 2. The argument
is as follows:
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Given any integer c with |c| ≥ 3, we show that the sequence fc(0), f2
c (0),

f3
c (0), . . . is strictly growing, which in turn implies that no value can be attained
twice. To see this, note that |c| ≥ 3 implies c2 +c > |c|. 6 We have fc(0) = c and
f2

c (0) = fc(c) = c2 + c, hence f2
c (0) > fc(0). It remains to show (fn

c (0))2 + c >

fn
c (0) for n > 2. We inductively assume fn

c (0) > |c|. If c > 0, (fn
c (0))2 + c >

fn
c (0) follows. If instead c < 0, we have fn

c (0) > |c| = −c⇒ c > −fn
c (0). We

conclude the argument by calculating fn
c (0) > 2⇒ (fn

c (0))2 + c > 2fn
c (0) + c⇒

(fn
c (0))2 + c > fn

c (0). With this argument we have transformed the problem to
a finite computation. This means, one has only to check the elements −2, −1,
0, 1, and 2, which we have done in Table 1.

map orbit of 0 / orbit of 1 orbit finite?

f−2(z) = z2 − 2 0 7→ −2 7→ 2 7→ 2 7→ · · · Yes!
1 7→ −1 7→ −1 7→ · · · Yes!

f−1(z) = z2 − 1 0 7→ −1 7→ 0 7→ −1 7→ · · · Yes!
1 7→ 0 7→ −1 7→ 0 7→ · · · Yes!

f0(z) = z2 0 7→ 0 7→ · · · Yes!
1 7→ 1 7→ · · · Yes!

f1(z) = z2 + 1 0 7→ 1 7→ 2 7→ 5 7→ 26 7→ · · · No!
1 7→ 2 7→ 5 7→ 26 7→ · · · No!

f2(z) = z2 + 2 0 7→ 2 7→ 6 7→ 38 7→ 1446 7→ · · · No!
1 7→ 3 7→ 11 7→ 123 7→ · · · No!

Table 1: The orbits of 0 and 1 for some quadratic polynomials.

We have given some initial considerations and examples above, regarding
our main Question 1. These considerations provide us with a strong partial
result regarding integers, which we now state as a Theorem.

Theorem 1. The only integers c for which 0 and 1 are preperiodic points of
fc(z) = z2 + c are −2, −1, and 0.

In the following, we proceed to extend this analysis to cases where the numbers
c are not integers. We anticipate that this will provide a nice characterisation
of some important mathematical structures, known as fractals.

6 The calculations are, c > 2 ⇒ c2 + c > 4 + c > c = |c|, and c < −2 ⇒ c(c + 2) > 0 ⇒
c2 + 2c > 0⇒ c2 + c > −c = |c|.
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3 Non-integer parameters: algebra and analysis

In the abstract we anticipated that we would use a bridge between analysis and
algebra. In this section we will describe briefly the algebraic and the analytic
side of Question 1.

Roughly speaking, algebra is the theory of solving polynomial equations.
By a fundamental theorem 7 , for every polynomial f(z) = zd + ad−1 z

d−1 +
ad−2 z

d−2 + . . .+ a1 z + a0, where a0, . . . , ad are complex numbers, there exist
complex numbers α1, . . . , αd such that

f(z) = (z − α1) · · · (z − αd). (3)

The numbers α1, . . . , αd are known as the zeroes or the roots of the polynomial
f(z). The theorem guarantees that the roots α1, . . . , αd are unique and there
can be no others. For instance, the polynomial z2 + 2 is zero for z =

√
2 i and

z = −
√

2 i. It follows, z2 + 2 = (z −
√

2i) (z +
√

2i).
We have noticed in Lemma 1 that 0 is a preperiodic point of fc(z) = z2 +c, if

for some integers n and m we have fn
c (0) = fm

c (0). It is not obvious at first, but
if we regard c for the moment as a variable, then this equation is a polynomial
equation! For example, for n = 2 and m = 4, we have

f2
c (0) = c2 + c = c8 + 4c7 + 6c6 + 6c5 + 5c4 + 2c3 + c2 + c = f4

c (0).

Therefore, 0 is a preperiodic point for fc, whenever c satisfies the equation
c8 + 4c7 + 6c6 + 6c5 + 5c4 + 2c3 = 0, or in other words, whenever c is a zero of
the polynomial p(z), that is, p(c) = 0, where

p(z) = z8 + 4z7 + 6z6 + 6z5 + 5z4 + 2z3.

This shows, that we can find (all) complex numbers c for which 0 is a preperiodic
point by algebraic methods; namely, by finding the zeroes of the polynomials(!)
fn

z (0) − fm
z (0). Therefore, we could answer Question 1 by solving infinitely

many polynomial equations. However, unfortunately we do not have infinite
time to do mathematics. Therefore, we need another strategy. More precisely,
we need some theory which deals with numbers that can be arbitrarily close to
zero. The name of this theory is analysis. The idea is to study the behaviour
of the zeroes of fn

z (0)− fm
z (0) for growing n (or growing m) using tools from

analysis.
We will illustrate this idea by a simple example. When we draw the roots of

the polynomials z2 − 1, z3 − 1, z4 − 1 ... into the complex plane, the picture
looks more and more like a circle of radius 1 around zero, see Figure 2.

7 This theorem is called the fundamental theorem of algebra. For more information, see, for
example, Wikipedia: https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra.
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(c) roots of z32 − 1.

Figure 2: The distribution of complex roots of polynomials of the form zn − 1.
Note the increase in “density” of the roots distributed along the circle
of unit radius.

So, with increasing n, we can regard the set of roots of zn−1 as a circle. This
means, we can apply analytic methods (like “taking derivatives” or “integrate”)
on the point set of these polynomials. The important thing is that this will
never work for any fixed number n. Even if n is a number greater than anything
one can possibly count (like neutrons in the observable universe), the set of
roots of zn − 1 is discrete, and therefore not in the least like a smooth circle.
But if we have a sequence n1, n2, n3, . . . of growing integers, then in the limit of
infinite points, the roots of the polynomials zn1 − 1, zn2 − 1, . . . will be a circle.
We say that the sequence of roots of these polynomials is equidistributed around
the circle of radius 1 around 0.

The distribution of the roots of the polynomials fn
z (0)− fm

z (0) and fn
z (1)−

fm
z (1) 8 when n and/or m grow is of course much more complicated. But the
fantastic – and by far not obvious – result is that such a distribution exists!
This was proven by Baker and DeMarco using a deep result on equidistribution
that was independently discovered by several groups of mathematicians in [2],
[3], [4].

4 Mandelbrot sets

We have seen that, for any integer c, the fc-orbit of 0 is either finite (for c equals
−2, −1, or 0) or grows to infinity (for all other integers c). If we allow arbitrary
complex numbers as values of c, there is a third thing that can happen (can

8 Recall that these are exactly the complex numbers we aimed at classifying in Question 1.
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you guess what?). As an example let c = −1/2. Then the fc-orbit of 0 is

0 7→ −1
2 7→

(
−1

2

)2
− 1

2 = −1
4 7→ −

7
16 7→ −

79
256 7→ · · ·

It turns out that this orbit consists of infinitely many different numbers, but
the modulus of every element in this orbit is at most 1/2. We say that the
f−1/2-orbit of 0 is bounded. 9

These considerations allow us to introduce the classical Mandelbrot set M0.
This important mathematical set is defined as the set of all those complex
numbers c for which the fc-orbit of 0 is bounded. The Mandelbrot set was
defined by Benoît Mandelbrot in the 1970s. It is a beautifully shaped set of
complex numbers, and early graphical computer programs generating this set
became quite popular among the general audience.

Figure 3: Left: The black area is a sketch of the classical Mandelbrot set M0.
Right: This is a zoom-in of the area around an edge of M0.

The image of the Mandelbrot set M0 in Figure 3 is only a very rough sketch
of the true shape. In fact M0 is fractal-like, which means that you can find
infinitely many copies of the shape of M0 if you zoom closer to the border.
Moreover, by zooming and analysing this set, you can find shapes of rabbits,
airplanes, seahorses, ... 10

What does all of this have to do with Question 1? By Lemma 1, all
complex numbers c for which 0 is a preperiodic point of fc satisfy the equation
fn

c (0) = fm
c (0) for some n and m. But if we draw all roots of such equations

where n and/or m tend to infinity, or become larger and larger, the picture

9 More precisely we could say that this orbit is bounded by 1/2.
10 These are indeed the common names for some of the shades you can find in the Mandelbrot
set! There is a nice tool by Prof. Dr. Edmund Weitz which allows you to zoom through
the Mandelbrot set as you please. This tool can be downloaded from http://weitz.de/
mandelbrot/. For a nice introduction to fractals we refer to the book [5].

8

http://weitz.de/mandelbrot/
http://weitz.de/mandelbrot/


will look almost as the boundary 11 of the Mandelbrot set M0. We say that
these sets of points are equidistributed around the boundary of M0. This would
be extremely hard to guess by actually drawing examples as in Figure 4. In
particular, since the boundary ofM0 is an object that is very difficult to describe
and represent graphically.
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(b) All complex numbers c for
which f6

c (0) = fc(0).

Figure 4: Some sets of roots of polynomials of the form fn
z (0)− fz(0).

Recall that we are also looking for complex numbers c for which 1 is a
preperiodic point of fc. In this case we can repeat everything above with 0
replaced by 1. The generalized Mandelbrot set M1 is defined as the set of
complex numbers c for which the fc-orbit of 1 is bounded. Again the sets of
roots of fn

z (1)− fm
z (1) are equidistributed around the boundary of M1, as n

and/or m tend to infinity.
The set M1 is similar in shape to M0, but they are not equal! Recall that

the imaginary element i satisfies i2 = −1. So the fi-orbits of 0 and 1 are

0 7→ i 7→ −1 + i 7→ −i 7→ −1 + i 7→ · · ·
1 7→ 1 + i 7→ 3i 7→ −9 + i 7→ 80− 17i 7→ · · ·

Therefore, i is in M0 but not in M1. Applying analytic tools one can prove the
following result:

Lemma 2. The boundary of the Mandelbrot set M0 is not the same as the
boundary of the generalized Mandelbrot set M1.

By classical algebraical methods we also get:

11 There is, of course, a mathematical definition for boundary. But here we intuitively
understand what is meant by the word boundary!
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Lemma 3. If some c 6= 0 satisfies fn
c (0) − fm

c (0) = 0 and fk
c (1) − f l

c(1) =
0 for integers m,n, k, l, then most roots of fn

z (0) − fm
z (0) are also roots of

fk
z (1)− f l

z(1). 12

These two lemmas appear to have nothing in common. But the link between
them is the equidistribution of the roots of the polynomials in Lemma 3. This
equidistribution is the promised bridge between algebra and analysis. In the
next section we will walk over this bridge step by step.

5 Summary and conclusions

We promised in the title of this snapshot to present some new results on
quadratic polynomials. In particular, we wanted to give some partial answers
to the following question:

Question. For which complex numbers c are 0 and 1 preperiodic points of
fc(z) = z2 + c?

We summarize the results that we have presented above:

• The numbers −2, −1 and 0 are the only integers satisfying the requirement
of the above question (see Theorem 1).

• Any c satisfying this requirement is a root of a polynomial of the form
fn

z (0)− fm
z (0) and a root of a polynomial of the form fk

z (1)− f l
z(1) for some

integers n,m, k, l (see Lemma 1).
• Then, it follows that fn

z (0)− fm
z (0) and fk

z (1)− f l
z(1) have most roots in

common (see Lemma 3).
• If there were infinitely many complex numbers c satisfying the requirement

above, then there would be a sequence of polynomials fn1
z (0) − fm1

z (0),
fn2

z (0) − fm2
z (0), . . . with m1, m2, . . . and/or n1, n2, . . . growing, and a

sequence of polynomials fk1
z (1) − f l1

z (1), fk2
z (1) − f l2

z (1), . . . with k1, k2,
. . . and/or l1, l2, . . . growing, such that for any index i the polynomials
fni

z (0)− fmi
z (0) and fki

z (1)− f li
z (1) have most roots in common.

• These common roots would be equidistributed around the boundary of M0
and around the boundary of M1. This means, that if we would visualize
these roots as a subset of C, they would form the shape of the boundaries of
M0 and M1 at the same time. This implies that the boundaries of M0 and
M1 look exactly the same. But these boundaries are different (see Lemma
2), and hence they have a different shape. This is a contradiction!

• Therefore, there cannot be infinitely many complex numbers c such that 0
and 1 are preperiodic points of fc.

12 This statement is not very precise, but it should satisfy for the purpose of this snapshot.
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• It remains open, to find all these complex numbers. Conjecturally, −2, −1,
and 0 are the only complex numbers satisfying the assumption.

We conclude by noting that, although the numbers 0 and 1 enjoy a special“status”
among real numbers, there is no special reason in starting from 0 and 1. In fact,
Baker and DeMarco proved that there are only finitely many complex numbers
c such that z1 and z2 are preperiodic points of fc, for any complex numbers z1
and z2 with z1 6= ±z2. However, the proof becomes much harder if z1 and z2
are so called “transcendental” numbers like π.

Image credi ts

Figure 3 “Mandelbrot set pictures” were created by Wolfgang Beyer.
http://www.misterx.ca/Mandelbrot_Set/M_Set-IMAGES_&_WALLPAPER.
html, visited on July 5, 2017.
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