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OVERLAP SYNCHRONISATION
IN MULTIPARTITE RANDOM ENERGY MODELS

GIUSEPPE GENOVESE AND DANIELE TANTARI

Abstract. In a multipartite random energy model, made of coupled GREMs, we determine
the joint law of the overlaps in terms of the ones of the single GREMs. This provides the
simplest example of the so-called synchronisation of the overlaps.

1. Introduction

In this note we concern on a multipartite random energy model, originally studied in the
bipartite case in [1], obtained coupling each level ofM distinct generalised random energy models
(GREMs). We show the joint law of the overlaps to have a simple expression in terms of the
ones of the single GREMs. This provides a plain example of the so-called synchronisation of the
overlaps, recently introduced by Panchenko as a relevant property of multipartite systems [2].

The model is defined as follows. Let N,M ∈ N, κ ∈ {1, . . . ,M} and Nκ ∈ N with
∑
κNκ = N ,

α(κ) := Nκ/N , n0 = 0, nκ − nκ−1 = 2Nκ . For each configuration σ ∈ ΣN := {1, . . . , 2N} we
can write σ = (µ(1), . . . , µ(M)), µ(κ) ∈ {nκ−1 + 1, . . . , nκ}. We divide each part respectively
into K1, . . .KM hierarchical levels. For each level j of the hierarchy, each group of configu-
rations is divided in 2Nκ,j further subgroups indexed by µ(κ,j), with of course

∑
j Nκ,j = Nκ

and ςκ,j := Nκ,j/Nκ, j ∈ {1, . . . ,Kκ}. Each configuration can be thought of as a M -ple
σ = (µ(1), . . . , µ(M)) or as a

∏
κKκ-ple σ = (µ(1,1) . . . µ(1,K1), . . . , µ(M,1), . . . µ(M,KM )). This

multipartite setting brings a somewhat heavy notation. To lighten it a little we let

`κ,j := µ(κ,1) . . . µ(κ,j)

label the configurations in the j-th level of the κ-th tree. With a slight abuse of notation we will
denote with the same symbol also the set of such configurations. However the correct meaning
will be always clear from the context.

We attach to each couple of levels Gaussian centred r.vs J (κ,j)
`κ,j

, and J (κ1,j1)(κ2,j2)
`κ1,j1

`κ2,j2
with

E
[
J

(κ,j)
`κ,j

J
(κ,j)
`′κ,j

]
= δ`κ,j ,`′κ,j ,

E
[
J

(κ1,j1)(κ2,j2)
`κ1,j1`κ2,j2

J
(κ1,j1)(κ2,j2)
`′κ1,j1

`′κ2,j2

]
= δ`κ1,j1

,`′κ1,j1
δ`κ2,j2

,`′κ2,j2
.

The levels interact via the following Hamiltonian

HN (σ) := −
√
N

2

 M∑
κ=1

ακ

Kκ∑
j=1

a
(κ)
j J

(κ,j)
`κ,j

+
√

2α1 . . . αM
∑

(κ1,κ2)

Kκ1∑
j1=1

Kκ2∑
j2=1

c
(κ1,κ2)
j1,j2

J
(κ1,j1)(κ2,j2)
`κ1,j1`κ2,j2


(1.1)
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with
Kκ∑
j

a
(κ)
j =

Kκ1∑
j1=1

Kκ2∑
j2=1

c
(κ1,κ2)
j1,j2

= 1 , ∀ κ, κ1, κ2 ∈ {1, . . . ,M} .

We define as customary for β > 0 (− 1
β ) the free energy to be

AN (β) :=
1

N
log
∑
σ

e−βHN (σ) , A(β) := lim
N
AN (β) . (1.2)

Of course as a consequence of Talagrand inequality AN (β) is self-averaging as N → ∞, so we
can always take the expectation w.r.t. the disorder, when needed.

Given two configurations σ, σ′ we can define the partial overlaps. We introduce M sequences
of numbers in [0, 1]

0 = q
(κ)
0 < q

(κ)
1 < · · · < q

(κ)
Kκ

< q
(κ)
Kκ+1 = 1 , κ ∈ {1, . . . ,M}

and
τµ(κ)µ′(κ)

:= inf
{
j : µ(κ,j+1) 6= µ′(κ,j+1)

}
. (1.3)

So we define the overlaps through

qµ(κ)µ′(κ)
:= q(κ)

τµ(κ)µ
′
(κ)

. (1.4)

Here and further we denote by PN,β the Gibbs distribution associated to the model and by 〈·〉N,β
the quenched average of observables (we drop the subscript N in the thermodynamic limit).

We let xκ(q) := Pβ

(
qµ(κ)µ′(κ)

≤ q
)
. The main result of this note is

Theorem. Let υ be a random variable uniformly distributed in [0, 1]. Then(
q

(1)
µ(1)µ′(1)

, . . . , q
(M)
µ(M)µ′(M)

)
d
= (x−1

1 (υ), . . . , x−1
M (υ)) . (1.5)

A larger class of non-hierarchical random energy models which includes the one under consid-
eration was studied by Bolthausen and Kistler in [3, 4]. We shall make use of some crucial ideas
from those two papers, in which the so-called Parisi picture (which could be also fairly named
the Derrida-Ruelle picture) i.e. variational principle for the free energy and the ultrametricity
of the overlap is proved. A precise form of their statement will be given below.

2. More on the Model

Prior to embark the proof of the Theorem, it is convenient to discuss a little more the model.
What follows is in a good part heuristics and rigorous proofs can be found in [3, 4].

First consider for simplicity the bipartite model withK1 = K2 = 1, defined by the Hamiltonian
(we set a(1) = a, a(2) = b and α(1) = α)

HN (σ) := −
√
N

2

[
αaJ (1)

µ1
+ (1− α)bJ (2)

µ2
+
√

2α(1− α)cJ (1,2)
µ1µ2

]
. (2.1)

If we assume for definiteness αa2 > (1−α)b2, there are two possibilities: either αa2 ≤ (1−α)b2 +
2αc2 or αa2 > (1−α)b2 +2αc2. As the first case is less rich, we focus on the second one. At very
high temperature everything is ergodic and the free energy coincides with the annealed one. As
β > β1 := 2

√
log 2/a

√
α, the µ1-subset freezes, i.e. its relative entropy goes to zero analogously

as in the first transition in a GREM and one can show that

P
(µ1)
N,β (µ;β) := Z−1

∑
ν

e−βH1(σ) w−→ PD(0, x1) ,
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where Z is a normalisation factor, x1 := β1/β, PD(0, x) denotes the normalised Poisson point
process with intensity ρ(t) = xt−x−1 or Poisson-Dirichlet distribution. In this regime Pβ(qµµ′ ≥
q) = 1− x1, while for any q, p > 0 Pβ(pµµ′ ≥ p) = Pβ(qµµ′ ≥ q, pνν′ ≥ p) = 0. The free energy is
a convex combination (with α) of two REMs, one on the µ subset at low temperature and the
other on the rest of the system at high temperature. As β increases further, the total entropy
vanishes for β > β2 := 2

√
log 2/

√
(1− α)b2 + 2αc2 and the whole Gibbs measure converges

toward a Poisson-Dirichlet process

PN,β(σ;β)
w−→ PD(0, x2) ,

with x2 := β2/β. The free energy is the convex combination of two REMs at low temperature.
Pβ(qµµ′ ≥ q) is unchanged, but Pβ(pµµ′ ≥ p) = Pβ(qµµ′ ≥ q, pνν′ ≥ p) = 1− x2. Note

Pβ(qµµ′ ≥ q, pνν′ ≥ p) = min (Pβ(qµµ′ ≥ q) , Pβ(pνν′ ≥ p))

for any β. We remark that, since q, p ∈ {0, 1} in this simple case, Pβ(qµµ′ ≥ q) = Pβ(qµµ′ = 1)
and Pβ(pµµ′ ≥ p) = Pβ(pνν′ = 1) (as q, p > 0, otherwise they are trivially one). Therefore the
first system starts freezing at higher temperature and so if the second systems is frozen then also
the first one is so (as in a two-level GREM). The whole picture is summarised as follows

β < β1 A1,1(β) = log 2
(

1 + αβ
2

β2
1

+ (1− α)β
2

β2
2

)
, 〈q〉β = 〈p〉β = 〈Q〉β = 0 ;

β1 < β < β2 A1,1(β) = log 2
(

2α β
β1

+ (1− α)
(

1 + β2

β2
2

))
, 〈q〉β = 1− x1 , 〈p〉β = 〈Q〉β = 0 ;

β > β2 A1,1(β) = 2β log 2
(
α β
β1

+ (1− α) ββ2

)
, 〈q〉β = 1− x1 , 〈p〉β = 〈Q〉β = 1− x2 .

Therefore, albeit not inbuilt in the model, a GREM-like hierarchical structure naturally
emerges. A way to visualise that in the general model defined by the Hamiltonian (1.1) is
as follows. Recall that `κ,j , κ ∈ {1, . . . ,M}, j ∈ {0, . . . ,Kκ} denote the configurations up to the
j-th level of the κ-th GREM. Then the phase space is naturally coarse-grained by the class of
sets {`κ1,j1 , `κ2,j2}

j1=1,...,Kκ1

j2=1,...,Kκ2
. We think of each level now as an atom and we can consider the

power set

℘ := ℘{`1,1, . . . , `1,K1
, . . . , `M,1, . . . , `M,κM } .

According to [3, 4] a chain Γ is defined to be an increasing (finite) sequence of sets in ℘:
Γ = {Γn}n=0,...,K , for a given K ≤

∑
κKκ, with Γn ∈ ℘, Γn ⊂ Γn+1 and Γ0 = ∅, ΓK =

{`1,0, . . . , `1,K1 , . . . , `M,1, . . . , `M,κM }. To each Γ we associate two sequences {αn}n=1,...,K and
γ := {γn}n=1,...,K . The αn represent the relative sizes of the Γn

αn :=
log2

∣∣∣⋃i,j:`ij∈Γn
`ij

∣∣∣
N

,

easily computed from the numbers α(κ) and ςκ,j ; the γn are variances defined by

γ2
n :=

M∑
κ=1

α(κ)2 ∑
j : `κ,j∈Γn/Γn−1

(a
(κ)
j )2 +

∑
(κ1,κ2) , (j1,j2) :

: {`κ1,j1
,`κ2,j2

}∈Γn/Γn−1

2ακ1ακ2(c
(κ1,κ2)
j1,j2

)2 .

From αn and γn we can define another sequence of critical inverse temperatures {βn}n=1,...,K ,
βn :=

√
αn log 2γ−1

n . Of course for a generic chain {βn}n=1,...,K is not monotone, but we can
conveniently confine our attention to those chains for which β1 ≤ β2 ≤ . . . ≤ βK . We denote by
T the set of such chains.
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To fix the ideas, let us consider again a bipartite REM with K1,K2 levels. The Hamiltonian
reads (recall α(1) = α, α(2) = 1− α)

HN (σ) == −
√
N

2

α K1∑
j=1

a
(1)
j J

(1,j)
`1,j

+ (1− α)

K2∑
j=1

a
(2)
j J

(2,j)
`2,j

+
√

2α(1− α)

K1∑
j1=1

K2∑
j2=1

cj1,j2J
(1,j1)(2,j2)
`1,j1`2,j2


(2.2)

For a given Γ ∈ T of length K, we set for n = 1, . . . ,K

Hn := −
√
N

2

α ∑
j : `1,j∈Γn/Γn−1

a
(1)
j J

(1,j)
`1,j

+ (1− α)
∑

j : `2,j∈Γn/Γn−1

a
(2)
j J

(2,j)
`2,j

+
√

2α(1− α)
∑

(j1,j2) : `1,j1 ,`2,j2∈Γn/Γn−1

cj1,j2J
(1,j1)(2,j2)
`1,j1`2,j2

 ,

so that we can decompose the Hamiltonian (2.2) according to

HN (σ) =

K∑
n=1

Hn , (2.3)

and the partition function can be written as

ZN (β) =
∑
{Γ1}

e−βH1

∑
{Γ2/Γ1}

e−βH2 · · ·
∑

{Γn/Γn−1}

e−βHn .

Now we see the following scenario. At β small enough the annealed approximation holds and
the overlaps are set to zero. Then β increases, β > β1, and the configurations in Γ1 freeze. Then
H2 depends in fact on configurations in Γ2/Γ1, i.e. H1 and all the other addenda in the r.h.s.
of (2.3) become independent as N →∞. Thus the partition function asymptotically factorises

ZN (β) '
∑
{Γ1}

e−βH1

∑
{Σ/Γ1}

e−β(H−H1)

as two independent REMs: the first one on the space of configurations Γ1 is at low temperature,
the second one on the remaining configuration space is at high temperature (with the right
variance

√∑
n≥2 γ

2
n). The free energy is a convex combination w.r.t. α1 (i.e. the relative size

of Γ1) of these two REMs. As in the previous example, we have convergence of the marginalised
Gibbs measure to a Poisson-Dirichlet distribution

P
(1)
N,β(Γ1;β) := Z−1

1

∑
Σ/Γ1

e−βH(σ) w−→ PD(0, x1) ,

with x1 := 1− β1/β and Z1 an opportune normalisation. Since H1 and H2 remain independent
for all β > β1 we can iterate this procedure: for instance as β > β2 also Γ2 freezes and H2

becomes asymptotically independent on H3; thus the partition function is factorised as

ZN (β) '
∑
{Γ1}

e−βH1

∑
{Γ2/Γ1}

e−βH2

∑
{Σ/Γ2}

e−β(H−H1−H2) .

These are three independent REMs on configurations Γ1, Γ2/Γ1 and Σ/Γ2, the associated free
energy is given by a convex combination of the low temperature free energy of the first two REMs
and the high temperature free energy of the third one and

P
(2)
N,β(Γ2;β) := Z−1

2

∑
Σ/Γ2

e−βH(σ) w−→ PD(0, x2) ,
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with x2 := 1−β2/β and again Z2 a normalisation. Going on this way we recover the free energy
and the Gibbs measure as a GREM-like structure along the chain. At zero temperature the
free energy of the model is just the convex combination of those of REMs at low temperature,
each defined on an element of the chain. This construction can be made for every chain in T .
Of course for fixed β, the more REMs are at low temperature, the higher is the free energy.
According to this criterion one can select the chain along which the free energy is maximal. By
the above construction it should be clear that such a chain, here denoted by Γ∗, is unique.

Therefore the results of [3, 4] (for the case of our interest) can be precisely formulated as
follows. Let γ ∈ T and AGREM (γ;β) denote the GREM pressure computed on the hierarchical
structure γ. We have

Theorem (Bolthausen and Kistler). It holds

lim
N
AN (β) = lim

N
E[AN (β)] = A(β) = min

γ∈T
(AGREM (γ;β)) ,

Moreover there is a β∗ such that for each triad of configurations (σ, σ′, σ′′) ∈ Σ3

lim
N
PN,β (d(σ, σ′) ≤ max{d(σ, σ′′), d(σ′, σ′′)}) = 1 (2.4)

holds for β > β∗.

3. Proof

Now we are ready to give the proof of our statement. For simplicity we keep working mostly
in the bipartite case. We convey to fix the optimal chain Γ∗ once for all. The sequences {αn},
{γn} and {βn} will be always referred to Γ∗.

A direct computation from (1.1) and (1.2) yields

PN,β(qµ(1)µ
′
(1)
≥ q(1)

j ) =
〈
1{`1,j=`1,j ′}

〉
N,β

= 1− 2

a
(1)
j β2α2

∂
a

(1)
j
AN ,

PN,β(qµ(2)µ
′
(2)
≥ q(2)

j ) =
〈
1{`2,j=`2,j ′}

〉
N,β

= 1− 2

a
(2)
j β2(1− α)2

∂
a

(2)
j
AN ,

PN,β(qµ(1)µ
′
(1)
≥ q(1)

j1
, qµ(2)µ

′
(2)
≥ q(2)

j2
) =

〈
1{(`1,j1 , `2,j2 )=(`′1,j1

, `′2,j2
)}
〉
N,β

= 1− 1

cjkβ2α(1− α)
∂cjkAN .

On the other hand we know that the free energy is a convex combination of REM ones along Γ∗.
Therefore its derivatives can be explicitly computed. We set

n1(j) := min{n : `1,j ∈ Γ∗n} , n2(j) := min{n : `2,j ∈ Γ∗n} , n(j1, j2) := max(n1(j), n2(k)) .

Then

∂
a

(1)
j
A =

β2 α
2a

(1)
j

2 β < βn1(j)

β
√
αn1(j) log 2α2 a

(1)
j

γn1(j)
β ≥ βn1(j) ,

(3.1)

∂
a

(2)
j
A =

β2 (1−α)2a
(2)
j

2 β < βn2(j)

β
√
αn2(j) log 2(1− α)2 a

(2)
j

γn2(j)
β ≥ βn2(j) ,

(3.2)

∂cjkA =

{
β2α(1− α)cjk β < βn(j1,j2)

β
√
αn(j1,j2) log 22α(1− α)

cjk
γn(j1,j2)

β ≥ βn(j1,j2) .
(3.3)
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As N → ∞ the two expressions for the derivatives have to be equal. Therefore we see at once
that if n1(j1) = n2(j2) = n̄, then

Pβ(qµ(1)µ(1)
′ ≥ q(1)

j ) = Pβ(qµ(2)µ(2)
′ ≥ q(2)

j )

= Pβ(qµ(1)µ(1)
′ ≥ q(1)

j1
, qµ(2)µ(2)

′ ≥ q(2)
j2

) =

{
0 β < βn̄

1− βn̄
β β ≥ βn̄ .

(3.4)

Otherwise we have

Pβ(qµ(1)µ(1)
′ ≥ q(1)

j ) =

{
0 β < βn1(j)

1− βn1(j)

β β ≥ βn1(j) ,
(3.5)

Pβ(qµ(2)µ(2)
′ ≥ q(2)

j ) =

{
0 β < βn2(j)

1− βn2(j)

β β ≥ βn2(j) ,
(3.6)

and

Pβ(qµ(1)µ(1)
′ ≥ q(1)

j1
, qµ(2)µ(2)

′ ≥ q(2)
j2

) =

{
0 β < βn(j1,j2)

1− βn(j1,j2)

β β ≥ βn(j1,j2) .
(3.7)

As 1− βn/β is decreasing in n, formulas (3.4) and (3.5), (3.6), (3.7) establish directly

Pβ(qµ(1)µ(1)
′ ≥ q(1), qµ(2)µ(2)

′ ≥ q(2)) = min
(
Pβ(qµ(1)µ(1)

′ ≥ q(1)) , Pβ(qµ(2)µ(2)
′ ≥ q(2))

)
. (3.8)

In the multipartite case the above formula immediately generalises as

Pβ

(
q

(1)
µ(1)µ′(1)

≥ q(1), . . . , q
(M)
µ(M)µ′(M)

≥ q(M)
)

= min

[{
Pβ

(
q

(κ)
µ(κ)µ′(κ)

≥ q(κ)
)}

κ=1,...,M

]
(3.9)

This is the synchronisation property from which we are going to readily deduce (1.5). Let
υ ∼ U(0, 1). We have

Pβ

(
qµ(1)µ′(1)

≥ q(1), . . . , qµ(M)µ′(M)
≥ q(M)

)
= min

[{
Pβ(qµ(κ)µ′(κ) ≥ q(κ) )

}
κ∈{1,...,M}

]
= Pβ

(
υ ≤ min

κ∈{1,...,M}
Pβ(qµ(κ)µ

′
(κ)
≥ q(κ))

)
= Pβ(x−1

1 (1− υ) ≥ q(1) . . . x−1
M (1− υ) ≥ q(M)) ,

which concludes the proof.
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