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Abstract

A binary classification problem is considered. The excess error

probability of the k-nearest neighbor classification rule according to

the error probability of the Bayes decision is revisited by a decomposi-

tion of the excess error probability into approximation and estimation

error. Under a weak margin condition and under a modified Lipschitz

condition, tight upper bounds are presented such that one avoids the

condition that the feature vector is bounded.
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1 Introduction

Let the feature vector X take values in Rd, and let its label Y be ±1 valued.

If g is an arbitrary decision function then its error probability is denoted by

L(g) = P{g(X) ̸= Y }.

Put

D(x) = E{Y | X = x},

then the Bayes decision g∗ minimizes the error probability:

g∗(x) = signD(x)

and

L∗ = P{g∗(X) ̸= Y }

denotes its error probability.

In the standard model of pattern recognition, we are given training la-

beled samples, which are independent and identically copies of (X,Y ):

Dn = {(X1, Y1), . . . , (Xn, Yn)}.

Based on these labeled samples, one can estimate the regression function D

by D̃, and the corresponding plug-in classification rule g derived from D̃ is

defined by

g(x) = sign D̃(x),

where sign(x) = 1 for x > 0 and sign(x) = −1 for x ≤ 0. Then for any

plug-in rule g derived from the regression estimate D̃ we have

L(g)− L∗ = E
{
I{g(X )̸=g∗(X)}|D(X)|

}
= E

{
I{sign D̃(X )̸=signD(X)}|D(X)|

}
,

(1)

where I denotes the indicator function (cf. Theorem 2.2 in Devroye, Györfi

and Lugosi [3]).

In the sequel our focus lies on the rate of convergence of the excess

error probability E{L(gn,k)} − L∗, where gn,k is the k-nearest neighbor rule
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defined as follows. We fix x ∈ Rd, and reorder the data (X1, Y1), . . . , (Xn, Yn)

according to increasing values of ∥Xi−x∥, where ∥ · ∥ denotes the Euclidean

norm. The reordered data sequence is denoted by

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,n)(x), Y(n,n)(x)).

X(n,k)(x) is the k-th nearest neighbor of x. The tie breaking is done by

indices, i.e., if Xi and Xj are equidistant from x, then Xi is declared “closer”

if i < j. In this paper we assume that the distribution µ of X has a density

f , therefore tie happens with probability 0. Let Sx,r denote the closed

Euclidean sphere centered at x ∈ Rd with radius r > 0. Choose an integer

k less than n, then the k-nearest-neighbor estimate of D is

Dn,k(x) =
1

k

k∑
i=1

Y(n,i)(x) =
1

n

n∑
i=1

YiI{Xi∈Sx,∥x−X(n,k)(x)∥
}

k/n
, (2)

and the k-nearest-neighbor classification rule is

gn,k(x) = signDn,k(x). (3)

Concerning the properties of k-nearest-neighbor rule and the related litera-

ture see Biau and Devroye [2].

The main aim of this paper is to show tight upper bounds on the excess

error probability E{L(gn,k)}−L∗ of the k-nearest-neighbor classification rule

gn,k.

Given the plug-in classification rule g derived from D̃, (1) implies that

E{L(g)} − L∗ ≤ E{|D(X)− D̃(X)|}.

Therefore we may get an upper bound on the rate of convergence of the

excess error probability E{L(gn,k)} − L∗ via the L1 rate of convergence of

the corresponding regression estimation. Then

E{L(gn,k)} − L∗ ≤ E{|D(X)−Dn,k(X)|}.

We may assume that D satisfies the Lipschitz condition: there is a con-

stant C such that for any x, z ∈ Rd

|D(x)−D(z)| ≤ C∥x− z∥. (4)
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If D is Lipschitz continuous and X is bounded, then

E{|D(X)−Dn,k(X)|} ≤ c1(k/n)
1/d +

√
1/k

with d ≥ 2 (cf. Chapter 6 in Györfi et al. [6]), so for k = c3n
2/(d+2),

E{L(gn,k)} − L∗ ≤ c4n
−1/(d+2). (5)

However, according to Section 6.7 in Devroye, Györfi and Lugosi [3]

the classification is easier than L1 regression function estimation, since the

rate of convergence of the error probability depends on the behavior of the

function D in the neighborhood of the decision boundary

B0 = {x;D(x) = 0}. (6)

This phenomenon has been discovered and investigated by Mammen and

Tsybakov [8], Tsybakov [13], Audibert and Tsybakov [1], and Kohler and

Krzyżak [7], who introduced the (weak) margin condition:

• The weak margin condition. Assume that for all 0 < t ≤ 1,

E
{
I{|D(X)|≤t}|D(X)|

}
≤ c∗t1+α, (7)

where α > 0 and c∗ > 0.

Denote by

B0,r =

{
x; min

z∈B0

∥x− z∥ ≤ r

}
(r > 0)

the closed r-neighborhood of the decision boundary B0 defined by (6). Let

λ be the Lebesgue measure and let M∗(B0) be the outer surface (Minkowski

content) of the decision boundary B0 defined by

M∗(B0) = lim
r↓0

λ(B0,r \B0)

r
.

If D satisfies the Lipschitz condition, the density f of X is bounded by fmax

and M∗(B0) is finite, then Lemma 2 in Döring, Györfi and Walk [4] implies

α = 1. Notice that the Lipschitz condition implies α ≤ 1.

In the analysis of classification rule we use conditions on the density f

of X .
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• The strong density condition means that for f(x) > 0,

f(x) ≥ fmin > 0.

• The weak density condition means that there exist cmin > 0 and δ > 0

such that for f(x)rd ≤ δd,

µ(Sx,r) ≥ cdminf(x)r
d.

Kohler and Krzyżak [7] proved that under the margin condition, Lips-

chitz condition and strong density assumption, for choice

kn = ⌊(log n)2n2/(d+2)⌋, (8)

the order of the upper bound is smaller than (5):

(log n)
2(1+α)

d n− 1+α
d+2 .

Gadat, Klein and Marteau [5] (comprehending also some classes of distri-

butions with unbounded support) extended this bound such that under the

margin condition, Lipschitz condition and the so called strong minimal mass

assumption, for choice

kn = ⌊n2/(d+2)⌋, (9)

one has the order

n− 1+α
d+2 . (10)

Audibert and Tsybakov [1] showed that, under the margin condition and the

strong density assumption, (10) is the minimax optimal rate of convergence

for the class of Lipschitz continuous D, i.e., (10) can be the lower bound for

any classifier.

For higher order smoothness, one gets better rate of convergence. For

weighted nearest neighbor classification including non-weighted k-nearest

neighbor classification, Samworth [11], [12], with further references, con-

sidered the case when X is bounded, D is continuously differentiable with

gradient ∇D(x) ̸= 0 for x ∈ B0, the conditional densities of X given Y

are twice differentiable and the density f of X satisfies the strong density
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assumption. Under some additional conditions on B0, he in [12] derives the

margin condition with α = 1 and shows

E{L(gn,k)} − L∗ ≤ c7
k

+ c8(k/n)
4/d,

which implies in the order

n− 4
d+4 . (11)

Under the margin condition with α ≤ 1 (d ≥ 2) and the strong density

assumption, Audibert and Tsybakov [1] showed that the order

n− 2(1+α)
d+4 (12)

is the minimax optimal rate of convergence for the class of regression func-

tions D, which have Lipschitz continuous gradients, i.e., they are differen-

tiable and the partial derivatives are Lipschitz continuous. Samworth [12]

showed that under the assumptions together with Lipschitz continuity of the

density function f several weighted nearest neighbor classifiers, particularly

the non-weighted k-nearest neighbor classifiers, can attain this minimax rate.

2 Main result

For most of the above cited results, the feature vector X is assumed to be

bounded. Therefore, they exclude the classical parametric discrimination

problem, where the conditional distribution of X given Y are multidimen-

sional Gaussian distributions. Next, we revisit these bounds such that our

main aim is to avoid the condition that X is bounded.

In order to have non-trivial rate of convergence of the classification error

probability, one has to assume tail and smoothness conditions. We introduce

a new concept of combined tail and smoothness condition, under which we

get the known results on the rate of convergence.

Introduce the modified Lipschitz condition: there is a constant C∗ such

that for any x, z ∈ Rd

|D(x)−D(z)| ≤ C∗µ(Sx,∥x−z∥)
1/d. (13)

5



The main result (Theorem 1) establishes rate of convergence under the mod-

ified Lipschitz condition such that it extends and sharpens the result of

Kohler and Krzyżak [7].

Theorem 1. Assume that D satisfies the weak margin condition with 0 <

α ≤ 1 and the modified Lipschitz condition. If d ≥ 2, then

E{L(gn,k)} − L∗ = O(1/k(1+α)/2) +O((k/n)(α+1)/d),

and the choice (9) yields the order (10).

Because of (1), we have the following decomposition of the excess error

probability:

E{L(gn,k)} − L∗ = E

{∫
{signDn,k(x)̸=signD(x)}

|D(x)|µ(dx)

}
≤ In,k + Jn,k,

where

In,k = E


∫
{sign D̄∥x−X(n,k)∥

(x)̸=signD(x)}
|D(x)|µ(dx)


and

Jn,k = E


∫
{signDn,k(x) ̸=sign D̄∥x−X(n,k)∥

(x)}
|D(x)|µ(dx)


with

D̄∥x−X(n,k)(x)∥(x) = E{Dn,k(x) | ∥x−X(n,k)(x)∥}

In,k is called approximation error, while Jn,k is the estimation error.

We split Theorem 1 into three lemmas such that Lemmas 1 and 2 are

on the estimation error, while Lemma 3 is on the approximation error.

Introduce the notations

D̄r(x) = E{Dn,k(x) | ∥x−X(n,k)(x)∥ = r}

and

Nx,r =
D̄r(x)

2

1− D̄r(x)2
(r > 0).
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Put

J̄n,k = E
{∫

|D(x)|Φ
(
−
√

k ·Nx,∥x−X(n,k)(x)∥

)
µ(dx)

}
,

where Φ stands for the standard Gaussian distribution function.

Lemma 1. We have that

|Jn,k − J̄n,k| ≤ E
{∫

c|D(x)|√
k + k2|D̄∥x−X(n,k)(x)∥(x)|3

µ(dx)
}
,

with a universal constant c > 0.

Lemma 2. Under the conditions of Theorem 1, we have that

J̄n,k = O(1/k(1+α)/2) +O((k/n)(α+1)/d),

and for the error term,

E
{∫

|D(x)|√
k + k2|D̄∥x−X(n,k)(x)∥(x)|3

µ(dx)
}

= O(1/k(1+α)/2)/
√
k +O((k/n)(α+1)/d)/

√
k.

Lemma 3. Under the conditions of Theorem 1, we have that

In,k ≤ e−(1−log 2)k +O((k/n)(α+1)/d).

Remark. The modified Lipschitz condition is used in the proofs of Lemmas

2 and 3 in Section 3. We show how to extend these prooofs from other con-

ditions such that avoid the boundedness of X again. One can check that the

Lipschitz condition and the strong density assumption imply the modified

Lipschitz condition. However, the strong density assumption implies that

the support of µ has finite Lebesgue measure. The local Lipschitz condition

means that for any x, z ∈ Rd

|D(x)−D(z)| ≤ C̄f(x)1/d∥x− z∥. (14)

For the local Lipschitz condition the Lipschitz factor is proportional to

f(x)1/d. Thus, the fluctuation of D is small if the density is small. At

the end of Section 3 we show that under the local Lipschitz condition and

the weak density condition, the proofs of Lemmas 2 and 3 can be modified.
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3 Proofs

Proof of Lemma 1

We show the following: For fixed x ∈ Rd and r > 0, under 0 < D̄r(x) we

have that

|P{Dn,k(x) ≤ 0 | ∥x−X(n,k)(x)∥ = r} − Φ
(
−
√

k ·Nx,r

)
|

≤ c√
k(1− D̄r(x)2)3/2 + k2 · |D̄r(x)|3

, (15)

which implies the lemma. (The case D̄r(x) ≤ 0 and Dn,k(x) > 0 is com-

pletely analogous.)

The density of X exists, therefore the conditional distribution of

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,k)(x), Y(n,k)(x))

given ∥x−X(n,k)(x)∥ = r and the distribution of nearest neighbor ordering

of the i.i.d. random variables

(X̃(r,1)(x), Ỹ(r,1)(x)), . . . , (X̃(r,k)(x), Ỹ(r,k)(x))

are the same, where the conditional distribution of Y given X and the

conditional distribution of Ỹ given X̃ are equal, and the distribution of X̃

is the restriction of µ to the sphere Sx,r. Therefore

D̄r(x) = E

{
1

k

k∑
i=1

Ỹ(r,i)(x)

}
=

∫
Sx,r

D(x̃)µ(dx̃)

µ(Sx,r)
. (16)

Introduce the notation

Zi = −Ỹ(r,i)(x).

Then

P{Dn,k(x) ≤ 0 | ∥x−X(n,k)(x)∥ = r}

= P

{
k∑

i=1

Zi ≥ 0

}
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= P

{∑k
i=1(Zi − E{Zi})√

kVar(Z1)
≥ −

√
kE{Z1}√
Var(Z1)

}
.

Because of

E{Z1} = −D̄r(x) < 0

and

Var(Z1) = E{|Z1|2} − (E{Z1})2 = 1− D̄r(x)
2

we have that

E{Z1}√
Var(Z1)

= − D̄r(x)√
1− D̄r(x)2

= −
√

Nx,r

Therefore the central limit theorem implies that

P{Dn,k(x) ≤ 0 | ∥x−X(n,k)(x)∥ = r}

= P

{
−
∑k

i=1(Zi − E{Zi})√
kVar(Z1)

≤ −
√
kNx,r

}
≈ Φ

(
−
√

kNx,r

)
.

Notice that it is only an approximation. In order to make bounds out of the

normal approximation, we refer to Berry-Esseen type central limit theorem

(see Theorem 14 in Petrov [10]). Thus,∣∣∣P{Dn,k(x) ≤ 0 | ∥x−X(n,k)(x)∥ = r} − Φ
(
−
√

kNx,r

)∣∣∣
≤

c E{|Z1|3}
Var(Z1)3/2√

k
(
1 +

(√
kNx,r

)3) ,
with the universal constant 30.84 ≥ c > 0 (cf. Michel [9]). Because of

|Z1| = 1 we get that

c
E{|Z1|3}

Var(Z1)3/2
=

c(
1− D̄r(x)2

)3/2 ,
hence ∣∣∣P{Dn,k(x) ≤ 0 | ∥x−X(n,k)(x)∥ = r} − Φ

(
−
√

kNx,r

)∣∣∣
≤ c√

k(1− D̄r(x)2)3/2 + k2 · |D̄r(x)|3
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Proof of Lemma 2

For i.i.d. uniformly distributed U1, . . . , Un, let U(1,n), . . . , U(n,n) denote the

corresponding order statistic. From Section 1.2 in Biau and Devroye [2] we

have that

µ(Sx,∥x−X(n,k)(x)∥)
D
= U(k,n). (17)

Introduce the abbreviation

D̄(x) = D̄∥x−X(n,k)(x)∥(x).

Then

J̄n,k

≤ E
{∫

|D(x)|Φ
(
−
√
k|D̄(x)|

)
µ(dx)

}
= E

{∫
|D(x)|

(
I{|D̄(x)|≥|D(x)|/2} + I{|D̄(x)|<|D(x)|/2}

)
Φ
(
−
√
k|D̄(x)|

)
µ(dx)

}
≤

∫
|D(x)|Φ

(
−
√
k|D(x)|/2

)
µ(dx) +

∫
|D(x)|P

{
|D̄(x)| < |D(x)|/2

}
µ(dx).

The weak margin condition with α means that

G(t) := P{0 < |D(X)| ≤ t} ≤ c∗ · tα, 0 ≤ t ≤ 1.

This implies that∫
|D(x)|Φ

(
−
√
k|D(x)|/2

)
µ(dx) =

∫ 1

0
sΦ

(
−
√
ks/2

)
G(ds)

= sΦ
(
−
√
ks/2

)
G(s)

∣∣∣1
0
−

∫ 1

0

[
Φ
(
−
√
ks/2

)
− s

√
k

2
Φ′

(
−
√
ks/2

)]
G(s)ds

≤ Φ
(
−
√
k/2

)
+

∫ √
k

0

u

2
Φ′ (−u/2) c∗uαduk−(α+1)/2 = O(k−(α+1)/2).

We have

P
{
|D̄(x)| < |D(x)|/2

}
≤ P

{
|D(x)|/2 < |D(x)| − |D̄(x)|

}
≤ P

{
|D(x)|/2 < |D(x)− D̄(x)|

}
. (18)
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The modified Lipschitz condition together with (17) implies that

P
{
|D(x)|/2 < |D(x)− D̄(x)|

}
≤ P

{
|D(x)|/2 < C∗µ(Sx,∥x−X(n,k)(x)∥)

1/d
}

= P
{
|D(x)|/2 < C∗U

1/d
(k,n)

}
= P

{
|D(x)|d/(2C∗)d < U(k,n)

}
. (19)

Without loss of generality, assume that C∗ ≥ 1/2. Then

P
{
|D(x)|/2 < |D(x)− D̄(x)|

}
≤ P

{
n∑

i=1

I{Ui≤|D(x)|d/(2C∗)d} < k

}

≤ I{|D(x)|d/(2C∗)d≥2k/n}P

{
n∑

i=1

I{Ui≤|D(x)|d/(2C∗)d} <
n

2
|D(x)|d/(2C∗)d

}
+ I{|D(x)|d/(2C∗)d<2k/n}

≤ I{|D(x)|d/(2C∗)d≥2k/n}e
− 1−log 2

2
n|D(x)|d/(2C∗)d + I{|D(x)|d/(2C∗)d<2k/n}

≤ e−(1−log 2)k + I{|D(x)|d/(2C∗)d<2k/n}, (20)

where the third inequality follows from Chernoff’s exponential inequality.

Applying the weak margin condition, we get∫
|D(x)|P

{
|D̄(x)| < |D(x)|/2

}
µ(dx)

≤
∫

|D(x)|P
{
|D(x)|/2 < |D(x)− D̄(x)|

}
µ(dx)

≤ e−(1−log 2)k +O((k/n)(α+1)/d). (21)

The error term can be managed similarly:

E
{∫

|D(x)|√
k + k2|D̄(x)|3

µ(dx)

}
= E

{∫ (
I{|D̄(x)|≥|D(x)|/2} + I{|D̄(x)|<|D(x)|/2}

) |D(x)|√
k + k2|D̄(x)|3

µ(dx)

}
≤ 1√

k

∫
|D(x)|

1 + (
√
k|D(x)|/2)3

µ(dx)

11



+
1√
k

∫
|D(x)|P

{
|D̄(x)| < |D(x)|/2

}
µ(dx).

For the first term of the right hand side, we have the bound∫
|D(x)|

1 + (
√
k|D(x)|)3

µ(dx) =

∫ 1

0

s

1 +
(√

ks
)3G(ds)

=
s

1 +
(√

ks
)3G(s)

∣∣∣1
0

−
∫ 1

0

1 +
(√

ks
)3

− 3s
√
k
(√

ks
)2

(
1 +

(√
ks

)3
)2 G(s)ds

≤ O(k−3/2) +

∫ 1

0

3
(√

ks
)3

(
1 +

(√
ks

)3
)2 cs

αds

≤ O(k−3/2) + 3ck−(1+α)/2

∫ √
k

0

u1+αu2

(1 + u3)2
du

= O(k−(α+1)/2).

For the second term of the right hand side, apply (21).

Proof of Lemma 3

We have that

In,k =

∫
E
{
I{sign D̄∥x−X(n,k)(x)∥

(x)̸=signD(x)} · |D(x)|
}
µ(dx)

≤
∫

P
{
|D̄∥x−X(n,k)(x)∥(x)−D(x)| ≥ |D(x)|

}
· |D(x)|µ(dx)

≤ e−(1−log 2)k +O((k/n)(α+1)/d),

as a conclusion by (21).

Proof of the Remark

Under the local Lipschitz condition and the weak density condition, we have

to prove (21). Let δ > 0 be from the definition of weak density assumption.
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Under these conditions, by (18) we have that∫
|D(x)|P

{
|D̄(x)| < |D(x)|/2

}
µ(dx)

≤
∫

|D(x)|P
{
|D(x)|/2 < |D(x)− D̄(x)|

}
µ(dx)

≤
∫

|D(x)|P
{
|D(x)|/2 < C̄f(x)1/d∥x−X(n,k)(x)∥

}
µ(dx)

≤
∫

|D(x)|P
{
|D(x)|/2 < C̄µ(Sx,∥x−X(n,k)(x)∥)

1/d/cmin

}
µ(dx)

+

∫
|D(x)|P

{
f(x)1/d∥x−X(n,k)(x)∥ > δ

}
µ(dx).

The first term of the right hand side is

e−(1−log 2)k +O((k/n)(α+1)/d)

by the weak margin condition according to (19) and (20). For the second

term, we note

P
{
f(x)1/d∥x−X(n,k)(x)∥ > δ

}
= P

{
∥x−X(n,k)(x)∥ > δ/f(x)1/d

}
= P

{
n∑

i=1

I{
Xi∈Sx,δ/f(x)1/d

} < k

}

≤ I{
µ(S

x,δ/f(x)1/d
)≥2k/n

}P
{

n∑
i=1

I{
Xi∈Sx,δ/f(x)1/d

} <
n

2
µ(Sx,δ/f(x)1/d)

}
+ I{

µ(S
x,δ/f(x)1/d

)<2k/n
}

≤ I{
µ(S

x,δ/f(x)1/d
)≥2k/n

}e− 1−log 2
2

nµ(S
x,δ/f(x)1/d

)
+ I{

µ(S
x,δ/f(x)1/d

)<2k/n
},

the latter by Chernoff’s exponential inequality. The weak density assump-

tion yields

I{
µ(S

x,δ/f(x)1/d
)<2k/n

} ≤ I{cdminδ
d<2k/n}.

Thus the second term is bounded by

e−(1−log 2)k + I{cdminδ
d<2k/n} = e−(1−log 2)k,

13



as soon as

cdminδ
d ≥ 2k/n.
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