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László Györfi† Harro Walk‡

October 14, 2017

Abstract

For a binary classification problem, the hypothesis testing is stud-
ied, that a component of the observation vector is not effective, i.e.,
that component carries no information for the classification. We in-
troduce nearest neighbor and partitioning estimates of the Bayes error
probability, which result in a strongly consistent test.
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1 The testing problem for classification

Pattern recognition in the case of two classes concerns that for a given ran-
dom observation (feature) vector one has to decide on the binary valued,
random label such that the probability of error is minimal. If the joint dis-
tribution of the observation vector and the label is known, then the optimal
decision, called Bayes decision, can be derived. In statistical pattern recog-
nition this distribution is unknown, instead we are given random samples,
from which some estimates of the Bayes decision can be constructed. The
rate of convergence of any pattern recognition rule is very sensitive to the di-
mension of the observation vector. Thus, the dimension reduction is crucial
before constructing the pattern recognition rule.

Dimension reduction without loosing information means that the Bayes
error probabilities based on the observation vector leaving out some compo-
nents and based on the original observation vector, are equal. Thus, there
is a nonparametric hypotheses testing problem, where the null hypothesis
means that both Bayes error probabilities are equal. In this paper, we intro-
duce two estimates (partitioning estimate and nearest neighbor estimate) of
the difference of the Bayes errors. For a given threshold, the null hypothesis
is accepted if the difference of the Bayes error estimates is less than the
threshold, and otherwise rejected. For the random part of the estimates, we
prove exponential concentration inequalities, and for the difference of the
expectation of the estimates we show upper bounds. These results imply
the strong consistency of the test, which means that with probability one
after a random sample size neither the error of the first kind, nor the error
of the second kind occurs.

Let the observation (feature) vector X take values in Rd, and let its label
Y be ±1 valued. The task of statistical pattern recognition is to decide on
Y given X, i.e., one aims to find a decision function g defined on the range
of X such that g(X) = Y with large probability. If g is an arbitrary decision
function then its error probability is denoted by

L(g) = P{g(X) ̸= Y }.

Put
D(x) = E{Y | X = x}.

It is well-known that the Bayes decision g∗ minimizes the error probability:

g∗(x) = sign D(x)
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and
L∗ = P{g∗(X) ̸= Y } = min

g
L(g)

denotes its error probability. We have that

L(g)− L∗ = E
{
I{g(X )̸=g∗(X)}|D(X)|

}
, (1)

where I denotes the indicator function, (cf. Theorem 2.2 in Devroye, Györfi,
Lugosi [7]).

The Bayes decision cannot be constructed as long as the distribution of
(X,Y ) is unknown. Assume, that we observed data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

consisting of independent and identically distributed copies of (X,Y ). De-
vroye, Györfi, Lugosi [7] contains pattern recognition algorithms with strong
universal consistency properties, which means that the error probability of
these algorithms tends to the Bayes error probability with probability one
for all distribution of (X,Y ). However, the rate of convergence of the error
probabilities heavily depends on regularity (smoothness) properties of the
function D and on the dimension d. Detecting an ineffective feature, which
in presence of the other features has no influence on L∗, allows reduction of
the dimension from d to d− 1. The project concerns a proposed hypothesis
test on ineffectiveness of a specific feature. The test uses estimates of the
difference of Bayes error probability with and without this feature.

Consider the test that the last component X(d) of the observation vector
X = (X(1), . . . , X(d)) is ineffective. Let the transformation T be defined by

T ((x(1), . . . , x(d))) = (x(1), . . . , x(d−1)).

Neglecting the component X(d) from the observation vector

(X(1), . . . , X(d))

leads to the observation vector

X̂ = T (X) = (X(1), . . . , X(d−1))

with reduced dimension d− 1.
For the notations

D̂(X̂) = E{Y | X̂}

and
L̂∗ = P{ĝ∗(X̂) ̸= Y }
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with
ĝ∗(x̂) = sign D̂(x̂),

the classification null-hypothesis is defined by

L̂∗ = L∗. (2)

The hypothesis (2) means that the component X(d) of the vector X carries
no information, i.e., it has no predictive power.

The obvious solution of this problem would be that one estimates L∗ and
L̂∗ from data, and accept the hypothesis (2) if the difference of the estimates
is small. Unfortunately, for the time being there is no such estimate with
fast rate of convergence.

We may modify the hypothesis (2) such that the Bayes error probability
is replaced by the asymptotic error probability of the first nearest neighbor
classification rule:

RNN = E{E{Y | X}(1− E{Y | X})}.

(cf. Cover, Hart [4]). Because of

RNN = E{Y } − E{E{Y | X}2},

the modified hypothesis is defined by

E{D(X)2} = E{D̂(X̂)2}. (3)

(Cf. De Brabanter et al. [3].) There are several nearest neighbor based
estimates of E{D(X)2} and E{D̂(X̂)2} with fast rate of convergence. (Cf.
Devroye et al. [9], Devroye et al. [8], Evans and Jones [10], Ferrario and
Walk [11], Liitiäinen et al. [17], [18], Liitiäinen et al. [19].) Therefore the
problem of the hypothesis (3) is easier. The hypothesis (3) is equivalent to
the regression hypothesis

D(X) = D̂(X̂) (4)

a.s. Therefore (4) implies (2), i.e., if a component is ineffective for regression
then it is ineffective for classification, too. The reverse is not true.

For g = −g∗, (1) implies that

(1− L∗)− L∗ = E {|D(X)|} .

Therefore

L∗ =
1

2
(1− E {|D(X)|}),
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and similarly

L̂∗ =
1

2
(1− E{|D̂(X̂)|}).

Thus,

L̂∗ − L∗ =
1

2

(
E {|D(X)|} − E{|D̂(X̂)|}

)
. (5)

For an estimate Tn of the functional E {|D(X)|} − E{|D̂(X̂)|} and a
sequence of positive thresholds an → 0, introduce a test such that accept
the null hypothesis (2) if

Tn ≤ an,

and reject otherwise.
For suitable choice of an, we have to show the strong consistency of this

test:

(I) under the alternative hypothesis, prove that lim infn Tn > 0 a.s. for
any distribution of (X,Y ),

(II) under the null hypothesis (2), find a sequence of positive thresholds
an such that

∞∑
n=1

P{Tn > an} <∞.

In order to verify (I) and (II), we plan to investigate the following prob-
lems:

(i) prove that Tn → E {|D(X)|} − E{|D̂(X̂)|} a.s. for any distribution of
(X,Y ),

(ii) derive a concentration inequality for Tn − E{Tn},

(iii) under the null hypothesis (2) and some condition on the regression
function D, calculate the rate of convergence of E{Tn}.

Based on (5), we create two candidate statistics: a partitioning-based
resubstitution statistic and a k-nearest-neighbor-based splitting data statis-
tic and . For both estimates, introduce the corresponding plug-in estimates
such that compare the performances. In the analysis of plug-in estimates
one usually assumes some conditions:
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• D satisfies the Lipschitz condition if for any x, z ∈ Rd,

|D(x)−D(z)| ≤ C∥x− z∥, (6)

where ∥ · ∥ denotes the Euclidean norm.

• The margin condition means that for all 0 < t ≤ 1,

E
{
I{|D(X)|≤t}|D(X)|

}
≤ c∗t1+α. (7)

• The strong density condition means that for f(x) > 0,

f(x) ≥ fmin > 0.

• The modified Lipschitz condition means that for any x, z ∈ Rd

|D(x)−D(z)| ≤ C∗µ(Sx,∥x−z∥)
1/d. (8)

2 A partitioning-based resubstitution estimate

Introduce some notations such that the partition of Rd is Pn = {An,(j,l), j, l =

1, 2, . . . } and the partition of Rd−1 is P̂n = {Ân,j , j = 1, 2, . . . } with

An,(j,l) = Ân,j ×Dn,l,

where {Dn,l, l = 1, 2, . . . } is a partition of R.
Introduce the notations

νn(A) =
1

n

n∑
i=1

I{Xi∈A}Yi, A ⊂ Rd

and

ν̂n(A) =
1

n

n∑
i=1

I{X̂i∈A}Yi, A ⊂ Rd−1.

The partitioning classification rule gn is defined by

gn(x) = sign νn(An,(j,l)) if x ∈ An,(j,l). (9)

Then the plug-in partitioning error estimate is defined by

L̄n =
1

n

n∑
i=1

I{gn(X′
i) ̸=Y ′

i }. (10)
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One can show that

Var(L̄n) = E{(L̄n − E{L(gn)})2} ≤ c

n
,

where c is a universal constant. Thus

E{|L̄n − L∗|} ≤ O(1/
√
n) + E{L(gn)} − L∗. (11)

Kohler and Krzyżak [16] proved that under the margin condition, Lipschitz
condition and strong density assumption and for choice

hn = n−1/(d+2), (12)

one gets that

E{L(gn)} − L∗ ≤ O
(
n−

1+α
d+2

)
. (13)

Let

T̄n =
∑
j

(∑
l

|νn(An,(j,l))| −

∣∣∣∣∣∑
l

νn(An,(j,l))

∣∣∣∣∣
)
. (14)

be the resubstitution partitioning error estimate. Notice that

T̄n = Ln − L̂n, (15)

where

Ln =
∑
j,l

|νn(An,(j,l))| =
∑
A∈Pn

|νn(A)| (16)

is the estimate of E {|D(X)|}, and

L̂n =
∑
j

|ν̂n(An,j)| =
∑
Â∈P̂n

|ν̂n(Â)| (17)

is the estimate of E{|D̂(X̂)|}.
For cubic partition of cell size hn, hn → 0 and nhdn → ∞ imply that

Ln → E {|D(X)|}

a.s. and
L̂n → E{|D̂(X̂)|}
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a.s. (cf. Theorem 23.1 in Györfi et al. [14]). Therefore

T̄n → E {|D(X)|} − E{|D̂(X̂)|}

a.s.
Concerning the resubstitution error estimate for partitioning rule the

following inequalities are known (see Sec. 23.2 in Devroye, Györfi and Lugosi
[7]): for arbitrary partition

Var(Ln) ≤
4

n
and Var(L̂n) ≤

4

n
,

which implies that

Var(T̄n) ≤
16

n
.

For cubic partition with hn → 0 and nh2dn → ∞, Györfi and Horváth
[13] and Pintér [20] proved the asymptotic normality of Ln − ELn and of
L̂n − EL̂n. Furthermore, without any condition the McDiarmid inequality
implies that

P{|Ln − ELn| > ϵ} ≤ 2e−nϵ2/8 and P{|L̂n − EL̂n| > ϵ} ≤ 2e−nϵ2/8.

Thus
P{|T̄n − ET̄n| > ϵ} ≤ 4e−nϵ2/32. (18)

In the next theorem we bound the expectation of the estimates of the
Bayes error probability.

Theorem 1. Assume that D satisfies the weak margin condition with 0 <
α ≤ 1 and the Lipschitz condition, the strong density assumption is satisfied
and X is bounded. Then∑

A∈Pn

|ν(A)| ≤ E{Ln}

≤
∑
A∈Pn

|ν(A)|+O(1/(nhdn)
1/2)

(
O(1/(nhdn)

α/2) +O(hαn)
)
.

Proof. The Jensen inequality implies the lower bound:

E{Ln} =
∑
A∈Pn

E{|νn(A)|} ≥
∑
A∈Pn

|E{νn(A)}| =
∑
A∈Pn

|ν(A)|.

For the upper bound, we use Lemma 5.8 in Devroye and Györfi [6]:
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Lemma 1. Let Z1, . . . , Zn be i.i.d. zero mean random variables with vari-
ance σ2 > 0 and with ρ = E|Z1|3 <∞. Then

sup
a

∣∣∣∣∣E
∣∣∣∣∣ 1

σ
√
n

n∑
i=1

Zi − a

∣∣∣∣∣− E|N − a|

∣∣∣∣∣ ≤ cρσ−3

√
n
,

where c is a universal constant and N is N(0, 1). For the notation

ψ(|a|) = E|N − a|,

observe that

|a| ≤ ψ(|a|) = |a| − 2|a|Φ(−|a|) + 2φ(−|a|) ≤ |a|+ 2φ(−|a|),

where Φ and φ are the standard normal distribution function and density
function, respectively.

We apply Lemma 1 for

Z1 = I{X1∈A}Y1 − E{I{X1∈A}Y1}.

We have that

σ2A := Var(Z1) = E{(I{X1∈A}Y1 − E{I{X1∈A}Y1})2}

and

ρ := E|Z1|3 = E{|I{X1∈A}Y1 − E{I{X1∈A}Y1}|3}
≤ 4E{|I{X1∈A}Y1 − E{I{X1∈A}Y1}|2} = 4σ2A.

Then Lemma 1 implies that
√
n

σA
E{|νn(A)|} =

√
n

σA
E{|νn(A)− ν(A) + ν(A)|}

= E
{∣∣∣∣√nσA (νn(A)− ν(A)) +

√
n

σA
ν(A)

∣∣∣∣}
≤ ψ

(√
n

σA
|ν(A)|

)
+

cρ

σ3A
√
n
,

therefore

E{|νn(A)|} ≤ σA√
n
ψ

(√
n

σA
|ν(A)|

)
+

cρ

σ2An

≤ |ν(A)|+ 2
σA√
n
φ

(
−
√
n

σA
|ν(A)|

)
+

cρ

σ2An

≤ |ν(A)|+
√

2

π

√
µ(A)

n
e
−nν(A)2

2µ(A) +
4c

n
.
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Thus,

E{Ln} ≤
∑
A∈Pn

|ν(A)|+
√

2

π

∑
A∈Pn

√
µ(A)

n
e
−nν(A)2

2µ(A) +
4c
∑

A∈Pn,µ(A)>0 1

n
.

Since X is bounded, one has∑
A∈Pn,µ(A)>0 1

n
= O

(
1/(nhdn)

)
.

Put

D̄n(x) =
ν(A)

µ(A)
if x ∈ A.

The Jensen inequality and the strong density assumption imply that

∑
A∈Pn

√
µ(A)

n
e
−nν(A)2

2µ(A) =
∑
A∈Pn

√
µ(A)

n
e−n

∫
A D̄n(x)2µ(dx)/2

≤
∑
A∈Pn

1√
nµ(A)

∫
A
e−nµ(A)D̄n(x)2/2µ(dx)

≤
∑
A∈Pn

1√
nfminhdn

∫
A
e−nfminh

d
nD̄n(x)2/2µ(dx)

=
1√

fminnhdn

∫
e−fmin(

√
nhd

nD̄n(x))2/2µ(dx).

Furthermore,∫
e−fmin(

√
nhd

n|D̄n(x)|)2/2µ(dx)

≤
∫
e−fmin(

√
nhd

n|D(x)|)2/8µ(dx) +

∫
I{|D(x)|/2≥|D̄n(x)|}µ(dx).

Let G be the distribution function of |D(X)|. Put

H(s) = c∗sα

and
w(s) = e−fmin(

√
nhd

ns)
2/8,

with
w′(s) ≤ 0.
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Because of the margin condition, we have that

G(s) ≤ H(s).

Thus, by partial integration,∫
e−fmin(

√
nhd

n|D(x)|)2/8µ(dx) =

∫ 1

0
w(s)G(ds)

≤
∫ 1

0
w(s)H ′(s)ds

= c∗α

∫ 1

0
e−fmin(

√
nhd

ns)
2/8sα−1ds

≤ const

∫ ∞

0
e−uu(α−2)/2du/(nhdn)

α/2

= O(1/(nhdn)
α/2). (19)

The Lipschitz condition and the margin condition imply that∫
I{|D(x)|/2≥|D̄n(x)|}µ(dx) ≤

∫
I{|D(x)|/2<|D(x)−D̄n(x)|}µ(dx)

≤
∫

I{|D(x)|/2<C
√
dhn}µ(dx)

= O(hαn). (20)

By these relations the theorem is proved.

Corollary 1. Assume d ≥ 2. Under the conditions of Theorem 1 and under
the null hypothesis we have that

E{T̄n} ≤ O(h1+α
n ) +O(1/(nhdn)

1/2)
(
O(1/(nhdn)

α/2) +O(hαn)
)
.

Proof. Theorem 1 implies that

E{T̄n}

≤
∑
A∈Pn

|ν(A)| −
∑
Â∈P̂n

|ν̂(Â)|+O(1/(nhdn)
1/2)

(
O(1/(nhdn)

α/2) +O(hαn)
)
.

Therefore, under the null hypothesis we have to show that

∑
A∈Pn

|ν(A)| − E {|D(X)|} −

∑
Â∈P̂n

|ν̂(Â)| − E{|D̂(X̂)|}

 ≤ O(h1+α
n ).

10



Because of ∑
A∈Pn

|ν(A)| − E {|D(X)|} ≤ 0,

we upper bound

E{|D̂(X̂)|} −
∑
Â∈P̂n

|ν̂(Â)| =
∑
Â∈P̂n

(∫
Â
|D̂(x̂)|µ̂(dx̂)−

∣∣∣∣∫
Â
D̂(x̂)µ̂(dx̂)

∣∣∣∣) .
Introduce the notations

B0 = {x̂ : D̂(x̂) = 0} and B+ = {x̂ : D̂(x̂) ≥ 0} and B− = {x̂ : D̂(x̂) < 0}.

If Â ∩B0 = ∅, then ∫
Â
|D̂(x̂)|µ̂(dx̂) =

∣∣∣∣∫
Â
D̂(x̂)µ̂(dx̂)

∣∣∣∣ ,
otherwise∫

Â
D̂(x̂)µ̂(dx̂) =

∫
Â∩B+

|D̂(x̂)|µ̂(dx̂)−
∫
Â∩B−

|D̂(x̂)|µ̂(dx̂)

=

∫
Â
|D̂(x̂)|µ̂(dx̂)− 2

∫
Â∩B−

|D̂(x̂)|µ̂(dx̂).

Thus, ∑
Â∈P̂n

(∫
Â
|D̂(x̂)|µ̂(dx̂)−

∣∣∣∣∫
Â
D̂(x̂)µ̂(dx̂)

∣∣∣∣)

≤ 2
∑

Â∈P̂n,Â∩B0 ̸=∅

∫
Â∩B−

|D̂(x̂)|µ̂(dx̂).

If x̂ ∈ Â ∩B0, then the Lipschitz condition implies that

|D̂(x̂)| ≤ C̄hn,

and so from the margin condition one gets∑
Â∈P̂n

(∫
Â
|D̂(x̂)|µ̂(dx̂)−

∣∣∣∣∫
Â
D̂(x̂)µ̂(dx̂)

∣∣∣∣) ≤ 2E{|D̂(X̂)|I{|D̂(X̂)|≤C̄hn}}

= O(h1+α
n ).
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Now, we summarize the consequences for the testing problem.
Concerning (ii), choose

bn = lnn/
√
n.

Then (18) implies that

∞∑
n=1

P{|Tn − E{Tn}| > bn} <∞.

For (iii), the problem left to find cn such that

E{Tn} ≤ cn,

which is done in Corollary 1. Put

cn = h1+α
n + 1/(nhdn)

1/2
(
1/(nhdn)

α/2 + hαn

)
,

which results in the threshold an of a strong consistent test:

an = lnn(1/
√
n+ cn).

3 k-nearest-neighbor-based splitting data estimate

In this section we consider two nearest-neighbor-based estimates. We fix
x ∈ Rd, and reorder the data (X1, Y1), . . . , (Xn, Yn) according to increasing
values of ∥Xi − x∥. The reordered data sequence is denoted by

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,n)(x), Y(n,n)(x)).

X(n,k)(x) is the k-th nearest neighbor of x. The tie breaking is done by
indices, i.e., if Xi and Xj are equidistant from x, then Xi is declared “closer”
if i < j. In this paper we assume that the distribution µ of X has a density
f , therefore tie happens with probability 0. Choose an integer k less than
n, then the k-nearest-neighbor classification rule is

gn,k(x) = sign Dn(x). (21)

Concerning the properties of k-nearest-neighbor estimate and k-nearest-
neighbor rule see Biau and Devroye [2] and Györfi et al. [14].
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Assume additional data

D′
n = {(X ′

1, Y
′
1), . . . , (X

′
n, Y

′
n)}

independently of Dn. Then the plug-in nearest neighbor error estimate is
defined by

L̃n =
1

n

n∑
i=1

I{gn,k(X
′
i) ̸=Y ′

i }. (22)

One can show that

Var(L̃n) = E{(L̃n − E{L(gn,k)})2} ≤ cd
n
,

where cd depends only on the dimension d. Thus

E{|L̃n − L∗|} ≤ O(1/
√
n) + E{L(gn,k)} − L∗. (23)

Kohler and Krzyżak [16] proved that under the margin condition, Lipschitz
condition and strong density assumption, for choice

k = kn = ⌊(log n)2n2/(d+2)⌋, (24)

the upper bound is of order

(log n)
2(1+α)

d n−
1+α
d+2 .

Gadat, Klein and Marteau [12] extended this bound such that under the
margin condition, Lipschitz condition and the so called strong minimal mass
assumption, for choice kn = ⌊n2/(d+2)⌋, one has the order

n−
1+α
d+2 . (25)

Audibert and Tsybakov [1] showed that, under the margin condition and the
strong density assumption, (25) is the minimax optimal rate of convergence
for the class of Lipschitz continuous D, i.e., (25) can be the lower bound for
any classifier.

Our aim is to construct a test statistic, which is a consistent estimate
of the functional E {|D(X)|} − E{|D̂(X̂)|}. The functional E {|D(X)|} −
E{|D̂(X̂)|} depends on the regression function D. Therefore a functional
estimate will depend on nonparametric regression estimate of D. The k-
nearest-neighbor estimate of D is

Dn,k(x) = Dn(x) =
1

k

k∑
i=1

Y(n,i)(x) =
1

n

n∑
i=1

YiI{Xi∈Sx,∥x−X(n,k)(x)∥
}

k/n
, (26)

13



One estimates the regression functionD by the k-nearest-neighbor regression
estimate Dn from the samples Dn, while the k-nearest-neighbor regression
estimate D̂n is the estimate of D̂ from the samples

D̂n = {(X̂1, Y1), . . . , (X̂n, Yn)}.

The splitting data nearest neighbor error estimate is defined as follows:

T ′
n = Ln − L̂n. (27)

where

Ln =
1

n

n∑
i=1

|Dn(X
′
i)|

and

L̂n =
1

n

n∑
i=1

|D̂n(X̂
′
i)|.

Next we show (I):

T ′
n → E {|D(X)|} − E{|D̂(X̂)|} (28)

a.s.
Notice that

E {Ln | Dn} =

∫
|Dn(x)|µ(dx)

and

E {Ln} = E
{∫

|Dn(x)|µ(dx)
}
.

Theorem 2. One has that

P {||Ln − E {Ln}| > ϵ} ≤ 6e−nϵ2/(128γ2
d),

where γd is the minimal number of cones of angel π/3 centered at 0 such
that their union covers Rd.

Proof. Consider the following decomposition

Ln − E {Ln} = Ln − E {Ln | Dn}

+

∫
|Dn(x)|µ(dx)− E

{∫
|Dn(x)|µ(dx)

}
. (29)

14



The Hoeffding inequality implies that

P {|Ln − E {Ln | Dn} | > ϵ} ≤ 2e−2nϵ2 . (30)

A modification of the proof of Theorem 23.7 in Györfi et al. [14] results
in

P
{∣∣∣∣∫ |Dn(x)|µ(dx)− E

{∫
|Dn(x)|µ(dx)

}∣∣∣∣ > ϵ

}
≤ 4e−nϵ2/(32γ2

d). (31)

In order to show (31), we prove that, for an appropriate constant Cn,

P
{∣∣∣∣∫ |Dn(x)|µ(dx)− Cn

∣∣∣∣ > ϵ

}
≤ 4e−nϵ2/(32L2γ2

d).

Define ρn(x) as the solution of the equation

kn
n

= µ(Sx,ρn(x)).

Note that the condition that for each x the distribution of the random
variable ∥X − x∥ is absolutely continuous implies that the solution always
exists. (This is the only point in the proof where we use this assumption.)
Also define

D∗
n(x) =

1

kn

n∑
j=1

YjI{∥Xj−x∥<ρn(x)}.

The basis of the proof is the following decomposition:

|Dn(x)| ≤ |Dn(x)−D∗
n(x)|+ |D∗

n(x)|.

For the first term on the right-hand side observe that, denoting Rn(x) =
∥X(kn,n)(x)− x∥,

|D∗
n(x)−Dn(x)| =

1

kn

∣∣∣∣∣∣
n∑

j=1

YjI{Xj∈Sx,ρn(x)} −
n∑

j=1

YjI{Xj∈Sx,Rn(x)}

∣∣∣∣∣∣
≤ 1

kn

n∑
j=1

∣∣∣I{Xj∈Sx,ρn(x)} − I{Xj∈Sx,Rn(x)}

∣∣∣ .
By considering the cases ρn(x) ≤ Rn(x) and ρn(x) > Rn(x) one gets that
I{Xj∈Sx,ρn(x)} − I{Xj∈Sx,Rn(x)} have the same sign for each j. It follows that

|D∗
n(x)−Dn(x)| ≤

∣∣∣∣∣∣ 1kn
n∑

j=1

I{Xj∈Sx,ρn(x)} − 1

∣∣∣∣∣∣ = |E∗
n(x)− 1|,

15



where E∗
n is defined as D∗

n with Y replaced by the constant random variable
Y = 1. Thus,

|Dn(x)| ≤ |E∗
n(x)− 1|+ |D∗

n(x)|. (32)

Next we get an exponential bound for the second term on the right-hand
side of (32) by McDiarmid’s inequality. Fix an arbitrary realization of the
data Dn = {(x1, y1), . . . , (xn, yn)}, and replace (xi, yi) by (x̂i, ŷi), changing
the value of D∗

n(x) to D
∗
ni(x). Then∣∣∣∣∫ |D∗

n(x)|µ(dx)−
∫

|D∗
ni(x)|µ(dx)

∣∣∣∣ ≤
∫

|D∗
n(x)−D∗

ni(x)|µ(dx).

But |D∗
n(x) − D∗

ni(x)| is bounded by 2/kn and can differ from zero only if
∥x − xi∥ < ρn(x) or ∥x − x̂i∥ < ρn(x). Observe that ∥x − xi∥ < ρn(x) or
∥x− x̂i∥ < ρn(x) if and only if µ(Sx,∥x−xi∥) < kn/n or µ(Sx,∥x−x̂i∥) < kn/n.
But the measure of such x’s is bounded by 2·γdkn/n by Lemma 6.2 in Györfi
et al. [14]. Therefore,

sup
x1,y1,...,xn,yn,x̂i,ŷi

∫
|D∗

n(x)−D∗
ni(x)|µ(dx) ≤

2

kn

2 · γdkn
n

=
4γd
n

and, by by McDiarmid’s inequality,

P
{∣∣∣∣∫ |D∗

n(x)|µ(dx)− E
∫

|D∗
n(x)|µ(dx)

∣∣∣∣ > ϵ

2

}
≤ 2e−nϵ2/(32γ2

d).

Finally, we need a bound for the first term on the right-hand side of (32).
This probability may be bounded by McDiarmid’s inequality exactly in the
same way as for the second term, obtaining

P
{∣∣∣∣∫ |E∗

n(x)− 1|µ(dx)− E
∫

|E∗
n(x)− 1|µ(dx)

∣∣∣∣ > ϵ

2

}
≤ 2e−nϵ2/(32γ2

d),

and the proof of (31) is completed. (30) and (31) yield the theorem.
Moreover, Theorem 6.1 in Györfi et al. [14] implies∣∣∣∣E{∫ |Dn(x)|µ(dx)

}
−
∫

|D(x)|µ(dx)
∣∣∣∣ ≤ E

{∫
|Dn(x)−D(x)|µ(dx)

}
→ 0,

i.e.,
|E{Ln} − E {|D(X)|} | → 0

16



This together with Theorem 2 implies

Ln → E {|D(X)|}

a.s. Analogously

L̂n → E
{
|D̂(X̂)|

}
a.s. Thus, (28) is verified.

Next we consider the expectation E {Ln} = E
{∫

|Dn(x)|µ(dx)
}
of the

estimate.

Theorem 3. Assume that D satisfies the weak margin condition with 0 <
α ≤ 1 and the modified Lipschitz condition. Then∫

|E{Dn(x)}|µ(dx)

≤ E
{∫

|Dn(x)|µ(dx)
}

≤
∫

|E{Dn(x)}|µ(dx)

+O(1/k1/2)
(
O(1/kα/2) +O((k/n)α/d)

)
+O((k/n)1/d).

Proof. The Jensen inequality implies the lower bound. Introduce the nota-
tion

D̄∥x−X(n,k)(x)∥(x) = E{Dn,k(x) | ∥x−X(n,k)(x)∥}

=
E{Y1I{X1∈Sx,∥x−X(n,k)(x)∥

} | ∥x−X(n,k)(x)∥}

k/n

=

∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)

k/n
. (33)

We show that for given ∥x−X(n,k)(x)∥,
√
k(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x))

D−→ N(0, 1) (34)

in probability, and

√
k(D̄∥x−X(n,k)(x)∥(x)− EDn,k(x))

D−→ N(0, D(x)2), (35)

which imply that

√
k(Dn,k(x)− EDn,k(x))

D−→ N(0, 1 +D(x)2). (36)
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(Cf. the proof of Theorem 1 in Györfi and Walk [15].) Because of (26),

Dn,k(x)− D̄∥x−X(n,k)(x)∥(x)

=
1

n

n∑
i=1

YiI{Xi∈Sx,∥x−X(n,k)(x)∥
} −

∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)

k/n
.

Given ∥x − X(n,k)(x)∥, Dn,k(x) − D̄∥x−X(n,k)(x)∥(x) is an average of i.i.d.
random variables with mean zero. Therefore

Dn,k(x)− D̄∥x−X(n,k)(x)∥(x)√
E{(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x))

2 | ∥x−X(n,k)(x)∥}
D−→ N(0, 1) (37)

in probability. We show this asymptotic normality with remainder term
such that apply Berry-Esseen type central limit theorem. Firstly, calculate
the asymptotic variance.

E{(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x))
2 | ∥x−X(n,k)(x)∥}

=

E


(

Y1I{X1∈Sx,∥x−X(n,k)(x)∥
}−

∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)

k/n

)2

| ∥x−X(n,k)(x)∥


n

=

E
{
I{X1∈Sx,∥x−X(n,k)(x)∥

} | ∥x−X(n,k)(x)∥
}
−
(∫

Sx,∥x−X(n,k)(x)∥
D(z)µ(dz)

)2

k2/n

=

µ(Sx,∥x−X(n,k)(x)∥)−
(∫

Sx,∥x−X(n,k)(x)∥
D(z)µ(dz)

)2

k2/n
.

Thus,

µ(Sx,∥x−X(n,k)(x)∥)− µ(Sx,∥x−X(n,k)(x)∥)
2

k/n

≤ kE{(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x))
2 | ∥x−X(n,k)(x)∥}

≤
µ(Sx,∥x−X(n,k)(x)∥)

k/n
.

For i.i.d. uniformly distributed U1, . . . , Un, let U(1,n), . . . , U(n,n) denote the
corresponding order statistic. From Section 1.2 in Biau and Devroye [2] we
have that

µ(Sx,∥x−X(n,k)(x)∥)
D
= U(k,n). (38)

18



Therefore

U(k,n) − U2
(k,n)

EU(k,n)

D
≤ kE{(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x))

2 | ∥x−X(n,k)(x)∥}

D
≤

U(k,n)

EU(k,n)
,

which together with k → ∞ and k/n→ 0 implies that

kE{(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x))
2 | ∥x−X(n,k)(x)∥} → 1

in probabilty (cf. Theorem 1.4 in Biau and Devroye [2]). With the notation

Z1 = Y1I{X1∈Sx,∥x−X(n,k)(x)∥
} −

∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)

the Berry-Esseen inequality says that∣∣∣P{√k(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x)) ≤ z | ∥x−X(n,k)(x)∥} − Φ (z)
∣∣∣

≤
c

E{|Z1|3|∥x−X(n,k)(x)∥}
E{|Z1|2|∥x−X(n,k)(x)∥}3/2√

n (1 + z3)
,

with the universal constant c > 0. We have that

E{|Z1|3 | ∥x−X(n,k)(x)∥} ≤ 4E{|Z1|2 | ∥x−X(n,k)(x)∥}

The numerator of the right hand side Berry-Esseen inequality is less than

4c

E{|Z1|2 | ∥x−X(n,k)(x)∥}1/2

≤ 4c(
µ(Sx,∥x−X(n,k)(x)∥)− µ(Sx,∥x−X(n,k)(x)∥)

2
)1/2

=

(
k/n

µ(Sx,∥x−X(n,k)(x)∥)− µ(Sx,∥x−X(n,k)(x)∥)
2

)1/2
4c

(k/n)1/2

in probability. Therefore∣∣∣P{√k(Dn,k(x)− D̄∥x−X(n,k)(x)∥(x)) ≤ z | ∥x−X(n,k)(x)∥} − Φ (z)
∣∣∣

≤ 4c√
k (1 + z3)

(
k/n

µ(Sx,∥x−X(n,k)(x)∥)− µ(Sx,∥x−X(n,k)(x)∥)
2

)1/2

≈ 4c√
k (1 + z3)

,
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and (34) is proved with a remainder term. For (35), we need

√
k

∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)− E
∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)

k/n
D−→ N(0, D(x)2).

From the proof of Lemma 6.1 in Biau and Devroye [2]) one gets that

√
k

(
U(k,n)

k/n
− 1

)
D−→ N(0, 1). (39)

(39) has been proved by the representation

U(k,n)
D
=

∑k
i=1Ei∑n+
i=1Ei

,

where E1, . . . , En+1 are i.i.d. exponentially distributed random variables.
Then

√
k

(
U(k,n)

k/n
− 1

)
D
=

√
k

(
1

k

k∑
i=1

Ei − 1

)
+

√
k
1

k

k∑
i=1

Ei

(
1

1
n

∑n+1
i=1 Ei

− 1

)
,

which together with Berry-Esseen inequality implies that∫ ∞

0

∣∣∣∣P{√k(U(k,n)

k/n
− 1

)
≥ z

}
− Φ (−z)

∣∣∣∣ dz
≤
∫ ∞

0

c√
k (1 + z3)

dz +O(
√
k/n).

From (39) we get that

√
k

(
D(x)U(k,n)

k/n
−D(x)

)
=

√
k

(
D(x)µ(Sx,∥x−X(n,k)(x)∥)

k/n
−D(x)

)
D−→ N(0, D(x)2).

Therefore, for (35), we need

√
k

∫Sx,∥x−X(n,k)(x)∥
D(z)µ(dz)−D(x)µ(Sx,∥x−X(n,k)(x)∥)

k/n

→ 0

20



in L1 with certain rate of convergence. By the mean value theorem, there
exists a random variable Zx,n taking values in Sx,∥x−X(n,k)(x)∥ such that

D(Zx,n)µ(Sx,∥x−X(n,k)(x)∥) =

∫
Sx,∥x−X(n,k)(x)∥

D(z)µ(dz).

The modified Lipschitz condition implies that

√
k

E
{∣∣∣∣∫Sx,∥x−X(n,k)(x)∥

D(z)µ(dz)−D(x)µ(Sx,∥x−X(n,k)(x)∥)

∣∣∣∣}
k/n

≤
√
k
E
{
|D(Zx,n)−D(x))|µ(Sx,∥x−X(n,k)(x)∥)

}
k/n

≤
√
kC∗

E
{
µ(Sx,∥x−X(n,k)(x)∥)

1+1/d
}

k/n

≤
√
kC∗(k/n)1/d. (40)

These limit relations imply the asymptotic normality with remainder term∫ ∞

0

∣∣∣P{√k (Dn,k(x)− EDn,k(x)) ≥ z
}
− Φ

(
−z/

√
1 +D(x)2

)∣∣∣ dz
≤
∫ ∞

0

2c√
k (1 + z3)

dz +O(
√
k/n) +

√
kO((k/n)1/d).

Thus, by Lemma 1 and its proof we get that√
k

1 +D(x)2
E{|Dn,k(x)|}

=

√
k

1 +D(x)2
E{|Dn,k(x)− EDn,k(x) + EDn,k(x)|}

≤ ψ

(√
k

1 +D(x)2
|EDn,k(x)|

)
+

c√
k
+O(

√
k/n) +

√
kO((k/n)1/d).
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Therefore

E{|Dn,k(x)|}

≤
√

1 +D(x)2

k
ψ

(√
k

1 +D(x)2
|EDn,k(x)|

)
+
c

k
+O(1/

√
n) +O((k/n)1/d)

≤ |EDn,k(x)|+
4√
k
φ
(
−
√
k|EDn,k(x)|/

√
2
)
+O(1/k) +O(1/

√
n) +O((k/n)1/d)

= |EDn,k(x)|+
4√
k
e−k|EDn,k(x)|2/4 +O(1/k) +O((k/n)1/d),

noticing that O(1/
√
n) is comprehended by other O-terms for all pairs (k, n).

Similarly to (19) and (20), the margin condition and the modified Lipschitz
condition imply that∫

e−(
√
k|EDn,k(x)|)2/4µ(dx)

≤
∫
e−(

√
k|D(x)|)2/16µ(dx) +

∫
I{|D(x)|/2≥|EDn,k(x)|}µ(dx)

≤ O(1/kα/2) +O((k/n)α/d).

Corollary 2. Assume d ≥ 2. Under the conditions of Theorem 3 and under
the null hypothesis we have that

E{T ′
n} ≤ O(1/k1/2)

(
O(1/kα/2) +O((k/n)α/d)

)
+O((k/n)1/d).

Proof. Theorem 3 implies that

E{T ′
n} ≤

∫
|E{Dn(x)}|µ(dx)−

∫
|E{D̂n(x̂)}|µ̂(dx̂)

+O(1/k1/2)
(
O(1/kα/2) +O((k/n)α/d)

)
+O((k/n)1/d).

Therefore, under the null hypothesis we show that∫
|E{Dn(x)}|µ(dx)−

∫
|D(x)|µ(dx)

−
(∫

|E{D̂n(x̂)}|µ̂(dx̂)−
∫

|D̂(x̂)|µ̂(dx̂)
)

≤ O((k/n)1/d).
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Because of ∫
|E{Dn(x)}|µ(dx)−

∫
|D(x)|µ(dx) ≤ 0,

we prove the upper bound∫
|D̂(x̂)|µ̂(dx̂)−

∫
|E{D̂n(x̂)}|µ̂(dx̂) ≤ O((k/n)1/d). (41)

We show the equivalent assertion∫
|D(x)|µ(dx)−

∫
|E{Dn(x)}|µ(dx) ≤ O((k/n)1/d) (42)

using the notations in the proof of Theorem 3. Noticing

E
{
µ(Sx,∥x−X(n,k)(x)∥)

}
= k/n

obtained by (38), we have

|D(x)| − |E{Dn(x)}|
≤ |E{Dn(x)} −D(x)|

=

∣∣∣∣∣E{D̄∥x−X(n,k)(x)∥(x)} − E

{
D(x)

µ(Sx,∥x−X(n,k)(x)∥)

k/n

}∣∣∣∣∣
=

∣∣∣∣E{∫Sx,∥x−X(n,k)(x)∥
D(z)µ(dz)−D(x)µ(Sx,∥x−X(n,k)(x)∥)

}∣∣∣∣
k/n

≤ C∗(k/n)1/d

by (40), and thus (42) and (41).

Now, we summarize the consequences for the testing problem. Concern-
ing (ii), choose

bn = lnn/
√
n. (43)

Then Theorem 2 implies that

∞∑
n=1

P{|T ′
n − E{T ′

n}| > bn} <∞. (44)

For (iii), the problem is to find cn such that

E{T ′
n} ≤ cn,
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which is done in Corollary 2. Therefore, we get

cn = (k/n)1/d + 1/k1/2
(
1/kα/2 + (k/n)α/d

)
+ (k/n)1/d,

which results in the threshold an of a strong consistent test:

an = lnn(1/
√
n+ cn).
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