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ON AN EFFECTIVE VARIATION OF KRONECKER’S

APPROXIMATION THEOREM AVOIDING ALGEBRAIC SETS

LENNY FUKSHANSKY, OLEG GERMAN, AND NIKOLAY MOSHCHEVITIN

Abstract. Let Λ ⊂ Rn be an algebraic lattice, coming from a projective

module over the ring of integers of a number field K. Let Z ⊂ Rn be the zero
locus of a finite collection of polynomials such that Λ * Z or a finite union of

proper full-rank sublattices of Λ. Let K1 be the number field generated over

K by coordinates of vectors in Λ, and let L1, . . . , Lt be linear forms in n vari-
ables with algebraic coefficients satisfying an appropriate linear independence

condition over K1. For each ε > 0 and a ∈ Rn, we prove the existence of a

vector x ∈ Λ \ Z of explicitly bounded sup-norm such that

‖Li(x)− ai‖ < ε

for each 1 ≤ i ≤ t, where ‖ ‖ stands for the distance to the nearest integer.
The bound on sup-norm of x depends on ε, as well as on Λ, K, Z and heights

of linear forms. This presents a generalization of Kronecker’s approximation

theorem, establishing an effective result on density of the image of Λ\Z under
the linear forms L1, . . . , Lt in the t-torus Rt/Zt. In the appendix, we also

discuss a construction of badly approximable matrices, a subject closely related

to our proof of effective Kronecker’s theorem, via Liouville-type inequalities
and algebraic transference principles.

1. Introduction

Let 1, θ1, . . . , θt be Q-linearly independent real numbers. The classical approxi-
mation theorem of Kronecker then states that the set of points

{({nθ1}, . . . , {nθt}) : n ∈ Z}

is dense in the t-torus Rt/Zt, where {·} stands for the fractional part of a real
number. This result was originally obtained by Kronecker [24] in 1884, and presents
a deep generalization of Dirichlet’s 1842 theorem on Diophantine approximation [6];
see, for instance, [20] for a detailed exposition of these classical results.

Kronecker’s theorem can also be viewed as a statement on density of the image
of the integer lattice under collection of linear forms in the torus Rt/Zt (compare to
the famous Oppenheim conjecture for quadratic forms). Specifically, if L1, . . . , Lt
are linear forms in n variables with real coefficients bij so that the set of numbers 1
and bij are linearly independent over Q, then for any ε > 0 and a ∈ Rt there exists
x ∈ Zn such that

(1) ‖Li(x)− ai‖ < ε ∀ 1 ≤ i ≤ t,
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where ‖ ‖ stands for the distance to the nearest integer. A nice survey of a wide
variety of results related to Kronecker’s theorem is given in [18]. Classical quantita-
tive results in this direction are related to transference theorems for homogeneous
and inhomogeneous approximation for the system of linear forms Li(x) (see [22],
Chapter V of [3], [2]). In particular, these results give effective bounds for the
size of the coordinates of the vector x in (1) under the assumption that there are
effective lower bounds for maxi ‖Li(x)‖ in the homogeneous case. Some additional
effective results can also be found in [26], [31].

The main goal of this note is somewhat different. We consider linear forms
with algebraic coefficients and extend the previously known versions of Kronecker’s
theorem in three ways:

(1) allow for the approximating vector x as in the equation (1) above to come
from an algebraic lattice Λ,

(2) exclude vectors from a prescribed union Z of projective varieties or sublat-
tices not containing this lattice, that is we are interested in approximation
vectors x ∈ Λ \ Z,

(3) we obtain effective constants everywhere in our upper bounds.

Effective Diophantine avoidance results, exhibiting solutions to a given problem
outside of a prescribed algebraic set can be viewed as statements on distribution
of such solutions: not only do small solutions exist, they are also sufficiently well
distributed so that it is not possible to “cut them out” by any finite union of
varieties. In the recent years, such results were obtained in the general context of
Siegel’s lemma (also generalizing Faltings’ version of Siegel’s lemma [8], [23], [7])
in [10], [11], [12], [15], [17], [21], and in the context of Cassels’ theorem on small
zeros of quadratic forms and its generalizations in [9], [5], [14], [16]. We will extend
these investigations to Kronecker’s theorem. To obtain effective constants in our
bounds we use Liouville-type inequalities (see Remark 3.1 below for stronger non-
effective inequalities of similar type, which can be derived from Schmidt’s Subspace
Theorem). To give precise statements of our results, we need some notation.

1. The lattice. Let n ≥ 1 be an integer, and for each vector x ∈ Rn define the
sup-norm

|x| := max
1≤i≤n

|xi|.

Let K be a number field of degree d = r1 + 2r2 over Q, where r1 and r2 are
numbers of its real and complex places, respectively, and write OK for its ring of
integers. Let 1 ≤ s ≤ w be integers, and let M ⊂ Kw be an OK-module such
that M⊗K K ∼= Ks. Write DK(M) for the discriminant of M. Define UK(M), a
fractional OK-ideal in K, to be

(2) UK(M) = {α ∈ K : αM⊆ OwK} .

We let ΛK(M) ⊂ Rwd be the lattice of rank sd, which is the image ofM under the
standard Minkowski embedding.

2. The projective varieties. Let m ≥ 1 be an integer. For each 1 ≤ i ≤ m, let Si
be a finite set of homogeneous polynomials in R[x1, . . . , xwd] and Z(Si) be its zero
set in Rwd, that is,

Z(Si) = {x ∈ Rwd : P (x) = 0 for all P ∈ Si}.
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For the collection S := {S1, . . . ,Sm} of finite sets of homogeneous polynomials,
define

(3) ZS :=

m⋃
i=1

Z(Si),

and

(4) MS :=

m∑
i=1

max{degP : P ∈ Si}.

We allow for the possibility that ZS = {0}, in which case we take instead MS = 1.
Notice that ZS is an algebraic set, which is a union of a finite collection of projective
varieties. Assume that the lattice ΛK(M) is not contained in the set ZS .

3. The linear forms. Let K1 = K(ΛK(M)), i.e. K1 is the number field
generated over K by the entries of any basis matrix of the lattice ΛK(M). Let
B := (bij)1≤i≤t,1≤j≤wd be a t × wd matrix with real algebraic entries so that
1, b11, . . . , bt(wd) are linearly independent over K1, and let ` = [E : Q] where
E = K1(b11, . . . , bt(wd)). We will also write `v = [Ev : Qv] for the local degree
of E at every place v ∈M(E). Define t linear forms in wd variables

(5) Li(x1, . . . , xwd) =

wd∑
j=1

bijxj ∈ R[x1, . . . , xwd] ∀ 1 ≤ i ≤ t.

Our first goal here is to prove the following effective result on density of the image
of the set ΛK(M) \ ZS under the linear forms L1, . . . , Lt in the torus Rt/Zt. Let
h denote the usual Weil height on algebraic numbers, as well as its extension to
vectors with algebraic coordinates; we recall the definition of height along with
other necessary notation in Section 2.

Theorem 1.1. Let a = (a1, . . . , at) ∈ Rt and ε > 0. There exist x ∈ ΛK(M) \ZS

and p ∈ Zt such that
|Li(x)− ai − pi| < ε

and

|x| ≤ aK(t, `, s)
(
sdMS |DK(M)| s2

)K+1
(

(wd)
3
2h(B)

)K
cK(M, `, t) ε−`+1,

where the exponent K = `2(t+ 1)− ` and the constants are

aK(t, `, s) = 2`t(`−1)+sr1K+ sd−1
2 (t+ 1)3`−1(t!)2`

and

cK(M, `, t) = min
{
h(α)(K+1)sd−1h(α−1)K : α ∈ UK(M)

}
.

One special case of Theorem 1.1 is when ZS is a union of linear spaces, which means
that the point x in question is in ΛK(M) but outside of a union of sublattices of
smaller rank than ΛK(M). What if the rank of such sublattices is equal to the
rank of ΛK(M)? The next theorem addresses this situation.

Theorem 1.2. Let a = (a1, . . . , at) ∈ Rt and ε > 0. Let m > 0 and Γ1, . . . ,Γm ⊂
ΛK(M) be proper sublattices of full rank and respective determinants D1, . . . ,Dm,
and let D = D1 · · · Dm. Then for every α ∈ UK(M) there exist x ∈ ΛK(M) \⋃m
i=1 Γi and p ∈ Zt such that

|Li(x)− ai − pi| < ε
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and

|x| ≤
(
bK(t, `, s, w)

(
h(α)h(α−1)h(B)Eα

)K D ε−`+1

|DK(M)| sm2
+ 1

)
Eα,

where the exponent K = `2(t+ 1)− `, as in Theorem 1.1, the constant

bK(t, `, s, w) = 2`t(`−1)+ K
2 +smr2(t+ 1)3`−1(t!)2`(wd)

3K
2 ,

and Eα =

(6) Eα(M,Γ1, . . . ,Γm) := 2
sr1−1

2 h(α)sd−1|DK(M)| s2
(

m∑
i=1

D
Di
−m+ 1

)
+D 1

sd .

Here is a sketch of the proofs of Theorems 1.1 and 1.2. We first construct
a point y ∈ ΛK(M) of controlled sup-norm, which is outside of ZS or

⋃m
i=1 Γi,

respectively: in the first case, we use the classical Minkowski’s Successive Minima
Theorem and a version of Alon’s Combinatorial Nullstellensatz [1] (we use the
convenient formulation developed in [13]), while in the second we employ a recent
result of Henk and Thiel [21] on points of small norm in a lattice outside of a union
of full-rank sublattices. We use y to construct an infinite sequence of points ny
satisfying the above conditions, and use an effective version of Kronecker’s original
theorem to obtain a value of the index n (depending on ε > 0) for which the required
inequalities on values of linear forms are satisfied. In other words, our avoidance
strategy is to follow the line ny until a necessary point is found. One may wish to
use a similar strategy, but following a higher dimensional subspace of the ambient
space in the hope of a better bound, however it is difficult to guarantee avoiding our
fixed algebraic set with such strategy. A convenient effective version of Kronecker’s
theorem that we use is worked out in Section 3. It should be remarked that the
most important feature of approximation results such as our Theorems 1.1 and 1.2
is the exponent on ε in the bounds for |x|. As we show, this exponent is the same
as in the corresponding bound of the effective version of Kronecker’s theorem that
we use.

In Section 2 we introduce the necessary notation and provide all the details of
our setup. We derive an effective version of Kronecker’s theorem in Section 3. We
then prove Theorem 1.1 in Section 4 and Theorem 1.2 in Section 5. Finally, in
Appendix A we discuss the use of algebraic numbers in a construction of badly ap-
proximable matrices, which is closely related to Kronecker-type results via standard
transference principles.

2. Notation and setup

Let the notation be as in Section 1. Here we introduce some additional notation
needed for our algebraic setup. Let the number field K have discriminant DK , r1

real embeddings σ1, . . . , σr1 of K, and r2 conjugate pairs of complex embeddings
τ1, τ1, . . . , τr2 , τ r2 , then d = r1 + 2r2. For each τk, write <(τk) for its real part and
=(τk) for its imaginary part. Let us write M(K) for the set of all places of K, then
the archimedean places of K are in correspondence with the embeddings of K, and
we choose the absolute values | |v1 , . . . , | |vr1+r2

so that for each a ∈ K
|a|vk = |σk(a)| ∀ 1 ≤ k ≤ r1

and
|a|vr1+k

= |τk(a)| =
√
<(τk(a))2 + =(τk(a))2 ∀ 1 ≤ k ≤ r2,
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where | | stands for the usual absolute value on R or C, respectively. For each
v ∈M(K), we write Kv for the completion of K at v, and for each n ≥ 1 we define
a local norm | |v : Kn

v → R by

|a|v := max
1≤j≤n

|aj |v,

for each a = (a1, . . . , an) ∈ Kn
v . Then the extended Weil height on Kn is given by

h(a) =
∏

v∈M(K)

max{1, |a|v}dv/d,

where dv = [Kv : Qv] is the local degree of K at v, so that
∑
v|u dv = d for each

u ∈M(Q).
For each integer n ≥ 1, define the standard Minkowski embedding ρnK : Kn →

Rnd by

ρnK(a) :=
(
σn1 (a), . . . , σnr1(a),<(τn1 (a)),=(τn1 (a)), . . . ,<(τnr2(a)),=(τnr2(a))

)
.

We will now use Minkowski embedding to construct lattices from OK-modules and
outline some of their main properties; see [14] for further details. Let 1 ≤ s ≤ w
be integers, and letM⊂ Kw be an OK-module such thatM⊗K K ∼= Ks. By the
structure theorem for finitely generated projective modules over Dedekind domains
(see, for instance [25]),

M =


s∑
j=1

βjyj : yj ∈ OwK , βj ∈ Ij


for some OK-fractional ideals I1, . . . , Is in K. By Proposition 13 on p.66 of [25],
the discriminant of M is then

(7) DK(M) := DK
s∏
j=1

N(Ij)2,

where N(Ij) is the norm of the fractional ideal Ij .
Let ΛK(M) := ρwK(M) be an algebraic lattice of rank sd in Rwd, then a direct

adaptation of Lemma 2 on p.115 of [25] implies that the determinant of ΛK(M) is

(8) det(ΛK(M)) = 2−sr2 |DK(M)| s2 = 2−sr2 |DK |
s
2

s∏
j=1

N(Ij),

where the last identity follows by (7) above. Let x ∈ ΛK(M), then x = ρwK(a) for
some a ∈M and

(9) |x| ≥ 1√
2
h(α)−1,

for any α ∈ UK(M) by inequality (54) of [14]. Let v ∈ M(K) be an archimedean
place, and assume first that it corresponds to a real embedding σj for some 1 ≤ j ≤
r1, then |a|v = |x|. On the other hand, if v corresponds to a complex embedding τj

for some 1 ≤ j ≤ r2, then |a|v ≤
(∑wd

j=1 x
2
j

)1/2

≤
√
wd |x|. Hence for each v | ∞,

(10) |x| ≤ |a|v ≤
√
wd |x|.

Let L1, . . . , Lt be the linear forms defined in (5). For each 1 ≤ i ≤ t, we define

|Li|v = max
1≤j≤wd

|bij |v,
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for each place v ∈M(E), and define the height of Li to be

h(Li) = H(1, bi1, . . . , bi(wd)) =
∏

v∈M(E)

max{1, |Li|v}`v/`.

We similarly define the height of the matrix B to be

h(B) = H(1, b11, . . . , bt(wd)),

then h(Li) ≤ h(B) for all 1 ≤ i ≤ t. We are now ready to proceed.

3. An effective version of Kronecker’s theorem

In this section we derive an effective version of Kronecker’s theorem, which we
then use to prove Theorems 1.1 and 1.2. Similar to the setup in the beginning of
Section 1, let 1, θ1, . . . , θt be Q-linearly independent real algebraic numbers. For
each 1 ≤ j ≤ t, let fj(x) ∈ Z[x] be the minimal polynomial of θj of degree dj , |fj |
be the maximum of absolute values of the coefficients of fj , and Aj be the leading
coefficient of fj , so Aj ≤ |fj |. By Lemma 3.11 of [32],

1

2dj
|fj | ≤ h(θj)

dj ≤
√
dj + 1 |fj |,

for every 1 ≤ j ≤ t. Define A to be the least common multiple of A1, . . . , At, so

(11) A ≤
t∏

j=1

|fj | ≤
t∏

j=1

(2h(θj))
dj .

Let F = Q(θ1, . . . , θt) be a number field of degree e ≥ t + 1, then e ≤
∏t
j=1 dj .

Let θt+1, . . . , θe−1 ∈ F be such that

1 = θ0, θ1, . . . , θt, θt+1, . . . , θe−1

form a Q-basis for F . Let σ1, . . . , σe be the embeddings of F into C. We recall
Liouville inequality. For any m = (m0, . . . ,mt, 0, . . . , 0) ∈ Ze,

(12) Ae
e∏
i=1

∣∣∣∣∣∣
e−1∑
j=0

σi(θj)mj

∣∣∣∣∣∣ ≥ 1,

and so

(13) Ae
(

(t+ 1) max
1≤i≤e,0≤j≤t

|σi(θj)|
)e−1

|m|e−1‖m1θ1 + · · ·+mtθt‖ ≥ 1.

Now observe that

max
1≤i≤e,0≤j≤t

|σi(θj)| ≤ max
1≤j≤t

h(θj)
dj ,

and so define

(14) C1 = C1(θ1, . . . , θt) :=

(
(t+ 1) max

1≤j≤t
h(θj)

dj

)e−1 t∏
j=1

(2h(θj))
edj .

Then for any 0 6= m ∈ Zt,

(15) ‖m1θ1 + · · ·+mtθt‖ ≥ C−1
1 |m|−e+1.
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We will now apply a transference homogeneous-inhomogeneous argument. A trans-
ference principle of this sort was first described in Chapter V, §4 of [3]; the particular
stronger result we are applying here is obtained in [2]. Let us write

M(y) =

t∑
i=1

θiyi

for y = (y1, . . . , yt) ∈ Zt, and let

Lj(x) = θjx, 1 ≤ j ≤ t

for x ∈ Z. Then (15) guarantees that for any 0 6= y ∈ Zt with |y| ≤ Y ,

‖M(y)‖ ≥ C−1
1 Y −(e−1).

Now applying the transference Lemma 3 of [2] to these linear forms, we have that for
every a = (a1, . . . , at) ∈ Rt there exists x ∈ Z such that |x| ≤ 2−t((t+ 1)!)2C1Y e−1

and

max
1≤j≤t

‖Lj(x)− aj‖ ≤ 2−t((t+ 1)!)2Y −1.

Letting Q =
(
2t((t+ 1)!)−2Y

)e−1
, we obtain that

max
1≤j≤t

‖Lj(x)− αj‖ ≤ Q−
1

e−1

for some 0 6= x ∈ Z with |x| ≤ 2−et((t+ 1)!)2eC1Q. Taking ε = Q−
1

e−1 immediately
yields the following effective version of Kronecker’s theorem.

Theorem 3.1. Let 1, θ1, . . . , θt be Q-linearly independent real algebraic numbers,
and let e = [Q(θ1, . . . , θt) : Q]. Let C1 be given by (14) above, and let ε > 0. Then
for any (a1, . . . , at) ∈ Rt there exists q ∈ Z \ {0} such that

(16) ‖qθj − aj‖ ≤ ε, 1 ≤ j ≤ t

and

|q| ≤ 2−et((t+ 1)!)2eC1ε−e+1.

In particular, if h(θj) ≤ H for all 1 ≤ j ≤ t and max{e, d1, . . . , dt} ≤ `, then

|q| ≤
(

2`t(`−1)(t+ 1)3`−1(t!)2`H`2(t+1)−`
)
ε−`+1.

Remark 3.1. Stronger non-effective results can be derived as corollaries of Schmidt’s
Subspace Theorem. For instance, results discussed in Chapter 6, §2 of [30] together
with the transference principles of Chapter V, §4 of [3] and [2] imply, for any
ε > 0 and a ∈ Rt under the assumptions of Theorem 3.1, the existence of q ∈ Z
satisfying 16 such that

|q| ≤ C′(δ)ε−t−δ,

for any δ > 0, where the constant C′(δ) is non-effective. This would result in
the same exponent on ε in the bounds for |q| in Theorems 1.1 and 1.2, but with
non-effective constants.
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4. Proof of Theorem 1.1

Here we present the proof of our first result. Since ΛK(M) * ZS , ΛK(M) *
Z(Si) for all 1 ≤ i ≤ m, and so for each i at least one polynomial Pi in Si is not
identically zero on ΛK(M). Clearly for each 1 ≤ i ≤ m,

Z(Si) ⊆ Z(Pi) :=
{
x ∈ Rwd : Pi(x) = 0

}
.

Define

P (x) =

m∏
i=1

Pi(x),

so that ΛK(M) * Z(P ) while ZS ⊆ Z(P ) and deg(P ) ≤ MS . We will next
construct a point y ∈ ΛK(M) of controlled sup-norm such that P (y) 6= 0.

Let V = spanR ΛK(M) be the sd-dimensional subspace of Rwd spanned by the
lattice ΛK(M). For a positive real number µ, let us write

CV (µ) := {x ∈ V : |x| ≤ µ}

for the sd-dimensional cube with side-length 2µ centered at the origin in V , so
CV (µ) = µCV (1). Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λsd be the successive minima of
ΛK(M) with respect to the cube CV (1). In other words, for each 1 ≤ i ≤ sd,

λi := min {µ ∈ R>0 : dimR spanR (ΛK(M) ∩ CV (µ)) ≥ i} .

Let v1, . . . ,vsd be a collection of linearly independent vectors in ΛK(M) corre-
sponding to these successive minima, then |vi| = λi. Since the volume of sd-
dimensional cube CV (1) is 2sd, Minkowski’s Successive Minima Theorem (see, for
instance, [4] or [19]) implies that

det(ΛK(M))

(sd)!
≤

sd∏
i=1

|vi| ≤ det(ΛK(M)),

where 1√
2
h(α)−1 ≤ |v1| ≤ · · · ≤ |vsd|, by (9). This means that

(17) |v1| ≤ · · · ≤ |vsd| ≤
(√

2h(α)
)sd−1

det(ΛK(M)).

Let I(MS) = {0, 1, 2, . . . ,MS} be the set of the first MS + 1 non-negative integers.
For each ξ ∈ I(MS)sd, define

v(ξ) =

sd∑
i=1

ξivi,

then

(18) |v(ξ)| = max
1≤j≤wd

∣∣∣∣∣
sd∑
i=1

ξivij

∣∣∣∣∣ ≤ sd|ξ||vsd| ≤ sdMS

(√
2h(α)

)sd−1

det(ΛK(M)),

by (17). Assume that P (v(ξ)) = 0 for each ξ ∈ I(MS)sd. Then Theorem 4.2
of [13] implies that P (x) must be identically zero on V , which would contradict
the fact that P does not vanish identically on ΛK(M). Hence there must exist
some ξ ∈ I(MS)sd such that P does not vanish at the corresponding y := v(ξ),

and |y| ≤ sdMS

(√
2h(α)

)sd−1
det(ΛK(M)) by (18). Since P (x) is a homogeneous
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polynomial, it must be true that P (ny) 6= 0 for every n ∈ Z>0. On the other hand,
by our construction

ny = n

sd∑
i=1

ξivi ∈ spanZ {v1, . . . ,vsd} ⊆ ΛK(M),

and so {ny}n∈Z>0
gives an infinite sequence of points in ΛK(M) outside of ZS .

For each such point, we have

Li(ny) = nLi(y), ∀ 1 ≤ i ≤ t.

Let us define, for each 1 ≤ i ≤ t,

(19) θi := Li(y) =

wd∑
j=1

bijyj 6= 0,

since yj ∈ K1, not all zero, and bij are K1-linearly independent. Notice that
θ1, . . . , θt ∈ E, and hence all of them are algebraic numbers of degree ≤ `.

Let α ∈ UK(M). Then, by (10), for each archimedean v ∈M(E),

max{1, |θi|v} ≤ max{1, (wd)
3
2 |Li|v|y|} ≤ (wd)

3
2 max{1, |y|}max{1, |Li|v}

≤
√

2 (wd)
3
2h(α)|y|max{1, |Li|v},(20)

by (9). By (18), |y| ≤ sdMS

(√
2h(α)

)sd−1
det(ΛK(M)), and hence

(21) max{1, |θi|v} ≤ sd(wd)
3
2MS

(√
2h(α)

)sd
det(ΛK(M)) max{1, |Li|v}.

Now suppose v ∈ M(E) is non-archimedean. Then αyj is an algebraic integer for
each 1 ≤ j ≤ wd, and hence |αyj |v = |α|v|yj |v ≤ 1, meaning that

max{1, |y1|v, . . . , |ywd|v} ≤ max{1, |α|−1
v }.

Then

max{1, |θi|v} ≤ max{1, |Li|v}max{1, |y1|v, . . . , |ywd|v}
≤ max{1, |α−1|v}max{1, |Li|v},(22)

for each non-archimedean v ∈ M(E). Taking a product over all places of E, we
obtain:

h(θi) =
∏

v∈M(E)

max{1, |θi|v}
`v
` =

∏
v|∞

max{1, |θi|v}`v ×
∏
v-∞

max{1, |θi|v}`v
 1

`

≤ sd(wd)
3
2MS

(√
2h(α)

)sd
det(ΛK(M))h(Li)

∏
v-∞

max{1, |α−1|v}
`v
`

≤ sd(wd)
3
2MS

(√
2h(α)

)sd
h(α−1) det(ΛK(M))h(Li).

Recalling that h(Li) ≤ h(B) for all 1 ≤ i ≤ t, we obtain

(23) h(θi) ≤ 2
sd
2 sd(wd)

3
2MSh(α)sdh(α−1) det(ΛK(M))h(B),

for each 1 ≤ i ≤ t, where the choice of α ∈ UK(M) is arbitrary.
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We will now show that 1, θ1, . . . , θt are Q-linearly independent. Suppose not,
then there exist c0, c1, . . . , ct ∈ Q, not all zero, such that

c0 =

t∑
i=1

ciθi =

t∑
i=1

wd∑
j=1

ciyjbij ,

where not all ciyj are equal to zero. Recall that y ∈ ΛK(M), meaning that coor-
dinates of y are in K1, hence all ciyj are in K1. This contradicts the assumption
that 1, b11, . . . , b1(wd) are linearly independent over K1. Hence 1, θ1, . . . , θt must be
linearly independent over Q.

Now let a = (a1, . . . , at) ∈ Rt and ε > 0, as in the statement of our theorem.
Then, by (23) and Theorem 3.1, there exists q ∈ Z and p ∈ Zt such that

|q| ≤ 2`t(`−1)(t+ 1)3`−1(t!)2` ×

×
(

2
sd
2 sd(wd)

3
2MSh(α)sdh(α−1) det(ΛK(M))h(B)

)`2(t+1)−`
ε−`+1(24)

and
|qθi − ai − pi| < ε ∀ 1 ≤ i ≤ t.

Letting x = qy, we see that qθi = Li(x) for each 1 ≤ i ≤ t and |x| = |q||y|.
Combining these observations with (18), (24) and (8) and taking a minimum over
all α ∈ UK(M) finishes the proof of the theorem.

5. Proof of Theorem 1.2

Let Γ1, . . . ,Γm be full-rank sublattices of ΛK(M) of respective determinants
D1, . . . ,Dm. Let Ω = ∩mi=1Γi, then Ω also has full rank and

D := D1 · · · Dm ≥ det Ω.

We write λi for the successive minima of ΛK(M) and λi(Ω) for the successive
minima of Ω. Theorem 1.2 of [21] implies that there exists y ∈ ΛK(M) \

⋃m
i=1 Γi

such that

|y| < det ΛK(M)

λ1(Ω)sd−1

(
m∑
i=1

D
Di
−m+ 1

)
+ λ1(Ω).

Our first goal is to make this bound more explicit in terms of the parameters ofM.
First notice that by Minkowski’s Successive Minima Theorem,

λ1(Ω) ≤

(
sd∏
i=1

λi(Ω)

)1/sd

≤ (det Ω)
1/sd ≤ D1/sd.

We also need a lower bound on λ1(Ω). Observe that λ1(Ω) ≥ λ1, while λ1 ≥
1√
2
h(α)−1 for any α ∈ UK(M), by (9) above. Putting these estimates together, we

see that

(25) |y| <
(√

2h(α)
)sd−1

det ΛK(M)

(
m∑
i=1

D
Di
−m+ 1

)
+D1/sd

for any α ∈ UK(M).
Since y ∈ ΛK(M) and |ΛK(M) : Γi| = Di/ det ΛK(M) for each 1 ≤ i ≤ m, it

follows that

(g|ΛK(M) : Γi|)y =
gDi

det ΛK(M)
y ∈ Γi,
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for every g ∈ Z, and hence(
gD1 · · · Dm

(det ΛK(M))
m

)
y =

(
gD

(det ΛK(M))
m

)
y ∈ Ω,

for every g ∈ Z. Therefore, it must be true that(
gD

(det ΛK(M))
m + 1

)
y ∈ ΛK(M) \

m⋃
i=1

Γi,

for every g ∈ Z. For brevity, let us write D′ = D
(det ΛK(M))m .

From here on, the argument is largely similar to the proof of Theorem 1.1 above,
but with some notable changes. For each 1 ≤ i ≤ t, let θi be as in (19) for our
choice of y ∈ ΛK(M) \

⋃m
i=1 Γi satisfying (25) as above, then

Li((gD′ + 1)y) = (gD′ + 1)θi ∀ 1 ≤ i ≤ t.

Using (20) with (25) instead of (18), we obtain that max{1, |θi|v} ≤

(wd)
3
2

((√
2h(α)

)sd
det ΛK(M)

(
m∑
i=1

D
Di
−m+ 1

)
+D 1

sd

√
2h(α)

)
max{1, |Li|v}

for all archimedean v ∈M(E), while for the non-archimedean v ∈M(E),

max{1, |θi|v} ≤ max{1, |α−1|v}max{1, |Li|v},

as in (22). Taking the product over all places of E, we have for every 1 ≤ i ≤ t:

h(θi) ≤ (wd)
3
2

√
2h(α)h(α−1)h(B)×

×

((√
2h(α)

)sd−1

det ΛK(M)

(
m∑
i=1

D
Di
−m+ 1

)
+D 1

sd

)
,(26)

and 1, θ1, . . . , θt (and hence 1,D′θ1, . . . ,D′θt) are Q-linearly independent by the
same reasoning as in the proof of Theorem 1.1.

Now let a = (a1, . . . , at) ∈ Rt and ε > 0, as in the statement of our theorem.
Notice that for each 1 ≤ i ≤ t,

|(gD′ + 1)θi − ai − pi| = |g(D′θi) + (θi − ai)− pi| ,

for any integers p1, . . . , pt. Then, applying Theorem 3.1 to approximate the vector
(θ1 − a1, . . . , θt − at) by the fractional parts of the integer multiples of the vector
(D′θ1, . . . ,D′θt), we conclude that there exists g ∈ Z and p ∈ Zt such that

|g| ≤ 2`t(`−1)(t+ 1)3`−1(t!)2` ×

×
(

(wd)
3
2

√
2h(α)h(α−1)h(B)Eα(M,Γ1, . . . ,Γm)

)`2(t+1)−`
ε−`+1,(27)

where Eα(M,Γ1, . . . ,Γm) is as in (6), and

|g(D′θi) + (θi − ai)− pi| < ε ∀ 1 ≤ i ≤ t.

Letting x = (gD′ + 1)y, we see that (gD′ + 1)θi = Li(x) for each 1 ≤ i ≤ t and
|x| = |gD′ + 1||y|. Combining these observations with (25), (27) and (8) finishes
the proof of the theorem.
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Appendix A. Badly approximable matrices and related topics

Algebraic numbers give effective constructions of badly approximable matrices.
Systems of linear forms corresponding to badly approximable matrices admit the
best and optimal results for the Kronecker-type setting.

1. Badly approximable matrices. We consider an m× n matrix

Θ =

 θ1,1 ... θ1,m

... ... ...
θn,1 ... θn,m


with real entries θi,j and the corresponding system of linear forms

Li(xxx) =

m∑
j=1

θi,jxj , 1 ≤ i ≤ n, xxx = (x1, ..., xm).

Suppose that for any nonzero integer vector xxx one has

max
1≤i≤n

||Li(xxx)|| 6= 0.

Then, by Dirichlet theorem there exist infinitely many primitive integer vectors
xxx ∈ Zm such that

max
1≤i≤n

||Li(xxx)|| ≤
(

max
1≤j≤m

|xj |
)−m

n

.

A matrix Θ is defined to be badly approximable if there exists a positive constant
γ = γ(Θ) such that

(28) max
1≤i≤n

||Li(xxx)|| ≥ γ
(

max
1≤j≤m

|xj |
)−m

n

.

for all nonzero integer vectors xxx.
The set of badly approximable matrices has Lebesgue measure zero in Rm×n. A

classical result by Wolfgang M. Schmidt [29] (see also the book [30]) states that the
set of badly approximable matrices is a winning set in Rm×n and hence it has the
full Hausdorff dimension in Rm×n.

Here we discuss an algebraic construction of badly approximeble matrices which
should be well-known, however there is an interesting observation related to this
construction. In Schmidt’s 1969 paper [29] it is written that O. Perron [27] con-
structed badly approximable m×n matrices Θ with algebraic elements. If we look
carefully at [27], we see that Perron considered the cases m = 1 (simultaneous ap-
proximation to n numbers, Satz 1 from [27]) and the case n = 1 (one linear form
in m variables; this case is trivial as the result follows immediately from the lower
bound for the norm of an algebraic number, see formulas at the bottom of page
79 from [27]) only. For arbitrary values of m and n we found an example of an
algebraic badly approximable matrix in a survey paper by Rauzy [28] without any
further references. Here we give a general version of this example.

2. Algebraic matrices. Rauzy’s example generalized. Let K be a totally
real number field of degree d = n+m, meaning that all of its conjugates fields

K = K(1),K(2), . . . ,K(d)

are real. Let

(29) β1, ..., βd
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be a basis of K over Q. For each ξ ∈ K, let

ξ = ξ(1) ∈ K(1), . . . , ξ(d) ∈ K(d)

be its algebraic conjugates. We define the m× n matrix

B1 =

 β
(1)
1 ... β

(1)
m

... ... ...

β
(n)
1 ... β

(n)
m


and the n× n matrix

B2 =

 β
(1)
m+1 ... β

(1)
m+n

... ... ...

β
(n)
m+1 ... β

(n)
m+n

 .

Proposition 1. Suppose1 that detB2 6= 0 and define

Θ = B−1
2 B1.

Then θ is a real m× n badly approximable matrix.

We give a proof of Proposition 1 in the next subsection. It is a straightfor-
ward generalization of the proof from [28]. A standard transference argument (see
Chapter V from [3]) shows that the transposed n ×m matrix ΘT = BT1 (BT2 )−1 is
badly approximable, however this fact admits a nice algebraic proof which may be
of importance. We would like to give it in Subsection 3.

3. Proof of Proposition 1. Let

xxx =

 x1

...
xm

 , yyy =

 y1

...
yn

 , zzz =

 z1

...
zd

 =



x1

...
xm
y1

...
yn


=

(
xxx
yyy

)

be integer vectors. We consider linear forms

d∑
j=1

β
(ν)
j zj =

m∑
j=1

β
(ν)
j xj +

n∑
j=1

β
(ν)
m+jyj , 1 ≤ ν ≤ d.

From the definitions of matrices B1 and B2 we see that

d∑
j=1

β
(ν)
j zj =

n∑
j=1

β
(ν)
m+j(Lj(xxx) + yj), 1 ≤ ν ≤ n,

where Lj denote the linear forms corresponding to the matrix Θ,
Suppose that positive integer Aj is the leading coefficient for the canonical poly-

nomial for βj and A = A1 · · ·Ad. Then Aβ
(ν)
j is an algebraic integer for any j, ν

1given the basis (29) one may order elements in it to satisfy this assertion
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and so

A−d ≤
d∏
ν=1

∣∣∣∣∣∣
d∑
j=1

β
(ν)
j zj

∣∣∣∣∣∣ =

n∏
ν=1

∣∣∣∣∣∣
n∑
j=1

β
(ν)
m+j(Lj(xxx) + yj)

∣∣∣∣∣∣×
d∏

ν=n+1

∣∣∣∣∣∣
d∑
j=1

β
(ν)
j zj

∣∣∣∣∣∣
≤ κ max

1≤i≤n
||Li(xxx)||n · max

1≤j≤m
|xj |m

with

κ = κ(βββ) =

n∏
ν=1

n∑
j=1

|β(ν)
m+j | ×

d∏
ν=n+1

 m∑
j=1

|β(ν)
j |+

n∑
j=1

|β(ν)
m+j |

(
m∑
i=1

|θi,j |+
1

2

) .

Hence we obtain (28) with γ = A−d/nκ−1/n.

4. Algebraic proof of the dual statement. Now we prove that the matrix
ΘT is an n×m badly approximable matrix. Consider the dual basis ω1, ..., ωd ∈ K,
so

(30)

d∑
ν=1

β
(ν)
i ω

(ν)
j =

{
0, i 6= j,

1, i = j.

Let

B =

 β
(1)
1 ... β

(1)
d

... ... ...

β
(d)
1 ... β

(d)
d

 , Ω =

 ω
(1)
1 ... ω

(1)
d

... ... ...

ω
(d)
1 ... ω

(d)
d

 .

Equation (30) implies that

BTΩ = E,

or

(31) ΩBT = E.

We define a block d× d matrix

B0 =

(
BT1 Em×m
BT2 000m×n

)
,

where Em×m is the identity matrix and 000m×n is the zero matrix. Notice that the
first n columns of BT and B0 coincide. From (31) it is clear that

(32) Ω1 = ΩB0 =



1 ... 0 ω
(1)
1 ... ω

(1)
m

... ... ... ... ... ...

0 ... 1 ω
(n)
1 ... ω

(n)
m

0 ... 0 ω
(n+1)
1 ... ω

(n+1)
m

... ... ... ... ... ...

0 ... 0 ω
(d)
1 ... ω

(d)
m


.

For the inverse matrix B−1
0 we have

(33) B−1
0 =

(
000m×n (BT2 )−1

Em×m −ΘT

)
.

As Ω = Ω1B
−1
0 , from (33) for any integer vector zzz we have

Ωzzz = Ω

(
xxx
yyy

)
= Ω1

(
(BT2 )−1yyy
xxx−ΘTyyy

)
.
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The product

Π(yyy) =

d∏
ν=1

 d∑
j=1

ω
(ν)
j wj


is a symmetric function in each system ω

(1)
j , ..., ω

(d)
j , 1 ≤ j ≤ d. Hence it is a

rational number with a bounded denominator. So there exists an effectve positive
κ1 = κ1(Ω) such that

|Π(zzz)| ≥ κ1

for any nonzero integer vector zzz. From the structure of the matrix Ω1 (see (32)),
we have Π(zzz) =

n∏
ν=1

 n∑
j=1

ω
(ν)
j

(
xj −

n∑
i=1

θi,jyi

)
+

n∑
j=1

β̂i,jyj

× m∏
ν=1

 n∑
j=1

ω
(n+ν)
j

(
xj −

n∑
i=1

θi,jyi

) ,

where β̂i,j are the entries of the matrix (BT2 )−1. So

max
1≤j≤m

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

θi,jyi

∣∣∣∣∣
∣∣∣∣∣
m

· max
1≤i≤n

|yi|n ≥ γ1

for all nonzero yyy ∈ Zn with an effective γ1 = γ1(βββ) > 0 and the matrix ΘT is badly
approximable.

4. Additional thoughts on algebraic transference. In this section we show
that the statement about bad approximability of the transposed matrix ΘT may
be obtained directly by a Liouville-type argument.

4.1. Matrix relations. We again consider the dual bases β1, . . . , βd ω1, . . . , ωd
of the field K, so

d∑
ν=1

β
(ν)
i ω

(ν)
j = δij .

Then for the matrices

B =



β
(1)
1 · · · β

(1)
m β

(1)
m+1 · · · β

(1)
d

...
. . .

...
...

. . .
...

β
(n)
1 · · · β

(n)
m β

(n)
m+1 · · · β

(n)
d

β
(n+1)
1 · · · β

(n+1)
m β

(n+1)
m+1 · · · β

(n+1)
d

...
. . .

...
...

. . .
...

β
(d)
1 · · · β

(d)
m β

(d)
m+1 · · · β

(d)
d


=

(
B1 B2

B3 B4

)
,

W =



ω
(1)
1 · · · ω

(1)
m ω

(1)
m+1 · · · ω

(1)
d

...
. . .

...
...

. . .
...

ω
(n)
1 · · · ω

(n)
m ω

(n)
m+1 · · · ω

(n)
d

ω
(n+1)
1 · · · ω

(n+1)
m ω

(n+1)
m+1 · · · ω

(n+1)
d

...
. . .

...
...

. . .
...

ω
(d)
1 · · · ω

(d)
m ω

(d)
m+1 · · · ω

(d)
d


=

(
W1 W2

W3 W4

)

we have

BTW = WBT = Id.
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This gives eight relations on Bi and Wi. From these relations we need the following
ones:

W3B
T
1 +W4B

T
2 = 0m×n.

In the case when the matrices B2 and W3 are invertible, we have the following
equivalent relation:

(34) W−1
3 W4 = −BT1 (BT2 )−1.

This equality means that the first n rows of B are orthogonal to the last m rows
of W .

4.2. More on algebraic transference. Put Θ = B−1
2 B1, then W−1

3 W4 =
−ΘT (see (34)). Now the bad approximability of Θ and ΘT can be deduced from
a Liouville-type argument for B and W , as we have equalities

(35) B =

(
B1 B2

B3 B4

)
=

(
B2 0n×m

0m×n Im

)(
Θ In
B3 B4

)
,

(36) W =

(
W1 W2

W3 W4

)
=

(
In 0n×m

0m×n W3

)(
W1 W2

Im −ΘT

)
.

For both B and W , it follows from (35) and (36) that for all nonzero xxx ∈ Zm,
yyy ∈ Zn we have

‖Θxxx‖n|xxx|m �B 1,

‖ΘTyyy‖m|yyy|n �W 1.

In Section 3 we used the identity

W =

(
W1 W2

W3 W4

)
=

(
In W1

0m×n W3

)(
0n×m (BT2 )−1

Im −ΘT

)
.

In fact one may use

W =

(
W1 W2

W3 W4

)
=

(
∗ ∗

0m×n W3

)(
∗ ∗
Im W−1

3 W4

)
,

with the same result. Identities (35) and (36) may be extended to

(37) B =

(
B1 B2

B3 B4

)
=

(
B2 0n×m
B4 B3 −B4Θ

)(
Θ In
Im 0m×n

)
,

(38) W =

(
W1 W2

W3 W4

)
=

(
W2 +W1ΘT W1

0m×n W3

)(
0n×m In
Im −ΘT

)
.

5. Example. Let α be a totally real algebraic number of degree 4. Then 1, α, α2, α3

form a basis of the totally real field K = Q(α). Let α′ 6= α be a conjugate of α.
Then we may take

BT2 =

(
1 1
α α′

)
, BT1 =

(
α2 α′2

α3 α′3

)
= BT2 ×

(
α2 0
0 α′2

)
.

We see that the matrix

M =
1

α′ − α

(
α2 α′2

α3 α′3

) (
α′ −1
−α 1

)
=

(
−αα′ α+ α′

−αα′(α+ α′) α2 + α′2 + αα′

)
is badly approximable.
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Now we deal with a particular example. Let us consider α =
√

2 +
√

2 that is a
root of the irreducible polynomial (x2 − 2)2 − 2. Its conjugates are

±
√

2±
√

2.

Here we discuss two choices of α′.
The first choice is α′ = −

√
2 +
√

2 . In this case we obtain the matrix

M =

(
2 +
√

2 0

0 2 +
√

2

)
.

The corresponding system of two linear forms splits into two independent forms

(2 +
√

2)x1 − y1, (2 +
√

2)x2 − y2

which come from a single quadratic irrationality, and so it is badly approximable
trivially.

The second choice is α′ =
√

2−
√

2 . In this case we obtain a non-trivial
badly approximable matrix

M =

(
−
√

2
√

4 + 2
√

2

−2
√

2 +
√

2 4 +
√

2

)
.

6. A result on existence of a basis in a subspace. Analyzing the examples
of badly approximable matrices corresponding to the totally real fields of degree
4, we found an interesting property of bases of algebraic fields which form vectors
from certain subspaces. Here we formulate an easy theorem which deals with a
two-dimensional subspace of a four-dimensional space. It is very likely that a result
like this theorem can be obtained in a more general situation.

We consider the case when θ is a real algebraic number of degree 4. We deal

with the algebraic field K = Q(θ) and the vector space K = K4. Let L be a

two-dimensional linear subspace of K.

Theorem. The following two statements are equivalent:

(A) ∀xxx ∈L ∃zzz ∈ Z4 \ {000} such that xxx ⊥ zzz
(B) ∃zzz ∈ Z4 \ {000} such that ∀xxx ∈L : xxx ⊥ zzz.

This theorem has an equivalent formulation: given L, either there exists an integer

vector zzz ∈ Z4\{000} such that zzz ⊥L or there exists a vector ωωω = (ω0, ω1, ω2, ω3) ∈K
such that the numbers ω0, ω1, ω2, ω3 form a basis for the field K.

Proof. We may suppose that the two-dimensional subspace L has a basis ααα,βββ

written in coordinates in K = K4 as

ααα = (1, 0, α1, α2), βββ = (0, 1, β1, β2), αj , βj ∈ K.

We consider several cases.
Case 1. Either numbers 1, α1, α2 or numbers 1, β1, β2 are linearly independent

over Z. Suppose that 1, α1, α2 are independent, and consider the vector

ααα+ ξβββ = (1, ξ, α1 + β1ξ, α1 + β2ξ) ∈L.
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We consider K as a vector space over Q. We fix a basis in this vector space and
suppose that that with respect to this basis elements αj , ξ have coordinates

αj = (a0,j , a1,j , a2,j , a3,j), j = 1, 2, ξ = (x0, x1, x2, x3).

Let the operator of multiplication by βj in K be defined by

ξ = (x0, x1, x2, x3) 7→ (L0,j(ξ), L1,j(ξ), L2,j(ξ), L3,j(ξ)),

where Lj(ξ) are homogeneous linear forms in x0, x1, x2, x3. We consider the deter-
minant

∆(ξ) =

∣∣∣∣∣∣∣∣
1 x0 a0,1 + L0,1(ξ) a0,2 + L0,2(ξ)
0 x1 a1,1 + L1,1(ξ) a1,2 + L1,2(ξ)
0 x2 a2,1 + L2,1(ξ) a2,2 + L2,2(ξ)
0 x2 a3,1 + L3,1(ξ) a3,2 + L3,2(ξ)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
x1 a1,1 + L1,1(ξ) a1,2 + L1,2(ξ)
x2 a2,1 + L2,1(ξ) a2,2 + L2,2(ξ)
x2 a3,1 + L3,1(ξ) a3,2 + L3,2(ξ)

∣∣∣∣∣∣ .
As 1, α1, α2 are independent over Z, the triples

a1,1, a2,1, a3,1 and a1,2, a2,2, a3,2

are not proportional. So the linear part∣∣∣∣∣∣
x1 a1,1 a1,2

x2 a2,1 a2,2

x2 a3,1 a3,2

∣∣∣∣∣∣
of the function ∆(ξ) is not equal to zero identically. This means that there exists

ξ0 with ∆(ξ0) 6= 0. So the coordinates of the vector ααα+ξ0βββ ∈L form a basis for K.
Case 2. Both triples 1, α1, α2 and 1, β1, β2 consist of numbers linearly dependent

over Z. We consider several sub-cases.
Case 2.1. There exists j such that αj , βj are both rational. Suppose that j = 1,

without loss of generality. Then α1 = A
Q , β1 = B

Q , gcd(A,B,Q) = 1 and the vector

nnn = (A,B,−Q, 0) ∈ Z4 \ {000} is orthogonal to both, ααα and βββ. So nnn ⊥L.
Case 2.2. Either α1, α2 or β1, β2 are both rational. If α1, α2 are rational,

the set {zzz ∈ Z4 : zzz ⊥ ααα} forms a three-dimensional lattice Λ3. As 1, β1, β2 are
dependent, the set {zzz ∈ Z4 : zzz ⊥ βββ} forms a two-dimensional lattice Λ2. It is clear
that the intersection Λ3 ∩Λ2 contains a nonzero integer vector www and this vector is

orthogonal to the whole subspace L.
Case 2.3. Either α1, β2 or α2, β1 are both irrational. Without loss of generality

we suppose that α1, β2 6∈ Q. Then there exist rationals a, b, c, d ∈ Q such that

ααα = (1, 0, α, a+ bα), βββ = (0, 1, c+ dβ, β),

with α, β ∈ K \Q.
Case 2.3.1. bd = 1. Here we consider the vector

www = (−a, bc,−b, 1) ∈ Z4.

It is clear that www ⊥ ααα,www ⊥ βββ and so www ⊥L.
Case 2.3.2. bd 6= 1. Then consider four numbers

(39) 1, ξ, α+ (c+ dβ)ξ, a+ bα+ βξ

which are coordinates of the vector ααα+ ξβββ ∈L. These numbers form a basis of K
simultaneously with the numbers

(40) 1, ξ, α, βξ.
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Case 2.3.2.1. Both irrational numbers α, β ∈ K are algebraic numbers of
degree 2. Then we may suppose that α =

√
p, β =

√
q with squarefree p and q.

Case 2.3.2.1.1. p = q. Then take ξ ∈ K such that K = (Q(
√
q))(ξ). Then

numbers (40) form a basis for K over Q. So numbers (39) form a basis for K also.
Case 2.3.2.1.2. p 6= q. Then the numbers

1,
√
p,
√
q,
√
pq

form a basis of K over Q. Then numbers (40) form a basis for K over Q with
ξ =
√
p+
√
q.

Case 2.3.2.2. At least one of the irrational numbers α, β ∈ K has degree 4.
Without loss of generality we suppose that deg β = 4. Then 1, β, β2, β3 is a basis
for K. Suppose that

α = a0 + a1β + a2β
2 + a3β

3, ξ = x0 + x1β + x2β
2 + x3β

3

with rational aj , xj . Let

z4 +B3z
3 +B2z

2 +B1z +B0, Bj ∈ Q
be the minimal polynomial for β. Then

βξ = −B0x3 + (x0 −B1x3)β + (x1 −B2x3)β2 + (x2 −B3x3)β3.

Consider the determinant

D(ξ) =

∣∣∣∣∣∣∣∣
1 x0 a0 −B0x3

0 x1 a1 x0 −B1x3

0 x2 a2 x1 −B2x3

0 x3 a3 x2 −B3x3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
x1 a1 x0 −B1x3

x2 a2 x1 −B2x3

x3 a3 x2 −B3x3

∣∣∣∣∣∣ .
As α 6∈ Q, at least one of the monomials −a1x

2
2,−a2x0x3,−a3x

2
1 of D(ξ) does not

vanish. So there exists ξ0 ∈ K such that D(ξ0) 6= 0. Then numbers (40) form a
basis for K. �
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