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COMPOSITION OF IRREDUCIBLE MORPHISMS IN COILS

CLAUDIA CHAIO AND PIOTR MALICKI

Abstract. We study the non-zero composition of n irreducible morphisms between
modules lying in coils in relation with the powers of the radical of their module
category.

1. Introduction and the main results

Throughout the paper, by an algebra we mean an artin algebra over a fixed com-

mutative artin ring R. We denote by modA the category of finitely generated right

A-modules and by indA a full subcategory of modA consisting of one representative

of each isomorphism class of indecomposable A-modules.

We denote the radical of the module category modA by radA. We recall that, for

X, Y ∈ indA the ideal radA(X, Y ) is the set of all non-isomorphisms between X and

Y . Inductively, the powers of radA(X, Y ) are defined. By rad∞A (X, Y ) we denote the

intersection of all powers radiA(X, Y ) of radA(X, Y ) with i ≥ 1. Moreover, we denote

by ΓA the Auslander-Reiten quiver of A, and by τA and τ−1
A the Auslander-Reiten

translations DTr and TrD, respectively. Recall that ΓA is a valued translation quiver

defined as follows: the vertices of ΓA are the isomorphism classes [X] of modules X in

indA, we put an arrow from [X]→ [Y ] in ΓA if there is an irreducible morphism from

X to Y in modA. The valuation (dXY , d
′
XY ) of an arrow [X] → [Y ] in ΓA is defined

such that dXY is the multiplicity of Y in the codomain of the minimal left almost split

morphism for X and d′XY is the multiplicity of X in the domain of the minimal right

almost split morphism for Y . We shall not distinguish between an indecomposable A-

module and the vertex of ΓA corresponding to it. The valuation (1, 1) of an arrow in

ΓA will be omitted and we will say that a component Γ of ΓA has trivial valuation

if all arrows in Γ have valuation (1, 1). By a component of ΓA we mean a connected

component of the quiver ΓA. In general, the Auslander-Reiten quiver ΓA describes only

the quotient category modA/rad∞A .

In the representation theory of algebras, a prominent role is played by the compo-

nents called stable tubes, that is, the translation quivers ZA∞/(τ r) for r ≥ 1 consisting

of τ -periodic vertices of period r. It follows from Zhang’s theorem [27] that an infinite

2010 Mathematics Subject Classification. 16G70, 16G20, 16E10.
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2 C. CHAIO AND P. MALICKI

Auslander-Reiten component C containing an oriented cycle is stable if and only if C is

a stable tube. More generally, by Liu’s theorem [19] an infinite Auslander-Reiten com-

ponent C containing an oriented cycle is left stable (respectively, right stable) if and

only if C is a ray tube (respectively, coray tube), that is, can be obtained from a stable

tube by a finite number of ray (respectively, coray) insertions in the sense of D’Este

and Ringel [16]. In [2, 3] Assem and Skowroński introduced and investigated a more

general type of translation quivers called coils. We recall that a coil is a translation

quiver obtained from one stable tube by an iterated application of admissible opera-

tions of types (ad 1)-(ad 3) and their dual (ad 1∗)-(ad 3∗) (see Section 3 for details).

We mention that the coils have played a fundamental role in the representation theory

of strongly simply connected algebras of polynomial growth established in [25]. For

example, it was shown in [25] that a strongly simply connected algebra Λ over an alge-

braically closed field K is of polynomial growth if and only if every infinite component

of ΓΛ containing an oriented cycle is a standard coil. Let us mention that the class of

coil algebras, which are the tame algebras with a separating family of coils, have played

a fundamental role in the study of tame strongly simply connected algebras [8].

There is a close relationship between irreducible morphisms and the powers of the

radical of its module category. In [6] Bautista proved that a morphism f : X →
Y between two indecomposable modules X and Y in a module category modA is

irreducible if and only if f ∈ radA(X, Y ) \ rad2
A(X, Y ). This was generalized by Igusa

and Todorov [17, Theorem 13.3] who proved that, for a sectional path

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

of irreducible morphisms between indecomposable modules in modA, we have

fn . . . f2f1 ∈ radnA(X1, Xn+1) \ radn+1
A (X1, Xn+1).

In [18, 19] Liu introduced the notions of left and right degrees of irreducible morphisms

of modules (see 2.2) and showed their importance for describing the shapes of the

components of the Auslander-Reiten quivers of algebras of infinite representation type.

An important research direction towards understanding the structure of module

categories is the study of compositions of irreducible morphisms between indecompos-

able modules. Recently, there has been many new results related to the subject of the

composition of irreducible morphisms and their relation with the power of the radical

of their module category. Most of them involving the concept of degree. For instance,

see [9, 10, 11, 13].
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In this paper we are interested in the non-zero composition of irreducible morphisms

between indecomposable modules lying in infinite Auslander-Reiten components con-

taining oriented cycles called coils in relation with the powers of the radical of their

module category.

The main result of this article is the following theorem.

Theorem 1.1. Let A be an artin algebra and C a coil in ΓA. Let

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

be a path of irreducible morphisms with Xi ∈ C for i = 1, . . . , n + 1. Then, fn . . . f1 ∈
radn+1

A (X1, Xn+1) if and only if fn . . . f1 ∈ rad∞A (X1, Xn+1).

Recall that an algebra A is called selfinjective if AA is an injective module, or

equivalently, the projective modules in modA are injective. As a consequence of The-

orem 1.1 (see Corollary 4.12 and Remarks 4.13) we obtain the following fact which is

a generalization of [13, Theorem A].

Corollary 1.2. Let A be a selfinjective artin algebra and C an infinite component of

ΓA containing an oriented cycle. Let

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

be a path of irreducible morphisms with Xi ∈ C for i = 1, . . . , n + 1. Then, fn . . . f1 ∈
radn+1

A (X1, Xn+1) if and only if fn . . . f1 ∈ rad∞A (X1, Xn+1).

For basic background on representation theory of algebras we refer to [1], [5] and

[26].

2. Preliminaries

2.1. Let A be an algebra, X, Y ∈ indA, and f : X → Y be an irreducible morphism in

modA. If X is not injective, we shall denote by ε(X) the almost split sequence starting

at X and by α(X) the number of indecomposable direct summands of the middle term

of ε(X).

Dually, if X is not projective, we shall denote by ε′(X) the almost split sequence

ending in X and by α′(X) the number of indecomposable direct summands of the

middle term of ε′(X).

2.2. Let A be an algebra and let f : X → Y be an irreducible morphism in modA,

with X or Y indecomposable. Following Liu [18], the left degree dl(f) of f is infinite, if

for each integer n ≥ 1, each module Z ∈ modA and each morphism g ∈ radnA(Z,X) \
radn+1

A (Z,X) we have that fg /∈ radn+2
A (Z, Y ). Otherwise, the left degree of f is the
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smallest positive integer m such that there is an A-module Z and a morphism g ∈
radmA (Z,X) \ radm+1

A (Z,X) such that fg ∈ radm+2
A (Z, Y ).

The right degree dr(f) of an irreducible morphism f is dually defined.

For the convenience of the reader we state below [18, Lemma 1.2], since we shall

refer to it frequently throughout this paper.

Lemma 2.3. ([18, Lemma 1.2]). Let m ≥ 1 be an integer and let p : X → Y and

f : Y → Z be morphisms in modA. Suppose that f is irreducible and Z indecomposable.

If p /∈ radm+1
A (X, Y ) and fp ∈ radm+2

A (X,Z), then

(i) Z is not projective, and

(ii) if 0 −→ τAZ
(g,g′)t−→ Y ⊕ Y ′ (f,f ′)−→ Z −→ 0 is an almost split sequence, then there

exists a morphism q : X → τAZ in modA such that q /∈ radmA (X, τAZ), p + gq ∈
radm+1

A (X, Y ) and g′q ∈ radm+1
A (X, Y ′).

2.4. Let A be an algebra. By a path in ΓA we mean a sequence of irreducible morphisms

between indecomposable modules Y1 → Y2 → · · · → Yn−1 → Yn, and by a non-zero

path (zero-path) we mean that the composition of the irreducible morphisms of the

path does not vanish (vanishes).

In [6], Bautista defined the notion of sectional paths. A path Y1 → Y2 → · · · →
Yn−1 → Yn in ΓA is said to be sectional if for each i = 2, . . . , n − 1 we have that

Yi+1 6' τA
−1Yi−1.

Furthermore, in [17] Igusa and Todorov proved that if

X0
f1−−−→ X1

f2−−−→ · · · fn−1−−−→ Xn−1
fn−−−→ Xn

is a sectional path then the composition fn . . . f1 : X0 → Xn is such that fn . . . f1 ∈
radnA(X0, Xn)\radn+1

A (X0, Xn).

By a cycle in ΓA we mean a sequence of irreducible morphisms between indecom-

posable modules of the form Y1 → Y2 → · · · → Yn−1 → Yn → Y1.

2.5. We recall the definition of depth of a morphism given in [12] for any artin algebra

A. Let f : M → N be a morphism in modA. We say that the depth of f , denoted by

dp(f), is infinite in case f ∈ rad∞A (M,N); otherwise, it is the integer n ≥ 0 for which

f ∈ radnA(M,N) but f /∈ radn+1
A (M,N).

2.6. For the convenience of the reader we state [10, Lemma 2.1] and [10, Proposition

2.2] which we will use all through this paper. In fact, taking into account these results

it is not hard to see that it is enough to study the irreducible morphisms satisfying the

mesh relations of the components under consideration in order to have information on

the irreducible morphisms of modA.
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Lemma 2.7. ([10, Lemma 2.1]) Let A be an artin algebra and Γ be a component of ΓA

with trivial valuation. Let hi : Xi → Xi+1 be an irreducible morphism with Xi ∈ Γ, for

i = 1, . . . , n. Then, for any choice of irreducible morphisms fi : Xi → Xi+1 we have

that hn . . . h1 = δfn . . . f1 + µ with δ ∈ Aut(Xn+1) and µ ∈ radn+1
A (X1, Xn+1).

Let f : X → Y be an irreducible morphism between indecomposable modules in

modA. We set

IrrA(X, Y ) = radA(X, Y )/rad2
A(X, Y ).

We recall that IrrA(X, Y ) is a kX − kY−bimodule where

kX = EndA(X)/radA(X,X) and kY = EndA(Y )/radA(Y, Y ).

Moreover, kZ is a division ring whenever Z is an indecomposable A-module.

Proposition 2.8. ([10, Proposition 2.2]) Let A be an artin algebra and Xi ∈ indA for

1 ≤ i ≤ n + 1. Assume that dim
kXi

IrrA(Xi, Xi+1) = dim
kXi+1

IrrA(Xi, Xi+1) = 1, for

i = 1, . . . , n. Then, the following conditions are equivalent:

(i) There are irreducible morphisms fi : Xi → Xi+1 in modA, for i = 1, . . . , n with

fn . . . f1 /∈ radn+1
A (X1, Xn+1).

(ii) Given any irreducible morphisms hi : Xi → Xi+1 in modA, for i = 1, . . . , n, then

hn . . . h1 /∈ radn+1
A (X1, Xn+1).

3. Coils

We shall recall some basic facts on coils introduced by Assem and Skowroński in [2]

and [3].

3.1. A translation quiver Γ is called a tube if it contains a cyclical path and if its

underlying topological space is homeomorphic to S1 × R+ (where S1 is the unit circle

and R+ the set of non-negative real numbers). Tubes containing neither projective

vertices nor injective vertices are called stable. The rank of a stable tube T is the least

positive integer r such that τ rX = X for all X in T .

3.2. A coil is a translation quiver constructed inductively from a stable tube by a se-

quence of operations called admissible. Our first task is thus to define the latter. Let

(Γ, τ) be a translation quiver with trivial valuations. For a vertex X in Γ, called the

pivot, one defines three operations modifying (Γ, τ) to a new translation quiver (Γ′, τ ′)

depending on the shape of paths in Γ starting from X.

(ad 1) Suppose that Γ admits an infinite sectional path

X = X0 −→ X1 −→ X2 −→ · · ·
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starting at X, and assume that every sectional path in Γ starting at X is a subpath of

the above path. For t ≥ 1, let Γt be the following translation quiver, isomorphic to the

Auslander-Reiten quiver of the full t× t lower triangular matrix algebra,

•

!!

•

!!

• •
!!

Yt

•

!!

==

•

==

•
!!

==

Yt−1

==

•

==

•
!!

Yt−2

==

•
!!

==

Y3

•
!!

==

Y2

==

Y1

==

We then let Γ′ be the translation quiver having as vertices those of Γ, those of Γt,

additional vertices Zij and X ′i (where i ≥ 0, 1 ≤ j ≤ t) and having arrows as in the

figure below

•

  

• Yt

  

X′0

  

τ−1X0

  
•

>>

  

Z0t

>>

  

X′1

>>

  

τ−1X1

  

  

Y2

  

Z1t

>>

  

X′2

>>

  
Y=Y1

>>

  

Z02

  

Z2t

>>

  
Z01

  

>>

Z12

  
X=X0

>>

  

Z11

  

>>

Z22

  
X1

  

>>

Z21

  

>>

X2

  

>>

The translation τ ′ of Γ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi1 =

Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, Z01 is projective, τ ′X ′0 = Yt, τ
′X ′i = Zi−1,t if

i ≥ 1, τ ′(τ−1Xi) = X ′i provided Xi is not injective in Γ, otherwise X ′i is injective

in Γ′. For the remaining vertices of Γ′, τ ′ coincides with the translation of Γ, or Γt,

respectively. If t = 0, the new translation quiver Γ′ is obtained from Γ by inserting

only the sectional path consisting of the vertices X ′i, i ≥ 0.
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(ad 2) Suppose that Γ admits two sectional paths starting at X, one infinite and

the other finite with at least one arrow

Yt ←− · · · ←− Y2 ←− Y1 ←− X = X0 −→ X1 −→ X2 −→ · · ·

such that any sectional path starting at X is a subpath of one of these paths and X0

is injective. Then Γ′ is the translation quiver having as vertices those of Γ, additional

vertices denoted by X ′0, Zij, X
′
i (where i ≥ 1, 1 ≤ j ≤ t), and having arrows as in the

figure below

Yt

!!

X′1

!!

τ−1X1

!!
Z1t

==

!!

X′2

==

!!

τ−1X2

!!
Y2

!!

Z2t

==

!!

X′3

==

!!
Y1

==

!!

Z12

!!

Z3t

==

!!
X=X0

==

!!

// X′0
// Z11

!!

==

Z22

!!
X1

==

!!

Z21

!!

==

Z32

!!
X2

!!

==

Z31

!!

==

X3

!!

==

The translation τ ′ of Γ′ is defined as follows: X ′0 is projective-injective, τ ′Zij = Zi−1,j−1

if i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z1j = Yj−1 if j ≥ 2, τ ′X ′i = Zi−1,t if i ≥ 2,

τ ′X ′1 = Yt, τ
′(τ−1Xi) = X ′i provided Xi is not injective in Γ, otherwise X ′i is injective

in Γ′. For the remaining vertices of Γ′, τ ′ coincides with the translation τ of Γ.

(ad 3) Suppose that Γ admits a full translation subquiver

Y1
// Y2

// · · · // Yt

X = X0
//

OO

X1
//

OO

· · · // Xt−1
//

OO

Xt
// · · ·

t ≥ 2, Xt−1 is injective, the paths Y1 −→ Y2 −→ · · · −→ Yt, X0 −→ X1 −→ X2 −→
· · · are sectional and every sectional path in Γ starting at X0 (respectively, at Y1) is

a subpath of one of the paths X0 −→ Y1 or X0 −→ X1 −→ X2 −→ · · · (respectively, of

Y1 −→ Y2 −→ · · · −→ Yt). Moreover, consider the subquiver of Γ obtained by deleting

the arrows Yi → τ−Yi−1, 2 ≤ i ≤ t, and assume that its connected component Γ∗

containing the vertex X does not contain any of the vertices τ−Yi−1, 2 ≤ i ≤ t. Then



8 C. CHAIO AND P. MALICKI

Γ′ is the translation quiver having as vertices those vertices of Γ∗, additional vertices

denoted by X ′i, Zkj (where i ≥ 0, 1 ≤ j ≤ t, k ≥ j), and having arrows as in the figure

below for t being an odd number

Y1

!!

X′1

!!

Y3

!!

Yt

!!

X′t

!!

τ−1Xt

!!
X=X0

==

!!

// X′0
// Z11

!!

==

// Y2 // Z22

!!

==

// X′2
// Z33 •

==

!!

// X′t−1
// Ztt

!!

==

X′t+1

!!

==

X1

!!

==

Z21

!!

==

Z32

==

Zt,t−1

!!

==

Zt+1,t

!!

==

X2

!!

==

Z31

==

Zt+1,t−1

!!

==

X3

==

Zt1

!!
Xt

!!

==

Zt+1,1

!!
Xt+1

!!

==

For t being an even number, we have to exchange Yt with X ′t−1 in the figure above (see

Example 6.2 for t = 4). The translation τ ′ of Γ′ is defined as follows: X ′0 is projective,

τ ′Zij = Zi−1,j−1 if i ≥ 2, 2 ≤ j ≤ t, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′X ′i = Yi if 1 ≤ i ≤ t,

τ ′X ′i = Zi−1,t if i ≥ t + 1, τ ′Yj = X ′j−2 if 2 ≤ j ≤ t, τ ′(τ−1Xi) = X ′i, if i ≥ t provided

Xi is not injective in Γ, otherwise X ′i is injective in Γ′. In both cases, X ′t−1 is injective.

For the remaining vertices of Γ′, τ ′ coincides with the translation τ of Γ.

Finally, together with each of the admissible operations (ad 1), (ad 2) and (ad 3),

we consider its dual, denoted by (ad 1∗), (ad 2∗) and (ad 3∗). These six operations are

called the admissible operations.

Clearly, the admissible operations can be defined as operations on Auslander-Reiten

components rather than on translation quivers. The definitions are done in an obvious

manner (see [3, Section 2] or [22, Section 3] in a more general context).

Definition 3.3. A connected translation quiver Γ is said to be a coil if Γ can be

obtained from a stable tube T by an iterated application of admissible operations

(ad 1), (ad 1∗), (ad 2), (ad 2∗), (ad 3) or (ad 3∗).

Observe that any stable tube is trivially a coil. A tube (in the sense of [16]) is a coil

having the property that each admissible operation in the sequence defining it is of

the form (ad 1) or (ad 1∗). If we apply only operations of type (ad 1) (respectively,

of type (ad 1∗)) then such a coil is called a ray tube (respectively, a coray tube) (see
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[19, Section 1] and [26, (4.6)]). Observe that a coil without injective (respectively,

projective) vertices is a ray tube (respectively, a coray tube). A quasi-tube (in the

sense of [24]) is a coil having the property that each of the admissible operations in the

sequence defining it is of type (ad 1), (ad 1∗), (ad 2) or (ad 2∗).

3.4. Let A be an algebra. A component Γ of ΓA is called coherent if the following two

conditions are satisfied:

(C1) For each projective module P in Γ there is an infinite sectional path

P = X1 −→ X2 −→ · · · −→ Xi −→ Xi+1 −→ Xi+2 −→ · · ·

(C2) For each injective module I in Γ there is an infinite sectional path

· · · −→ Yj+2 −→ Yj+1 −→ Yj −→ · · · −→ Y2 −→ Y1 = I.

Further, a component Γ of ΓA is called almost cyclic if all but finitely many modules of

Γ lie on oriented cycles in ΓA, so contained entirely in Γ. Note that in [14] and [15], the

authors studied the finiteness of degrees of irreducible morphisms between indecom-

posable modules lying in (generalized standard) coherent almost cyclic components of

ΓA.

We note that any coil Γ is a coherent translation quiver with trivial valuations and

its cyclic part cΓ (obtained from Γ by removing all acyclic vertices and the arrows

attached to them) is infinite and cofinite in Γ, and so Γ is almost cyclic.

Let Γ be a connected component of ΓA with trivial valuations. We denote by |Γ| the

geometric realization of Γ, as defined in [7, (4.1)], and by π1(|Γ|) the fundamental group

π1(|Γ|, X) of |Γ| at a fixed vertex X of Γ. Then we have the following characterization

of components of ΓA which are coils proved in [21, Corollary D].

Proposition 3.5. Let A be an artin algebra and Γ a connected component of ΓA. Then

Γ is a coil if and only if Γ is coherent, almost cyclic, and π1(|Γ|) is an infinite cyclic

group.

We refer also to [23] for the structure of indecomposable modules lying in (general-

ized) standard coils.

3.6. It follows from the definition that coils share many properties with tubes. For

instance, all but finitely many vertices in a coil belong to a cyclical path. A vertex

X in a coil Γ is said to be belong to the mouth of Γ if X is the starting or ending,

vertex of a mesh in Γ with a unique middle term. Also, Γ contains a (maximal) tube

as a cofinite full translation subquiver. Arrows of this tube either point to the mouth

or point to infinity. An infinite sectional path in Γ

X = X1
α1−−−→ X2

α2−−−→ · · · αi−1−−−→ Xi
αi−−−→ Xi+1

αi+1−−−→ · · ·
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is called a ray starting at X if there exists i0 ≥ 1 such that, for all i ≥ i0, the arrow αi

points to infinity. Dually an infinite sectional path in Γ

· · · βj+1−−−→ Xj+1
βj−−−→ Xj

βj−1−−−→ · · · β2−−−→ X2
β1−−−→ X1 = X

is called a coray ending with X if there exists j0 ≥ 1 such that, for all j ≥ j0, the arrow

βj points to the mouth.

3.7. In the next considerations we need the following notions. For an admissible op-

eration (ad 1) (respectively, (ad 2) and (ad 3)), we consider the infinite set of vertices

R1
r = {Xi, X

′
i, Zij | i ≥ 0, 1 ≤ j ≤ t} (respectively, R2

r = {Xi, X
′
i, Yj, Zi+1,j | i ≥

0, 1 ≤ j ≤ t} and R3
r = {Xi, X

′
i, Yj, Zkj | i ≥ 0, 1 ≤ j ≤ t, k ≥ j}) (see definitions of

admissible operations). Then R1
r (respectively, R2

r and R3
r) is called the right rectangle

determined by (ad 1) (respectively, (ad 2) and (ad 3)). One defines dually the left rec-

tangle R1
l (respectively, R2

l and R3
l ) determined by (ad 1∗) (respectively, (ad 2∗) and

(ad 3∗)).

4. The results

We start this section recalling the definition of compositions of morphisms behaving

well from [13].

Definition 4.1. We say that a composition ϕm . . . ϕ1 of morphisms (respectively, irre-

ducible morphisms) ϕ
j
, for j = 1, . . . ,m, in modA (respectively, in a component Γ of

ΓA) behaves well whenever dp(ϕ
j
) = rj with rj ≥ 0 then dp(ϕm . . . ϕ1) = rm + · · ·+ r1.

Next, we observe the following useful fact.

Remark 4.2. The composition of irreducible morphisms involving only irreducible

morphisms with infinite left (right) degree behaves well. In fact, if the composition of

n irreducible morphisms between indecomposable modules lies in radn+1
A then the path

contains both an arrow of finite left degree and an arrow of finite right degree, see [18,

p. 41].

As an immediate consequence of the proof of [15, Theorem A] and the fact that

coils do not contain exceptional configurations of modules (see [15] for the definition)

we obtain the following theorem.

Theorem 4.3. Let A be an artin algebra and C a coil in ΓA. Let f : X → Y be

an irreducible morphism in modA with X, Y ∈ C , and n a positive integer. Then, the

following equivalences hold.
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(i) dl(f) = n if and only if C admits a mesh-complete full subquiver of the form

τAY1

f1   

Y1

  
τAY2

f2   

g1

>>

Y2

τAY3

g2

>>

Yn−1

  
τAYn

fn   

gn−1

>>

Y∼=Yn

X
f

>>

where τAY1
f1−−−→ τAY2

f2−−−→ · · · fn−1−−−→ τAYn
fn−−−→ X is a sectional path of

irreducible morphisms in modA such that ffn . . . f1 = 0 and α(Y1) = 1. Moreover,

dl(gi) = i for i = 1, . . . , n− 1.

(ii) dr(f) = n if and only if C admits a mesh-complete full subquiver of the form

τAY1

g1   

Y1

τAY2

g2   

>>

Y2

f1

>>

τAYn−1

gn−1   

Y3

f2

>>

τAYn∼=X

f   

>>

Yn

Y
fn

>>

where Y
fn−−−→ Yn

fn−1−−−→ · · · f2−−−→ Y2
f1−−−→ Y1 is a sectional path of irreducible

morphisms in modA such that f1f2 . . . fnf = 0 and α′(τAY1) = 1. Moreover,

dr(gi) = i for i = 1, . . . , n− 1.

Lemma 4.4. Let A be an artin algebra and C a coil in ΓA. Consider the configuration

of almost split sequences in C as follows:
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"" "" "" ""
"" ""

τAX

<<

""

X

<<

""

// P //

<<

""

// //

<<

""

// I // τ−nA X

<<

""

τ−n−1
A X

<<

""
<< <<

"" ""

<< <<

""

<<

""

<<

""

<< <<

""

<<

""

<<

<< <<

""

<<

""

<<

""

<<

""

<<

<<

""

<<

<<

where P is projective, I is injective and n is a positive odd integer. Then, the following

statements hold.

(i) All non-zero compositions of irreducible morphisms from X to τ−nA X satisfying

the mesh relations in C behave well.

(ii) All non-zero compositions of irreducible morphisms from τAX to τ−n−1
A X satisfy-

ing the mesh relations in C behave well.

Proof. (i) Using the additive function we can see that there are only two morphisms in

C from X to τ−nA X, the ones involving the almost split sequences with three indecom-

posable middle terms. We observe that, by construction, the other paths in C from X

to τ−nA X, vanish. Hence, it is enough to consider any two different paths modulo mesh.

We illustrate the situation of the possible paths in C with the following diagram of

almost split sequences with three indecomposable middle terms:

τnAM

  

τn−1
A M

g4

  

τn−2
A M

  

M

  
X

>>

f1   

g1 // P
g2 // τ−1

A X

g3
>>

f3   

// τ−1
A P // τ−2

A X

>>

f5   

g5 // τ−2
A P

g6 // τ−3
A X τ−n+1

A X

>>

f2n−1   

g2n−1 // I
g2n // τ−nA X

τnAN

f2

>>

τn−1
A N

f4

>>

τn−2
A N

f6

>>

N

f2n

>>

Without loss of generality, we can consider the following two paths

(1) X
g1−→ P

g2−→ τ−1
A X

g3−→ τn−1
A M

g4−→ τ−2
A X

g5−→ τ−2
A P

g6−→

τ−3
A X −→ · · · −→ τ−n+1

A X
g2n−1−→ I

g2n−→ τ−nA X
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and

(2) X
f1−→ τnAN

f2−→ τ−1
A X

f3−→ τn−1
A N

f4−→ τ−2
A X

f5−→ τn−2
A N

f6−→

τ−3
A X −→ · · · −→ τ−n+1

A X
f2n−1−→ N

f2n−→ τ−nA X

which are clearly different modulo mesh.

We start analyzing the first path. Assume that g2n . . . g1 ∈ rad2n+1
A (X, τ−nA X). By

[15, Lemma 3.1], we know that dr(g1) = ∞ and dl(g2n) = ∞. Then, the fact that

g2n . . . g1 ∈ rad2n+1
A (X, τ−nA X) implies that g2n−1 . . . g2 ∈ rad2n−1

A (P, I).

Now, assume that dp(g2n−2 . . . g2) = 2n− 3. Since

0 −→ τAI
t2n−2−→ τ−n+1

A X
g2n−1−→ I −→ 0

is an almost split sequence, then by Lemma 2.3, there is a morphism ϕ : P → τAI in

modA such that ϕ 6∈ rad2n−3
A (P, τAI). Using the additive function and the fact that the

number of almost split sequences with three indecomposable middle terms are odd, is

not hard to see that any morphism in C from P to τAI vanish, contradicting Lemma

2.3. Therefore, if g2n−1 . . . g2 ∈ rad2n−1
A (P, I) then g2n−2 . . . g2 ∈ rad2n−2

A (P, τ−n+1
A X).

On the other hand, since dl(g2n−2) = ∞ then we can consider that g2n−3 . . . g2 ∈
rad2n−3

A (P, τAI). Iterating a finite number of times the same arguments as above, we

get that g4g3g2 ∈ rad4
A(P, τ−2

A X). Since by [11, Lemma 2.1], we know that g3g2 6∈
rad3

A(P, τn−1
A M) and g4g3 6∈ rad3

A(τ−1
A X, τ−2

A X) then we get a contradiction to [9, The-

orem C]. Therefore, we prove that the composition g2n . . . g1 behaves well.

Now, if we consider the second path, then by [15, Lemma 3.1], we know that all

the morphisms fi are such that dl(fi) =∞, for i = 1, . . . , 2n. Then, the result follows

trivially by Remark 4.2.

(ii) Note that we only have one morphism from τAX to τ−n−1
A X in C . Without loss

of generality, we can consider the following path

τAX
f−1−→ τn+1

A N
f0−→ X

f1−→ τnAN
f2−→ τ−1

A X
f3−→ τn−1

A N
f4−→

τ−2
A X

f5−→ τn−2
A N

f6−→ τ−3
A X −→ . . . −→ τ−n+1

A X
f2n−1−→ N

f2n−→

τ−nA X
f2n+1−→ τ−1

A N
f2n+2−→ τ−n−1

A X.

Assume that f2n+2f2n+1f2n . . . f1f0f−1 ∈ rad2n+5
A (τAX, τ

−n−1
A X). Since f−1 is an irre-

ducible epimorphism of infinite right degree then the above assumption is equivalent

to say that f2n+2f2n+1f2n . . . f1f0 ∈ rad2n+4
A (τn+1

A N, τ−n−1
A X).

By [9, Theorem C], we know that dp(f2f1f0) = 3. Moreover, by Theorem 4.3 we

know that dr(fi) = dl(fi) =∞, for i = 3, . . . , 2n. Then, we have that the composition

f2n . . . f1f0f−1 behaves well. Furthermore, the irreducible morphism f2n+1 is such that

dr(f2n+1) =∞, then f2n+1f2n . . . f1f0f−1 also behaves well.
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Finally, again by Theorem 4.3, we know that dl(f2n+2) <∞. Moreover, dl(f2n+2) =

2. Then, there is a configuration of almost split sequences as follows:

M

t1 ""

τ−1
A M

""
τ−nA X

<<

f2n+1 ""

τ−n−1
A X

τ−1
A N

f2n+2

<<

If f2n+2f2n+1 . . . f1f0 ∈ rad2n+4
A (τn+1

A N, τ−n−1
A N) then by Lemma 2.3 there is a mor-

phism ϕ : τn+1
A N →M in modA, such that ϕ 6∈ rad2n+2

A (τn+1
A N,M). Using the additive

function is not hard to see, because of the shape of the component, that there does not

exist a non-zero morphism from τn+1
A N to M in C . Moreover, by Proposition 2.8 we

conclude that there are not non-zero morphisms from τn+1
A N to M in modA. Hence,

dp(f2n+2f2n+1f2n . . . f1f0) = 2n+ 3, proving the result. �

Remark 4.5. Let us mention that in the formulations of our statements involving the

admissible operation (ad 3) we use an odd number of almost split sequences with three

indecomposable middle terms throughout all this paper (see the definition of (ad 3)).

For an admissible operation (ad 3) with an even number of almost split sequences with

three indecomposable middle terms the statements are the same and the proofs are

analogues.

Because of Theorem 4.3, the result proved in [10, Proposition 2.3] can be generalized

to coils components in Auslander-Reiten quivers, since the tools needed to prove it still

hold true here. For the convenience of the reader we formulate the statement.

Lemma 4.6. [10, Proposition 2.3] Let A be an artin algebra, Xj
i ∈ indA, for i =

0, . . . , n1 and j = 0, . . . , n2. Let C be a coil in ΓA and assume that there is a configu-

ration of almost split sequences in modA as follows

Xn2
n1

Xn2−1
n1

Xn2
n1−1

X1
n1

Xn2−1
n1−1

Xn2
1

Xn2
0

X0
n1

X1
n1−1

Xn2−1
1

X0
n1−1

X1
1

Xn2−1
0

X0
1

X1
0

X0
0

77

''
77
''

''

77

77

''

77

''
77

77
''
77

''

''

77
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where α′(Xj
i ) = 2, for i = 1, . . . , n1, j = 1, . . . , n2. Let gi : Xn2

i → Xn2
i−1 for i = 1, . . . , n1

and fj : Xj
0 → Xj−1

0 for j = 1, . . . , n2 are irreducible morphisms satisfying the mesh

relations, then the composition f1 . . . fn2g1 . . . gn1 /∈ radn1+n2+1
A . Moreover, given any

irreducible morphism hj0 : Xj
0 → Xj−1

0 and hn2
i : Xn2

i → Xn2
i−1 in modA for i = 1, . . . , n1

and j = 1, . . . , n2 then dp(h1
0 . . . h

n2
0 h

n2
1 . . . hn2

n1
) = n1 + n2.

The next result shows that it is enough to consider non-zero paths in a coil C in

order to analyze if they behave well.

Lemma 4.7. Let A be an artin algebra and C be a coil in ΓA. Assume we have in C

a zero-path of irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

with Xi ∈ C for i = 1, . . . , n + 1 of length n ≥ 1. Then, any path from X1 to Xn+1 in

C of length greater than n vanishes.

Proof. Let A be an artin algebra and C be a coil in ΓA. It follows from [21, Theorem

E] that a coil C is a connected component of an Auslander-Reiten quiver ΓA. By

the definition of coil we know that C is a coherent component of ΓA, that is, every

projective module in C is the starting module of an infinite sectional path and every

injective module in C is the ending module of an infinite sectional path. Since C is

also almost cyclic component of ΓA, that is, all but finitely many modules of C lie

on oriented cycles in C , applying [21, Theorem A], we infer that C , considered as

a translation quiver, can be obtained from a stable tube by an iterated application of

admissible operations of type (ad 1), (ad 2), (ad 3) and their duals. Moreover, by [21,

Theorem F], we obtain that C is a connected coherent infinite translation quiver with

a positively valued additive length function ` such that there are convex subquiver D

of the left stable part lC of C and convex subquiver E of the right stable part rC of

C satisfying the conditions that D is cyclic coray tube, E is cyclic ray tube, and the

vertices of D , E exhaust all but finitely many vertices of C . From [21, Corollary B],

we also know that every arrow in C has the trivial valuation.

Now, let α : X1 −→ X2 −→ · · · −→ Xn −→ Xn+1 be a zero path of irreducible

morphisms in C such that the subpath β : X1 −→ X2 −→ · · · −→ Xn of α is non-zero.

Then, it follows from the definition of admissible operations that, we have three cases.

(a) The vertex Xn+1 lies on a ray

Y1 −→ Y2 −→ · · · −→ Yi = Xn+1 −→ Yi+1 −→ · · ·

starting at Y1, where i ≥ 1 and Y1 belongs to the mouth of C . Let s be the

length of shortest path in C from X1 to Y1. Then, for arbitrary i ≥ 1, any
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path from X1 to Yi in C of length s + i − 1 vanishes. Therefore, any path of

irreducible morphisms in C from X1 to Yi, for i ≥ 1, is zero path.

(b) The vertex Xn+1 = Zj for some 0 ≤ j ≤ r, where Zj belongs to the finite

sectional path Z0 −→ Z1 −→ · · · −→ Zr in the full translation subquiver of C

of the form

•

!!

Z0

!! !!
τ−rA Z0

!!

•

•

==

!!

Z1

==

τ−r+1
A Z1

==

!!

•

==

•

==

!!
•

==

Zr−1

==

!!

τ−1
A Zr−1

!!
•

==

!!

Zr

==

!!

•

•

==

!!

// X // •

==

•

==

Note that for each 0 ≤ j ≤ r, the vertex τ−jA Z0 belongs to the mouth of C , and

X is projective-injective. Let s be the length of shortest path in C from X1 to

Z0. Then, for 0 ≤ j ≤ r and 0 ≤ k ≤ r− j, any path from X1 to τ−kA Zj in C of

length s + 2k + j vanishes. Moreover, in this case, there exists the ray in C of

the form

τ−r−2
A Z0 = Y0 −→ τ−r−2

A Z1 = Y1 −→ · · · −→ τ−r−2
A Zr = Yr −→ Yr+1 −→ · · ·

starting at the vertex τ−r−2
A Z0 lying on the mouth of C . Then, for arbitrary

i ≥ 0, any path from X1 to Yi in C of length s+ 2r+ 4 + i vanishes. Therefore,

any path of irreducible morphisms in C from X1 to Yi, for i ≥ 0, is zero path.

(c) The vertex Xn+1 belongs to a mesh with exactly three middle terms and lies on

the mouth of C . More precisely, Xn+1 = Aj or Xn+1 = Bj, for some 1 ≤ j ≤ t,

where Aj and Bj belong to the full translation subquiver of C of the form

A1

""

A2

""   

At

""
•

<<

//

##
B1

// •

<<

//

##
B2

// •

>>

//

!!

// •

<<

//

##
Bt // •

•

;;

•

;; ==

•

;;

t ≥ 2, A1 or B1 is projective, and At or Bt is injective. Let s be the length of

shortest path in C from X1 to At, so also from X1 to Bt. We know that at most

one of At and Bt can be injective. Let Y be not injective, where Y is equal to

At or Bt. Then, there exists the ray in C of the form

τ−2
A Y = Y0 −→ Y1 −→ Y2 −→ · · ·
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starting at the vertex τ−2
A Y lying on the mouth of C . Then, for arbitrary i ≥ 0,

any path from X1 to Yi in C of length s + 4 + i vanishes. Therefore, any path

of irreducible morphisms in C from X1 to Yi, for i ≥ 0, is zero path.

Therefore, any path in C from X1 to Xn+1 of length greater than n vanishes. �

Next, we observe some facts that we shall use through this paper.

Remarks 4.8. Let us note the following.

(a) We would like to stress that all presented facts can be formulated and proved

for dual admissible operations (ad 1∗), (ad 2∗) and (ad 3∗) in a similar way.

(b) Note that if we have a path ϕ of n irreducible morphisms between indecompos-

able modules which behaves well, then any subpath of ϕ also behave well.

Lemma 4.9. Let A be an artin algebra and and C be a coil in ΓA which contains the

following mesh-complete full translation subquiver

X1

f1 $$

τ−1
A X1

t1
$$

X2

::

//

f2 $$

M // τ−1
A X2

t2
$$

X3

g3

::

f3 $$

τ−1
A X3

X4

g4

::

tn−3

$$ $$
Xn−2

::

fn−2
$$

τ−1
A Xn−2tn−2

$$

::

τ−2
A Xn−2

$$
Xn−1

fn−1
$$

::

τ−1
A Xn−1tn−1

$$

gn+1

::

Xn

fn $$

gn

::
::

Xn+1

fn+1

::

with M any module in C , α(X1) = 1, α(X2) = 3, α(τ−1
A Xn−2) = 2 and α(Xi) = 2 for

i ≥ 3. Then, any non-zero composition of irreducible morphisms satisfying the mesh

relations of the above subquiver behave well.

Proof. By Lemma 4.4 (i) and Remark 4.8 (b), we know that any non-zero path in C

from X1 to τ−1
A X2 behave well. Using the additive function in C , it is not hard to see

that it is enough to analyze that the compositions

(1) gn+1gnfn−1 . . . f1, and

(2) tn−1gnfn−1 . . . f1
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of irreducible morphisms satisfying the mesh relations behave well.

Consider the composition in (1). Since fn−1 . . . f1 is a sectional path, we know that

dp(fn−1 . . . f1) = n−1, by [17]. Moreover, by [15, Lemma 3.1], we have that dl(gn+1) =

dl(gn) =∞. Therefore, dp(gn+1gnfn−1 . . . f1) = n+ 1.

Now, if we consider the composition in (2), we observe that

tn−1gnfn−1 . . . f1 = fn+1fnfn−1 . . . f1

modulo mesh with dp(fn . . . f1) = n, because the irreducible morphisms f1, . . . , fn

belong to a sectional path. Moreover, again by [15, Lemma 3.1], we have that dl(fn+1) =

∞. Hence, we get the result. �

Proposition 4.10. Let A be an artin algebra and C be a coil in ΓA obtained from

a stable tube by the admissible operation (ad 3). Then, any non-zero composition of n

irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

between modules in the component C and satisfying the mesh relations are such that

dp(fn . . . f1) = n.

Proof. Let M be the set of all modules lying on the mouth in C . We know that the

non-zero paths from X ∈ Rr∩M are the ones in Rr. Let ∆(M0, t) be a mesh-complete

full translation subquiver of C of the form

V1

##

W2

##

V3

##

•

##

Vt(Wt)

##
M0

;;

##

//
W1

//
U11

##

;;

//
V2

//
U22

##

;;

//
W3

//
U33 •

;;

##

// • // •

##

;;

//
Wt(Vt)

//
Utt

M1

##

;;

U21

##

;;

U32

;;

Ut−1,t−2

##

;;

Ut,t−1

;;

M2

##

;;

U31

;;

Ut,t−2

;;

M3

;;

Ut−1,1

##
Mt−1

##

;;

Ut1

Mt

;;

where t ≥ 2, W1 is projective and Wt is injective. By [15, Lemma 3.1], we know that

if f : X → Y be an irreducible morphism in modA with X, Y ∈ ∆(M0, t) then

• dl(f) =∞ if and only if dl(f) 6= 1, and

• dr(f) =∞ if and only if dr(f) 6= 1.
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Hence, in ∆(M0, t) the non-zero composition of irreducible morphisms between mod-

ules in C which belong to almost split sequences with exactly two indecomposable

middle terms behave well. By [17], the compositions of irreducible morphisms which

belong to sectional paths also behave well.

Finally, by Remarks 4.2, 4.5, Lemmas 4.4, 4.9, and also taking into account the

shape of the component C we conclude that the non-zero compositions of irreducible

morphisms in Rr behave well. �

Let A be an artin algebra. Following [13], a full translation subquiver of ΓA of the

form

U

��
V

��
P1

??

��

I1 P ′1
��

??

I′1

Ps

��

•

??

Ir

��

P ′t
��

•

??

I′k
��

M

??

��

• •

��

??

•

��

•

��

??

• •

��

??

N

��
X

??

��

•

??

•

��

•

��

??

•

��

??

•

??

•

��

•

��

??

Y

•

??

•

��

??

•

��

•

��

??

•

??

•

��

??

•

��

•

??

•

??

��

•

��

??

•

��

•

??

•

��

??

•

��

??

•

•

??

��

•

��

??

• •

��

??

•

��

??

•

??

•

??

��

•

??

•

��

•

��

??

•

??

•

??

•

��

??

•

��

•

??

•

��

??

•

��

??

•

•

��

??

// R // •

??

•

??

with P1, . . . , Ps, P
′
1, . . . , P

′
t , s, t ≥ 0, projective, I1, . . . , Ir, I

′
1, . . . , I

′
k, r, k ≥ 0, injective

and U , V , R projective-injective A-modules is said to be a special configuration of

modules. We note that in [13] the concept of a special configuration of modules has

been considered for s = k = 0. Now, let C be a coil containing the above special

configuration of modules. Then, by the definition of admissible operations (ad 2) and
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(ad 2∗) we know that there exist configurations of almost split sequences in C as follows:

τAM

��
M

��

N

��
τ−1
A N

X

??

��

• •

??

��

Y

??

•

??

•

��

•

��

•

??

•

��

??

•

��

•

??

��

•

•

??

��

// R // • •

??

��

// R // •

??

•

??

•

??

where 0 → τAM → X → M → 0 and 0 → N → Y → τ−AN → 0 are almost split

sequences with one indecomposable middle term.

Lemma 4.11. Let A be an artin algebra and C be a coil in ΓA with a special configu-

ration of modules. Then, the non-zero composition of n irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

between modules in the configuration and satisfying the mesh relations are such that

dp(fn . . . f1) = n.

Proof. Without loss of generality, we may assume that we have the following situation

in C .

U

��
V

��
P1

??

��

I1 P ′1
��

??

I′1

Ps

��

•

??

Ir

��
P ′t

��

•

??

I′k
��

τAM

f0
��

M

??

��

• •

��

??

W

��

•

��

??

• •

��

??

N

��
τ−1
A N

X

??

f1
��

•

??

•

��

•

��

??

•

��

??

•

??

•

��

•
��

??

Y
fn+m+1

??

X2

??

•

��

??

•

��

•

��

??

•

??

•

��

??

•

��

Xn+m
fn+m

??

•

??

��

•

��

??

•

��

•

??

•

��

??

•
��

??

•

•

??

��

•

��

??

• •

��

??

•
��

??

Xn+2
fn+2

??

•

??

��

•

??

•

��

•
��

??

Xn+1
fn+1

??

•

??

•

��

??

•

��

Xn
fn

??

•

��

??

•

��

??

•

•

fj
��

??

// R // •

??

Xj+1
fj+1

??

where s, r, t, k ≥ 0, j = r+k+4, n = s+r+k+6, m = t+2. Using the additive function

we observe that there is only one non-zero morphism from X to Y in C . Furthermore,
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there is also only one morphism from τAM to Y . Hence, we can consider any path from

X to Y in C . Let

X
f1−→ X2

f2−→ · · · fj−→ Xj+1
fj+1−→ · · · fn+m−1−→ Xn+m

fn+m−→ Y
fn+m+1−→ τ−1

A N

be a non-zero path. In order to analyze if the composition fn+m+1 . . . f1 behaves well,

we consider the path

τAM
f0−→ X

f1−→ X2
f2−→ · · · fj−→ Xj+1

fj+1−→ · · ·

· · · fn+m−1−→ Xn+m
fn+m−→ Y

fn+m+1−→ τ−1
A N

and we prove that dp(fn+m+1 . . . f1f0) = n + m + 2. In fact, assume that fn . . . f1f0 ∈
radn+1

A (τAM,Xn+1). By Theorem 4.3, we have that the left degree dl(fi) = ∞ for

i = 0, 1, . . . , n. Hence, dp(fn . . . f1f0) = n+ 1.

On the other hand, we know that dl(fn+1) < ∞. Then, there is a configuration

of almost split sequences as in Theorem 4.3. By Lemma 2.3, there exists a morphism

q : τAM → W in modA such that q /∈ radn+1
A (τAM,W ). Again, using the additive

function it is not hard to see that any morphism in C from τAM to W vanish. Therefore,

by Proposition 2.8 any morphism in modA from τAM to W do not behave well, getting

a contradiction to Lemma 2.3.

Again, by Theorem 4.3 we have that dl(fi) = ∞ for i = n + 2, . . . , n + m, proving

that the depth dp(fn+m . . . f1f0) = n + m + 1. Finally, assume that fn+m+1 . . . f1f0 ∈
radn+m+2

A (τAM, τ−1
A N). By [18, Proposition 1.12] we have that dl(fn+m+1) = 1, but

any morphism in C from τAM to N vanish, getting a contradiction to Lemma 2.3.

Therefore, we prove that dp(fn+m+1 . . . f1f0) = n+m+ 2. Finally, by Remark 4.8 (b),

we get the result. �

As a consequence we have the following corollary.

Corollary 4.12. Let A be an artin algebra and C be a coil which is a quasi-tube in

ΓA. Let

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

be a path of irreducible morphisms with Xi ∈ C for i = 1, . . . , n + 1. Then, fn . . . f1 ∈
radn+1

A (X1, Xn+1) if and only if fn . . . f1 ∈ rad∞A (X1, Xn+1).

Remarks 4.13. Let us note the following.

(a) Recall that a quasi-tube is a connected translation quiver obtained from a stable

tube by an iterated applications of admissible operations (ad 1), (ad 1∗), (ad

2) or (ad 2∗).
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(b) Let us note that Corollary 4.12 is a generalization of [13, Theorem A]. In fact,

by [18] and [27], we know that if A is a self-injective artin algebra and Γ is

an infinite component in ΓA with an oriented cycle then Γ is a quasi-tube.

Remark 4.14. Observe that to prove the results it is enough to consider cases where

the intersection Ri
r∩Rj

r, i, j ∈ {1, 2, 3}, is an infinite sectional path pointing to infinity

because the non-zero paths in the other cases (Ri
r∩Rj

r = ∅) are considered whenRi
r∩Rj

r

is above. We illustrate the situation for i = 2 and j = 3 as follows:

                  

>>

  

>>

  

>>

  

>>

  

X1

>>

  

// P //

>>

  

// //

>>

  

// I //

>>

  

>>

  

>>

  

>>

  

>>

  

// Q //

>>

  

>>

  

X2

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

X3

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

X4

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

X5

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

>>

  

X6

>>

  

>>

  
...

>>

...

>>

...

>>

...

>>

...

>>

...

>>

...

>>

...

>>

...

>>

where Q is projective-injective, P is projective, I is injective vertex and

X1 −→ X2 −→ X3 −→ X4 −→ · · ·

is the infinite sectional path belonging to R2
r ∩R3

r.

Proposition 4.15. Let A be an artin algebra and C be a coil in ΓA obtained from a sta-

ble tube by the admissible operations (ad 3), (ad 3) and a finite number of admissible

operations (ad 1). Then, any non-zero composition of n irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

between modules in the component C and satisfying the mesh relations are such that

dp(fn . . . f1) = n.

Proof. Without loss of generality we can assume that C has the following shape
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observe that the non-zero paths starting at X and ending in Y in C are those for which

Y ∈ R3
r ∪R3

r ∪R1
r. It is enough to analyze some non-zero paths in C , which will give

us a complete information if all non-zero paths in C behave well.

By Lemma 4.4, we know that any non-zero path from X to τ−1
A Zn and from Z1 to

Zn behave well.

Using the additive function it is not hard to see that there are only one non-zero

path in C from X to N and another from X to M . We claim that non-zero path in C

behaves well. In fact, by Lemma 4.4 we know that there is only one path from X to

τ−1
A Zn and this path behaves well. Observe that all arrows in the sectional path from

τ−1
A Zn to R have infinite left degree. Hence, the path from X to R going through τ−1

A Zn

X −→ τ−1
A Zn −→ R

behaves well.

Now, without loss of generality we may consider the path gm . . . g2g1 : R→ Z,

�� �� �� �� ��

??

��

//
P

//

??

g2

��

// //

??

g4

��

// //

??

gm−2

��

//
I

//

??

gm
��

R

g1

??

g3

??

g5

??

gm−1

??

Z

??

since there is only one non-zero path from X to Z. By [15, Lemma 3.1] we have that

dl(gi) =∞ for i = 1, . . . ,m. Therefore,

X −→ τ−1
A Zn −→ R

g1−→ · · · gm−→ Z

behaves well. Any non-zero path

X −→ τ−1
A Zn −→ R

g1−→ · · · gm−→ Z → N ′

behave well, where Z → N ′ is a sectional path pointing to infinity consisting of arrows

with infinite left degree.

On the other hand, if we consider the path

X −→ τ−1
A Zn −→ R

g1−→ · · · gm−→ Z
t−→ N

we know that dl(t) <∞. By Lemma 2.3 we shall analyze if there is a non-zero morphism

in C from X to W . But using the additive function it is not hard to see that any

morphism in C from X to W vanish. Therefore, by Proposition 2.8 any morphism in

modA from X to W do not behave well, getting a contradiction to Lemma 2.3. Hence,

any non-zero path from X to N behave well.
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The arrow N −→ M has infinite left degree. Clearly, all morphisms from X to Mi

with i = 1, . . . , r− 2 vanish. Hence, we get a contradiction to Lemma 2.3 if we assume

that the path does not behave well.

Finally, the only possibility to have a non-zero path is to consider a sectional path

starting at Wr and pointing to infinity, but the arrows there have infinite left degree.

Hence, the path behaves well. �

Remark 4.16. If we consider a coil C with finitely many (say s ≥ 2) admissible

operations (ad 3) with infinite rectangles R3
r1
,R3

r2
, . . . ,R3

rs such that R3
ri
∩ R3

ri+1
for

i = 1, . . . , s− 1 is the sectional infinite path pointing to infinity, then we get a similar

result as in Proposition 4.15. The proof also involves the same arguments.

Proposition 4.17. Let A be an artin algebra and C be a coil in ΓA obtained from

a stable tube by the admissible operations (ad 3), (ad 2) and (ad 2). Then, any non-

zero composition of n irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

between modules in the component C and satisfying the mesh relations are such that

dp(fn . . . f1) = n.

Proof. Without loss of generality, we may assume that C is as follows:
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By Lemmas 4.6 and 4.7, it is enough to analyze if any non-zero path

(i) from X to Y and

(ii) from X to Z,

behave well, in order to conclude that all non-zero morphisms in C behave well.

(i) Note that there is only one non-zero path in C from X to Y by using the additive

function. Assume that fn+k+t . . . f1 ∈ radn+k+t+1
A (X, Y ), where fn+k+t . . . f1 : X → Y is

any non-zero path in C form X to Y . Without loss of generality, we may assume that

fi for i = 1, . . . , n+ k are the following irreducible morphisms

&& &&

W1

&&

W2

&&
X

88

f1 &&

88

//

f3 &&

//

88

//

fn−1 &&

//

88

fn+1 &&

88

&&

f2

88

f4

88

&&

fn

88

&&

88

88

&&

88

&&

88 88

fn+k &&

88 88 88

&&

88

&&

88

&&

88

By Lemma 4.4, we know that dp(fn+1 . . . f1) = n + 1. Moreover, the left degree of

fn+2, . . . , fn+k are infinite. Therefore, the composition fn+k . . . f1 behaves well.

Now, we choose the following morphisms,

W1

""

W2

""

W3

""

Wr

""

Y

"" "" ""//

<<

fn+1 ""

<< <<

"" ""

fn+k+t

<<

""

<< <<

<<

""

<< <<

""

<<

"" ""

<<

"" ""

<< <<

""

<<

//

""

//

<<

"" ""

<<

""

<<

//

""

//<< <<

""

<<

fn+k ""

fn+k+2

<<

""

<<

"" ""

<<

""

<<

""

<< <<

fn+k+1

<< << << <<

where r = k + 1, since there is only one non-zero path from X to Y . By Theorem 4.3,

we know that dl(fn+k+1) < ∞. Assume that fn+k+1fn+k . . . f1 ∈ radn+k+2
A . Then, by

Lemma 2.3 there exists a morphism δ ∈ modA from X to W1, δ /∈ radn+k
A . Then, it

follows by the additive function that from X to W1 there is only the zero-morphism.

Hence, δ = 0, and therefore δ in modA is such that δ ∈ radn+k
A . Then, fn+k+1fn+k . . . f1

behaves well.

Now, by Theorem 4.3, we know that dl(fn+k+2) = ∞. Hence, the composition

fn+k+2fn+k+1 . . . f1 behaves well. We also know by Theorem 4.3, that dl(fn+k+3) <∞.
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Suppose that fn+k+3fn+k+2 . . . f1 ∈ radn+k+4
A . Iterating the same argument as above,

we can prove that the only morphism in C from X to W3 vanishes. Hence, we infer

that fn+k+3fn+k+2 . . . f1 behaves well.

(ii) Now, we analyze that any non-zero morphism from X to Z behave well. Note

that there is only one non-zero path from X to Z modulo mesh. Without loss of general-

ity, we may consider the same path consider in (i), that is, fn+k+t . . . fn+k+2 . . . fn . . . f1 :

X → Y and compose it with the path fn+k+s . . . fn+k+t from Y to Z going through

V , where s > t. We denote fn+k+t+1, . . . , fn+k+s by h1, . . . , hs, respectively. Next, we

illustrate the chosen path hs . . . h1 in the next picture:

W1

""

W2

""

W3

""

Wr

""

Y
h1

"" "" ""//

<<

fn+1 ""

<< <<

"" ""

fn+k+t

<<

""

<< <<

<<

""

<< <<

""

<<

"" ""

<<

hs−2

"" ""

<< <<

""

<<

//

""

//

<<

"" ""

<<

""

<<

hs−1//

""

V

hs // Z<< <<

""

<<

fn+k ""

fn+k+2

<<

""

<<

"" ""

<<

""

<<

""

<< <<

fn+k+1

<< << << <<

By Statement (i) we know that dp(fn+k+t . . . f1) = n + k + t. Note that the path

fn+k+s−1 . . . fn+k+t from Y to V are morphisms in a sectional path of infinite left degree.

Therefore, dp(fn+k+s−1 . . . f1) = n + k + s− 1. Finally, by Theorem 4.3 we know that

the left degree of the irreducible morphism fn+k+s is infinite. Hence, we conclude that

the considered composition behaves well, proving the result. �

Remark 4.18. If we consider a coil C with finitely many (say s ≥ 2) admissible

operations (ad 2) with infinite rectangles R2
r1
,R2

r2
, . . . ,R2

rs such that R2
ri
∩ R2

ri+1
for

i = 1, . . . , s− 1 is the sectional infinite path pointing to infinity, then we get a similar

result as in Proposition 4.17. The proof also involves the same arguments.

Proposition 4.19. Let A be an artin algebra and C be a coil in ΓA obtained from a

stable tube T , by the admissible operations

(i) (ad 3), (ad 2) and a finite number of admissible operations (ad 1), or

(ii) (ad 3), (ad 1) and a finite number of admissible operations (ad 2).

Then, any non-zero composition of n irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

between modules in the component C and satisfying the mesh relations are such that

dp(fn . . . f1) = n.
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Proof. (i) Without loss of generality, we may assume that C has the following form:

��

Y ′

��

��

BB

��

BB

�� ��

BB

�� �� �� ��

W1

��

W2

��

W3

��

Wr

��

Y

��

BB BB

X

BB

��

BB

��

// //

BB

��

// //
BB

��

// //
BB

�� ��

BB BB

��

BB

��

BB

BB BB

��

BB

�� ��

BB BB

��

BB

��

BB

�� ��

BB BB

R1
rBB

�� ��

BB BB

��

BB

��

BB

��

BB

�� �� ��
BB

��

BB

��

BB BB

��

BB

��

// //

BB

��

BB

��

BB

��

BB

��
BB BB

�� �� ��

BB BB

��

BB

��

BB BB

��

BB

��
BB

��

BB

��

BB BB BB BB BB

BB

��

BB

BB

R3
r R2

r

Since there is only one non-zero path from X to Y ′ in C , we can consider a non-zero

path which is the composition of the path a path from X to Y and a path from Y to

Y ′. By Proposition 4.17, we know that any non-zero path from X to Y behave well.

Then, it is enough to analyze the situation where the path is as follows:

X
ϕ−→ Y

f1−→ X2
f2−→ · · · fn−1−→ Xn

fn−→ Y ′
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with k ≥ 1 and ϕ any non-zero path from X to Y in C such that dp(ϕ) = k. We

illustrate the situation as follows:

W ′1

!!

W ′2

!!

W ′n−1

!!

Y ′

!!
==

!!

Xn

fn

==

!!

==

X3

!!

==

!!
X2

f2

==

!! !!
W1

!!

W2

!!

W3 Wr

!!

Y
f1

==

!!

==

!! !!
X

==

//

!!

//

==

!!

==

!! !!

==

!!

==

!!

==

!!

==

!!

== ==

!!

==

!! !!

==

!!

==

!! !!

==

==

!!

== ==

!!

==

//

!!

//

==

!! !!

==

!!

==

!!

== ==

!!

==

!!

==

!!

==

!! !!

==

!!

==

!!

== == == == == ==

Assume that fn . . . f1ϕ ∈ radn+k+1
A (X, Y ′), where dp(ϕ) = k. By Theorem 4.3,

dl(f1) =∞. Then, dp(f1ϕ) = k+ 1. Now, again by Theorem 4.3 we know that dl(fi) <

∞ for i = 2, . . . , n. By Lemma 2.3, there exists a morphism δ ∈ modA from X to

W ′
j , δ /∈ radk+j

A for j = 1, . . . , n − 1. Observe that there are no morphisms in C from

X to W ′
j , hence we get a contradiction to our assumption. Therefore, we prove that

dp(fi . . . f1ϕ) = i+ k, that is, the composition behaves well, for all i = 1, . . . , n.

(ii) With similar arguments and techniques as we used in Statement (i), we can get

the result for (ii). �

If we change the order of the admissible operations, the result still holds.

Proposition 4.20. Let A be an artin algebra and C be a coil in ΓA obtained from

a stable tube T , by the admissible operations

(i) (ad 1), (ad 2) and (ad 3), or

(ii) (ad 1), (ad 3) and (ad 2), or

(iii) (ad 2), (ad 1) and (ad 3), or

(iv) (ad 2), (ad 3) and (ad 1).

Then, any non-zero composition of n irreducible morphisms

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

between modules in the component C and satisfying the mesh relations are such that

dp(fn . . . f1) = n.
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Proof. We only prove Statement (i), since the others statements can be proved with

similar arguments.

(i) Without loss of generality, we may assume that we have the following situation

in C :

�� ��

X

�� �� �� �� �� �� ��
M

��

��

BB

��

BB

��

BB

��

BB

��

BB

N

��

BB

// //

��

BB

// //

��

BB

Y

��

BB

��

BB

��

BB BB

�� �� ��

BB

��

BB

��

BB

��

BB

��

BB

��

BB

��

BB BB

��

BB

��

BB

��

BB BB BB BB BB

BB BB

�� ��

BB

// //

��

BB

BB BB BB BB

R1
r R2

r R3
r

Note that there is only one non-zero morphism from X to Y and that any morphism

from X to M vanishes. It is enough to analyze a non-zero path from X to Y . We also

observe that there are no non-zero morphisms from X to M .

The composition of the morphisms in the coray ending in X behaves well, see [17].

On the other hand, by Propositions 4.15 and 4.17 we know that any morphism from

X to N behave well. By Theorem 4.3, the dl(fi) =∞ for i = 1, . . . , 2n+ 1, where the

irreducible morphisms fi are the following:

�� �� ��

W1

��

W2

��

M

N

??

f1 ��

//
P

//

??

f3 ��

// //

??

f5 ��

// //

??

f2n−1 ��

//
I
//
τAY

??

f2n+1

��

Y

??

f2

??

f4

??

f6

??

f
2n

??

L

f2n+2

??

Therefore, all non-zero morphisms from X to L behave well.

Finally, since dl(f2n+2) < ∞ then applying Lemma 2.3, it is not hard to see that

there is not a non-zero morphism from X to W1 in C . Same analysis for a morphism

from X to W2. Therefore, the composition of non-zero paths behave well. �

5. Proof of Theorem 1.1

We only prove that, if fn . . . f1 ∈ radn+1
A (X1, Xn+1) then fn . . . f1 ∈ rad∞A (X1, Xn+1)

since the other implication is clear.

To analyze the composition of irreducible morphisms in C we start with the ones

near the mouth of C . It is enough to prove that all non-zero compositions behave well.
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Note that for stable tubes the result is proved in [10, Theorem A] and for tubes in

[13, Theorem 3.18]. By Lemma 4.11 and Corollary 4.12, the result also holds for quasi-

tubes. In order to complete the proof we consider all the cases involving the admissible

operations (ad 3) or (ad 3∗). Moreover, by Remarks 4.5 and 4.8 (a) it is enough to

consider (ad 3) with t odd. Therefore, by Propositions 4.10, 4.15, 4.17, 4.19 and 4.20

we conclude that the statement holds.

Now, it is enough to prove the result for zero paths in C , because if we have a non-

zero path

X1
f1−−−→ X2

f2−−−→ · · · fn−1−−−→ Xn
fn−−−→ Xn+1

in C then, as we see above, fn . . . f1 behaves well, getting a contradiction with our

assumption. Therefore, fn . . . f1 = 0.

Further, any other composition of irreducible morphisms hi : Xi → Xi+1 for i =

1, . . . , n is such that hn . . . h1 = δfn . . . f1 + µ with µ ∈ radn+1
A (X1, Xn+1) and δ ∈

Aut(Xn+1). Hence, hn . . . h1 ∈ radn+1
A (X1, Xn+1).

Assume that hn . . . h1 /∈ rad∞A (X1, Xn+1), that is, the composition hn . . . h1 belongs

to radmA (X1, Xn+1)\radm+1
A (X1, Xn+1) with m > n. Hence there is a non-zero path from

X1 to Xn+1 of length longer than n, contradicting Lemma 4.7. The proof is completed.

6. Examples

In this section we present some examples of coils.

Example 6.1. Let K be a field, Q the quiver of the form

5

α
��
4

β
��

11

λ

33

σ
//

ω ""

7
ξ
// 6 ε

// 1

γ
��

2
δoo 3oo

10

ϕ
��

µ // 9
ν //
η

""

8 16

||
13

ψ
<<

12 14

ρ

OO

15

I the ideal of KQ generated by the paths αβγ, δγ, λβ = σξε, ωµν = λβγ, ωϕ, ψµ, ρν,

µη, and A = KQ/I the associated bound quiver algebra. Then the Auslander-Reiten
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quiver ΓA of A admits a coil C which is a quasi-tube of the following form

X
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•
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where X, Y , Z are projective-injective A-modules, I is injective A-module and the

vertical dashed lines have to be identified in order to obtain the coil C . Note that

C contains a special configuration of modules (with r = 1 and s = t = k = 0). We

will show that A is a coil enlargements (see [22, Section 3] or [4, Section 2] for finite-

dimensional algebras over an algebraically closed field) of a concealed canonical algebra

A1. Indeed, let A1 be the hereditary algebra of Euclidean type Ẽ6 given by the vertices

1, 2, 3, 4, 5, 6, 7. Let us denote vectors in K0(A):

a1 =
0
1

11100
, a2 =

0
1

11100
111

, a3 =
0
0

000000
100

, a4 =
0
0

000000
100
1

,

a5 =
0
0

000000
010

00

, a6 =
0
0

000000
010

001

, a7 =
0
0

000000
010

0011

.

We apply the admissible operation (ad 1∗) to A1 with the pivot the simple regular

A1-module with vector a1, and with t = 2. The modified algebra A2 is given by the

quiver with the vertices 1, 2, . . . , 10 bound by αβγ, δγ. Now, we apply (ad 2) to A2

with the pivot the indecomposable A2-module with vector a2, and with t = 2. The

modified algebra A3 is given by the quiver with the vertices 1, 2, . . . , 11 bound by

αβγ, δγ, λβ = σξε, ωµν = λβγ. Next, we apply (ad 1∗) to A3 with the pivot the

indecomposable A3-module with vector a3, and with t = 0. The modified algebra A4

is given by the quiver with the vertices 1, 2, . . . , 12 bound by αβγ, δγ, λβ = σξε,

ωµν = λβγ, ωϕ. In the next step, we apply the admissible operation (ad 1) to A4

with the pivot the indecomposable A4-module with vector a4, and with t = 0. The
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modified algebra A5 is given by the quiver with the vertices 1, 2, . . . , 13 bound by αβγ,

δγ, λβ = σξε, ωµν = λβγ, ωϕ, ψµ. Now, we apply (ad 1) to A5 with the pivot the

indecomposable A5-module with vector a5, and with t = 0. The modified algebra A6

is given by the quiver with the vertices 1, 2, . . . , 14 bound by αβγ, δγ, λβ = σξε,

ωµν = λβγ, ωϕ, ψµ, ρν. Next, we apply the admissible operation (ad 1∗) to A6 with

the pivot the indecomposable A6-module with vector a6, and with t = 0. The modified

algebra A7 is given by the quiver with the vertices 1, 2, . . . , 15 bound by αβγ, δγ,

λβ = σξε, ωµν = λβγ, ωϕ, ψµ, ρν, µη. Finally, we apply the admissible operation

(ad 1∗) to A7 with the pivot the indecomposable A7-module with vector a7, and with

t = 0. The modified algebra is equal to A.

Example 6.2. Let K be a field, Q the quiver of the form

1

γ
��

2
αoo

β
oo 8

λoo
ξ

ss
3 4µ
oo 5oo 6oo 7oo

I the ideal of KQ generated by the paths αγ, λα, λβγ = ξµ, and A = KQ/I the

associated bound quiver algebra. Then the Auslander-Reiten quiver ΓA of A admits

a component C which is a coil of the following form
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where P is projective, I is injective and the vertical dashed lines have to be identified

in order to obtain the coil C . We note that A is a coil enlargements (see [22, Section

3] or [4, Section 2] for finite-dimensional algebras over an algebraically closed field) of

a concealed canonical algebra A1. Indeed, let A1 be the Kronecker algebra given by the

vertices 1, 2. Let us denote vectors in K0(A):

a1 = 11 , a2 = 1 1
11000 .

We apply the admissible operation (ad 1∗) to A1 with the pivot the simple regular

(homogeneous) A1-module with vector a1, and with t = 4. The modified algebra A2

is given by the quiver with the vertices 1, 2, . . . , 7 bound by αγ. Finally, we apply the
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admissible operation (ad 3) to A2 with the pivot the indecomposable A2-module with

vector a2, and with t = 4. The modified algebra is equal to A.

Observe that C is the coil in which each τA-orbit contains finitely many vertices.

For an algebra Λ we refer the reader to [20] for a detailed description of the infinite

components (coils) of an Auslander-Reiten quiver ΓΛ having only finitely many vertices

in each τΛ-orbit.

Example 6.3. Let K be a field, Q the quiver of the form

13 14oo

10

ν
::

11
ηoo 12

ξoo

1 4
α

zz

15

ϕdd

ψtt
3

β
dd

λ

tt γzz
6

ε

OO

2 5
δ

dd

16

ω
jj

σss
7

µ

dd

8oo 9oo

I the ideal of KQ generated by the paths αλ, δλ, µε, ην, ψβ, ψγ, ϕξην, ϕξη = ψλε,

ωβ, ωγ, ωλε, ωλ = σµ, and A = KQ/I the associated bound quiver algebra. Then the

Auslander-Reiten quiver ΓA of A admits a component C which is a coil of the following

form
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where R, T , I are injective, P is projective, Q is projective-injective and the vertical

dashed lines have to be identified in order to obtain the coil C . We note that A is a coil

enlargements (see [22, Section 3] or [4, Section 2] for finite-dimensional algebras over

an algebraically closed field) of a concealed canonical algebra A1. Indeed, let A1 be the
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hereditary algebra of Euclidean type D̃4 given by the vertices 1, 2, 3, 4, 5. Let us denote

vectors in K0(A):

a1 =
0 0
1

0 0
, a2 =

0 0
1

10 0
000
, a3 =

10 0
0 0
1

10 0
000

, a4 =

0 0
11 1
0 0
1

10 0
000

, a5 =

0 0
00 0
0 00
1

10 0
000

.

We apply the admissible operation (ad 1∗) to A1 with the pivot the simple regular

A1-module with vector a1, and with t = 3. The modified algebra A2 is given by the

quiver with the vertices 1, 2, . . . , 9 bound by αλ, δλ. Now, we apply (ad 1∗) to A2 with

the pivot the indecomposable A2-module with vector a2, and with t = 2. The modified

algebra A3 is given by the quiver with the vertices 1, 2, . . . , 12 bound by αλ, δλ, µε.

Next, we apply (ad 1∗) to A3 with the pivot the indecomposable A3-module with vector

a3, and with t = 1. The modified algebra A4 is given by the quiver with the vertices

1, 2, . . . , 14 bound by αλ, δλ, µε, ην. In the next step, we apply the admissible operation

(ad 2) to A4 with the pivot the indecomposable A4-module with vector a4, and with

t = 2. The modified algebra A5 is given by the quiver with the vertices 1, 2, . . . , 15

bound by αλ, δλ, µε, ην, ψβ, ψγ, ϕξην, ϕξη = ψλε. Finally, we apply the admissible

operation (ad 3) to A5 with the pivot the indecomposable A5-module with vector a5,

and with t = 3. The modified algebra is equal to A.
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