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EXPERIMENTING WITH ZARISKI DENSE SUBGROUPS

A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

ABSTRACT. We give a method to describe all congruence images of a finitely generated
Zariski dense group H ≤ SL(n,Z). The method is applied to obtain efficient algorithms
for solving this problem in odd prime degree n; if n = 2 then we compute all congruence
images only modulo primes. We propose a separate method that works for all n as long
as H contains a known transvection. The algorithms have been implemented in GAP,
enabling computer experiments with important classes of linear groups that have recently
emerged.

1. INTRODUCTION

This research is the next stage in our development of a novel domain of computational
group theory, dealing with methods and algorithms for computing with linear groups over
infinite domains. Practical software for this class of groups is in high demand.

In previous work (e.g., [9]), we obtained a method for computing with finitely generated
linear groupsH over an infinite field F based on the residual finiteness ofH (an algorithmic
realization of ‘finite approximation’). Our method implements congruence homomorphism
techniques, which reduce groups modulo ideals ρ ⊆ R where R is a subring of F gener-
ated by the entries in elements of H . One maximal ideal is enough to solve fundamental
problems such as: testing whether H is finite [9]; deciding whether H is virtually solvable
or it contains a free non-abelian subgroup [10] (realizing the Tits alternative computation-
ally); recognizing the group type; and carrying out further investigation of virtually solvable
finitely generated linear groups [10].

However, most finitely generated linear groups are not virtually solvable [1], and we
cannot expect that one maximal ideal (even if properly selected) would be enough to cover
the full range of computational problems that we might wish to solve. Consequently we
proposed to avail of the theory of linear algebraic groups; i.e., groups with the Zariski
topology (see [32, Chapter 1, § 6]). Each linear groupH is a subgroup of an algebraic group
GL(n,F), and the Zariski closure H of H is the ‘smallest’ algebraic group containing H .
To deal with groups that are not virtually solvable, we restrict attention to (semi)-simple
H; and give priority to the most interesting case of algebraic Q-groups with R = Z. Our
initial efforts in this direction are discussed in [6], where we consider finitely generated
subgroups of SL(n,Z) that are dense in SL(n,R). Computing all congruence images of
dense groups is possible, affording us valuable insights into the nature of H .

2010 Mathematics Subject Classification: 20-04, 20G15, 20H25, 68W30.
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2 A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

We elucidate. Let H be a finitely generated subgroup of SL(n,Z), n ≥ 2. If H is
dense then it has the strong approximation property: H surjects onto SL(n, p) for al-
most all primes p [22, p. 391]. This fact makes computing all congruence images feasi-
ble. Another computational benefit comes from the congruence subgroup property, which
implies that each arithmetic (i.e., finite index) subgroup of SL(n,Z) (n > 2) contains
a principal congruence subgroup of level m, i.e., the kernel Γn,m of the homomorphism
ϕm : SL(n,Z) → SL(n,Zm), Zm := Z/mZ. In that event H contains a unique maximal
principal congruence subgroup Γn,M , and we call its level M := M(H) the level of H .

Arithmetic subgroups are dense, but a dense groupH ≤ SL(n,Z) can have infinite index
in SL(n,Z) (be a so-called thin matrix group, pace [27]). A thin group H is contained in
a unique ‘minimal’ arithmetic subgroup cl(H) of SL(n,Z): the arithmetic closure of H ,
which (for n > 2) is the intersection of all arithmetic subgroups of SL(n,Z) containing
H [6, Section 3]. The level of H is defined to be the level of cl(H), and is again denoted
M(H). Our computational machinery for arithmetic subgroups can then be deployed on
thin groups. For once we know the level M of H ≤ SL(n,Z), we can reduce computing to
the context of GL(n,Zm). We have used this strategy to great effect, solving problems for
arithmetic subgroups such as membership testing and the orbit-stabilizer problem (see [5]).
As shown in [6, Section 2], if H is dense then the set of prime divisors of M(H) is exactly
the set Π(H) of primes p for which H does not surject onto SL(n, p) modulo p (leaving
aside a tiny number of exceptions for n ≤ 4). Furthermore, knowing the prime divisors of
M we can apply algorithms for matrix groups over Zm to compute the largest powers of pa

of p dividing M and thereafter find M exactly.
Clearly, our entire computational apparatus for dense subgroups is based on the ability to

compute Π(H)—our computational realization of the strong approximation theorem. An
early version of this appears in [6, Section 3], where we devised an effective method to
compute Π(H) if n is odd and a transvection (a unipotent element t such that t − 1n has
matrix rank 1) in H is known.

The aim of the present work is twofold. First, in Section 2 we establish an approach to
computing Π(H) for dense H ≤ SL(n,Z), based on the classification of maximal sub-
groups of SL(n, p) as in [2] (see also [22, p. 397]). This is then applied in Section 3 to
obtain efficient algorithms to compute Π(H) for prime degree n (in which case the types
of maximal subgroups of SL(n, p) are quite restricted). Moreover, for odd prime n, we
build on this knowledge describe the congruence images of H modulo all positive integers;
for n = 2, the congruence images are described modulo all primes. Arbitrary degrees n are
treated in [8] (albeit with algorithms that are less efficient for prime n than those herein).

We also give an algorithm to compute Π(H) for dense subgroups H of SL(2n,Z) that
contain a known transvection. This completes the task begun in [6, Section 3.2].

Another goal is to perform computer experiments successfully with low-dimensional
dense representations of finitely presented groups that have recently been the focus of much
attention. We compute Π and M for each group, thus enabling us to describe all of its
congruence quotients. Experimental results are presented in Section 4.
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We adhere to the following conventions and notation. Congruence images are sometimes
indicated by overlining. Pre-images in H = 〈g1, . . . , gr〉 ≤ SL(n,Z) of elements of H̄
written as words in the ḡi are found by ‘lifting’: ḡmi

ki
· · · ḡms

ks
has pre-image gmi

ki
· · · gms

ks
.

The set of prime divisors of a ∈ N is denoted π(a). Throughout, F is a field.

2. STRONG APPROXIMATION AND RECOGNITION OF CONGRUENCE IMAGES

The core idea of our approach to computing Π(H) is to find all primes p such that ϕp(H)

lies in a maximal subgroup of SL(n, p). Here we provide some general methods for this
purpose.

2.1. Large congruence images. Let H be infinite. Given a positive integer k, we find all
primes p such that ϕp(H) has elements of order greater than k (cf. [30, Chapter 4] and [9,
Section 3.5]).

Since a periodic linear group is locally finite, the finitely generated group H has an
element h of infinite order. We can find h quickly by random selection (see [9, Section 4.2,
p. 107], and the discussion in Section 3.3 on randomly selecting elements with specified
properties). For 1 ≤ i ≤ k, let mi be the greatest common divisor of the non-zero entries
of hi−1n, and let l = lcm(m1, . . . ,mk). If p /∈ π(l) then |ϕp(H)| > k. For each p ∈ π(l)

we check whether |ϕp(H)| < k. The preceding steps define a procedure PrimesForOrder
that accepts k and infinite H ≤ SL(n,Z), and returns the (finite) set of primes p such that
|ϕp(H)| < k.

We will also need the following related fact.

Lemma 2.1. Suppose that ϕp(H) = SL(n, p) for some prime p.
(i) If n ≥ 3 then H is infinite.

(ii) If n = 2 and p ≥ 3 then H is infinite.

Proof. Theorem A of [11] states the largest order of a finite subgroup of GL(n,Z). In both
cases (i) and (ii), this maximal order is less than |SL(n, p)|. �

2.2. Irreducibility. This subsection recaps an argument from [6, Section 3.2].
We test whether H ≤ SL(n,Z) is absolutely irreducible by computing a Q-basis A =

{A1, . . . , Am} of the enveloping algebra 〈H〉Q, where the Ai are words over a generating
set of H . If m = n2 then H is absolutely irreducible, and ϕp(H) is absolutely irreducible
for any prime p not dividing ∆ := det[tr(AiAj)]; here tr(x) is the trace of a matrix x.
Hence we have the following.

Lemma 2.2. If H is absolutely irreducible then ϕp(H) is absolutely irreducible for almost
all primes p.

If p |∆ then ϕp(H) might be absolutely irreducible. Testing for this as before is the last
step in PrimesForAbsIrreducible(H), which returns the set of all primes p such that
ϕp(H) is not absolutely irreducible.

Note that if H̄ is absolutely irreducible (e.g., H̄ = SL(n, p)), and Ā is a basis of 〈H̄〉Zp ,
then A is a basis of 〈H〉Q.
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2.3. Primitivity. Next, we give conditions for the congruence image of an (irreducible)
primitive subgroup of SL(n,Z) to be imprimitive. The main concern is prime n; in such
degrees an irreducible linear group is either primitive or monomial.

Lemma 2.3. If H ≤ SL(n,Z) is not solvable-by-finite then ϕp(H) is not monomial for
almost all primes p.

Proof. Since H has a free non-abelian subgroup by the Tits alternative, given k ≥ 1 there
exist g, h ∈ H such that c := [gk, hk] 6= 1n. Then [ḡk, h̄k] = c̄ 6= 1n for almost all primes
p. The lemma follows by taking k to be the exponent of Sym(n). �

Lemma 2.4. For prime n, an infinite solvable-by-finite primitive (irreducible) subgroup H
of SL(n,Z) is solvable.

Proof. Let K EH be solvable of finite index. Since n is prime, K is scalar or irreducible.
If K were scalar then H would be finite. Thus K is irreducible. If K were monomial over
Q then it would be finite once more; so K is primitive. Let A be a maximal abelian normal
subgroup of K. Then A is irreducible, and K = 〈A, g〉 because the field 〈A〉Q is a cyclic
extension of Q1n of degree n. Let h ∈ H and a ∈ A; then hah−1 = bgk for some b ∈ A.
If n | k for all h then H normalizes A and is therefore solvable. Suppose that n and k are
coprime for some h. Since a 7→ (bgk)a(bgk)−1 is a Q-automorphism of the field 〈A〉Q, and
(bgk)n is fixed by this automorphism, (bgk)n is scalar. Hence bgk has finite order. Suppose
that a ∈ A has infinite order. Of course hah−1 6= bgk, implying that h normalizes 〈a〉.
Since a is irreducible (i.e., 〈a〉 is irreducible), H normalizes 〈A〉Q, and again we conclude
that H is solvable. �

Corollary 2.5. Let n be prime. If H ≤ SL(n,Z) is infinite, non-solvable, and primitive,
then ϕp(H) is primitive for almost all primes p.

Given an input group H that is not solvable-by-finite, PrimesForMonomial returns the
set of primes p such that ϕp(H) is monomial. The proof of Lemma 2.3 furnishes a method
to compute this finite set. First we find g, h ∈ H such that [gk, hk] 6= 1n, where k is the
exponent of Sym(n). (In our experiments g, h are found by random selection; cf. [1] and
see Section 3.3.) Let d be the gcd of the non-zero entries of [gk, hk] − 1n. Then ϕp(H) is
non-monomial if p 6∈ π(d). Finally, we test whether ϕp(H) is monomial for each p ∈ π(d),
using, e.g., [25].

2.4. Solvability. Zassenhaus’s theorem [29, p. 136] implies existence of a bound δ = δ(n)

on the derived length of solvable subgroups of SL(n,F) that depends only on n, not on F.
See, e.g., [29, p. 136] for an estimate of δ due to Dixon.

LetH ≤ SL(n,Z) be non-solvable. We sketch a procedure PrimesForSolvable(H, δ)

that returns the set of primes p such that ϕp(H) is solvable and ϕp(H) 6= SL(n, p). Take a
non-trivial iterated commutator in H . As usual, we do this by random selection in H , or by
lifting to H from a (non-solvable) congruence image: pick [h̄1, . . . , h̄δ+1] 6= 1n in H̄; then
g = [h1, . . . , hδ+1] ∈ H is as required. Let d be the gcd of the non-zero entries of g − 1n.
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Then ϕp(H) is non-solvable if p 6∈ π(d). Solvability of ϕp(H) for p ∈ π(d) can be tested
using [25]. We have proved the following.

Lemma 2.6. If H is non-solvable then ϕp(H) is non-solvable for almost all primes p.

We get better bounds on derived length for irreducible groups in prime degree.

Lemma 2.7. Let n be prime. An irreducible solvable subgroup G of GL(n,F) has derived
length d ≤ 6.

Proof. A monomial group G is an extension of its subgroup of diagonal matrices by a
solvable transitive permutation group of prime degree. Such permutation groups are meta-
cyclic, so d ≤ 3. Suppose that G is primitive. By [30, Theorem 3.3, p. 42], there exists
EEG of derived length at most 2, such that G/E is isomorphic to a subgroup of SL(2, n).
Since δ(SL(2, n)) ≤ 4 (see, e.g., [29, §21.3]), we get d ≤ 6 as required. �

Remark 2.8. If n = 2, 3 and G ≤ SL(n,F) then d ≤ 4, d ≤ 5, respectively.

2.5. Isometry. We say that G ≤ GL(n,F) is an isometry group if it preserves a non-
degenerate bilinear (symmetric or alternating) form. On the other hand, since SL(2,F) =

Sp(2,F), we say that G is not an isometry group if G does not preserve a non-degenerate
bilinear form for n > 2.

Lemma 2.9. Let G ≤ GL(n,F) be absolutely irreducible. Then G is an isometry group if
and only if tr(g) = tr(g−1) for all g ∈ G.

Proof. Suppose that tr(g) = tr(g−1) for all g ∈ G. As their characters are equal, the iden-
tity and contragredient representations ofG are therefore equivalent; i.e., g = Φ(g>)−1Φ−1

for some Φ ∈ GL(n,F). Rearranging this equality, we see that G preserves the form with
matrix Φ. �

The procedure PrimesForIsometry accepts an absolutely irreducible subgroup H of
SL(n,Z) that is not an isometry group. It selects h ∈ H such that a := tr(h)−tr(h−1) 6= 0,
and (using [25]) returns those p ∈ π(a) such that ϕp(H) is an isometry group.

We will need to check not only whether a congruence image of H preserves a form, but
whether it lies in the similarity group generated by a full isometry group and all scalars.
This is achieved with PrimesForSimilarity(H), which selects h = [h1, h2] ∈ H such
that a := tr(h) − tr(h−1) 6= 0. Clearly ϕp(H) is in a similarity group only if p ∈ π(a).
Hence we have the following.

Lemma 2.10. Suppose that H ≤ SL(n,Z) is absolutely irreducible and not an isometry
group. Then for almost all primes p, ϕp(H) does not lie in a similarity group over Zp.

3. ALGORITHMS FOR STRONG APPROXIMATION

We proceed to formulate an algorithm that realizes strong approximation in prime degree
n. That is, the algorithm computes Π(H) for any dense input H ≤ SL(n,Z). We also
compute Π for dense subgroups of SL(2n,Z) containing a transvection.
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3.1. Density in prime degree. For the entirety of this subsection, n is prime.
By [2] (cf [22, p. 397]), the set C of maximal subgroups of SL(n, p) is a union of certain

subsets C1, . . . , C9. For each i, we determine all primes p such that ϕp(H) could be in a
group in Ci. Hence, we provide criteria for H to surject onto SL(n, p) for almost all primes
p. These conditions turn out to be equivalent to density. They constitute the background
of our main algorithm and obviate any need to test density of the input (as in, say, [6,
Section 5]).

We start with an auxiliary statement for C9 (called class S in [3, Chapter 8]).

Lemma 3.1. There is a bound in terms of n on the order of subgroups of SL(n, p) that are
contained solely in groups in C9.

Proof. Suppose that U ≤ SL(n, p) lies only in C9 and not in Ci for i 6= 9. The perfect
residuum U∞ (i.e., the last term of the derived series of U ) is therefore a simple absolutely
irreducible subgroup of SL(n, p). If we show that the order of U∞ is bounded, then U ≤
Aut(U∞) also has bounded order. Thus, without loss of generality, U = U∞ from now
on.

Prime degree faithful representations of quasisimple groups are classified in [24, Theo-
rem 1.1]. The orders of the groups in classes (10)–(27) of this classification are bounded
absolutely (i.e., by a bound not depending on n or p). The orders of groups in classes
(2)–(9) are bounded by a function of n.

Class (1) groups are of Lie type in characteristic p in the Steinberg representation [15],
whose degree n is the p-part of the group order. For each class of groups of Lie type Gm(p),
this p-part is pa with a ≤ 1 for only finitely many values of m. So class (1) is finite for
prime n.

Finally we come to the case excluded by [24, Theorem 1.1], namely U/Z(U) ∼= Alt(m)

for m > 18. As a consequence of [16, 18], there are only finitely many degrees l such that
Sym(l) and thus Alt(l) has a faithful (projective) representation of degree m. �

The main procedure, PrimesForDense(H), combines the subsidiary procedures of Sec-
tion 2. Its output is the union of

• PrimesForAbsIrreducible(H)

• PrimesForMonomial(H)

• PrimesForSolvable(H, δ), where δ is a bound on the derived length of a solvable
linear group of degree n
• PrimesForSimilarity(H)

• PrimesForOrder(H, k) where k is a bound on element orders for groups of degree
n in C6 ∪ C9.

Theorem 3.2. Assuming termination for input H , PrimesForDense(H) returns Π(H).

Proof. Each prime returned must lie in Π(H). Conversely, let p be a prime such that
ϕp(H) 6= SL(n, p). Then ϕp(H) is in a group in some Ci, 1 ≤ i ≤ 9. For each i, we show
that (at least) one of the subsidiary procedures returns p.
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C1: here ϕp(H) is reducible, so p is returned by PrimesForAbsIrreducible(H).
C2: p is returned by PrimesForMonomial(H).
C3: for prime n, the stabilizers of extension fields are solvable, so p is returned by

PrimesForSolvable(H, δ).
C4, C7: since the degree of a tensor product is the product of the factor degrees, and n is

prime, these classes are empty.
C5 is empty over fields of prime size.
C6 consists of groups whose structure depends on n but not on p [3, Section 2.2.6]. The

number of such groups (and thus the largest order of an element in any one of them) is
bounded, and so PrimesForOrder(H, k) returns p.
C8: the groups in this class preserve a form modulo Z(SL(n, p)). Hence the derived

group of ϕp(H) preserves a form and p is returned by PrimesForSimilarity(H).
C9: by Proposition 3.1, the number of groups in this class is finite. Thus (as with C6)

PrimesForOrder(H, k) returns p. �

Remark 3.3. Using GAP and tables in [3, Chapter 8], we can calculate bounds on the order
of groups in C6 ∪ C9 (and hence bounds on their element orders) for small n. For n = 2, 3,
5, 7, 11, these bounds are 10, 21, 60, 84, 253, respectively.

Remark 3.4. PrimesForDense simplifies in small degrees. If n ≤ 3 then the groups in
C2 are solvable, so PrimesForSolvable overrides PrimesForMonomial. In degree 2,
PrimesForSimilarity is also redundant.

If PrimesForDense(H) terminates then Π(H) is finite, i.e., H is dense [26, p. 3650].
Next we prove the converse. This leads to a characterization of density in SL(n,Z).

Lemma 3.5. If H is irreducible, not solvable-by-finite, and not an isometry group, then
Π(H) is finite.

Proof. Each constituent output set is finite by Lemmas 2.2, 2.3, 2.6, 2.10, and 3.1. �

Lemma 3.6. IfH is infinite, non-solvable, primitive, and not an isometry group, then Π(H)

is finite.

Proof. As the previous proof, but relying on Corollary 2.5 instead of Lemma 2.3. �

Lemma 3.7. Suppose that ϕp(H) = SL(n, p) for some prime p, where p > 3 if n = 2.
Then H is infinite, non-solvable, and primitive. Furthermore, H is not an isometry group.

Proof. Since SL(n, p) is absolutely irreducible and non-solvable, the same is true of H . A
monomial subgroup of SL(n,Z) cannot surject onto SL(n, p) because it has an abelian nor-
mal subgroup whose index is too small. The remaining assertion follows from Lemmas 2.1
and 2.9. �

Lemmas 3.6 and 3.7 yield

Corollary 3.8 (Cf. p. 396 of [22] and Proposition 1 of [23]). If ϕq(H) = SL(n, q) for one
prime q > 3, then ϕp(H) = SL(n, p) for almost all primes p.
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Corollary 3.9. The following are equivalent.

(i) H is dense.
(ii) H surjects onto SL(n, p) modulo some prime p, where p > 3 if n = 2.

(iii) H is infinite, non-solvable, primitive, and not an isometry group.
(iv) H is irreducible, not solvable-by-finite, and not an isometry group.

Remark 3.10. Let n = 2. Then H is dense if and only if H is not solvable-by-finite; which
is equivalent to H being infinite and non-solvable.

To round out the subsection, we give one more set of criteria for density in odd prime
degree.

Lemma 3.11. Let n > 2. IfH contains an irreducible element and is not solvable-by-finite
then H is dense.

Proof. We appeal to Lemma 3.5. Let h ∈ H be irreducible. Suppose that H preserves
a form with (symmetric or skew-symmetric) matrix Φ. Then x 7→ Φx>Φ−1 defines a Q-
automorphism of 〈h〉Q of order 2. But 〈h〉Q is a field extension of odd degree n. Hence H
is not an isometry group. �

Corollary 3.12. For n > 2, a finitely generated subgroup of SL(n,Z) is dense if and only
if it contains an irreducible element and is not solvable-by-finite.

Remark 3.13. Lemma 3.6 allows us to replace ‘not solvable-by-finite’ in Lemma 3.11 and
Corollary 3.12 by ‘infinite non-solvable primitive’, or by ‘infinite non-solvable’ if n = 3

(cf. [19, p. 415], [20, Theorem 2.2]).

3.2. Algorithms for groups with a transvection. In [6, Section 3.2] we gave a straight-
forward procedure PrimesForDense to compute Π(H) if H is dense in SL(2n+ 1,Z) or
Sp(2n,Z) and contains a known transvection. The case H ≤ SL(2n,Z) was left open.
Now we close that gap.

Lemma 3.14. Suppose that H ≤ SL(2n,Z) contains a transvection t. Then H is dense if
and only if N := 〈t〉H is absolutely irreducible and tr(h) 6= tr(h−1) for some h in N .

Proof. Suppose that H is dense. Then N is absolutely irreducible by [6, Corollary 3.5]. If
tr(h) = tr(h−1) for all h ∈ N , then by Lemma 2.9 there is a form with matrix Φ such that
hΦh> = Φ for all h ∈ N . Since N EH and N is absolutely irreducible, hΦh> = αΦ for
all h ∈ H and some α ∈ Q (see, e.g., [3, Lemma 1.8.9, p. 41]). This contradicts density of
H .

Now suppose that N is absolutely irreducible and tr(h) 6= tr(h−1) for some h ∈ N .
Then ϕp(N) is absolutely irreducible and ϕp(tr(h)) 6= ϕp(tr(h

−1)) for almost all primes
p. So there are p > 3 and g ∈ ϕp(N) such that ϕp(N) is absolutely irreducible and tr(g) 6=
tr(g−1). Since ϕp(N) is generated by transvections, the theorem of [31, p. 1] implies that
ϕp(N) = SL(2n, p) or Sp(2n, p). Since the latter possibility is ruled out by Lemma 2.9,
we must have ϕp(H) = SL(2n, p) and so H is dense (see [23, Proposition 1]). �
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The procedure PrimesForDense(H, t), based on Lemma 3.14, accepts dense H ≤
SL(2n,Z) containing a transvection t, and returns Π(H). It combines PrimesForAbs-
Irreducible(N) and PrimesForIsometry(N), checking whether ϕp(H) = SL(2n, p)

for each p in the union of their outputs. See [6, Section 3] for an algorithm to compute a
basis of 〈N〉Q without computing (a full generating set of) the normal closureN . Similarly,
the application of PrimesForIsometry does not require computing N , and just randomly
selects h ∈ N such that tr(h) 6= tr(h−1).

3.3. General considerations. We make further comments on the operation of our algo-
rithms.

When selecting (pseudo-)random elements of SL(n,Z) for some subprocedures, we seek
just one element with a nominated property. These will be plentiful in dense subgroups.
Hence we do not aim for any semblance of a random distribution, but randomly take words
of length 5 in the given generators. If these repeatedly fail to have the desired property then
we gradually increment the word length.

At the start of the calculation we also select (e.g., by computing the orders, or invoking
composition tree on images of H modulo different primes [25]) a prime p0 > 3 such
that ϕp0(H) = SL(n, p0). The properties of elements that we are seeking may then be
maintained modulo p0. That is, instead of searching in H , we search for an element h̄ in
ϕp0(H) that has the desired properties (over Zp0) and lift to the pre-image h ∈ H .

Each of the subsidiary procedures for PrimesForDense(H) returns a positive integer d
divisible by every prime p such that ϕp(H) is in the respective class of maximal subgroups
of SL(n, p). However, d can have prime factors not in Π(H). Furthermore, these factors
might be so large as to make factorization of d impractical, or make the test of the congru-
ence image overly expensive. Thus we do not factor d fully, but only attempt a cheap partial
factorization (e.g., by trial division and a Pollard-ρ algorithm). If d does not factorize, or
has large prime factors (magnitudes larger than the entries of the input matrices), then we
compute another positive integer d′ using the same algorithm but with different choices of
random elements, and replace d by gcd(d, d′).

4. EXPERIMENTING WITH LOW-DIMENSIONAL DENSE SUBGROUPS

In this section we present experimental results obtained from our GAP implementation
of the algorithms. We demonstrate the practicality of our software and how it can be used
to obtain important information about groups. In particular we describe all congruence
images of H , as explained in the next subsection.

4.1. Computing all congruence images. Let H ≤ SL(n,Z) be dense. As in [6, Sec-
tion 2.4.1], define Π̃(H) = Π(H) ∪ {2} if ϕ2(H) = SL(n, 2) and ϕ4(H) 6= SL(n, 4);
whereas Π̃(H) = Π(H) otherwise. Note that the disparity between Π̃(H) and Π(H)

can arise only when n ≤ 4, and M(H) is even but 2 6∈ Π(H). By [6, Theorem 2.18],
Π̃(H) = π(M(H)). If n > 2 then ϕk(H) = ϕk(cl(H)) for all k; so Π̃(H) = Π̃(cl(H)).
We may therefore assume thatH is arithmetic, of levelM . Let a = gcd(k,M), so k = abc,
π(b) ⊆ π(a), and gcd(c, a) = 1. Then ϕk(H) ∼= H/(H∩Γk) ∼= HΓk/Γk is a subgroup of
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Γab/Γk × Γc/Γk. It is not difficult to show that ϕk(H) splits as a direct product of Γab/Γk
with Q := ((HΓk) ∩ Γc)/Γk. Since Γab/Γk ∼= SL(n,Z)/Γc, this expresses ϕk(H) as a
direct product of Q with a subgroup isomorphic to SL(n,Zc). Hence the task in describing
all congruence images of H boils down to computing with the quotient Q of ϕk(H) in
SL(n,Zk); in effect, ranging over all divisors of M . If n = 2 then the congruence sub-
group property does not hold, and we can only handle k = p prime. Note that our actual
implementation (see [7]) computes Π̃ = π(M) rather than Π(H) for input dense H .

In some of the examples below we describe the congruence quotient modulo the level
M , exhibiting which parts of its structure arise for various prime powers. We give this as
an ATLAS-style composition structure [4] (separating composition factors by dots; cf. [3]),
marked up to show the prime powers for which each factor first arises. We emphasize that
these have been generated ‘semiautomatically’ using some composition series that refines
the congruence structure, not necessarily the nicest or best possible. One example from
Table 1 is a group of level 345·19 with quotient structure

34

34

.33

33

.33

32

.52.2.2.2
5

.3.3
3,5

.L2(19)
19

In the standard notation Lm(q) := PSL(m, q), this has congruence image L2(19) modulo
19, which is a simple direct factor not interacting with the other primes. The quotient
modulo 3 has structure 3.3 (and is almost certainly the group 32). The quotient modulo
5 is 52.2.2.2.3.3, forming a subdirect product with the quotient of order 3 in which the
full factor 3.3 is glued together. Modulo 9 the group possesses a factor 33 (of the possible
33·3−1 = 38), modulo 27 another factor 33, and modulo 81 a factor 34. (Since 34 is the
prime power dividing the level, the quotient modulo 243 would contain a full 38.) The
structural analysis in [6, Section 2] proves that the exponent for pi+1 cannot be smaller
than the exponent for pi. The name indicates all proper prime powers dividing the level.
Thus ‘empty’ factors

pa
are possible if the group has no elements on that level.

Experimental results are displayed in Tables 1 and 2 (writing Am for Alt(m) and Sm
for Sym(m)). We do not state Π(H) as this set almost always coincides with π(M).

Experiments were performed on a 2013 MacPro with a 3.7 GHz Intel Xeon E5 utilizing
up to 8GB of memory. The software can be accessed at http://www.math.colostate.
edu/˜hulpke/arithmetic.g. Some documentation [7] is also available.

4.2. Low-dimensional dense subgroups. Our examples in this subsection come from a
family of low-dimensional representations of finitely presented groups, as defined in [19,
20, 21]. For each test group H we compute Π(H), incidentally justifying density of H .
Thereafter we compute M(H), |SL(n,Z) : H|, and the congruence quotients of H .

4.2.1. Adopting the notation of [19, p. 414], let

Γ := 〈x, y, z | zxz−1 = xy, zyz−1 = yxy〉;

this is the fundamental group of the figure-eight knot complement. Let F = 〈x, y〉. In [19]
two families of representations βT , ρk of Γ in SL(3,Z) were constructed. Section 4 of [6]

http://www.math.colostate.edu/~hulpke/arithmetic.g
http://www.math.colostate.edu/~hulpke/arithmetic.g
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reports on experiments with βT for a range of T and ρk for k = 0, 2, 3, 4, 5. The groups
ρk(Γ), ρk(F ) for k 6= 0, 2, 3, 4, 5 are of special interest (see [19, Section 5]). However,
neither the methods of [19] nor those of [6] facilitate proper study of ρk for such k.

Recall that

ρk(x) =

 1 −2 3

0 k −1− 2k

0 1 −2

, ρk(y) =

 −2− k −1 1

−2− k −2 3

−1 −1 2

 ,

ρk(z) =

 0 0 1

1 0 −k
0 1 −1− k

.
The results of experiments with ρk(Γ) and ρk(F ) are collected in Table 1; here M is the
level (which turns out to be the same for both Γ and F ), IndexΓ is |SL(3,Z) : cl(ρk(Γ))|,
and IndexΓ,F is |cl(ρk(Γ)) : cl(ρk(F )|). The last column is the congruence image of ρk(F )

modulo M . For k = 1, 6, 10 the groups surject modulo 2 but not modulo 4.
Determination of the relevant primes was instantaneous. The time to calculate level and

index increased roughly with the level, from a few seconds for k = 1 to about 15 minutes
for k = 20.

k M IndexΓ IndexΓ,F StructureF
1 2234 21031513 22 34

34

.33

33

.
22

.33

32

.3.3
3

.L3(2)
2

6 2231·43 210337·432331·631 2·3·5
22

.31.31.2
31

.L2(43)
43

.L2(31)
31

.L3(2)
2

7 345·19 263175·13·19231·127 2232 34

34

.33

33

.33

32

.52.2.2.2
5

.3.3
3,5

.L2(19)
19

10 223411·37 2143167213·19·37267 22325 34

34

.33

33

.
22

.33

32

.11.11.2
11

.3
3

. 3
3,11

.L2(37)
37

.L2(11)
11

.L3(2)
2

15 229·241 26335·97·181·241219441 2·3·19 229.229.2
229

.L2(241)
241

.L2(229)
229

20 409·421 24335·7·421255897·59221 223·17 409.409.2
409

.L2(421)
421

.L2(409)
409

TABLE 1.

4.2.2. Next we look at triangle groups ∆(p, q, r) = 〈a, b | ap = bq = (ab)r = 1〉.
In [20] representations of ∆(3, 3, 4) in SL(3,Z) are defined by

a 7→ a1 =

(
0 0 1

1 0 0

0 1 0

)
, b 7→ b1(t) =

(
1 2− t+ t2 3 + t2

0 −2 + 2t− t2 −1 + t− t2

0 3− 3t+ t2 (−1 + t)2

)
.

These representations are faithful for all t ∈ R, and if t ∈ Z then the images are dense and
non-conjugate for different t [20, Theorem 1.1]. If t = 1 then the group is conjugate to the
one constructed by Kac and Vinberg [19, p. 422]. Put H1(t) = 〈a1, b1(t)〉.
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In [20, p. 8], the following faithful dense representationsH2(t) = 〈a2(t), b2〉 of ∆(3, 4, 4)

were constructed:

a 7→ a2(t) =

(
1 4 + 3t2/4 3(6− t+ t2)/2

0 −(4 + t+ t2)/2 −3− t2

0 (4 + 2t+ t2)/4 (2 + t+ t2)/2

)
,

b 7→ b2 =

(
0 0 1

1 0 −1

0 1 1

)
.

In [21, p. 13], faithful representations of ∆(3, 3, 4) in SL(5,Z) are defined by

a 7→ a3(k) =


1 0 −3− 2k − 8k2 −1 + 10k + 32k3 −5− 16k2

0 4(−1 + k) −13− 4k 3 + 16(1 + k)2 −4 + 16k

0 1− k + 4k2 3− 2k + 8k2 −2(1 + 3k + 16k3) 3 + 16k2

0 k 2k 1− 2k − 8k2 1 + 4k

0 0 3k 3(−1 + k − 4k2) −2

,

b 7→ b3(k) =


0 0 −3− 2k − 8k2 −1 + 10k + 32k3 −5− 16k2

0 1 3 + 4k −13− 8k − 16k2 4− 16k

0 0 −2(1 + k + 4k2) 6k + 32k3 −3− 16k2

1 0 −2(1 + k) −1 + 2k + 8k2 −1− 4k

2k 0 1− 2k −4k 1

.
As k ranges over Z, the H3(k) = 〈a3(k), b3(k)〉 are dense and pairwise non-conjugate.

It is known that H1(t), H2(t), H3(k) are thin [20, 21]. For each of these groups we
computed its level M and the index of its arithmetic closure in SL(n,Z) for several values
of the parameters. See Table 2.

For t ≡ 1 (mod 4), the H1(t) as far as we tested surject onto SL(3, 2) but not onto
SL(3,Z4).

Runtimes for degree 3 groups were consistent with the previous example. In degree 5,
identification of primes was again instantaneous, while the calculation of level and index
took about 6 minutes for H3(0) and 20 minutes for H3(3). So we did not try larger k.

4.2.3. Random generators. We constructed subgroups of SL(n,Z) for n = 3 and 5 gener-
ated by a pair of pseudo-random matrices (via the GAP command RandomUnimodularMat).
More than half of the groups so generated surject onto SL(n, p) modulo all primes p (and
also modulo 4). We attempted to verify whether each group is arithmetic by expressing its
generators as words in standard generators of SL(n,Z) and running a coset enumeration
with the presentation from [28]. As the enumeration never terminated, we suspect that these
groups are not arithmetic (and indeed a random finitely generated subgroup of SL(n,Z) is
likely to be thin [12, 26]).

4.2.4. Further experimentation. Comparing congruence images with finite quotients (ob-
tained, e.g., by the low-index algorithm of [14, Section 5.4]) may help to decide whether
a dense representation of a finitely presented group is faithful, or justify that a group is
thin. For example, low-index calculations with the finitely presented group Γ as in Sub-
section 4.2.1 expose quotients (such as Sym(23), Sym(29), Alt(11) o C2, to name just a
few) that cannot be congruence images of any ρk(Γ), as they do not have representations
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of suitably small degree. Thus ρk cannot be faithful on Γ if ρk(Γ) is arithmetic (cf. [19,
Question 5.1]). This fact has a clear explanation: F is free and normal in Γ; hence a repre-
sentation of Γ in SL(3,Z) is arithmetic precisely when its restriction on F is arithmetic [19,
p. 420]; but any virtually free group cannot have a faithful arithmetic representation in
SL(n,Z) for n > 2.

To illustrate another potential application of our algorithms, we show that faithful dense
representations of the triangle groups ∆(3, 3, 4), ∆(3, 4, 4) in SL(3,Z) or SL(5,Z) are not
arithmetic; this includes H1(t), H2(t), H3(k) as in Section 4.2.2 (cf. [20, 21]). Indeed,
∆(3, 3, 4) and ∆(3, 4, 4) each have a quotient isomorphic to Alt(20). This is not a con-
gruence quotient of an arithmetic group in SL(3,Z) or SL(5,Z), because Alt(20) does not
have a faithful representation in SL(3, p) or SL(5, p) for any p.

We also use this example to compare the capability of our algorithm with that of the low-
index algorithm. Congruence quotients of ρk(Γ) (modulo any integer m > 1, including m
not dividing the level) produced by our algorithms expose quotients of Γ (such as SL(n, p)

for large p) that are infeasible to find through a low-index computation, because these
groups do not have a faithful permutation representation of sufficiently small degree. Using
a homomorphism search [14, Section 9.1.1], we find that Γ has 34 normal subgroups N
such that Γ/N ∼= SL(3, 5). Applying our algorithm, we identify 80 values of k in the range
1, . . . , 100, such that 5 6∈ Π(ρk(Γ)). For these k, the kernels of the induced surjections
Γ → ρk(Γ) → SL(3, 5) expose just 4 of the 34 normal subgroups. This prompts us to
conjecture that the ρk will not expose all SL(n, p) quotients of Γ.

Acknowledgments. We thank Mathematisches Forschungsinstitut Oberwolfach for its gen-
erous hospitality during a Research in Pairs visit. Our work was further supported by a
Marie Skłodowska-Curie Individual Fellowship grant under Horizon 2020 (EU Framework
Programme for Research and Innovation), and Simons Foundation Collaboration Grant
244502.
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