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We provide a means to compute Herbrand disjunctions directly from se-
quent calculus proofs with cuts. Our approach associates to a first-order
classical proof 𝜋 ⊢ ∃𝑣𝐹 , where 𝐹 is quantifier free, an acyclic higher order
recursion scheme H whose language is finite and yields a Herbrand disjunc-
tion for ∃𝑣𝐹 . More generally, we show that the language of H contains the
Herbrand disjunction implicit in any cut-free proof obtained from 𝜋 via a
sequence of Gentzen-style cut reductions that always reduce the weak side of
a cut before the strong side.
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1 Introduction
The property of being a valid first-order formula is intimately tied to the consideration
of the ground, i.e., variable-free, instances of that formula. This connection is apparent
in most, if not all, proofs of the completeness theorem which, in one way or another, rely
on the construction of a term model. It is plainly visible in Herbrand’s theorem which
states that a formula is valid if, and only if, there is a finite expansion (of existential
quantifiers to disjunctions and universal quantifiers to conjunctions of instances). This
feature of classical first-order logic is in contrast to both classical second-order logic,
whose standard semantics goes beyond the ground instances of a countable language,
and intuitionistic first-order logic, which exhibits a more complicated interaction between
quantifiers and propositional connectives.

Proof-theoretically, the use of instances of a formula naturally leads to analytic,
cut-free, proofs. Gentzen’s mid-sequent theorem makes the close connection between
Herbrand expansions and cut-free proofs apparent. Taking this perspective on the cut-
elimination theorem, and thereby keeping the well-known complexity bounds in mind,
shows that, in essence, cut-elimination consists of the computation of a Herbrand expan-
sion. One may ask, however, whether given a proof with cut it is possible to compute
a Herbrand expansion in a more direct way, circumventing the cumbersome process of
cut-elimination. There is a number of formalisms that do just that, the historically first
being Hilbert’s 𝜀-calculus [31] (see [35] for a contemporary exposition of the 𝜀-theorems
in English). In [20], Gerhardy and Kohlenbach adapt Shoenfield’s variant [41] of Gödel’s
Dialectica interpretation [21, 5] to a system of pure predicate logic. Recent work, related
to proof nets, is that of Heijltjes [22] and McKinley [33], and a similar approach, in the
formalism of expansion trees [34], can be found in [30]. A different method with similar
aims is cut-elimination by resolution [8].

The present work is motivated by the follow-up question: what is a minimal amount
of information required for computing a Herbrand expansion from a proof with cuts?
An approach which has been partially successful in answering the question is the rep-
resentation of proofs as tree grammars, introduced in [24] for proofs with Π1-cuts and
extended to Π2-cuts in [1, 2]. This emphasis on minimality plays a crucial role for sev-
eral applications, such as cut-introduction [26, 25, 32], inductive theorem proving [15]
and the confluence behaviour of cut-elimination [28, 29, 2]. For instance, in the case of
cut-introduction, which is an attempt to automatically compress proofs via introduction
of cuts (i.e. lemmas), the algorithm proceeds in two steps: 1. a smallest grammar which
represents a given Herbrand expansion is computed and 2. this grammar is translated to
a proof with cuts. The minimality of the grammar formalism makes the first step feas-
ible and the second step total. Algorithms for cut-introduction and inductive theorem
proving are currently being implemented in the GAPT-system [16], see e.g. [27, 17].
A further theoretical application of proof grammars is in the area of proof complexity,
where lower bounds on the length of proofs with cuts (which are notoriously difficult
to control) are obtained by transferring lower bounds on the size of the corresponding
grammar [14, 13]. Proving these lower bounds on the size of grammars is considerably
simplified by them containing only a minimal amount of information.

Continuing this research effort, we demonstrate how Herbrand expansions can be
represented as languages of higher order recursion schemes derived directly from first-
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order proofs with cut. Higher order recursion schemes (see e.g. [37]) are a generalisation
of regular tree grammars (which correspond to order-0 recursion schemes) to finite types.
The representation we outline involves interpreting inference rules of proofs as non-
terminals whose production rules follow the local instantiation structure of quantifiers.
The type of a non-terminal is determined entirely by the quantifier complexity of the
formulæ occurring in the corresponding inference, with an inference deriving Σ𝑛 ∪ Π𝑛

formulæ being represented by a non-terminal of order 𝑛. Cut corresponds to composition
of non-terminals, and instances of contraction give rise to non-deterministic production
rules. The language of the recursion scheme induces a Herbrand expansion for the end-
sequent of the proof. At the level of Π2-cuts, the schemes closely resemble the grammars
introduced in [4]. The generic case of the representation, which permits capturing cuts
of arbitrary quantifier complexity, turns out to be at the level of Π3 where both sides of
a cut feature ∃∀ quantifier alternations.

As far as the authors are aware, the present work marks the first method of Herbrand
extraction that operates directly on sequent calculus proofs. The main result can be
summarised as follows and was announced in [3].

Theorem 1.1. Let 𝐹 be a quantifier-free formula and 𝜋 a first-order proof of ∃𝑣⃗𝐹 in
which cut-formulæ are prenex Π𝑛 or Σ𝑛. There exists an acyclic order 𝑛 recursion
scheme H with language 𝐿(H ) such that: i)

⋁︀
𝑡⃗∈𝐿(H ) 𝐹 (⃗𝑡) is valid; ii) |𝐿(H )| ≤ 24|𝜋|3

𝑛+2
where |𝜋| is the number of inference rules in 𝜋; iii) 𝐿(H ) contains the Herbrand set
extracted from any cut-free proof that can be obtained from 𝜋 via a sequence of Gentzen-
style cut reductions that always reduces to the weak (quantifier) side of a cut before the
strong side.

2 Sequent Calculus for Classical First-order Logic
Terms and formulæ of first-order logic are defined as usual using the connectives ∧, ∨
and quantifiers ∀, ∃, as well as a selection of predicate and function symbols. We assume
two sets of variable symbols, free variables, denoted 𝛼, 𝛽, etc., and bound variables, 𝑣, 𝑤,
etc. Upper-case Roman letters, 𝐴, 𝐵, etc. denote formulæ and upper-case Greek letters
Γ, Δ, etc. range over sequents, namely finite sequences of formulæ. We abbreviate by
Γ, Δ the concatenation of Γ and Δ; and Γ, 𝐴 is shorthand for Γ, {𝐴}. The length of a

Axioms: 𝐴, 𝐴 for 𝐴 quantifier-free

Inference rules:
Γ, 𝐴, 𝐵

∨ −−−−−−−−−−
Γ, 𝐴 ∨𝐵

Γ, 𝐴 Δ, 𝐵
∧ −−−−−−−−−−−−−

Γ, Δ, 𝐴 ∧𝐵

Γ, 𝐴(𝛼⃗/𝑣⃗)
∀𝛼⃗ −−−−−−−−−−−Γ,∀𝑣⃗𝐴

Γ, 𝐴(𝑟⃗/𝑣⃗)
∃𝑟⃗ −−−−−−−−−−−Γ,∃𝑣⃗𝐴

Γ, 𝐴 Δ, 𝐴
cut −−−−−−−−−−−−−

Γ, Δ

Γ
w −−−−−

Γ, 𝐴

Γ, 𝐴, 𝐴
c −−−−−−−−

Γ, 𝐴

Γ, 𝐵, 𝐴, Δ
p −−−−−−−−−−−

Γ, 𝐴, 𝐵, Δ

Figure 1: Axioms and rules of sequent calculus
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sequent Γ is denoted |Γ|. As the order of the formulæ in a sequent is often (though not
always) unimportant, we will frequently identify sequents with (finite) multisets. We
write 𝐴 to denote the dual of the formula 𝐴 obtained by de Morgan laws. Given a
sequence of variable symbols 𝑣⃗ = (𝑣0, . . . , 𝑣𝑘−1) of length 𝑘, we write ∀𝑣⃗𝐴 and ∃𝑣⃗𝐴 as
shorthand for ∀𝑣0 · · · ∀𝑣𝑘−1𝐴 (resp. ∃𝑣0 · · · ∃𝑣𝑘−1𝐴). If 𝑡⃗ = (𝑡0, . . . , 𝑡𝑘−1) is a sequence of
terms of the same length, 𝐴(⃗𝑡/𝑣⃗) is the formula obtained from 𝐴 by replacing each 𝑣𝑖

by the corresponding term 𝑡𝑖, where bound variables in 𝐴 are renamed as necessary to
avoid variable capture.

The following abbreviations will be used in later sections. For a formula 𝐴, we write
𝐴𝑞𝑓 to indicate that 𝐴 is quantifier-free, and 𝑢(𝐴) (resp. 𝑒(𝐴)) for the number of consec-
utive universal (existential) quantifiers in 𝐴 before encountering an existential (universal)
quantifier:

𝑢(∀𝑣𝐴) = 𝑢(𝐴) + 1 𝑒(∃𝑣𝐴) = 𝑒(𝐴) + 1
𝑢(∃𝑣𝐴) = 𝑢(𝐴𝑞𝑓 ) = 0 𝑒(∀𝑣𝐴) = 𝑒(𝐴𝑞𝑓 ) = 0

For notational simplicity, we work in one-sided sequent calculus with explicit struc-
tural rules for weakening (w), contraction (c) and permutation (p), though the results
presented apply equally to two-sided (so-called Gentzen-style) sequent calculi and either
form of calculus without explicit structural rules. The axioms and rules of the calcu-
lus are laid out in Figure 1. The quantifier introduction rules ∀𝛼⃗ and ∃𝑟⃗ introduce a
sequence of quantifiers in one application. Applications of ∀𝛼⃗ are subject to an eigen-
variable condition that if 𝛼⃗ = (𝛼0, . . . , 𝛼𝑘−1) then 𝛼𝑖 does not occur in the sequent Γ, 𝐴
for any 𝑖 < 𝑘. In each inference rule, the formulæ which are explicitly mentioned in the
premise(s) (usually the right-most formula in the sequent) are said to be active in the
rules applied. For example, 𝐴 and 𝐵 are active in ∧ rule, both copies of 𝐴 are active in
contraction, and there are no active formulæ in the weakening rule. Active formulæ of
cut are refereed to as cut formulæ. We often leave the applications of the permutation
rule implicit, writing, for instance,

Γ, 𝐴(𝛼⃗/𝑣⃗), Δ
∀𝛼⃗ −−−−−−−−−−−−−−−Γ,∀𝑣⃗𝐴, Δ

Γ, 𝐴, Γ′ Δ, 𝐴, Δ′
cut −−−−−−−−−−−−−−−−−−−−−

Γ, Γ′, Δ, Δ′

to abbreviate derivations

Γ, 𝐴(𝛼⃗/𝑣⃗), Δ
p* −−−−−−−−−−−−−−−

Γ, Δ, 𝐴(𝛼⃗/𝑣⃗)
∀𝛼⃗ −−−−−−−−−−−−−−−Γ, Δ, ∀𝑣⃗𝐴

p* −−−−−−−−−−−
Γ, ∀𝑣⃗𝐴, Δ

Γ, 𝐴, Γ′
p* −−−−−−−−

Γ, Γ′, 𝐴

Δ, 𝐴, Δ′
p* −−−−−−−−−

Δ, Δ′, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−

Γ, Γ′, Δ, Δ′

where in each case p* denotes a sequence of permutation inferences p, a notation we also
extend to the other structural rules.

A proof is a finite tree labelled by sequents obtained from the axioms and rules of the
calculus with the restriction that cuts apply to prenex formulæ only. Without loss of
generality, we assume all proofs are regular, by which we mean that:

1. each eigenvariable in the proof appears in exactly one ∀𝛼⃗ inference in the proof
and does not occur in any sequent outside the sub-proof of this inference,
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2. if 𝐴 appears as the active formula of a quantifier inference ∀ (∃) then 𝑢(𝐴) = 0
(resp. 𝑒(𝐴) = 0).

We write 𝜋 ⊢ Γ to express that 𝜋 is a regular proof with Γ being the sequent appearing
at the root of 𝜋. EV(𝜋) denotes the set of eigenvariables in a proof 𝜋, and for sequences
𝛼⃗ = (𝛼0, . . . , 𝛼𝑘−1) and 𝑡⃗ = (𝑡0, . . . , 𝑡𝑘−1) of variable symbols and terms, 𝜋(⃗𝑡/𝛼⃗) is the
result of replacing throughout the proof 𝜋 each occurrence of the variable symbol 𝛼𝑖 by
the term 𝑡𝑖.

2.1 Cut Reduction and Normal Forms
The standard cut reduction and cut permutation steps are given in Figures 2 and 3.
For the sake of a concise presentation, the axioms and rules are stated with implicit
permutation in place. We assume all the proofs drawn in Figures 2 and 3 are regular.
Hence, in the case of contraction reduction where the sub-proof 𝜋1 is duplicated it
is assumed that the eigenvariables are renamed in the copy, which is emphasised by
annotating the sub-proof with an asterisk i.e. 𝜋*1. In the two reductions of Figure 3,
r represents an arbitrary unary or binary inference rule. An example of the binary
inference permutation rule for r = cut is

𝜋0

Γ, 𝐵

𝜋1

Δ, 𝐵̄, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Γ, Δ, 𝐴

𝜋2

Λ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Λ

 
𝜋0

Γ, 𝐵

𝜋1

Δ, 𝐵̄, 𝐴

𝜋2

Λ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Δ, 𝐵̄, Λ
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Λ

For proofs 𝜋 and 𝜋′ we write 𝜋  𝜋′ to express that 𝜋′ is obtained from 𝜋 by application
of a reduction or permutation rule to a sub-proof of 𝜋, and let  * denote the reflexive
transitive closure of . If 𝜋  𝜋′ then the reduced cut either no longer exists, is replaced
by cuts on formulæ with either lower logical complexity or fewer applied contractions,
or permuted to a subproof. In any given proof there may, however, be many cuts and
eliminating one can (through duplicating a sub-proof) result in introducing several copies
of other cuts. To obtain a cut-free proof, it is necessary to provide a (terminating) cut
elimination strategy i.e. a procedure that given any proof 𝜋 ⊢ Γ induces a sequence of
cut reduction and permutation steps 𝜋  * 𝜋′ such that 𝜋′ ⊢ Γ and the rule cut is not
used in 𝜋′.

Theorem 2.1 (Gentzen’s Hauptsatz). There is a cut elimination strategy that trans-
forms any proof in first-order logic to a cut-free proof.

There are many cut elimination strategies such as top-most reduction strategy or
the elimination of the cut with highest logical complexity. Different strategies provide
different cut-free proofs, commonly also referred to as normal forms. In fact, there exist
proofs with infinitely many normal forms (see e.g. [43, Example 2.1.3]). We now turn to
the relationship between cut-elimination and Herbrand disjunctions in first-order logic.
In the remainder of this article a quasi cut-free proof refers to a proof in which the only
cuts are on quantifier-free formulae.
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Axiom:
𝜋

Γ, 𝐴 𝐴, 𝐴
cut −−−−−−−−−−−−−−−−

Γ, 𝐴

 
𝜋

Γ, 𝐴

Boolean:

𝜋0

Γ, 𝐴

𝜋1

Δ, 𝐵
∧ −−−−−−−−−−−−−−−−−−−−

Γ, Δ, 𝐴 ∧ 𝐵

𝜋2

Π, 𝐴, 𝐵̄
∨ −−−−−−−−−−−

Π, 𝐴 ∨ 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Π

 
𝜋0

Γ, 𝐴

𝜋1

Δ, 𝐵

𝜋2

Π, 𝐴, 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−−−

Δ, Π, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Π
Quantifier:

𝜋0

Γ, 𝐴(𝛼⃗/𝑣⃗),
∀𝛼⃗ −−−−−−−−−−−−−

Γ, ∀𝑣⃗𝐴

𝜋1

Δ, 𝐴(𝑟⃗/𝑣⃗)
∃𝑟⃗ −−−−−−−−−−−−

Δ, ∃𝑣⃗𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ

 

𝜋
(𝑟⃗/𝛼⃗)
0

Γ, 𝐴(𝑟⃗/𝑣⃗)

𝜋1

Δ, 𝐴(𝑟⃗/𝑣⃗)
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ

Weakening:

𝜋0

Γ
w −−−−−

Γ, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Γ, Δ

 

𝜋0

Γ
w* −−−−−

Γ, Δ

Contraction:

𝜋0

Γ, 𝐴, 𝐴
c −−−−−−−−

Γ, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Γ, Δ

 

𝜋0

Γ, 𝐴, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−

Γ, 𝐴, Δ

𝜋*
1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Δ
c* −−−−−−−−−

Γ, Δ

Figure 2: One-step cut reduction rules.

Unary inf.:

𝜋0

Γ′, 𝐴
r −−−−−−

Γ, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Γ, Δ

 

𝜋0

Γ′, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Γ′, Δ
r −−−−−−

Γ, Δ
Binary inf.:

𝜋0

Γ′

𝜋1

Δ′, 𝐴
r −−−−−−−−−−−−−−−−−−−

Γ, Δ, 𝐴

𝜋2

Λ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Λ

 
𝜋0

Γ′

𝜋1

Δ′, 𝐴

𝜋2

Λ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Δ′, Λ
r −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Λ

Figure 3: One-step cut permutation rules.
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2.2 Herbrand’s Theorem and Cut Elimination
Herbrand’s theorem is considered a classic result in proof theory. It can be thought of as
reducing validity in first-order logic to validity in propositional logic. From the modern
perspective it can also be seen as extracting computational content to first-order proofs.
A simple case of the theorem is the following.

Theorem 2.2 (Herbrand’s theorem). A formula ∃𝑣⃗𝐴𝑞𝑓 is valid if and only if there exists
a finite set of sequences of terms {𝑡0, 𝑡1,. . . ,𝑡𝑘} such that

⋁︀𝑘
𝑖=0 𝐴(𝑡𝑖/𝑣⃗) is valid.

If a formula ∃𝑣⃗𝐴𝑞𝑓 is valid then any set of terms {𝑡0, 𝑡1,. . . ,𝑡𝑘} that validate the
disjunction

⋁︀𝑘
𝑖=0 𝐴(𝑡𝑖/𝑣⃗) is called a Herbrand set, and the disjunction itself a Herbrand

disjunction for the formula.
Herbrand’s theorem pre-dates Gentzen’s Hauptsatz but the latter readily provides an

instructive proof of the theorem: Suppose ∃𝑣⃗𝐴𝑞𝑓 is valid and fix a quasi cut-free proof
𝜋 ⊢ ∃𝑣⃗𝐴. It is possible to permute the rules applied in 𝜋 so that no quantifier inference
occurs above a purely propositional rule (Gentzen’s mid-sequent theorem [18]). Once
the proof is partitioned into a propositional part and a quantifier part, the terms that
validate the formula can be directly read off from the mid-sequent, the sequent separating
the two parts.

Herbrand’s original statement is much more general than that stated above and ap-
plies to any formula of first-order logic thanks to Herbrandisation, the dual notion of
Skolemization. Given an arbitrary formula 𝐴, by introducing suitable constant and
function symbols it is possible to remove universal quantifiers in 𝐴 and obtain a Σ1
prenex-formula which is equi-valid to 𝐴. Herbrandisation can also be applied to a proof
of a sequent Γ transforming it to a proof of the Herbandisation of Γ.

If a Herbrand set (disjunction) is obtained via cut elimination it is customary to refer to
it as a Herbrand set (disjunction) of the proof. Note that these are not unique: different
reduction strategies can lead to non-elementary many pairwise distinct Herbrand dis-
junctions [6]. For both computing and representing Herbrand disjunctions it is therefore
desirable to bypass cut elimination. There has been a number of successful approaches
such as via Herbrand nets [33], proof forests [22], expansion trees with cut [30] and func-
tional interpretation [20]. In the next section we introduce a fresh approach using higher
order recursion schemes which allows the extraction of Herbrand disjunctions directly
from proofs in sequent calculus and represents them in a standard formalism from formal
language theory.

3 Recursion Schemes for First-order Proofs
In this section we associate to each sequent calculus proof 𝜋 with Σ1 end-sequent a
non-deterministic higher order recursion scheme H𝜋. We begin with definition of the
type system and terms that will be used throughout the paper. In sections 3.2 and 3.3,
higher order recursion schemes over the type system are introduced and upper bounds
on the size of languages of acyclic schemes are established. The definition of H𝜋 is given
in section 3.4.

8



3.1 Types and Terms
The type system we utilise extends the hierarchy of simple types (over a type of individu-
als 𝜄) by pair types and two additional type constants. These are the unit type, denoted
𝜖, and a type 𝜍 of (stacks of) substitutions, elements of which are finite sequences of
pairs (𝛼, 𝑟) where 𝛼 and 𝑟 are elements of some (and the same) type. We are interested
specifically in the case that 𝛼 is a constant symbol (of simple type) from a particular
ranked alphabet Σ, and refer to the type 𝜍 as the type of substitution stacks (over Σ),
or simply Σ-substitutions.

The informal reading behind the type 𝜍 is that of an accumulator for a sequence of
substitutions that are generated by reading a particular thread through a formal proof:
when a witness to an existential quantifier is encountered along such a thread, the witness
is outputted accompanied by the current stack of substitutions. The substitutions are
not evaluated at the formal level but recorded as an element of 𝜍.

We begin with a formal definition of the types and conventions for their representation,
followed by ranked alphabets and the recursive definition of (typed) terms including the
precise form of inhabitants of the type of substitution stacks.

Definition 3.1. The types are defined in the following way.

∙ 𝜄 is a type, called the type of individuals.

∙ 𝜖 is a type, called the unit type.

∙ 𝜍 is a type, called the type of substitution stacks.

∙ Function types: if 𝜌, 𝜎 are types then 𝜌→ 𝜎 is a type.

∙ Pair types: if 𝜌, 𝜎 are types then 𝜌× 𝜎 is a type.

A type formed without reference to 𝜍 is called basic, and one formed only out of 𝜄 and
→ is simple. The types 𝜄 and 𝜖 are referred to collectively as ground types and any type
that is not a function type is called prime. The sequence types are the types of the form
𝜄𝑛 for any 𝑛, where 𝜄0 = 𝜖 and 𝜄𝑛+1 = 𝜄× 𝜄𝑛. The set of all types is denoted Type.

We follow the convention that the two type forming operations × and → associate to
the right, and that → binds more strongly than ×, so for 𝜌0, . . . , 𝜌𝑘 types we have

𝜌0 × 𝜌1 × · · · × 𝜌𝑘 = 𝜌0 × (𝜌1 × · · · × 𝜌𝑘)
𝜌0 → 𝜌1 → · · · → 𝜌𝑘 = 𝜌0 → (𝜌1 → · · · → 𝜌𝑘)

𝜌0 × · · · × 𝜌𝑖 → 𝜌𝑖+1 × · · · × 𝜌𝑘 = (𝜌0 × · · · × 𝜌𝑖)→ (𝜌𝑖+1 × · · · × 𝜌𝑘)

Every type 𝜌 has a unique decomposition 𝜌 = 𝜌1 → 𝜌2 → · · · → 𝜌𝑘 → co(𝜌) where co(𝜌)
is a prime type. Given such a decomposition of 𝜌 we refer to co(𝜌) as the co-domain of
𝜌, to 𝑘 as the arity of 𝜌, and to 𝜌𝑖 (1 ≤ 𝑖 ≤ 𝑘) as the 𝑖-th domain of 𝜌.

We now define the order of a type which extends the usual definition of order for the
simple types. Motivated by later technicalities, it is convenient to assign order −1 to
the type of substitutions, and order 0 to any function type with co-domain 𝜖.
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Definition 3.2 (Order). The order of a type 𝜌, 𝑜𝑟𝑑(𝜌), is defined as follows.

𝑜𝑟𝑑(𝜄) = 𝑜𝑟𝑑(𝜖) = 0 𝑜𝑟𝑑(𝜍) = −1 𝑜𝑟𝑑(𝜌× 𝜎) = max{𝑜𝑟𝑑(𝜌), 𝑜𝑟𝑑(𝜏)}

𝑜𝑟𝑑(𝜌→ 𝜎) =
{︃

0, if co(𝜎) = 𝜖,
max{𝑜𝑟𝑑(𝜌) + 1, 𝑜𝑟𝑑(𝜎)}, otherwise.

Definition 3.3 (Ranked alphabet). A (ranked) alphabet is a pair 𝒜 = ⟨𝑆, 𝜆⟩ where 𝑆
is a set, called the carrier of 𝒜, and 𝜆 : 𝑆 → Type is a type assignment for elements of
𝑆. If 𝜆(S) is a simple (basic) type for every S ∈ 𝑆 we call 𝒜 simple (resp. basic). Two
ranked alphabets are disjoint just in case their carriers are disjoint sets.

Given an alphabet 𝒜 = ⟨𝑆, 𝜆⟩, we write 𝛼𝜌 ∈ 𝒜 if 𝛼 ∈ 𝑆 and 𝜆(𝛼) = 𝜌, and hence
frequently identify 𝒜 with the set {𝛼𝜆(𝛼) | 𝛼 ∈ 𝑆} of symbols with type annotations.
For alphabets 𝒜 = ⟨𝑆, 𝜆⟩ and ℬ = ⟨𝑆′, 𝜆′⟩, we write 𝒜 ⊂ ℬ if 𝑆 ⊆ 𝑆′ and 𝜆 = 𝜆′ � 𝑆. In
case 𝒜 and ℬ are disjoint, 𝒜∪ℬ denotes the alphabet formed by the union of 𝒜 and ℬ,
namely ⟨𝑆 ∪ 𝑆′, 𝜆 ∪ 𝜆′⟩. The empty alphabet is denoted ∅.

Definition 3.4 (Terms and substitutions). Fix alphabets Σ ⊂ 𝒜 where Σ is simple. The
𝒜-terms over Σ (henceforth 𝒜-terms) and the types they inhabit are defined inductively
as follows, where 𝑟 : 𝜌 expresses that 𝑟 is an 𝒜-term of type 𝜌.

1. ⟨⟩ is an 𝒜-term of type 𝜖.

2. If 𝛼𝜌 ∈ 𝒜 then 𝛼 is an 𝒜-term of type 𝜌.

3. If 𝑟 : 𝜌 and 𝑠 : 𝜎 then ⟨𝑟, 𝑠⟩ is a 𝒜-term of type 𝜌× 𝜎.

4. If 𝑟 : 𝜎 → 𝜏 and 𝑠 : 𝜎 then 𝑟𝑠 is a 𝒜-term of type 𝜏 .

5. ⊥ is an 𝒜-term of type 𝜍.

6. If 𝑎 : 𝜍 and 𝑟 : 𝜌, and 𝛼𝜌 ∈ Σ then [𝛼←[ 𝑟]𝑎 is an 𝒜-term of type 𝜍.

7. If 𝑟 : 𝜌 and 𝑎 : 𝜍 and 𝜌 ̸= 𝜍 then 𝑟 · 𝑎 is an 𝒜-term of type 𝜌.

Note that 𝜆-abstraction is not present in the term calculus, so the existence of terms
of function type 𝜌 depends on the presence of 𝒜-symbols with type 𝜌1 → · · · → 𝜌𝑘 → 𝜌.

In addition to the abbreviation 𝑟 : 𝜌 used above, we occasionally write 𝑟𝜌 to express
that 𝑟 is an 𝒜-term of type 𝜌. We often drop mention of Σ and 𝒜 if they can be inferred
from the context or are not important to the given setting, in which case 𝒜-terms are
referred to simply as terms. Terms arising from 1, 2 and 5 are called constants; terms
arising from cases 3 and 4 are called pairs and applications respectively; terms of type 𝜍
are called substitution stacks; and terms of the form in 7 are called explicit substitutions
(or simply substitutions if there is no cause for confusion). A basic term is any term
constructed via the rules 1 to 4 only, i.e. a ℬ-term over ∅ for some basic alphabet ℬ.
A term of sequence type is called a sequence. Application is assumed to associate to
the left, and pairing and the formation rule for substitution stacks both associate to the
right.

The sub-term relation is defined as usual over the basic terms, and is extended to
terms containing substitutions by defining the sub-terms of ⊥ to be {⊥}, the sub-terms
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of 𝑎 = [𝛼 ←[ 𝑟]𝑏 to be 𝑎 and any sub-term of 𝑟 or 𝑏, and the sub-terms of 𝑟 = 𝑠 · 𝑎 to
be 𝑟 and any sub-term of 𝑠 or 𝑎. Thus the basic terms are precisely those terms that do
not have a substitution stack as a sub-term.

Given a finite sequence of terms (𝑟𝑖 : 𝜌𝑖)𝑖≤𝑘, let ⟨𝑟0, 𝑟1, . . . , 𝑟𝑘⟩ be the term 𝑟0 if 𝑘 = 0
and, otherwise, the pair ⟨𝑟0, ⟨𝑟1, . . . ⟨𝑟𝑘−1, 𝑟𝑘⟩ · · ·⟩⟩ of type 𝜌0 × 𝜌1 × · · · × 𝜌𝑘. The order
of a term is the order of its type.

Proposition 3.5. If Σ ⊂ Σ′ are simple alphabets and 𝒜 is an alphabet extending Σ′,
then every 𝒜-term over Σ is an 𝒜-term over Σ′.

In addition to the term-level explicit substitutions, there is of course the usual opera-
tion of substituting given symbols by terms of corresponding type which we refer to as
implicit substitution. Explicit substitutions can be interpreted as implicit substitutions
by reading terms 𝑟 · 𝑎 as the image of 𝑟 under the (implicit) substitution described by
𝑎, a process we call evaluation. The following definitions explicate these two operations.
Fix an alphabet 𝒜.

Definition 3.6 (Implicit substitution). For 𝒜-terms 𝑟 : 𝜌, 𝑡0 : 𝜏0, . . . , 𝑡𝑘 : 𝜏𝑘 and
distinct symbols 𝛼𝜏0

0 , . . . , 𝛼𝜏𝑘
𝑘 ∈ 𝒜, the term 𝑟(⃗𝑡/𝛼⃗) is the 𝒜-term given by simultaneously

replacing every occurrence of 𝛼𝑖 (for 𝑖 ≤ 𝑘) in 𝑟 by 𝑡𝑖, defined recursively by:

𝛽(⃗𝑡/𝛼⃗) =
{︃

𝛽, if 𝛽 ∈ 𝒜 and 𝛽 ̸∈ {𝛼𝑖 | 𝑖 ≤ 𝑘},
𝑡𝑖, if 𝛽 = 𝛼𝑖,

⟨⟩(⃗𝑡/𝛼⃗) = ⟨⟩ (𝑟𝑠)(⃗𝑡/𝛼⃗) = 𝑟(⃗𝑡/𝛼⃗)𝑠(⃗𝑡/𝛼⃗)
⊥(⃗𝑡/𝛼⃗) = ⊥ ⟨𝑟, 𝑠⟩(⃗𝑡/𝛼⃗) = ⟨𝑟(⃗𝑡/𝛼⃗), 𝑠(⃗𝑡/𝛼⃗)⟩

([𝛽 ←[ 𝑠]𝑎)(⃗𝑡/𝛼⃗) = [𝛽 ←[ 𝑠(⃗𝑡/𝛼⃗)](𝑎(⃗𝑡/𝛼⃗)) (𝑟 · 𝑎)(⃗𝑡/𝛼⃗) = 𝑟(⃗𝑡/𝛼⃗) · (𝑎(⃗𝑡/𝛼⃗))

If the choice of 𝛼⃗ can be inferred from context, we write 𝑟(⃗𝑡) in place of 𝑟(⃗𝑡/𝛼⃗).

Definition 3.7 (Evaluating substitutions). Given an 𝒜-term 𝑟 and a substitution stack
𝑎 = [𝛼1 ←[ 𝑠1] · · · [𝛼𝑘 ←[ 𝑠𝑘]⊥ : 𝜍 over some simple alphabet Σ ⊂ 𝒜, the evaluation of 𝑟
relative to 𝑎 is the 𝒜-term over Σ given by

𝑟𝑎 := 𝑟(𝑠1/𝛼1) · · · (𝑠𝑘/𝛼𝑘).

The evaluation of 𝑟 is the term 𝑟∘ given by recursively evaluating relative to each substi-
tution in 𝑟, namely evaluation leaves basic terms unchanged, commutes with application
and pairing, is defined by ⊥∘ = ⊥ and ([𝛼←[ 𝑟]𝑎)∘ = [𝛼← [ 𝑟∘]𝑎∘ on substitution stacks,
and by (𝑟 · 𝑎)∘ = (𝑟∘)𝑎∘ for explicit substitutions.

Note that the evaluation of a substitution stack on a term is well-defined due to the
typing constraints on their formation.

An alphabet generally specifies a set of symbols which are associated certain re-write
rules in a recursion scheme. In this context, an explicit substitution acts as a delayed
substitution which is not evaluated until no further re-writes to sub-terms are possible.
For instance, over the alphabet {F𝜄→𝜄, G𝜄, e𝜄, ∘𝜄→𝜄→𝜄, 𝛼𝜄} with associated re-write rules
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F𝑥 → (G ∘ 𝑥) · [𝛼 ←[ e]⊥ (for any instantiation of 𝑥) and G → 𝛼, a derivation starting
from the term 𝑡 = F𝛼 is

𝑡→ (G ∘ 𝛼) · ([𝛼←[ e]⊥)
→ (𝛼 ∘ 𝛼) · ([𝛼←[ e]⊥).

The final term evaluates to e ∘ e. Attempting to read the explicit substitution implicitly
leads also to the derivation

𝑡→ (G ∘ 𝛼) · ([𝛼←[ e]⊥)
= G ∘ e
→ 𝛼 ∘ e.

Lemma 3.8. If 𝑟 : 𝜌 is a Σ-term for some simple alphabet Σ and 𝜌 is a basic type then
𝑟∘ is a basic Σ-term of type 𝜌.

Proof. All substitution stacks that may occur in a term of basic type built from an
alphabet of simply-typed symbols must be within the context of an explicit substitution.
As evaluation replaces every explicit substitution by an implicit one, the result is a basic
term of the same type.

Lemma 3.9. If 𝑟 and 𝑎 = [𝛼 ←[ 𝑠]𝑏 : 𝜍 are 𝒜-terms such that 𝛼 does not occur in 𝑟,
then 𝑟𝑎 = 𝑟𝑏.

Definition 3.10 (Σ-length). Given alphabets Σ ⊂ 𝒜 and an 𝒜-term 𝑠, the Σ-length
of 𝑠, written |𝑠|Σ, is the number of occurrences of symbols in 𝑠 that are not Σ-terms,
formally: |𝛼|Σ = 0 if 𝛼 ∈ Σ ∪ {⟨⟩}; |𝛼|Σ = 1 if 𝛼 ∈ 𝒜 and 𝛼 ̸∈ Σ; and |𝑟|Σ = |𝑠|Σ + |𝑡|Σ
if 𝑟 ∈ {⟨𝑠, 𝑡⟩, 𝑠𝑡, 𝑠 · 𝑡, [𝛼←[ 𝑠]𝑡}.

In particular, the Σ-length of a Σ-term is 0 and if Σ is the empty alphabet then Σ-
length of any term is the number of leaves in the tree representation of the term not
labelled by ⟨⟩.

Remark 3.11 (Notational conventions). Symbols 𝜌, 𝜎 and 𝜏 (also with indices) range
over types. We commonly notate alphabets by upper-case Roman symbols in calligraphic
typeface: 𝒜, ℬ, etc, though Greek symbols Σ and Σ′ will be used for simple alphabets.
Sans-serif typeface (f, F, s, S, etc.) and lowercase Greek symbols 𝛼, 𝛽, etc. range over
elements of ranked alphabets, with the latter particularly used for constants of simple
type. Italicised letters 𝑟, 𝑠, 𝑡, 𝑅, 𝑆, etc. range over terms and 𝑎, 𝑏 over substitution
stacks, i.e. terms of type 𝜍.

3.2 Higher Order Recursion Schemes
Higher order recursion schemes provide a handy framework for extending the correspond-
ence between formal grammars and Herbrand sets established in [1, 24]. Their advantage
over formal grammars can be appreciated by the fact that they allow us to dispense with
the rigidity conditions (equality constraints) that were necessary in previous approaches.
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Definition 3.12 (Higher order recursion scheme). A (non-deterministic) higher order
recursion scheme, or simply recursion scheme, is a tuple R = ⟨Σ,𝒩 ,𝒮,𝒫⟩ where Σ is a
simple alphabet, 𝒩 is a alphabet of non-terminals disjoint from Σ, 𝒮 ⊆ 𝒩 is a designated
finite set of starting symbols of sequence type, 𝒫 is a set of pairs (F𝜌, 𝑡), called production
rules, such that F𝜌 ∈ 𝒩 and 𝑡 : co(𝜌) is a (Σ ∪ 𝒩 ∪ {𝑥𝜌1

1 , . . . , 𝑥𝜌𝑘
𝑘 })-term over Σ where

𝑥𝑖 is a fresh symbol not in 𝒩 and 𝜌𝑖 is the 𝑖-th domain of 𝜌. A production rule (F𝜌, 𝑡)
where the arity of 𝜌 is 𝑘 is written as

F𝑥1 · · ·𝑥𝑘 →R 𝑡,

or F𝑥⃗→R 𝑡. Notice that by definition the term F𝑥1 · · ·𝑥𝑘 is of type co(𝜌).
A non-terminal F ∈ 𝒩 of R is determined if there is a unique production rule (F𝜌, 𝑡)

in 𝒫. By an R-term we mean a (Σ∪𝒩 )-term over Σ. The order of R is the supremum
over orders of the types of non-terminals of R.

Notice that we do not require that R contains only finitely many non-terminals,
nor that the set of start symbols is non-empty. This is for technical convenience as it
allows us to consider the recursion schemes of the next section as finitely generated ‘sub-
schemes’ of a single infinite recursion scheme. Moreover, higher order recursion schemes
are traditionally presented in the context of simple types, wherein start symbols are
all of type 𝜄 (and indeed a single start symbol suffices) and production rules have the
form F𝑥⃗→ 𝑡 with 𝑡 : 𝜄. We consider the above definition to be the natural extension of
recursion schemes to accommodate non-trivial prime types.

A given non-terminal may be assigned multiple production rules, leading to non-
determinism. To simplify presentation of production rules in this case we adopt the
convention of writing

F𝑥⃗→R 𝑡0 | · · · | 𝑡𝑘

to express that R contains exactly the production rule F𝑥⃗ → 𝑡𝑖 for each 𝑖 ≤ 𝑘, i.e.
F𝑥⃗→R 𝑡𝑖 for each 𝑖 ≤ 𝑘 and if F𝑥⃗→R 𝑡 then 𝑡 = 𝑡𝑖 for some 𝑖 ≤ 𝑘.

Definition 3.13 (Derivations and language). Let R = ⟨Σ,𝒩 ,𝒮,𝒫⟩ be a higher order
recursion scheme. We extend the relation →R to a relation on R-terms defined by
setting 𝑟 →R 𝑠 if either

∙ 𝑟 = F𝑟1 · · · 𝑟𝑘 for some F𝜌 ∈ 𝒩 with arity 𝑘 and there exists a production rule
F𝑥⃗→R 𝑡 such that 𝑠 = 𝑡(𝑟⃗/𝑥⃗);

∙ 𝑟 = 𝑡(𝑟0/𝑥), 𝑠 = 𝑡(𝑠0/𝑥) and 𝑟0 →R 𝑠0.

A derivation of 𝑠 from 𝑟 is a sequence 𝑟 = 𝑟0 →R · · · →R 𝑟𝑘 = 𝑠, the length of which
is 𝑘. We say 𝑠 is derivable from 𝑟 in R, in symbols 𝑟 →*R 𝑠 (or 𝑟 →* 𝑠 if R is clear
from the context), if there exists a derivation of 𝑠 from 𝑟, and 𝑠 is derivable in R if 𝑠 is
derivable from some S ∈ 𝒮. The language of R, written 𝐿(R), is the set of pairs (S, 𝑡)
such that S ∈ 𝒮, 𝑡 is a basic Σ-term and S→*R 𝑡.

Definition 3.14. Let R = ⟨Σ,𝒩 ,𝒮,𝒫⟩ be a higher order recursion scheme. R is finite
if 𝒩 and 𝒫 are both finite sets, and is acyclic if there exists a transitive, irreflexive
relation < on 𝒩 such that for every production rule F𝑥⃗→R 𝑡 and every non-terminal G
occurring in 𝑡, G < F.
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Lemma 3.15. A finite acyclic recursion scheme induces a finite language.

An upper bound on the size of the language of acyclic recursion schemes can be
obtained by reducing the problem to the length of reduction sequences for the simply-
typed 𝜆-calculus. Bounds on normalisation in the simply-typed 𝜆-calculus have been
given by Schwichtenberg [39] and improved to exact bounds by Beckmann [10]. In
the following we use Beckmann’s result to obtain concrete bounds for acyclic recursion
schemes. Let 2𝑛

0 = 𝑛 and 2𝑛
𝑘+1 = 22𝑛

𝑘 and extend the length function of the previous
section to include 𝜆-abstractions by setting |𝜆𝑥𝑠|Σ = |𝑠|Σ + 1.

Theorem 3.16 (Beckmann [10]). Let 𝑡 be a term in the simply-typed 𝜆-calculus over a
simple alphabet Σ. The length of any 𝛽-reduction sequence starting from 𝑡 is bounded by
2|𝑡|Σ𝑑(𝑡) where 𝑑(𝑡) denotes the maximum among orders of sub-terms of 𝑡.

Beckmann’s bound still applies if 𝑡 is an arbitrary 𝜆-term over the calculus of Σ-terms
given in Definition 3.4 subject to the restriction that ⟨⟩ is the only sub-term of 𝑡 of type 𝜖
(a necessary restriction due to our non-standard definition of order). Non-deterministic
reductions can also be incorporated via a fresh operator | and permitting 𝛽-reductions
of the form (𝜆𝑥. 𝑡0| · · · |𝑡𝑘)𝑠 →𝛽 𝑡𝑖(𝑠/𝑥) for each 𝑖 ≤ 𝑘. In this case the length and the
function 𝑑 is given by |𝑠|𝑡|Σ = max{|𝑠|Σ, |𝑡|Σ} and 𝑑(𝑠|𝑡) = max{𝑑(𝑠), 𝑑(𝑡)}. Finally, we
wish to allow for so-called 𝜂-long reductions, i.e., reductions (𝜆𝑥0 · · ·𝑥𝑘. 𝑠)𝑡0 · · · 𝑡𝑘 →𝛽

𝑠(⃗𝑡/𝑥⃗) where 𝑠 is not an abstraction. Provided that only 𝜂-long reductions are permitted
and each counts as one step in a 𝛽-reduction sequence, Beckmann’s bound holds with
the analogous change to the length function: |𝜆𝑥⃗𝑠|Σ = |𝑠|Σ + 1 if 𝑠 not an abstraction.

From these observations we may deduce the following result. We restrict ourselves to
recursion schemes built without the substitution stacks as this will suffice for our later
use.

Theorem 3.17. Let R = ⟨Σ,𝒩 ,𝒮,𝒫⟩ be a finite acyclic order 𝑛 recursion scheme such
that every non-terminal has basic type, and for every production rule F𝑥⃗ → 𝑡 in R,
|𝑡|Σ < 𝑘. The length of every derivation in R is bounded by 2|𝒩 |(𝑘+1)

𝑛+1 .

Proof. Let R = ⟨Σ,𝒩 ,𝒮,𝒫⟩ be an order 𝑛 recursion scheme fulfilling the requirements
in the statement. Without loss of generality we may assume that 𝒮 is a singleton, that
every non-terminal is associated at least one production rule, and that 𝒳 is the alphabet
of variable symbols disjoint from both Σ and 𝒩 such that every term occurring in a
production rule in R is an (Σ ∪𝒩 ∪ 𝒳 )-term.

Fix an enumeration F𝜌𝑁
𝑁 < · · · < F𝜌2

2 < F𝜌1
1 of the non-terminals of R according to

a total ordering (<) witnessing acyclicity of R. We may assume 𝒮 = {F1}, so 𝜌1 is
prime. Let 𝒴 = {𝑦𝜌1

1 , 𝑦𝜌2
2 , . . . , 𝑦𝜌𝑁

𝑁 } be a set of fresh (and pairwise distinct) variable
symbols of marked type. We define by recursion a sequence 𝑠1, . . . , 𝑠𝑁 of well-typed
𝜆-terms all of type 𝜌1 such that 𝑠𝑖 contains only the variables 𝑦𝑖+1, . . . , 𝑦𝑁 free and the
length of every derivation from F1 which only re-writes non-terminals F𝑗 for 𝑗 ≤ 𝑖 is
bounded by the length of the longest 𝛽-reduction sequence starting from 𝑠𝑖. Suppose
{F𝑖𝑥⃗ → 𝑇𝑗 : 𝑗 ≤ 𝑚} is the set of production rules associated to F𝑖 in R. For each
𝑗 ≤ 𝑚, let 𝑡𝑗 = 𝑇𝑗(𝑦𝑖+1, . . . , 𝑦𝑁 /F𝑖+1, . . . , F𝑁 ) be the (Σ ∪ 𝒳 ∪ 𝒴)-term resulting from
𝑇𝑗 by substituting the non-terminals F𝑖+1, . . . , F𝑁 by variables 𝑦𝑖+1, . . . , 𝑦𝑁 respectively.
It follows that |𝑡𝑗 |Σ ≤ |𝑇𝑗 |Σ < 𝑘. Finally, define 𝑠𝑖 = 𝜆𝑥⃗. 𝑡0| · · · |𝑡𝑚 if 𝑖 = 1, and
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𝑠𝑖 = (𝜆𝑦𝑖. 𝑠𝑖−1)(𝜆𝑥⃗. 𝑡0| · · · |𝑡𝑚) otherwise, and notice that |𝑠𝑁 |Σ ≤ 𝑁(𝑘 + 1) and the
maximal order among sub-terms of 𝑠𝑁 is no greater than 𝑛 + 1. Every R-derivation
from F1 can be replicated as a sequence of one-step 𝜂-long 𝛽-reductions starting from
𝑠𝑁 , the length of which, by Beckmann’s bound, is no greater than 2𝑁(𝑘+1)

𝑛+1 .

As a corollary we obtain we obtain bounds on the size of languages.

Corollary 3.18. Let R and 𝑘 be as in the previous theorem and suppose every non-
terminal in R is associated at most two production rules. Then the size of 𝐿(R) is
bounded by 2|𝒩 |(𝑘+1)

𝑛+2 .

Proof. Given a recursion scheme R all terms in 𝐿(R) can be derived via the leftmost
reduction strategy. By the previous theorem, the length of these derivations is bounded
by 2|𝒩 |(𝑘+1)

𝑛+1 , leading to a bound of 2|𝒩 |(𝑘+1)
𝑛+2 on the size of 𝐿(R).

The bound given in Corollary 3.18 is optimal in the parameter 𝑛 as the next lemma
demonstrates.

Lemma 3.19. Let Σ be the ranked alphabet {a𝜄, b𝜄, d𝜄→𝜄→𝜄→𝜄}. There exists a sequence
of acyclic higher order recursion schemes R𝑛 = ⟨Σ,𝒩𝑛,𝒮𝑛,𝒫𝑛⟩ such that

1. the order of R𝑛 is 𝑛,

2. |𝒩𝑛|, |𝒫𝑛| = 𝑂(𝑛),

3. max{|𝑡|Σ : F𝑥⃗→R𝑛 𝑡} = 𝑂(𝑛),

4. |𝐿(R𝑛)| ≥ 21
𝑛+2.

Proof. It suffices to translate Beckmann’s lower bounds from [10] to the context of
recursion schemes. Define 𝜏0 = 𝜄 and 𝜏𝑖+1 = 𝜏𝑖 → 𝜏𝑖 for each 𝑖 < 𝜔. So 𝜏𝑖 has order and
arity 𝑖 for each 𝑖. Fix 𝑛 > 0. The recursion scheme R𝑛 comprises a single start symbol
S𝑛 : 𝜄 and a non-terminal F𝑖 : 𝜏𝑖 for each 𝑖 ≤ 𝑛. The production rules are

F0 → a | b S𝑛 → F𝑛(F𝑛F𝑛−1)F𝑛−2 . . . F1F0

F1𝑥0 → dF0𝑥0𝑥0 F𝑖+2𝑥0𝑥1 · · ·𝑥𝑖+1 → 𝑥0(𝑥0𝑥1)𝑥2 · · ·𝑥𝑖+1

Requirements 1–3 are clearly satisfied. To deduce 4, observe that applying deterministic
production rules only, S𝑛 →* F(21

𝑛)
1 F0, where X(𝑘) denotes the 𝑘-fold iteration of X. Thus

we see that 𝐿(R𝑛) is the set of complete binary trees of height 21
𝑛 + 1 with each leaf and

inner node labelled by either a or b, i.e. |𝐿(R𝑛)| ≥ 21
𝑛+2.

3.3 Recursion Schemes with Pattern-Matching
To control the space of derivations we will utilise recursion schemes equipped with
pattern-matching, introduced in [36]. In their full generality pattern-matching recur-
sion schemes form a Turing complete model of computation, though we will only employ
a subclass in which pattern-matching is restricted to decomposing sequences. The fol-
lowing definition presents the particular schemes we utilise.

15



Definition 3.20 (Pattern-matching recursion schemes). A pattern-matching recursion
scheme is a tuple R = ⟨Σ,𝒩 ,𝒮,𝒫⟩ where Σ, 𝒩 and 𝒮 are as in Definition 3.12 and 𝒫
may include type-preserving production rules of the form

F𝑥0 · · ·𝑥𝑘−1⟨𝑥𝑘, . . . , 𝑥𝑘+𝑙⟩ →R 𝑡

where 𝑡 is a Σ ∪𝒩 ∪ {𝑥𝑖 | 𝑖 ≤ 𝑘 + 𝑙}-term over Σ of prime type.
The associated reduction relation 𝑟 →R 𝑠 is defined by the two conditions in Defini-

tion 3.13 and an additional clause:
∙ 𝑟 = F𝑟0 · · · 𝑟𝑘−1⟨𝑟𝑘, . . . , 𝑟𝑘+𝑙⟩ for some F ∈ 𝒩 of arity 𝑘 and terms 𝑟⃗ = (𝑟𝑖)𝑖≤𝑘+𝑙, and

there exists a production rule F𝑥0 · · ·𝑥𝑘−1⟨𝑥𝑘, . . . , 𝑥𝑘+𝑙⟩ →R 𝑡 such that 𝑠 = 𝑡(𝑟⃗/𝑥⃗).
The definition of a derivation and language for pattern-matching recursion schemes are
analogous.
Remark 3.21. Pattern-matching recursion schemes can be simulated by higher order
recursion schemes using constants representing projection functions for pairs in place of
pattern-matching. In particular, the upper-bounds given by Theorem 3.17 and Corol-
lary 3.18 apply to pattern-matching recursion schemes without change. There is, how-
ever, a subtle difference between the two in the presence of non-determinism and this
will be exploited heavily in the next section. In the remainder of this paper recursion
scheme refers to pattern-matching recursion schemes unless otherwise stated.

3.4 Herbrand Schemes
The recursion scheme associated to a proof 𝜋, which we call the Herbrand scheme for 𝜋
and denote as H𝜋, contains a non-terminal N𝑖

𝜋′ for each sub-proof 𝜋′ ⊢ 𝐵0, . . . , 𝐵𝑘 of 𝜋
and each 𝑖 ≤ 𝑘. The interpretation of such a non-terminal is a function which returns a
witness (possibly containing explicit substitutions) for each weak quantifier in 𝐵𝑖 given
input for each strong quantifier in the sequent. The arity of N𝑖

𝜋′ is 𝑘 + 2, namely one
greater than the length of the sequent: the first argument is a substitution stack and
the (𝑗 + 1)-th argument is the ‘input’ for the formula 𝐵𝑗 . The type of N𝑖

𝜋′ depends only
on the quantifier structure of the formulæ in the sequent. In particular, the types of
N𝑖

𝜋′ and N𝑗
𝜋′ differ only in their co-domain. Furthermore, the reduction rules governing

N𝑖
𝜋′ are determined by the final inference in 𝜋′ and choice of 𝑖, and re-write N𝑖

𝜋′ to a
term containing non-terminals for the immediate sub-proofs of 𝜋′, so are independent of
the particular starting proof. This property implies that the typing and re-write rules
for a non-terminal N𝑖

𝜋′ are invariant across all Herbrand schemes H𝜋 for which 𝜋′ is a
sub-proof of 𝜋, whence we may consider two Herbrand schemes as comprising identical
sets of non-terminals and production rules and differing only in the selection of start
symbols.

We begin by introducing the types that occur most prominently in Herbrand schemes.
To each prenex formula 𝐹 we assign two types, the output type, 𝜏𝐹 , and the input
type, 𝜏*𝐹 , representing the ‘existential’ and ‘universal’ structure of 𝐹 respectively. These
types are determined by the quantifier structure of 𝐹 and are defined as follows. If 𝐹 is
quantifier-free, 𝜏𝐹 = 𝜏*𝐹 = 𝜖; otherwise,

𝜏∀𝑣𝐹 = 𝜏𝐹 , 𝜏∃𝑣𝐹 =
{︃

𝜄× 𝜏𝐹 , if 𝑢(𝐹 ) = 0,
𝜄× (𝜏𝐹 → 𝜏𝐹 ), if 𝑢(𝐹 ) > 0,

𝜏*𝐹 =
{︃

𝜏𝐹 , if 𝑒(𝐹 ) = 0,
𝜏𝐹 → 𝜏𝐹 , if 𝑒(𝐹 ) > 0.
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Lemma 3.22. Let 𝐹 be a prenex formula and 𝑣⃗ = (𝑣𝑖)𝑖<𝑘. Then

1. 𝜏𝐹 is a non-simple basic prime type.

2. 𝜏𝐹 = 𝜏𝐹 (𝑟⃗/𝛼⃗) and 𝜏*𝐹 = 𝜏*𝐹 (𝑟⃗/𝛼⃗).

3. If 𝑒(𝐹 ) > 0 then 𝜏*𝐹 = 𝜏*
𝐹
→ 𝜏𝐹 .

4. 𝜏∃𝑣⃗𝐹 = 𝜄× · · · × 𝜄⏟  ⏞  
𝑘

×𝜏*
𝐹

and 𝜏*∀𝑣⃗𝐹 = 𝜄× · · · × 𝜄⏟  ⏞  
𝑘

×𝜏*𝐹 .

Proof. By definition and (for 4) induction.

Example 3.23. We compute the input and output types for prenex Π2 and Σ2 formulæ.
Let 𝐵 = ∃𝑤⃗𝐴𝑞𝑓 and 𝐶 = ∀𝑣⃗𝐵 where 𝑤⃗ and 𝑣⃗ have non-zero length 𝑚 and 𝑛 respectively.

𝜏𝐵 = 𝜄𝑚 𝜏𝐵̄ = 𝜖 𝜏*𝐵 = 𝜄𝑚 → 𝜖 𝜏*
𝐵̄

= 𝜄𝑚

𝜏𝐶 = 𝜄𝑚 𝜏𝐶 = 𝜄× · · · × 𝜄⏟  ⏞  
𝑛

×(𝜄𝑚 → 𝜖) 𝜏*𝐶 = 𝜏𝐶 𝜏*
𝐶

= 𝜏𝐶 → 𝜏𝐶

Definition 3.24 (Herbrand scheme). Fix a proof 𝜋 ⊢ 𝐴0, . . . , 𝐴𝑘 with Σ1 end-sequent
and let Σ𝜋 be the simple alphabet consisting of a constant symbol c of type 𝜄 and the
function symbols and eigenvariables occurring in 𝜋 (typed accordingly). The Herbrand
scheme for 𝜋 is the higher order recursion scheme H𝜋 = ⟨Σ𝜋,𝒩𝜋,𝒮𝜋,𝒫𝜋⟩ with the
following non-terminals and production rules.

1. A non-terminal c𝜌 : 𝜌 for each basic type 𝜌 ̸∈ {𝜄, 𝜖} that occurs as a sub-type of a
type 𝜏𝐵 or 𝜏*𝐵 for a formula 𝐵 occurring in 𝜋, with production rules

c𝜌 → ⟨c𝜏0 , c𝜏1⟩ if 𝜌 = 𝜏0 × 𝜏1,
c𝜌𝑥𝜌0

0 · · ·𝑥
𝜌𝑘
𝑘 → cco(𝜌) if 𝜌 = 𝜌0 → · · · → 𝜌𝑘 → co(𝜌),

with c𝜄 and c𝜖 defined to be the constants c and ⟨⟩ respectively.

2. A non-terminal N𝑖
𝜋′ for each sub-proof 𝜋′ ⊢ 𝐵0, . . . , 𝐵𝑙 of 𝜋 and for each 𝑖 ≤ 𝑙, with

type

N𝑖
𝜋′ : 𝜍 → 𝜏*𝐵0 → · · · → 𝜏*𝐵𝑙

→ 𝜏𝐵𝑖

and production rule(s) as given in Table 1, determined in each case by the final
inference of 𝜋′.

3. A start symbol S𝜋,𝑖 : 𝜏𝐴𝑖 for each 𝑖 ≤ 𝑘 with associated production rules

S𝜋,𝑖 → N𝑖
𝜋⊥c𝜏*

𝐴0
· · · c𝜏*

𝐴𝑘

The language of 𝜋 is the set 𝐿(𝜋) = {(𝑖, 𝑟∘) | 𝑖 ≤ 𝑘 and (S𝜋,𝑖, 𝑟) ∈ 𝐿(H𝜋)}.
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Inference deriving 𝜋 Corresponding production rule(s)

ax : 𝜋 ⊢ 𝐴, 𝐴 N𝑖
𝜋𝑎𝑥0𝑥1 → ⟨⟩

𝜋0 ⊢ Γ, 𝐴, 𝐵
∨ −−−−−−−−−−−−−−−

𝜋 ⊢ Γ, 𝐴 ∨𝐵
N𝑖

𝜋𝑎𝑥⃗𝑧 →
{︃

N𝑖
𝜋0𝑎𝑥⃗𝑧𝑧, if 𝑖 < 𝑚,
⟨⟩, otherwise.

𝜋0 ⊢ Γ, 𝐴 𝜋1 ⊢ Δ, 𝐵
∧ −−−−−−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, Δ, 𝐴 ∧𝐵
N𝑖

𝜋𝑎𝑥⃗𝑦⃗𝑧 →

⎧⎪⎪⎨⎪⎪⎩
N𝑖

𝜋0𝑎𝑥⃗𝑧, if 𝑖 < 𝑚,
N𝑖−𝑚

𝜋1 𝑎𝑦⃗𝑧, 𝑚 ≤ 𝑖 < 𝑚 + 𝑛,
⟨⟩, otherwise.

𝜋0 ⊢ Γ, 𝐴(𝛼⃗/𝑣⃗)
∀𝛼⃗ −−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ,∀𝑣⃗𝐴
N𝑖

𝜋𝑎𝑥⃗⟨𝑧0, . . . , 𝑧𝑝+1⟩ → N𝑖
𝜋0([𝛼𝑝 ←[ 𝑧𝑝] · · · [𝛼0 ←[ 𝑧0]𝑎)𝑥⃗𝑧𝑝+1

𝜋0 ⊢ Γ, 𝐴(𝑟⃗/𝑣⃗)
∃𝑟⃗ −−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, ∃𝑣⃗𝐴
N𝑖

𝜋𝑎𝑥⃗𝑧 →

⎧⎪⎪⎨⎪⎪⎩
𝑟⃗ · 𝑎 ⋆ (N𝑚

𝜋0𝑎𝑥⃗), if 𝑖 = 𝑚 and 𝑢(𝐴) > 0,
𝑟⃗ · 𝑎 ⋆ ⟨⟩, if 𝑖 = 𝑚 and 𝑢(𝐴) = 0,
N𝑖

𝜋0𝑎𝑥⃗
(︀
𝑧(N𝑚

𝜋 𝑎𝑥⃗𝑧)
)︀

if 𝑖 ̸= 𝑚,

𝜋0 ⊢ Γ, 𝐴 𝜋1 ⊢ Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, Δ
N𝑖

𝜋𝑎𝑥⃗𝑦⃗ →
{︃

N𝑖
𝜋0𝑎𝑥⃗((N𝑛

𝜋1𝑎𝑦⃗) ∘𝐴 (N𝑚
𝜋0𝑎𝑥⃗)), if 𝑖 < 𝑚,

N𝑖−𝑚
𝜋1 𝑎𝑦⃗((N𝑚

𝜋0𝑎𝑥⃗) ∘𝐴 (N𝑛
𝜋1𝑎𝑦⃗)), if 𝑚 ≤ 𝑖.

𝜋0 ⊢ Γ
w −−−−−−−−−

𝜋 ⊢ Γ, 𝐴
N𝑖

𝜋𝑎𝑥⃗𝑧 →
{︃

c𝜏𝐴 , if 𝑖 = 𝑚,
N𝑖

𝜋0𝑎𝑥⃗, otherwise.

𝜋0 ⊢ Γ, 𝐴, 𝐴
c −−−−−−−−−−−−−−

𝜋 ⊢ Γ, 𝐴
N𝑖

𝜋𝑎𝑥⃗𝑧 →
{︃

N𝑖
𝜋0𝑎𝑥⃗𝑧𝑧, if 𝑖 < 𝑚,

N𝑖
𝜋0𝑎𝑥⃗𝑧𝑧 | N𝑖+1

𝜋0 𝑎𝑥⃗𝑧𝑧, if 𝑖 = 𝑚.

𝜋0 ⊢ Γ, 𝐵, 𝐴, Δ
p −−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, 𝐴, 𝐵, Δ
N𝑖

𝜋𝑎𝑥⃗𝑧0𝑧1𝑦⃗ →

⎧⎪⎪⎨⎪⎪⎩
N𝑖+1

𝜋0 𝑎𝑥⃗𝑧1𝑧0𝑦⃗, if 𝑖 = 𝑚,
N𝑖−1

𝜋0 𝑎𝑥⃗𝑧1𝑧0𝑦⃗, if 𝑖 = 𝑚 + 1,
N𝑖

𝜋0𝑎𝑥⃗𝑧1𝑧0𝑦⃗, otherwise.

𝛼⃗ = (𝛼0, . . . , 𝛼𝑝)
𝑟⃗ = (𝑟0, . . . , 𝑟𝑝)

𝑟⃗ · 𝑎 = (𝑟0 · 𝑎, . . . , 𝑟𝑝 · 𝑎)
(𝑢𝑗)𝑗≤𝑞 ⋆ 𝑡 = ⟨𝑢0, . . . , 𝑢𝑞, 𝑡⟩

𝑟 ∘𝐴 𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑟, if 𝑒(𝐴) > 0,
𝑟𝑠, if 𝑢(𝐴) > 0,
⟨⟩, otherwise.

Table 1: Production rules of H𝜋. 𝑥⃗ and 𝑦⃗ are sequences of distinct variable symbols of
length 𝑚 := |Γ| and 𝑛 := |Δ| respectively.

It remains to check that the production rules of Herbrand schemes are well-typed.
This task will be taken up later in Lemma 3.32. For now we take for granted the
fact that Herbrand schemes are well-defined and continue with some basic properties of
them (Lemmas 3.26 to 3.29) followed by the intended interpretation of the schemes as
generating Herbrand disjunctions (Definition 3.30) and the observation that this inter-
pretation coincides with the Herbrand set for quasi cut-free proofs (Lemma 3.31). We
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start, however, with a brief explanation of some of the production rules from Table 1.

Remark 3.25. We comment on some of the rules from Table 1.

∙ Axiom. We are restricting axioms to quantifier-free formulæ only, which motivates
the simple production rule given in the table. One may wish to permit axioms
𝜋 ⊢ 𝐴0, 𝐴1 where 𝐴1 = 𝐴0 has arbitrary (prenex) complexity. These can be
accommodated by the production rules

N𝑖
𝜋𝑎𝑥0𝑥1 →

{︃
𝑥1−𝑖, if 𝑢(𝐴𝑖) = 0,
𝑥1−𝑖𝑥𝑖, if 𝑢(𝐴𝑖) > 0,

which the interested reader can check are well-typed. This definition mimics the
behaviour of the Herbrand scheme for the natural proof of 𝐴0, 𝐴1 that uses only
quantifier-free instances of axioms and alternate applications of ∃ and ∀ infer-
ences. Our reason for favouring quantifier-free axioms is that, as a consequence,
production rules never return their arguments as output, a fact that simplifies
some technical aspects of the later analysis (specifically Lemma 5.9).

∙ ∧ and ∨. As proofs involve prenex formulæ only, conjunctions and disjunctions
are necessarily quantifier-free with associated type 𝜖, and therefore possess no com-
putational content relevant to the construction of a Herbrand disjunction. When
focusing on such formulæ, the production rule in each case returns the empty
sequence.

∙ ∃𝑟⃗. The production rule in this case depends on both 𝑖 and the quantifier form of
the active formula. Consider the instance of ∃𝑟⃗ given in Table 1. As 𝜋 is assumed
regular, the active formula (𝐴 in the table) is either quantifier-free or universally
quantified. If 𝑖 marks the active formula (i.e. 𝑖 = 𝑚) then the production rule
for N𝑖

𝜋 directly outputs the witness terms provided by the proof and the current
substitution (the sequence (𝑟0 · 𝑎, . . . , 𝑟𝑝 · 𝑎)) as the first 𝑝 + 1 components of a
nested pair. The final component is either trivial (in case 𝐴 is quantifier-free)
or, if 𝐴 is universally quantified, the continuation of the trace to the immediate
sub-proof in the form of a function. If 𝑖 ̸= 𝑚, the production rule instead passes
the above term to the corresponding argument.

∙ ∀𝛼⃗. This is the only case that involves pattern matching in Herbrand schemes.
Although it can be simulated by a recursion scheme without pattern-matching
using projection functions for pair types, doing so introduces a duplication of
arguments that is avoided in the chosen formulation. For instance, the production
rule for ∀𝛼⃗ where 𝛼⃗ consists of the single eigenvariable 𝛼 and the sequent Γ is
empty yields the production rule

N0
𝜋𝑎⟨𝑧0, 𝑧1⟩ → N0

𝜋0([𝛼←[ 𝑧0]𝑎)𝑧1

which may be simulated by the rule

N0
𝜋𝑎𝑧 → N0

𝜋0([𝛼←[ p0𝑧]𝑎)(p1𝑧) (1)
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where p0 and p1 are constants representing the two projection functions for pair
types. If 𝑠 is a term such that 𝑠 →*H ⟨𝑟0, 𝑠0⟩ | ⟨𝑟1, 𝑠1⟩ and the four sub-terms
are pairwise distinct then the reduction in (1) permits the derivation N0

𝜋⊥𝑠 →*
N0

𝜋0([𝛼←[ p0⟨𝑟0, 𝑠0⟩]⊥)(p1⟨𝑟1, 𝑠1⟩), essentially the term N0
𝜋0([𝛼←[ 𝑟0]⊥)𝑠1, which is

forbidden in the Herbrand scheme due to pattern-matching. In this sense pattern
matching plays a role analogous to the rigidity conditions utilised in [24, 1, 2] for
representing first-order proofs with Π1/Π2 cut complexity.

∙ cut. For each choice of 𝑖, the rule provides exactly one reduction for the non-
terminal N𝑖

𝜋: for 𝑖 < 𝑚 this is

N𝑖
𝜋𝑎𝑥⃗𝑦⃗ →

⎧⎪⎪⎨⎪⎪⎩
N𝑖

𝜋0𝑎𝑥⃗(N𝑛
𝜋1𝑎𝑦⃗(N𝑚

𝜋0𝑎𝑥⃗)), if 𝑢(𝐴) > 0,
N𝑖

𝜋0𝑎𝑥⃗(N𝑛
𝜋1𝑎𝑦⃗), if 𝑒(𝐴) > 0,

N𝑖
𝜋0𝑎𝑥⃗⟨⟩, if 𝐴 is q.f.

Note that, in the case 𝑒(𝐴) = 0 the type 𝜏*𝐴 (which marks the final argument
to N𝑖

𝜋0) is prime, and is otherwise the function type 𝜏*
𝐴
→ 𝜏𝐴. Moreover, the

case distinction above is independent of 𝑖. For instance, if 𝐴 = ∀𝑣𝐵 exactly the
following production rules arise from the cut.

N𝑗
𝜋𝑎𝑥⃗𝑦⃗ →

{︃
N𝑗

𝜋0𝑎𝑥⃗(N𝑛
𝜋1𝑎𝑦⃗(N𝑚

𝜋0𝑎𝑥⃗)), if 𝑗 < 𝑚,
N𝑚−𝑗

𝜋1 𝑎𝑦⃗(N𝑚
𝜋0𝑎𝑥⃗), if 𝑚 ≤ 𝑗 < 𝑚 + 𝑛.

In the following let H = ⟨Σ,𝒩 ,𝒮,𝒫⟩ be the Herbrand scheme for a regular proof 𝜋
with prenex Σ1 end-sequent.

Lemma 3.26. H is an acyclic recursion scheme. Hence, 𝐿(𝜋) is finite.

Proof. Let < be the transitive relation on non-terminals in H generated by the equa-
tions: c𝜌 < c𝜎 if 𝜌 is a proper sub-type of 𝜎; c𝜌 < N𝑖

𝜋0 for every 𝜌, sub-proof 𝜋0 of 𝜋
and 𝑖; N𝑖

𝜋0 < N𝑗
𝜋1 if either 𝜋0 is a proper sub-proof of 𝜋1 or 𝜋0 = 𝜋1 and 𝑗 < 𝑖; and

N𝑖
𝜋 < S𝜋,𝑖 for any 𝑖. Clearly < is acyclic and irreflexive. Moreover, for every production

rule F𝑥⃗→H 𝑡 and any non-terminal G occurring in 𝑡 we have G < F.

Lemma 3.27. Every H -term of simple type is a Σ-term, and every H -term of sub-
stitution stack type has the form either ⊥ or [𝛼 ←[ 𝑠]𝑏 for some 𝛼 ∈ Σ, Σ-term 𝑠 and
𝑏 : 𝜍.

Proof. The non-terminals of H all have type one of three forms: 𝜖, pair type, or function
type with non-simple co-domain. It therefore follows that the only H -terms of simple
type are the Σ-terms. Likewise, ⊥ and [𝛼 ←[ 𝑠]𝑏 are the only kind of H -terms of type
𝜍. Given a substitution stack [𝛼 ←[ 𝑠]𝑏 however, as 𝛼 ∈ Σ the first part of the lemma
implies that 𝑠 is a Σ-term.

Lemma 3.28. If 𝑟 : 𝜎 → 𝜏 is a H -term then 𝜏 is a basic type and 𝜎 is either basic or
the type of substitution stacks. In the latter case, 𝑟 = N𝑖

𝜋 or N̂𝑖
𝜋 for some 𝜋 and 𝑖.

Proof. By inspection of the types of non-terminals and terms.
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Lemma 3.29. Suppose 𝑟 is an H -term of type 𝜖 containing no explicit substitutions
(i.e. having no sub-term of the form 𝑡 · 𝑎). If 𝑟 →*H 𝑠 for some basic term 𝑠 then 𝑠 = ⟨⟩.

Proof. By induction on the proof generating H , on the composition of 𝑟 and the length
of the derivation 𝑟 →* 𝑠.

We now describe how Herbrand schemes can be interpreted as ascribing existential
content to first-order proofs.

Definition 3.30 (Herbrand expansion). Let 𝜋 ⊢ Γ be a proof with Γ = ∃𝑣⃗0𝐴0, . . . ,∃𝑣⃗𝑘𝐴𝑘

where 𝐴𝑖 is quantifier-free for each 𝑖 ≤ 𝑘. Let 𝑘𝑖 be the length of 𝑣⃗𝑖. The Herbrand
expansion of 𝜋 is the quantifier free sequent Γ𝜋 given by

Γ𝜋 := {𝐴𝑖(𝑟⃗𝑖/𝑣⃗𝑖) | 𝑟⃗𝑖 = (𝑟𝑗)𝑗<𝑘𝑖
and (𝑖, ⟨𝑟0, . . . , 𝑟𝑘𝑖−1, ⟨⟩⟩) ∈ 𝐿(𝜋)}.

Lemma 3.31. If 𝜋 ⊢ Γ is a quasi cut-free proof of a Σ1 end-sequent then the Herbrand
expansion of 𝜋 is a valid sequent and

⋁︀
Γ𝜋 is a Herbrand disjunction in the sense of

Theorem 2.2.

Proof. Observe that in every production rule associated to a quantifier-free cut, the
term 𝑟 ∘𝐴 𝑠 becomes ⟨⟩. Derivations in 𝜋 are therefore in 1-1 correspondence with traces
following the breakdown of formulæ in the end-sequent. As a result we observe that 𝐿(𝜋)
simply outputs all literal witnesses to the existential quantifiers in the end-sequent.

The idea behind Herbrand schemes is to provide a generalisation of the above lemma
to proofs containing quantified cuts. The analysis necessary for the result is carried out
in Section 5. In the remainder of this section we prove the production rules of Herbrand
schemes are well-typed and derive upper bounds on the size of Herbrand expansions.

Lemma 3.32. The production rules of Herbrand schemes are type preserving.

Proof. Fix a proof 𝜋 with prenex end-sequent 𝐴0, . . . , 𝐴𝑚 and 𝑖 ≤ 𝑚. We establish
type-preservation of the production rules for the non-terminals N0

𝜋, . . . , N𝑚
𝜋 via a case

distinction on the final inference rule in 𝜋.
Suppose 𝜋 ⊢ 𝐴0, . . . , 𝐴𝑚−1, ∃𝑣⃗𝐴 is obtained from proof 𝜋0 by ∃𝑟⃗. Thus 𝜋0 ⊢ Γ, 𝐴(𝑟⃗/𝑣⃗)

for some sequence 𝑟⃗ = (𝑟𝑗)𝑗≤𝑘 of simple Σ-terms of type 𝜄. By regularity, 𝑒(𝐴) = 0, i.e.
either 𝐴 is quantifier-free or 𝑢(𝐴) > 0. Let Γ = 𝐴0, . . . , 𝐴𝑚−1 and fix a term 𝑧 : 𝜏*∃𝑣⃗𝐴

and a sequence of terms 𝑥⃗ of length 𝑚 such that N𝑖
𝜋𝑥⃗𝑧 is well-typed. By definition N𝑖

𝜋0
has type

N𝑖
𝜋0 : 𝜍 → 𝜏*𝐴0 → · · · → 𝜏*𝐴𝑚−1 → 𝜏*𝐴 →

{︃
𝜏𝐴, if 𝑖 = 𝑚,
𝜏𝐴𝑖 , otherwise.

To check type preservation there are two cases to consider:

1. 𝑖 = 𝑚. If 𝑢(𝐴) = 0 then 𝐴 is quantifier-free and 𝜏*
𝐴

= 𝜖. If 𝑢(𝐴) > 0 then
𝜏*

𝐴
= 𝜏*𝐴 → 𝜏𝐴 by Lemma 3.22(3), so the type of N𝑖

𝜋0𝑎𝑥⃗ is 𝜏*
𝐴

. Since also 𝜏∃𝑣⃗𝐴 =
𝜄× · · · × 𝜄⏟  ⏞  

𝑘

×𝜏*
𝐴

by Lemma 3.22(4), we are done.
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𝐴 Σ0 Σ𝑛 ∖Π𝑛 Π𝑛 ∖ Σ𝑛

𝑜𝑟𝑑(𝜏𝐴) 0 𝑛 .− 2 𝑛 .− 3
𝑜𝑟𝑑(𝜏*𝐴) 0 𝑛 .− 1 𝑛 .− 2

Table 2: Order of types 𝜏𝐴 and 𝜏*𝐴.

2. 𝑖 ̸= 𝑚. In this case it is necessary to check that 𝜏*∃𝑣⃗𝐴 = 𝜏∃𝑣⃗𝐴 → 𝜏*𝐴. But this
follows directly from the definition and the fact that 𝜏∀𝑣⃗𝐴 = 𝜏𝐴 = 𝜏*𝐴 as 𝑒(𝐴) = 0.

Suppose 𝜋 is derived from 𝜋0 via the inference ∀𝛼⃗ and 𝐴𝑚 = ∀𝑣⃗𝐴 with 𝑢(𝐴) = 0 and
𝛼⃗ = (𝛼𝑗)𝑗<𝑘. Let 𝑖 ≤ 𝑚 and fix terms 𝑥⃗, 𝑧⃗ = (𝑧0, . . . , 𝑧𝑘) such that N𝑖

𝜋𝑎𝑥⃗⟨𝑧0, . . . , 𝑧𝑘⟩ is
well-typed. Lemma 3.22 implies that 𝑧𝑗 : 𝜄 for each 𝑗 < 𝑘, and 𝑧𝑘 : 𝜏*𝐴. Thus N𝑖

𝜋0𝑏𝑥⃗𝑧𝑘 is
well-typed and has type 𝜏𝐴 = 𝜏𝐴𝑚 .

Suppose 𝜋 is derived via cut from sub-proofs 𝜋0 ⊢ Γ, 𝐴 and 𝜋1 ⊢ Δ, 𝐴. Let 𝑚 = |Γ|
and 𝑛 = |Δ| and fix 𝑥⃗ and 𝑦⃗ suitably typed. Without loss of generality we may assume
𝑖 < 𝑚, in which case we require to show (N𝑛

𝜋1𝑎𝑦⃗) ∘𝐴 (N𝑚
𝜋0𝑎𝑥⃗) : 𝜏*𝐴 which reduces (via

Remark 3.25) to proving

𝑒(𝐴) > 0 implies 𝜏*𝐴 = 𝜏*
𝐴
→ 𝜏𝐴,

𝑢(𝐴) > 0 implies 𝜏*𝐴 = 𝜏𝐴 and 𝜏*
𝐴

= 𝜏*𝐴 → 𝜏𝐴,

both of which follow directly from Lemma 3.22.
The remaining cases are straightforward and omitted.

Lemma 3.33. Fix a prenex formula 𝐴. The order of 𝜏𝐴, 𝜏*𝐴 are as presented in Table 2
where .− denotes subtraction truncated at 0, i.e. 𝑛 .−𝑚 = max{𝑛−𝑚, 0}.

Proof. By induction on complexity of 𝐴. If 𝐴 is quantifier free then 𝜏𝐴 = 𝜖 = 𝜏*𝐴
so 𝑜𝑟𝑑(𝜏𝐴) = 𝑜𝑟𝑑(𝜏*𝐴) = 0. Moreover, by Example 3.23, the lemma holds for 𝐴 ∈
(Σ1 ∖Π1) ∪ (Π1 ∖ Σ1). Suppose 𝑛 > 1. For 𝐴 = ∃𝑣⃗𝐵 where 𝐵 ∈ Π𝑛−1 ∖ Σ𝑛−1,

𝑜𝑟𝑑(𝜏𝐴) = 𝑜𝑟𝑑(𝜏*
𝐵̄

) (Lemma 3.22(4))
= 𝑛− 2 (induction hypothesis)

𝑜𝑟𝑑(𝜏*𝐴) = max{𝑜𝑟𝑑(𝜏𝐴) + 1, 𝑜𝑟𝑑(𝜏𝐵̄)} (definition)
= 𝑛− 1 (induction hypothesis)

For 𝐴 = ∀𝑣⃗𝐵 where 𝐵 ∈ Σ𝑛−1 ∖Π𝑛−1,

𝑜𝑟𝑑(𝜏𝐴) = 𝑜𝑟𝑑(𝜏𝐵) (definition)
= 𝑛 .− 3 (induction hypothesis)

𝑜𝑟𝑑(𝜏*𝐴) = 𝑜𝑟𝑑(𝜏𝐴) (definition)
= 𝑛− 2

Corollary 3.34. For a proof 𝜋 ⊢ 𝐴0, . . . , 𝐴𝑘 and 𝑖 < 𝑘, the order of the non-terminal
N𝑖

𝜋 is equal to the smallest 𝑛 such that {𝐴𝑗 : 𝑗 ≤ 𝑘} ⊂ Π𝑛+1, unless 𝐴𝑖 is Π1, in which
case the order of N𝑖

𝜋 is zero.
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Proof. If 𝐴𝑖 is Π1 then 𝜏𝐴𝑖 = 𝜖 and the order of N𝑖
𝜋 is 0 by definition. Otherwise, the

order of N𝑖
𝜋 is one greater than the maximum among the orders of 𝜏*𝐴𝑗

for 𝑗 ≤ 𝑘.

It is now possible to strengthen Lemma 3.26 to a concrete bound on the number
of terms derivable from a Herbrand scheme. The idea is to eliminate occurrences of
pattern-matching in a Herbrand scheme H in a way that does not decrease the length
of derivations so that Theorem 3.17 and Corollary 3.18 can be applied.

Theorem 3.35. If 𝜋 ⊢ Γ is a proof of a single prenex Σ1 formula in which all cut
formulæ are contained in Π𝑛 ∪ Σ𝑛 then the size of the Herbrand expansion Γ𝜋 is no
greater than 24|𝜋|3

𝑛+2 where |𝜋| is the number of inference rules in 𝜋.

Proof. The case 𝑛 = 0 is covered by Lemma 3.31 so suppose 𝑛 > 0. Let H be the
Herbrand scheme of 𝜋. Since the cut rank of 𝜋 is bounded by 𝑛, Corollary 3.34 implies
that the order of H is no greater than 𝑛. To obtain the desired bounds we apply The-
orem 3.17. However, this requires first eliminating the explicit substitutions introduced
by the ∀ inferences. Let H ′ denote the higher order recursion scheme with non-terminals
of basic type obtained from H by removing all substitutions terms and types from non-
terminals and production rules. In particular, the productions originating from ∀𝛼⃗ and
∃𝑟⃗ inferences are replaced by following in H ′:

∀𝛼⃗ : N𝑖
𝜋′ 𝑥⃗⟨𝑧0, . . . , 𝑧𝑝+1⟩ → N𝑖

𝜋′
0
𝑥⃗𝑧𝑝

∃𝑟⃗ : N𝑖
𝜋𝑥⃗𝑧 →

⎧⎪⎪⎨⎪⎪⎩
N𝑖

𝜋0 𝑥⃗
(︀
𝑧(N𝑚

𝜋 𝑥⃗)
)︀
, 𝑖 ̸= 𝑚,

⟨c, . . . , c, N𝑚
𝜋0 𝑥⃗⟩, 𝑖 = 𝑚 and 𝑢(𝐴) > 0,

⟨c, . . . , c, ⟨⟩⟩, 𝑖 = 𝑚 and 𝑢(𝐴) = 0.

The second part of Lemma 3.27 implies that derivations in H ′ from the start symbol are
in 1-1 correspondence with derivations in H . Repeating the argument of Corollary 3.18,
the size of 𝐿(𝜋) is therefore bounded by 2𝐾 where 𝐾 is the length of the longest derivation
in H ′ from the single start symbol. The order of H ′ is no greater than 𝑛, the number
of non-terminals is bounded by |𝜋|2, and for each production rule F𝑥⃗→ 𝑡 in H ′, |𝑡|Σ <
3 × |𝜋| where Σ is the ranked alphabet of function symbols and constants occurring in
𝜋. Theorem 3.17 then implies 𝐾 ≤ 24|𝜋|3

𝑛+1 .

4 Example: a Herbrand Disjunction for the Pigeonhole
Principle

We consider a formal proof of the pigeonhole principle for two boxes via the infinite pi-
geonhole principle. The question of the computational content of this proof is attributed
to G. Stolzenberg in [12]. A variety of analytic methods have since been applied to this
proof [23, 9, 43, 7, 1] and its generalisations [40, 38]. The version we present here is a
formal proof with a single Π3 cut based on the proof with two Π2 cuts given in [1, 43].

Let 𝑓 : N→ {0, 1} be a total Boolean function, let 𝐼𝑖 (for 𝑖 = 0, 1) express that there
are infinitely many 𝑚 ∈ N for which 𝑓(𝑚) = 𝑖 and 𝑇 express that there exists 𝑚 < 𝑛
such that 𝑓(𝑚) = 𝑓(𝑛). A consequence of the law of excluded middle is ∃𝑤𝐼𝑤. Moreover,
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𝐼𝑖 implies 𝑇 for each 𝑖 ∈ {0, 1}: assuming 𝐼𝑖 there exists 𝑚 ≥ 0 and 𝑛 ≥ 𝑚 + 1 for which
𝑓(𝑚) = 𝑓(𝑛) = 𝑖. Combining these observations we conclude 𝑇 .

The following formalises the above argument into a proof with a single Π3 cut. The
formal language, Σ, comprises two unary function symbols f, s, one binary function sym-
bol m, a constant symbol 0 and a binary relation ≤. We make the following definitions
and abbreviations:

∙ 𝑇 = ∃𝑢∃𝑣(𝑢 < 𝑣 ∧ f𝑢 = f𝑣),

∙ 𝐼 = ∃𝑤𝐼𝑤 where 𝐼𝑟 = ∀𝑢∃𝑣(𝑢 ≤ 𝑣 ∧ f𝑣 = 𝑟),

∙ Γ = {∀𝑢∀𝑣(𝑢 ≤ m𝑢𝑣 ∧ 𝑣 ≤ m𝑢𝑣), ∀𝑢(f𝑢 = 0 ∨ f𝑢 = s0)},

∙ Δ = {∀𝑢∀𝑣∀𝑤(𝑢 = 𝑣 ∧ 𝑤 = 𝑣 → 𝑢 = 𝑤),∀𝑢∀𝑣(s𝑢 ≤ 𝑣 → 𝑢 < 𝑣)},

∙ 𝐼𝑠
𝑟 and 𝐼𝑠,𝑡

𝑟 denote, respectively, ∃𝑣(𝑠 ≤ 𝑣 ∧ f𝑣 = 𝑟) and (𝑠 ≤ 𝑡 ∧ f𝑡 = 𝑟),

∙ 𝑇𝑠,𝑡 denotes (𝑠 < 𝑡 ∧ f𝑠 = f𝑡).

The intended interpretation of the symbols is: f represents the (arbitrary) function 𝑓 , s
the successor function on N, ≤ the standard ordering and m the binary max function.

ℎ : Γ ⊢ 𝐼𝛼,m𝛼𝛼̂
0 , 𝐼 𝛼̂,m𝛼𝛼̂

1∃ −−−−−−−−−−−−−−−−−−−−−−−−−
𝑔 : Γ ⊢ 𝐼𝛼,m𝛼𝛼̂

0 , 𝐼 𝛼̂
1∃ −−−−−−−−−−−−−−−−−−−−

𝑓 : Γ ⊢ 𝐼𝛼
0 , 𝐼 𝛼̂

1∀𝛼 −−−−−−−−−−−−−−−
𝑒 : Γ ⊢ 𝐼0, 𝐼 𝛼̂

1∀𝛼̂ −−−−−−−−−−−−−−−
𝑑 : Γ ⊢ 𝐼0, 𝐼1
∃ −−−−−−−−−−−−−−

𝑐 : Γ ⊢ 𝐼, 𝐼1
∃ −−−−−−−−−−−−−

𝑏 : Γ ⊢ 𝐼, 𝐼
c −−−−−−−−−−−−

𝑎 : Γ ⊢ 𝐼

7 : Δ ⊢ 𝐼0,𝛽
𝛾 , 𝐼s𝛽,𝛽

𝛾 , 𝑇𝛽,𝛽
∃ −−−−−−−−−−−−−−−−−−−−−−−−−−

6 : Δ ⊢ 𝐼0,𝛽
𝛾 , 𝐼s𝛽,𝛽

𝛾 , 𝑇
∀𝛽
−−−−−−−−−−−−−−−−−−−−−−−
5 : Δ ⊢ 𝐼0,𝛽

𝛾 , 𝐼s𝛽
𝛾 , 𝑇

∃ −−−−−−−−−−−−−−−−−−−−−
4 : Δ ⊢ 𝐼0,𝛽

𝛾 , 𝐼𝛾 , 𝑇
∀𝛽 −−−−−−−−−−−−−−−−−−−−

3 : Δ ⊢ 𝐼0
𝛾 , 𝐼𝛾 , 𝑇

∃ −−−−−−−−−−−−−−−−−−
2 : Δ ⊢ 𝐼𝛾 , 𝐼𝛾 , 𝑇

c −−−−−−−−−−−−−−−−−−
1 : Δ ⊢ 𝐼𝛾 , 𝑇

∀𝛾 −−−−−−−−−−−−−−
0 : Δ ⊢ 𝐼, 𝑇

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, Δ ⊢ 𝑇

Figure 4: Proof 𝜋∞ of pigeonhole principle.

A formal proof of the pigeonhole principle (namely Γ, Δ ⊢ 𝑇 ) is given in Figure 4
which we name 𝜋∞. The proof is displayed in two-sided sequent calculus as this sim-
plifies the presentation and following discussion. The intended interpretation of the
two-sided sequent 𝐴1, . . . , 𝐴𝑘 ⊢ 𝐵1, . . . , 𝐵𝑙 is the sequent 𝐴1, . . . , 𝐴𝑘, 𝐵1, . . . , 𝐵𝑙. For
brevity, only eigenvariables and witnesses of the quantifiers and instances of the ex-
istential formula 𝑇 are displayed in 𝜋∞. The proof fully fleshed out uses about 50
application of the axioms and rules of the calculus but the only cut in 𝜋∞ is the one
displayed in the figure. Two normal forms of the proof of size ∼200 have been computed
in a case study [43] from which one can read off the Herbrand sets for the formula 𝑇
(also for formulæ in Γ ∪ Δ but these are less interesting). Up to interpretation of the
logical symbols by their intended semantics, the two Herbrand sets combined provide
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the witnesses {⟨0, 1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨0, 2⟩, ⟨1, 3⟩} to the existential quantifiers in 𝑇 .1 The
Herbrand scheme H𝜋∞ associated to the proof 𝜋∞ computes the same Herbrand set, a
fact we demonstrate in the following.

Types and terms The Herbrand scheme for 𝜋∞ comprises a non-terminal for each sub-
proof of 𝜋∞ and each formula in the end-sequent of that sub-proof. Recall, for each
sub-proof 𝑝 : Π ⊢ Λ of 𝜋∞ and each 𝑖 < |Π| + |Λ| there is a non-terminal N𝑖

𝑝 in H𝜋∞

representing the existential content of the 𝑖-th formula in the sequent at position 𝑝. In
the following, in place of N𝑖

𝑝 we will write N𝐴
𝑝 where 𝐴 is the 𝑖-th formula in the sequent

assuming this is unique. In case 𝐴 occurs more than once in the sequent Π ⊢ Λ (such as
at positions 𝑏 and 2) the non-terminal N𝐴

𝑝 refers to the first occurrence of 𝐴 and we use
the notation N𝐴+

𝑝 for the second occurrence. Concerning the type of N𝐴
𝑝 , we recall the

types 𝜏𝐹 and 𝜏*𝐹 for each formula 𝐹 in 𝜋∞. Let 𝜄̂ = 𝜄× (𝜄1 → 𝜖) and 𝜖 = 𝜄2 → 𝜖.

∙ For 𝐹 ∈ Γ ∪Δ we have 𝜏𝐹 ∈ {𝜄1, 𝜄2, 𝜄3}, and 𝜏*
𝐹

= 𝜏𝐹 → 𝜖.

∙ 𝑇 : 𝜏𝑇 = 𝜄2, 𝜏*𝑇 = 𝜖.

∙ 𝐼𝑠
𝑟 : 𝜏𝐼𝑠

𝑟
= 𝜄1 = 𝜏*

𝐼𝑠
𝑟
, 𝜏*𝐼𝑠

𝑟
= 𝜄1 → 𝜖 and 𝜏𝐼𝑠

𝑟
= 𝜖.

∙ 𝐼𝑟: 𝜏𝐼𝑟 = 𝜄1, 𝜏𝐼𝑟
= 𝜏*𝐼𝑟

= 𝜄̂ and 𝜏*
𝐼𝑟

= 𝜄̂→ 𝜄1.

∙ 𝐼: 𝜏𝐼 = 𝜄× (𝜄̂→ 𝜄1) = 𝜏*
𝐼
, 𝜏𝐼 = 𝜄̂ and 𝜏*𝐼 = 𝜏𝐼 → 𝜏𝐼 .

∙ The remaining formulæ that occur in 𝜋∞ are quantifier-free and are assigned type
𝜖 in all cases.

According to the definition, the type of N𝑇
𝜋∞ is 𝜍 → 𝜏*

𝐹
→ 𝜏*

𝐺̄
→ 𝜏*

𝐶
→ 𝜏*

𝐷̄
→ 𝜏*𝑇 → 𝜏𝑇

where 𝜍 is the type of substitution stacks, 𝐹 and 𝐺 are the two formulæ in Γ and
𝐶 and 𝐷 are the formulæ in Δ. As the formulæ in Γ ∪ Δ are Σ1, their input type
carries no computational content (cf. Lemma 5.17), and we can ignore these formulæ
and identify the type above with 𝜍 → 𝜏*𝑇 → 𝜏𝑇 , and the term N𝑇

𝜋∞𝑎c𝜏*
𝐹

c𝜏*
𝐺̄

c𝜏*
𝐶̄

c𝜏*
𝐷̄

with
N𝑇

𝜋∞𝑎. Likewise, the type of N𝐼1
𝑐 is assumed to be 𝜍 → 𝜏*𝐼 → 𝜏*𝐼1

→ 𝜏𝐼1 and the type of

N𝐼+
𝛾

2 is 𝜍 → (𝜄̂→ 𝜄1)→ (𝜄̂→ 𝜄1)→ 𝜖→ 𝜄̂.
Other abbreviations and simplifications we utilise are:

∙ ⟨𝑟⟩ for either the sequence ⟨𝑟, ⟨⟩⟩ or ⟨𝑟, c𝜄1→𝜖⟩, depending on type, and ⟨𝑟, 𝑠⟩ as a
term of type 𝜄2 represents ⟨𝑟, 𝑠, ⟨⟩⟩.

∙ 0̂ = m00, 1 = s0̂, 1̂ = m01, 2 = s(m10) and 2̂ = m02.

∙ For each non-terminal N𝐴
𝑝 where 𝐴 is the 𝑖-th formula at position 𝑝, an additional

non-terminal N̂𝐴
𝑝 with the same arity as N𝐴

𝑝 and associated production rule

N̂𝐴
𝑝 𝑎𝑥0 · · ·𝑥𝑘 → N𝐴

𝑝 𝑎𝑥0 · · ·𝑥𝑖−1𝑥𝑘𝑥𝑖 · · ·𝑥𝑘−1

is included in the Herbrand scheme H𝜋∞ . These non-terminals ease the computa-
tion in derivation steps involving permutation.

1In [43] 𝜋∞ is formalised as a proof with two Π2-cuts but as far as computing Herbrand sets, the two
proofs are essentially identical.
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∙ The Herbrand scheme also includes explicit non-terminals for non-determinism at
each type, which are represented via set notation: for terms 𝑠0, . . . , 𝑠𝑘 : 𝜌 of the
same type, the set 𝑆 = {𝑠𝑖 | 𝑖 ≤ 𝑘} is a term of type 𝜌 with reduction 𝑆 → 𝑠𝑖 for
each 𝑖 ≤ 𝑘.

∙ An equivalence relation ≍ on terms of identical type defined as inducing the same
language within all contexts. Formally, we set 𝑟 ≍ 𝑠 iff 𝑟 ≺ 𝑠 ≺ 𝑟 where 𝑟 ≺ 𝑠
holds just if 𝑟, 𝑠 : 𝜌 and for every H𝜋∞ ∪ {𝑥𝜌}-term 𝑡 of basic type (where 𝑥 is a
fresh symbol of type 𝜌), whenever 𝑡(𝑟/𝑥) →* 𝑢 for a Σ-term 𝑢, then 𝑡(𝑠/𝑥) →* 𝑣
for some Σ-term 𝑣 such that 𝑢∘ = 𝑣∘.

For instance, if 𝑟 → 𝑠 via an application of a deterministic production rule then 𝑟 ≍
𝑠, and if 𝑆 = 𝑆′ are two representations of the same set of terms then 𝑆 ≍ 𝑆′. In
general, 𝑟(𝑆/𝑥) ̸≍ {𝑟(𝑠/𝑥) | 𝑠 ∈ 𝑆} as shown by considering 𝑟 = F𝑥 with reduction
F𝑥→* m𝑥𝑥.2 However, suppose 𝑟 = F𝑡1 · · · 𝑡𝑘𝑥, 𝑆 is a set of pairs, F is deterministic and
F𝑡1 · · · 𝑡𝑘⟨𝑥, 𝑥′⟩ → 𝑡. Then 𝑟(𝑆/𝑥) ≍ {𝑟(𝑠/𝑥) | 𝑠 ∈ 𝑆} ≍ {𝑡((𝑢, 𝑣)/(𝑥, 𝑥′)) | ⟨𝑢, 𝑣⟩ ∈ 𝑆}.

Finally, we remark that, generalising Lemma 3.29, for every type 𝜌 with co-domain 𝜖
and every term 𝑟 : 𝜌, we have 𝑟 ≍ c𝜌.

Language of 𝜋∞ We now compute the language of H𝜋∞ focussing on the formula 𝑇 ,
i.e. set of terms (after evaluation) derivable from the term N𝑇

𝜋∞⊥c𝜖. The first, and only,
production rule applicable to this term is given by the cut rule at the root of the proof:

N𝑇
𝜋∞⊥c𝜖 → N𝑇

0⊥(N𝐼
𝑎⊥(N̂𝐼

0⊥c𝜖))c𝜖. (2)

Analysing derivations directly from this term is complicated. As the right sub-proof at
0 culminates in a ∀𝛾 inference, the external non-terminal N𝐼

0 cannot be reduced until
its second argument (the term N𝐼

𝑎⊥(N̂𝐼
0⊥c𝜖)) is reduced to an explicit pair. But the

inference at 𝑎 in the left sub-proof is a contraction, so this immediately introduces non-
determinism and duplication of arguments. After resolving the non-determinism and
reducing the two continuations of N𝐼

𝑎 to pairs (say in terms of N𝐼0
𝑑 /N𝐼1

𝑑 ), the external
non-terminal can be reduced. The argument N̂𝐼

0⊥c𝜖 comes into play at this point: the
productions for N𝐼+

𝑏 and N𝐼
𝑐 increase the nesting of non-terminals which must also be

evaluated as pairs in order to proceed beyond N𝐼0
𝑑 /N𝐼1

𝑑 .
In the following, we compute the language via a top-down approach, analysing deriv-

ations starting from relatively simple terms, and building these together to compute the
language of more complex interactions between non-terminals. We begin with the most
simple derivations available. Recall that 𝜏*𝐼0

= 𝜏*𝐼1
= 𝜄1. Concerning non-terminals from

the left sub-proof we have the following derivation starting from N𝐼0
𝑑 /N𝐼1

𝑑 .

N𝐼𝑖
𝑑 𝑎⟨𝑟⟩⟨𝑠⟩ → N2+𝑖

𝑒 ([𝛼̂←[ 𝑠]𝑎)⟨𝑟⟩⟨⟩
→ N2+𝑖

𝑓 ([𝛼←[ 𝑟][𝛼̂←[ 𝑠]𝑎)⟨⟩⟨⟩
→* ⟨m𝛼𝛼̂ · [𝛼←[ 𝑟][𝛼̂←[ 𝑠]𝑎⟩

2Formally, we require an H𝜋∞ analogue of F but this is not difficult to find.
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(Note, as |Γ| = 2 the (2+ 𝑖)-th formula at positions 𝑒 and 𝑓 is the ancestor of 𝐼𝑖 from 𝑑.)
If 𝑟 happens to be such that 𝑟 · [𝛼̂←[ 𝑠]𝑎 ≍ 𝑟 · 𝑎, then since the derivation above follows
deterministic reductions only, we deduce

N𝐼𝑖
𝑑 𝑎⟨𝑟⟩⟨𝑠⟩ ≍ ⟨m𝑟𝑠 · 𝑎⟩. (3)

Examining the non-terminals from lower in the left sub-proof affords us

N𝐼
𝑐𝑎𝑟𝑠→ ⟨0, N̂𝐼0

𝑑 𝑎𝑠⟩ N𝐼1
𝑐 𝑎𝑟𝑠→* N𝐼1

𝑑 𝑎(𝑟⟨0, N̂𝐼0
𝑑 𝑎𝑠⟩)𝑠

N𝐼+
𝑏 𝑎𝑟𝑠→ ⟨1, N𝐼1

𝑐 𝑎𝑟⟩ N𝐼
𝑏𝑎𝑟𝑠→ N𝐼

𝑐𝑎𝑟(𝑠(N𝐼+
𝑏 𝑎𝑟𝑠))

→* ⟨0, N̂𝐼0
𝑑 𝑎(𝑠⟨1, N𝐼1

𝑐 𝑎𝑟⟩)⟩

The derivation from N𝐼1
𝑐 𝑎𝑟𝑠 can be continued provided that the two arguments of N𝐼1

𝑑 ,
namely 𝑟⟨0, N̂𝐼0

𝑑 𝑎𝑠⟩ and 𝑠, are reducible to pairs. Thus if 𝑟⟨0, N̂𝐼0
𝑑 𝑎⟨𝑠⟩⟩ →* ⟨𝑟0, 𝑟′0⟩ and

𝑟0 · [𝛼̂←[ 𝑠]𝑎 ≍ 𝑟0 · 𝑎 then

N𝐼1
𝑐 𝑎𝑟⟨𝑠⟩ →* N𝐼1

𝑑 𝑎⟨𝑟0⟩⟨𝑠⟩
≍ ⟨m𝑟0𝑠 · 𝑎⟩.

Because the reductions governing N𝐼1
𝑐 are all deterministic, when phrased in terms of

equivalences, this becomes

𝑟⟨0, N̂𝐼0
𝑑 𝑎⟨𝑠⟩⟩ ≍ {⟨𝑟𝑖⟩ | 𝑖 ≤ 𝑘}

𝑟𝑖 · [𝛼̂←[ 𝑠]𝑎 ≍ 𝑟𝑖 · 𝑎 each 𝑖 ≤ 𝑘

}︃
implies N𝐼1

𝑐 𝑎𝑟⟨𝑠⟩ ≍ {⟨m𝑟𝑖𝑠 · 𝑎⟩ | 𝑖 ≤ 𝑘} (4)

Property (4) will be useful later.
Returning briefly to the derivations from non-terminals N𝐼

𝑏 and N𝐼+
𝑏 started earlier,

each of these derivations is also deterministic, so therefore

N𝐼
𝑎𝑎𝑟 ≍ {N𝐼

𝑏𝑎𝑟𝑟, N𝐼+
𝑏 𝑎𝑟𝑟}

≍ {⟨0, N̂𝐼0
𝑑 𝑎(𝑟⟨1, N𝐼1

𝑐 𝑎𝑟⟩)⟩, ⟨1, N𝐼1
𝑐 𝑎𝑟⟩} (5)

which provides the first step in the continuation of the derivation from N𝑇
𝜋∞ . Before

extending (2) however we consider some simple derivations arising from the right sub-
proof. On this side, the alternation of universal and existential inference rules means
that few non-terminals can be adequately analysed in isolation as we did above. Most
straightforward are non-terminals N𝐼𝛾

4 and N𝐼𝛾

2 , for which we have

N𝐼𝛾

4 𝑎𝑟𝑠𝑡 ≍ ⟨s𝛽 · 𝑎⟩ N𝐼𝛾

2 𝑎𝑟𝑠𝑡 ≍ ⟨0 · 𝑎⟩ ≍ ⟨0⟩

This gives rise to, for example,

N𝐼𝛾

3 𝑎⟨𝑟0⟩𝑠𝑡 ≍ N𝐼𝛾

4 ([𝛽 ←[ 𝑟0]𝑎)⟨⟩𝑠𝑡 ≍ ⟨s𝑟0 · 𝑎⟩

and hence if 𝑟 : (𝜄× (𝜄1 → 𝜖))→ 𝜄1 is a term such that 𝑟⟨0⟩ ≍ {⟨𝑟𝑖⟩ | 𝑖 ≤ 𝑘} then also

N𝐼+
𝛾

2 𝑎𝑟𝑠𝑡 ≍ N𝐼𝛾

3 𝑎(𝑟(N𝐼𝛾

2 𝑎𝑟𝑠𝑡))𝑠𝑡

≍ N𝐼𝛾

3 𝑎{⟨𝑟𝑖⟩ | 𝑖 ≤ 𝑘}𝑠𝑡

≍ {⟨s𝑟𝑖 · 𝑎⟩ | 𝑖 ≤ 𝑘}
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The equivalences for N𝐼𝛾

2 and N𝐼+
𝛾

2 combine to yield, given the same 𝑟,

N𝐼𝛾

1 𝑎𝑟𝑡 ≍ {N𝐼𝛾

2 𝑎𝑟𝑟𝑡, N𝐼+
𝛾

2 𝑎𝑟𝑟𝑡} ≍ {⟨0⟩} ∪ {⟨s𝑟𝑖 · 𝑎⟩ | 𝑖 ≤ 𝑘}. (6)

In particular, choosing 𝑟 = N̂𝐼0
𝑑 ⊥⟨𝑠⟩, this implies

N𝐼𝛾

1 𝑎(N̂𝐼0
𝑑 ⊥⟨𝑠⟩)𝑡 ≍ {⟨0⟩, ⟨s(m0𝑠) · 𝑎⟩} (7)

which will be needed later. In addition to (7), it is necessary to analyse the complex
term N𝐼𝛾

1 𝑎(N𝐼1
𝑐 ⊥(N̂𝐼

0⊥c𝜖))c𝜖. However, here we can use (6) again. If 𝛿 : 𝜄 is a fresh symbol
then, applying (7) and (4) (using 𝑟 = N𝐼

0⊥c𝜖), we get

N𝐼
0⊥⟨0, N̂𝐼0

𝑑 ⊥⟨𝛿⟩⟩c𝜖 ≍ N𝐼𝛾

1 ([𝛾 ←[ 0]⊥)(N̂𝐼0
𝑑 ⊥⟨𝛿⟩)c𝜖

≍ {⟨0⟩, ⟨s(m0𝛿)⟩} (8)

N𝐼1
𝑐 ⊥(N̂𝐼

0⊥c𝜖)⟨𝛿⟩ ≍ {⟨m0𝛿⟩, ⟨m(s(m0𝛿))𝛿⟩} (9)

whence (6) implies

N𝐼𝛾

1 𝑎(N𝐼1
𝑐 ⊥(N̂𝐼

0⊥c𝜖))c𝜖 ≍ {⟨0⟩, ⟨1⟩, ⟨2⟩}. (10)

We have still not examined derivations starting from the non-terminals N𝑇
0 , N𝑇

1 , and
N𝑇

𝑖 for 𝑖 ≥ 2, which will arise in the computation of 𝐿(𝜋∞). The first three non-terminals
behave according to

N𝑇
0 𝑎⟨𝑟, 𝑠⟩𝑡 ≍ N𝑇

1 ([𝛾 ←[ 𝑟]𝑎)𝑠𝑡

≍ N𝑇
2 ([𝛾 ←[ 𝑟]𝑎)𝑠𝑠𝑡

≍ N𝑇
3 ([𝛾 ←[ 𝑟]𝑎)(𝑠⟨0⟩)𝑠𝑡

The remaining behave similarly to the N𝐴
𝑖 non-terminals analysed earlier, except that it

is N𝑇
6 that provides the only ‘outputs’ in the derivation. In particular,

N𝑇
6 𝑎𝑟𝑠 ≍ ⟨𝛽, 𝛽⟩ · 𝑎 N𝑇

5 𝑎𝑟⟨𝑠0⟩𝑡 ≍ ⟨𝛽, 𝑠0⟩ · 𝑎
N𝑇

3 𝑎⟨𝑟0⟩𝑠𝑡 ≍ N𝑇
5 ([𝛽 ←[ 𝑟0]𝑎)⟨⟩(𝑠⟨s𝑟0 · 𝑎⟩)𝑡

Let 𝛿 : 𝜄 be a fresh symbol. Combining the two sets of equations above, if 𝑠 : 𝜄̂ → 𝜄1 is
such that 𝑠⟨𝛿⟩ ≍ {⟨𝑠𝑖⟩ | 𝑖 ≤ 𝑘} and 𝑠𝑖 contains neither 𝛽 or 𝛾 for each 𝑖, it follows that

N𝑇
0⊥⟨𝑟, 𝑠⟩𝑡 ≍ {⟨𝑠𝑖 · [𝛿 ←[ 0]⊥, 𝑠𝑗 · [𝛿 ←[ s𝑠𝑖][𝛿 ←[ 0]⊥⟩ | 𝑖, 𝑗 ≤ 𝑘} . (11)

We can now proceed with calculating the language of N𝑇
𝜋∞⊥c𝜖. Let 𝑤 = N̂𝐼

0⊥c𝜖.
Following on from (2) and (5) we have

N𝑇
𝜋∞⊥c𝜖 ≍ N𝑇

0⊥(N𝐼
𝑎⊥𝑤)c𝜖

≍
{︁

N𝑇
0⊥⟨0, N̂𝐼0

𝑑 ⊥(𝑤⟨1, N𝐼1
𝑐 ⊥𝑤⟩)⟩c𝜖, N𝑇

0⊥⟨1, N𝐼1
𝑐 ⊥𝑤⟩c𝜖

}︁
(12)
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Thus, we need only compute

N𝐼0
𝑑 ⊥⟨𝛿⟩(𝑤⟨1, N𝐼1

𝑐 ⊥𝑤⟩) N𝐼1
𝑐 ⊥(N̂𝐼

0⊥c𝜖)⟨𝛿⟩

and apply (11) (assuming that the terms obtained will be free of 𝛽 and 𝛾). The latter
was already established in (9):

N𝐼1
𝑐 ⊥(N̂𝐼

0⊥c𝜖)⟨𝛿⟩ ≍ {⟨m0𝛿⟩, ⟨m(s(m0𝛿))𝛿⟩}

For the former, we have 𝑤⟨1, N𝐼1
𝑐 ⊥𝑤⟩ ≍ N𝐼𝛾

1 ([𝛾 ← [ 1]⊥)(N𝐼1
𝑐 ⊥𝑤)c𝜖, whence (10) implies

N𝐼0
𝑑 ⊥⟨𝛿⟩(𝑤⟨1, N𝐼1

𝑐 ⊥𝑤⟩) ≍ N𝐼0
𝑑 ⊥⟨𝛿⟩(N

𝐼𝛾

1 ([𝛾 ←[ 1]⊥)(N𝐼1
𝑐 ⊥𝑤)c𝜖)

≍
{︁

N𝐼0
𝑑 ⊥⟨𝛿⟩⟨𝑠⟩ | 𝑠 ∈ {0, 1, 2}

}︁
≍ {⟨m𝛿0⟩, ⟨m𝛿1⟩, ⟨m𝛿2⟩}

Hence, by (11) and (12), we deduce

N𝑇
𝜋∞⊥c𝜖 ≍

{︁
⟨𝑟, 𝑠[𝛿←[s𝑟]⟩ | 𝑟 ∈ {0̂, 1̂, 2̂}, 𝑠 ∈ {m𝛿0, m𝛿1, m𝛿2}

}︁
∪

{︁
⟨𝑟, 𝑠[𝛿←[s𝑟]⟩ | 𝑟 ∈ {0̂, m10}, 𝑠 ∈ {m0𝛿, m(s(m0𝛿))𝛿}

}︁
Under the standard interpretation of the symbols 0, s and m (as zero, successor and
binary ‘max’) 𝐿(𝜋∞) ascribes to 𝑇 the set

{(0, 1), (0, 2), (1, 2), (2, 3), (1, 3)} .

5 Language Preservation
Recall the relation 𝜋  𝜋′ which expresses that 𝜋′ is obtained from 𝜋 by the application
of a reduction rule in Figures 2 and 3 to a sub-proof of 𝜋. In the present section we
determine in which cases  supports: (i) language inclusion: 𝜋  𝜋′ implies 𝐿(𝜋′) ⊆
𝐿(𝜋); and (ii) language equality: 𝜋  𝜋′ implies 𝐿(𝜋′) = 𝐿(𝜋). Establishing language
inclusion for cut reduction steps will suffice to derive the main theorem; language equality
allows a more fine-grained study of the Herbrand content of proofs as if 𝜋0 and 𝜋1 are two
proofs that can be connected by a sequence of forward and backward language preserving
reductions then 𝐿(𝜋0) = 𝐿(𝜋1).

The first task is to define a single unified Herbrand scheme in which we can reason
about derivations concerning arbitrary regular proofs. At the same time, we expand
the grammar by certain non-terminals that will facilitate the analysis. These additional
non-terminals were introduced informally in the example of the previous section.

Definition 5.1 (Universal Herbrand Scheme). Let Σ be the signature of first-order logic.
We let H denote the infinite recursion scheme comprising:

1. a non-deterministic non-terminal D𝜌 : 𝜌 → 𝜌 → 𝜌 for each basic type 𝜌 with
production rules D𝜌𝑟𝑠→ 𝑟 and D𝜌𝑟𝑠→ 𝑠,

2. all non-terminals N𝑖
𝜋, S𝜋,𝑖 and c𝜌 from Definition 3.24 with their associated pro-

duction rules formulated deterministically in terms of the D𝜌 non-terminals above,
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3. for each non-terminal N𝑖
𝜋 : 𝜍 → 𝜏0 → · · · 𝜏𝑚 → 𝜏 from the above with 𝜏 prime, a

non-terminal N̂𝑖
𝜋 with type and associated production rule

N̂𝑖
𝜋 : 𝜍 → 𝜏0 → · · · → 𝜏𝑖−1 → 𝜏𝑖+1 → · · · 𝜏𝑚 → 𝜏𝑖 → 𝜏

N̂𝑖
𝜋𝑎𝑥0 · · ·𝑥𝑚 → N𝑖

𝜋𝑎𝑥0 · · ·𝑥𝑖−1𝑥𝑚𝑥𝑖 · · ·𝑥𝑚−1

We refer to H as the universal Herbrand scheme.

Henceforth, a term is an H -term and we write → in place of →H . Finite sets of H -
terms will represent applications of the non-deterministic non-terminals D𝜌. Specifically,
the set {𝑠𝜌

0, . . . , 𝑠𝜌
𝑘} represents any term formed by combining all the terms 𝑠0, . . . , 𝑠𝑘

(possibly with repetitions) via the non-terminal D𝜌. If 𝑆 is a finite set of terms of the
same type, it follows that 𝑆 →* 𝑠 for each 𝑠 ∈ 𝑆.

Notice that there are no start symbols in H . In this regard we may consider the
individual Herbrand scheme H𝜋 as obtained from H by specifying an appropriate set
of start symbols. The new ‘hat’ non-terminals do not play a role in viewing H as a
universal Herbrand scheme. Rather, they become useful in ‘transferring’ non-terminals
lacking their final argument through applications of permutation. For example, the
following partial proof (where we assume 𝑢(𝐴) > 0) gives rise to the production rules on
the right:

𝜋1 ⊢ 𝐴(𝑟/𝑣), 𝐵
p −−−−−−−−−−−−−−−−−

𝜋0 ⊢ 𝐵, 𝐴(𝑟/𝑣)
∃𝑟 −−−−−−−−−−−−−−−−−

𝜋 ⊢ 𝐵, ∃𝑣𝐴

N𝑖
𝜋0𝑎𝑥𝑧 → N1−𝑖

𝜋1 𝑎𝑧𝑥

N1
𝜋𝑎𝑥𝑧 → ⟨𝑟 · 𝑎, N1

𝜋0𝑥⟩
N0

𝜋𝑎𝑥𝑧 → N0
𝜋0𝑎𝑥

(︀
𝑧(N1

𝜋𝑎𝑥𝑧)
)︀

yielding the derivation N0
𝜋𝑎𝑥𝑧 →* N1

𝜋1𝑎
(︀
𝑧⟨𝑟 · 𝑎, N1

𝜋0𝑎𝑥⟩
)︀
𝑥. The derivation cannot be

extended as it stands because N1
𝜋0 lacks an argument, meaning that it is not formally

possible to express the term N0
𝜋𝑎𝑥𝑧 by reference to the proof 𝜋1 only without instantiating

𝑥 and 𝑧 by concrete terms. However, N1
𝜋0𝑎𝑥 is extensionally equal to the term N̂0

𝜋1𝑎𝑥,
allowing us to equate N0

𝜋𝑎𝑥𝑧 with the term N1
𝜋1𝑎

(︀
𝑧⟨𝑟 · 𝑎, N̂0

𝜋1𝑎𝑥⟩
)︀
𝑥 for any choice of 𝑎, 𝑥

and 𝑧. Equations such as these are useful in the close examination of the cut elimination
process carried out in the sections below.

In the previous section a natural subsumption and equivalence relation on terms was
introduced given by equating terms that induce the same language in all contexts. In
the context of the universal Herbrand scheme H , this subsumption is given by 𝑟 ≺ 𝑠
which holds just if 𝑟, 𝑠 : 𝜌 for some 𝜌 and, for every H ∪ {𝑥𝜌}-term 𝑡 of basic type,
whenever 𝑡(𝑟/𝑥)→* 𝑟0 for a Σ-term 𝑟0, then 𝑡(𝑠/𝑥)→* 𝑠0 for some Σ-term 𝑠0 such that
𝑟∘0 = 𝑠∘0. The corresponding equivalence relation ≍ is defined by 𝑟 ≍ 𝑠 iff 𝑟 ≺ 𝑠 ≺ 𝑟. The
following properties of the relations ≺ and ≍ were remarked in the last section.

Lemma 5.2. Let 𝑟, 𝑠 : 𝜌 be H -terms of the same type and 𝑆 a finite set of terms of
pair type 𝜎 = 𝜎0 × · · · × 𝜎𝑙.

1. If 𝑟 → 𝑠 then 𝑠 ≺ 𝑟. If, in addition, the reduction follows from a production rule
for a deterministic non-terminal then 𝑟 ≍ 𝑠 .

2. If 𝑟 and 𝑠 are representations of the same finite set of H -terms then 𝑟 ≍ 𝑠.
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3. If 𝑟 = F𝑠0 · · · 𝑠𝑘−1𝑥𝜎 for a non-terminal F with production rule

F𝑥0 · · ·𝑥𝑘−1⟨𝑥𝑘, . . . , 𝑥𝑘+𝑙⟩ → 𝑡

then

𝑟(𝑆/𝑥) ≍ {𝑟(𝑠/𝑥) | 𝑠 ∈ 𝑆} ≍ {𝑡((𝑠0 . . . , 𝑠𝑘+𝑙)/(𝑥0, . . . , 𝑥𝑘+𝑙)) | ⟨𝑠𝑘, . . . , 𝑠𝑘+𝑙⟩ ∈ 𝑆}.

4. If the co-domain of 𝜌 is 𝜖 then 𝑟 ≍ 𝑐𝜌.

Proof. Properties 1–3 are straight-forward, though for 3 we note that only determin-
istic non-terminals have production rules that invoke pattern-matching. 4 generalises
Lemma 3.29 and is proved by induction on 𝜌 and 𝑟, noting that ⟨⟩ · 𝑎 ≍ ⟨⟩ for any
substitution 𝑎.

Both relations can be extended to proofs by setting 𝜋′ ≺ 𝜋 if 𝜋 and 𝜋′ have the same
end-sequent and N𝑖

𝜋′ ≺ N𝑖
𝜋 for each 𝑖. For many cases of 𝜋  𝜋′ indeed 𝜋′ ≺ 𝜋 (or even

𝜋′ ≍ 𝜋), from which we may immediately deduce 𝐿(𝜋′) ⊆ 𝐿(𝜋) (resp. 𝐿(𝜋′) = 𝐿(𝜋)).
However, there exist reductions 𝜋  𝜋′ for which 𝐿(𝜋′) ⊆ 𝐿(𝜋) but 𝜋′ ⊀ 𝜋. These
scenarios all concern reductions that interact with quantifiers and alter the contexts in
which explicit substitutions appear in derivations. To establish language preservation
also in these cases we introduce a coarser relation ≺, denoted <, based on quantifying
over contexts of a particular syntactic shape that is preserved by H -derivations. Such
terms, which we call normal H -terms, are defined below.

5.1 Normal Terms and Subsumption
In order to focus on the impact of substitutions in H -terms it is necessary to introduce
a notion of free and bound occurrences of Σ-symbols in these terms where, recall, Σ
is the signature of first-order logic. The free symbols of a basic Σ-term are simply the
Σ-symbols that occur in the term; Σ-terms have no bound symbols. For a basic H -term
𝑡, the free symbols of 𝑡 are the Σ-symbols occurring in 𝑡 combined with the Σ-symbols
occurring in any proof 𝜋 for which a non-terminal N𝑖

𝜋 or N̂𝑖
𝜋 appears in 𝑡; the bound

symbols of 𝑡 are the eigenvariables of the proofs which occur leftmost in 𝑡. For non-basic
terms, substitutions and substitution stacks are interpreted as contributing to the set of
bound symbols, and limiting the set of free symbols in the natural way. Explicitly, for a
substitution stack 𝑎 : 𝜍 and H -term 𝑟 : 𝜌 we define

𝐵𝑑(𝑟) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if 𝑟 is a Σ-term or 𝑟 = c𝜌,
𝐸𝑉 (𝜋), if 𝑟 = N𝑖

𝜋 or 𝑟 = N̂𝑖
𝜋 for some 𝑖,

𝐵𝑑(𝑠) ∪𝐵𝑑(𝑡), if 𝑟 = ⟨𝑠, 𝑡⟩,
𝐵𝑑(𝑠) ∪𝐵𝑑(𝑡), if 𝑟 = D𝜌𝑠𝑡,
𝐵𝑑(𝑠) ∪𝐵𝑑(𝑎), if 𝑟 = 𝑠𝑎 or 𝑟 = 𝑠 · 𝑎 for 𝑎 : 𝜍,
𝐵𝑑(𝑠), if 𝑟 = 𝑠𝑡 and 𝑡 : 𝜏 where 𝜏 ̸= 𝜍,

𝐵𝑑(𝑎) =
{︃
∅, if 𝑎 = ⊥,
{𝛼} ∪𝐵𝑑(𝑏), if 𝑎 = [𝛼←[ 𝑠]𝑏,
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𝐹𝑟(𝑟) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if 𝑟 = c𝜌 or 𝑟 = D𝜌′ ,
{𝑟}, if 𝑟 ∈ Σ,
𝐹𝑟(𝜋), if 𝑟 = N𝑖

𝜋 or 𝑟 = N̂𝑖
𝜋 for some 𝑖,

𝐹𝑟(𝑠) ∪ 𝐹𝑟(𝑡), if 𝑟 = ⟨𝑠, 𝑡⟩,
(𝐹𝑟(𝑠) ∖𝐵𝑑(𝑎)) ∪ 𝐹𝑟(𝑎), if 𝑟 = 𝑠𝑎 or 𝑟 = 𝑠 · 𝑎 for 𝑎 : 𝜍,
𝐹𝑟(𝑠) ∪ 𝐹𝑟(𝑡), if 𝑟 = 𝑠𝑡 and 𝑡 : 𝜏 where 𝜏 ̸= 𝜍,

𝐹𝑟(𝑎) =
{︃
∅, if 𝑎 = ⊥,
(𝐹𝑟(𝑠) ∖𝐵𝑑(𝑏)) ∪ 𝐹𝑟(𝑏), if 𝑎 = [𝛼←[ 𝑠]𝑏,

𝐸𝑉 (𝜋) denotes the set of eigenvariables in the proof 𝜋, and 𝐹𝑟(𝜋) the set of all non-
eigenvariable Σ-symbols occurring in the 𝜋. Notice that 𝐵𝑑(N𝑖

𝜋) and 𝐹𝑟(N𝑗
𝜋) are disjoint

sets by definition.

Definition 5.3 (Normal terms). A normal term is an H -term 𝑟 satisfying:

1. if 𝑎 is substitution stack which is a sub-term of 𝑟 then 𝐵𝑑(𝑎) ∩ 𝐹𝑟(𝑎) = ∅,

2. if 𝑠𝑡 is an application which is a sub-term of 𝑟 then 𝐵𝑑(𝑠) ∩ 𝐹𝑟(𝑡) = ∅,

3. if 𝑠 · 𝑎 is a substitution occurring as a sub-term of 𝑟 then 𝑠 is of simple type.

As mentioned at the beginning of this section, the aim of the above definition is to
provide a class of terms for which we can examine a more refined subsumption relation
on H -terms that captures both language inclusion and equality for a wide range of cut
reduction rules. The subsumption relation that achieves this is essentially the restriction
of ≺ that only quantifies over normal contexts.

Definition 5.4 (Subsumption). Given normal H -terms 𝑟, 𝑠 : 𝜌 of the same type, 𝑠
subsumes 𝑟, in symbols 𝑟 < 𝑠, just if, for every H ∪ {𝑥𝜌}-term 𝑡 of basic type such
that 𝑡(𝑟/𝑥) and 𝑡(𝑠/𝑥) are both normal, whenever 𝑡(𝑟/𝑥) →* 𝑢 for a Σ-term 𝑢 then
𝑡(𝑠/𝑥)→* 𝑣 for some Σ-term 𝑣 satisfying 𝑢∘ = 𝑣∘. Define 𝑟 ∼ 𝑠 if 𝑟 < 𝑠 and 𝑠 < 𝑟.

Clearly, for normal terms 𝑟 and 𝑠, 𝑟 ≺ 𝑠 implies 𝑟 < 𝑠, and 𝑟 ≍ 𝑠 implies 𝑟 ∼ 𝑠.
Hence, if 𝜋, 𝜋′ are two regular proofs of a Σ1 sequent Γ and S𝜋′,𝑖 < S𝜋,𝑖 for every 𝑖 < |Γ|
then 𝐿(𝜋′) ⊆ 𝐿(𝜋). However, what we require is the more general property that if for
every H -derivation S𝜋′,𝑖 →* 𝑢 of a Σ-term there exists H -terms 𝑟, 𝑠 and 𝑡 such that
S𝜋′,𝑖 →* 𝑡(𝑟/𝑥) →* 𝑢, S𝜋,𝑖 →* 𝑡(𝑠/𝑥) and 𝑟 < 𝑠, then we may conclude 𝐿(𝜋′) ⊆ 𝐿(𝜋).
This result holds trivially for ≺ in place of <. For it to work for subsumption, the terms
𝑟, 𝑠 and 𝑡 must all be normal, i.e., we require

Lemma 5.5. If S𝜋,𝑖 →* 𝑠 then 𝑠 is a normal term.

The proof of Lemma 5.5 is not difficult but requires some technical observations con-
cerning the preservation of free and bound symbols through H -derivations, so will be
postponed to the next section (Lemma 5.10). Another key lemma concerning derivations
is the following which, when combined with Lemma 5.5, implies that all derivations from
start symbols lead to Σ-terms.
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Lemma 5.6. If 𝑟 is a normal term of prime type and not a Σ-term then 𝑟 → 𝑠 for some
term 𝑠.

There are two scenarios in which a term 𝑟 that is not a Σ-term cannot be reduced.
First, the reduction of 𝑟 may require pattern-matching on an argument that cannot be
reduced to a pair, such as ⟨𝑠, 𝑡⟩ · 𝑎. Second, 𝑟 may contain a sub-term F𝑟1 · · · 𝑟𝑘 · 𝑎 for
which the arity of F is greater than 𝑘. Normality prevents either scenario from occurring
(Lemma 5.11). As a consequence, terms of pair type always reduce to pairs (Lemma 5.12)
and pattern-matching will not block derivations. Thus,

Lemma 5.7 (Finite basis lemma). For every normal H -term 𝑟 of pair type there exists
terms ⟨𝑠0, 𝑡0⟩, . . . , ⟨𝑠𝑘, 𝑡𝑘⟩ such that 𝑟 ∼ {⟨𝑠𝑖, 𝑡𝑖⟩ | 𝑖 ≤ 𝑙}.

We now turn to proving these three lemmas, and establishing some further properties
of subsumption. The reader may wish to proceed directly to Section 5.3 at this point
and refer back to Section 5.2 as needed.

5.2 Technical Lemmas
In order to establish Lemma 5.5, we require two observations on free and bound symbols
in normal terms. The effect is to reduce the work to checking that production rules
locally preserve normality (in contrast to within arbitrary contexts).

Lemma 5.8. If 𝑟(𝑠/𝑥) is a normal term, 𝑡 is a normal term of the same type as 𝑠,
𝐹𝑟(𝑡) ⊆ 𝐹𝑟(𝑠) and 𝐵𝑑(𝑡) ⊆ 𝐵𝑑(𝑠) then 𝑟(𝑡/𝑥) is normal.

Proof. By definition.

Lemma 5.9. If F𝑥0 · · ·𝑥𝑘−1⟨𝑥𝑘, . . . , 𝑥𝑘+𝑙⟩ → 𝑡 is a production rule of H , and 𝑟0, . . . ,
𝑟𝑘+𝑙 are such that 𝑠 = F𝑟0 · · · 𝑟𝑘−1⟨𝑟𝑘, . . . , 𝑟𝑘+𝑙⟩ is normal, then 𝐹𝑟(𝑡(𝑟⃗/𝑥⃗)) ⊆ 𝐹𝑟(𝑠) and
𝐵𝑑(𝑡(𝑟⃗/𝑥⃗)) ⊆ 𝐵𝑑(𝑠).

Proof. We examine two particular cases, namely the quantifier rules, and leave the re-
maining for the reader to check. Consider an instance of the production rule for ∀𝛼 for
a single eigenvariable:

N𝑖
𝜋𝑎𝑟0 · · · 𝑟𝑘−1⟨𝑠, 𝑟𝑘⟩ → N𝑖

𝜋0([𝛼←[ 𝑠]𝑎)𝑟0 · · · 𝑟𝑘

where 𝑟0, . . . , 𝑟𝑘 and 𝑠 are terms of suitable type and number, and 𝑎 : 𝜍 is a substitution
stack. Let 𝑚 and 𝑛 abbreviate the left- and righthand term in the above rule respectively.
Assume 𝑚 is a normal term.

𝐵𝑑(𝑚) = 𝐵𝑑(N𝑖
𝜋𝑎)

= 𝐸𝑉 (𝜋) ∪𝐵𝑑(𝑎)
= 𝐸𝑉 (𝜋0) ∪ {𝛼} ∪𝐵𝑑(𝑎)
= 𝐵𝑑(𝑛)

Concerning free symbols, we have

𝐹𝑟(𝑚) = (𝐹𝑟(𝜋) ∖𝐵𝑑(𝑎)) ∪ 𝐹𝑟(𝑎) ∪ 𝐹𝑟(𝑟0, . . . , 𝑟𝑘, 𝑠)
𝐹𝑟(𝑛) = (𝐹𝑟(𝜋0) ∖𝐵𝑑([𝛼←[ 𝑠]𝑎)) ∪ 𝐹𝑟([𝛼←[ 𝑠]𝑎) ∪ 𝐹𝑟(𝑟0, . . . , 𝑟𝑘)

= (𝐹𝑟(𝜋0) ∖ ({𝛼} ∪𝐵𝑑(𝑎))) ∪ (𝐹𝑟(𝑠) ∖𝐵𝑑(𝑎)) ∪ 𝐹𝑟(𝑎) ∪ 𝐹𝑟(𝑟0, . . . , 𝑟𝑘)
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where 𝐹𝑟(𝑢0, . . . , 𝑢𝑙) =
⋃︀

𝑖≤𝑙 𝐹𝑟(𝑢𝑖). By normality of 𝑚, 𝐹𝑟(𝑠) ∖ 𝐵𝑑(𝑎) = 𝐹𝑟(𝑠) and as
𝐹𝑟(𝜋) = 𝐹𝑟(𝜋0) ∖ {𝛼}, so 𝐹𝑟(𝑛) ⊆ 𝐹𝑟(𝑚).

For production rules resulting from the inference rule ∃𝑠, suppose

N𝑖
𝜋𝑎𝑟0 · · · 𝑟𝑘 → N𝑖

𝜋0𝑎𝑟0 · · · 𝑟𝑘−1
(︀
𝑟𝑘⟨𝑠 · 𝑎, N𝑘

𝜋0𝑎𝑟0 · · · 𝑟𝑘−1⟩
)︀

(13)

for suitable terms 𝑟0, . . . , 𝑟𝑘 and 𝑎. Recall that 𝑠 is the Σ-term instantiating the
existential quantifier in the active formula of 𝜋0. By our regularity condition on proofs,
𝐹𝑟(𝑠) ⊆ 𝐹𝑟(𝜋), so, letting 𝑚 and 𝑛 denote the left and right side of the reduction in
(13), we have

𝐹𝑟(𝑛) = 𝐹𝑟(N𝑖
𝜋0𝑎) ∪ 𝐹𝑟(𝑟0, . . . , 𝑟𝑘) ∪ 𝐹𝑟(𝑠 · 𝑎) ∪ 𝐹𝑟(N𝑘

𝜋0𝑎)
⊆ 𝐹𝑟(N𝑖

𝜋𝑎) ∪ 𝐹𝑟(𝑟0, . . . , 𝑟𝑘)
= 𝐹𝑟(𝑚).

The following lemma implies Lemma 5.5.

Lemma 5.10. If 𝑟 → 𝑠 and 𝑟 is normal then 𝑠 is normal.

Proof. By the previous two lemmas, it suffices to show that every production rule of H
locally preserves normality. As in the previous proof, we offer the argument for some
particular cases of the two quantifier rules. Let the derivation

N𝑖
𝜋𝑎𝑟1 · · · 𝑟𝑘⟨𝑠, 𝑟𝑘+1⟩ → N𝑖

𝜋0([𝛼←[ 𝑠]𝑎)𝑟1 · · · 𝑟𝑘𝑟𝑘+1

arise from an inference ∀𝛼, with 𝑚 and 𝑛 denoting the left and righthand term. Assume
𝑚 is normal. In particular,

(𝐸𝑉 (𝜋) ∪𝐵𝑑(𝑎)) ∩ (𝐹𝑟(𝑎) ∪ 𝐹𝑟(𝑠)) = ∅ (14)

We first show that for every application 𝑠′𝑡′ occurring in 𝑛, 𝐵𝑑(𝑠′) ∩ 𝐹𝑟(𝑡′) = ∅. This
is evident if 𝑠′𝑡′ is a sub-term of 𝑎, 𝑟1, . . . , 𝑟𝑘, 𝑠 or 𝑡. Moreover, it holds for the case
𝑠′ = N𝑖

𝜋0 and 𝑡′ = [𝛼←[ 𝑠]𝑎 because

𝐵𝑑(𝑠′) ∩ 𝐹𝑟(𝑡′) = 𝐸𝑉 (𝜋0) ∩ ((𝐹𝑟(𝑠) ∖𝐵𝑑(𝑎)) ∪ 𝐹𝑟(𝑎))
⊆ 𝐸𝑉 (𝜋) ∩ (𝐹𝑟(𝑠) ∪ 𝐹𝑟(𝑎))
= ∅

and for 𝑠′ = N𝑖
𝜋0([𝛼 ←[ 𝑠]𝑎)𝑟1 · · · 𝑟𝑗 , 𝑡′ = 𝑟𝑗+1 (𝑗 ≤ 𝑘) because 𝐵𝑑(N𝑖

𝜋0([𝛼 ←[ 𝑠]𝑎)) ⊆
𝐵𝑑(N𝑖

𝜋𝑎). The other requirement to check for normality is that the sets 𝐵𝑑([𝛼 ←[ 𝑠]𝑎)
and 𝐹𝑟([𝛼 ← [ 𝑠]𝑎) are disjoint, but this follows from (14), given that 𝐹𝑟([𝛼 ← [ 𝑠]𝑎) ⊆
𝐹𝑟(𝑠) ∪ 𝐹𝑟(𝑎) and 𝐵𝑑([𝛼←[ 𝑠]𝑎) ⊆ 𝐸𝑉 (𝜋) ∪𝐵𝑑(𝑎). Hence 𝑛 is normal.

The second case we consider is the one-step derivation

N𝑖
𝜋𝑎𝑟0 · · · 𝑟𝑘 → N𝑖

𝜋0𝑎𝑟0 · · · 𝑟𝑘−1
(︀
𝑟𝑘⟨𝑠 · 𝑎, N𝑘

𝜋0𝑎𝑟0 · · · 𝑟𝑘−1⟩
)︀

due to the inference ∃𝑠. Suppose N𝑖
𝜋𝑎𝑟0 · · · 𝑟𝑘 is a normal term so, in particular, 𝐵𝑑(N𝑖

𝜋𝑎)
is disjoint from 𝐹𝑟(𝑟𝑖) for each 𝑖 ≤ 𝑘. In this case it only needs establishing that

𝐵𝑑(N𝑖
𝜋0𝑎𝑟0 · · · 𝑟𝑘−1) ∩ 𝐹𝑟(𝑟𝑘⟨𝑠 · 𝑎, N𝑘

𝜋0𝑎𝑟0 · · · 𝑟𝑘−1⟩) = ∅
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i.e., that

𝐵𝑑(N𝑖
𝜋0𝑎) ∩

(︂ ⋃︁
𝑖≤𝑘

𝐹𝑟(𝑟𝑖) ∪ 𝐹𝑟(𝑠 · 𝑎) ∪ 𝐹𝑟(N𝑘
𝜋0𝑎)

)︂
= ∅,

as all other cases follow immediately from normality of N𝑖
𝜋𝑎𝑟0 · · · 𝑟𝑘. But by regularity

of 𝜋, 𝐹𝑟(𝑠) ⊆ 𝐹𝑟(𝜋), so we have

𝐵𝑑(N𝑖
𝜋0𝑎) = 𝐸𝑉 (𝜋) ∪𝐵𝑑(𝑎)

𝐹𝑟(𝑠 · 𝑎) ⊆ (𝐹𝑟(𝜋) ∖𝐵𝑑(𝑎)) ∪ 𝐹𝑟(𝑎)
𝐹𝑟(N𝑘

𝜋0𝑎) = (𝐹𝑟(𝜋) ∖𝐵𝑑(𝑎)) ∪ 𝐹𝑟(𝑎)

and, as 𝐵𝑑(𝑎) is disjoint from 𝐹𝑟(𝑎) and 𝐸𝑉 (𝜋) is disjoint from 𝐹𝑟(𝜋) ∪ 𝐹𝑟(𝑎), we are
done.

We now turn to the task of proving Lemma 5.6 which, as explained earlier, follows
from the next two lemmas. The first lemma characterises the form normal H -terms may
take, and will be useful in the subsequent analysis of derivations in Herbrand schemes.

Lemma 5.11. If 𝑟 : 𝜌 is a normal H -term and 𝜌 is a basic type whose co-domain is a
pair 𝜎 × 𝜏 in which 𝜎 is simple and 𝜏 is not simple, then either 𝑟 = ⟨𝑠, 𝑡⟩ for a Σ-term
𝑠 and H -term 𝑡, or 𝑟 = F𝑟1 · · · 𝑟𝑘 for some non-terminal F and terms 𝑟1, . . . , 𝑟𝑘.

Proof. By induction on 𝑟. Let 𝑟 : 𝜌 = 𝜌1 → · · · → 𝜌𝑙 → 𝜎 × 𝜏 be a normal H -term
satisfying the hypothesis of the lemma. Since 𝜌 is not a simple type, 𝑟 is not a Σ-symbol
nor of the form 𝑠 · 𝑎 for a substitution stack 𝑎 (by definition of normal terms). This
leaves three cases: i) 𝑙 = 0 and 𝑟 = ⟨𝑠, 𝑡⟩ for 𝑠 : 𝜎 and 𝑡 : 𝜏 ; ii) 𝑟 = 𝑠𝑡 for 𝑠 : 𝜏 ′ → 𝜌 and
𝑡 : 𝜏 ′; or iii) 𝑟 is a non-terminal of H . If (i), as 𝜎 is simple, 𝑠 is a Σ-term by Lemma 3.27
and we are done. In case (ii), suppose 𝑟 = 𝑠𝑡 is an application and 𝑠 : 𝜎′ = 𝜏 ′ → 𝜌 and
𝑡 : 𝜏 ′. If 𝜎′ is not basic then Lemma 3.28 implies 𝑠 = F for some 𝜋 and 𝑖, whence 𝑟 = F𝑡.
On the other hand, if 𝜎′ is basic the induction hypothesis applies and 𝑠 = F𝑟1 · · · 𝑟𝑘 for
terms 𝑟1, . . . , 𝑟𝑘, and so similarly for 𝑟. So we are done.

Lemma 5.12. If 𝑟 : 𝜄 × 𝜌 is a normal H -term of pair type but not a pair then 𝑟 → 𝑠
for some H -term 𝑠.

Proof. Assume to the contrary that 𝑟 : 𝜄× 𝜌 is an H -term which is not a pair and that
there is no 𝑠 such that 𝑟 → 𝑠. Without loss of generality assume 𝑟 is minimal in length.
By Lemma 5.11, 𝑟 = F𝑟1, . . . , 𝑟𝑘 for some non-terminal F and terms 𝑟1, . . . , 𝑟𝑘. It follows
that F ̸= c𝜎 for any 𝜎 as otherwise 𝑟 → ⟨c, c𝜌⟩. Also F ̸= D𝜄×𝜌 (as then 𝑟 → 𝑟1) and
F ̸= N̂𝑖

𝜋 for any 𝜋 and 𝑖. So F = N𝑖
𝜋 for some 𝜋 and 𝑖. The fact that 𝑟 is not reducible

means that the production rule for N𝑖
𝜋 requires pattern-matching on the final argument.

But then 𝑟𝑘 : 𝜄×𝜎 for some 𝜎, is not a pair and is not reducible, contradicting minimality
of 𝑟.

In the remainder of this section we present some basic properties of the subsumption
relation which will be needed in the next section, starting with a proof of the Finite
Basis Lemma.
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Proof of Lemma 5.7. Let 𝑟 : 𝜌 be a H -term where 𝜌 = 𝜎×𝜏 . Without loss of generality,
we may assume 𝑟 ̸= D𝜌𝑟0𝑟1 for any 𝑟0 and 𝑟1. If 𝑟 has the form ⟨𝑠, 𝑡⟩ then trivially
𝑟 ∼ {⟨𝑠, 𝑡⟩} and if 𝑟 = c𝜌 then 𝑟 ∼ {⟨c𝜎, c𝜏 ⟩}. Otherwise, Lemma 5.11 implies that 𝑟 ∼
N𝑖

𝜋𝑎𝑟0 · · · 𝑟𝑘 for some 𝜋, 𝑖, 𝑎, 𝑟0, . . . , 𝑟𝑘. An induction on 𝜋 determines terms 𝑠0, . . . , 𝑠𝑙

and 𝑡0, . . . , 𝑡𝑙 such that 𝑟 ∼ {⟨𝑠𝑗 , 𝑡𝑗⟩ | 𝑗 ≤ 𝑙}. Note that there is no issue with pattern-
matching stopping derivations from fully writing out, as Lemma 5.12 demonstrates.

Lemma 5.13. If 𝑡(𝑟/𝑥) and 𝑡(𝑠/𝑥) are normal terms and 𝑟 < 𝑠 then 𝑡(𝑟/𝑥) < 𝑡(𝑠/𝑥).

Proof. Direct consequence of the definition.

Lemma 5.14. If 𝑟𝑢 < 𝑠𝑢 for every term 𝑢 then 𝑟 < 𝑠.

Proof. For every derivation 𝑡(𝑟/𝑥) →* 𝑟0 of a Σ-term, there are terms 𝑡′, 𝑢0, . . . , 𝑢𝑘

such that 𝑡(𝑟/𝑥)→* 𝑡′((𝑟𝑢𝑖)𝑖≤𝑘/𝑥⃗)→* 𝑟0 and 𝑡(𝑠/𝑥)→* 𝑡′((𝑠𝑢𝑖)𝑖≤𝑘/𝑥⃗). Since normality
is preserved through derivations, we are done.

Lemma 5.15. Let 𝑟 be a basic H -term and 𝑎 be a substitution stack over Σ. Then,

i) 𝐹𝑟(𝑟(𝑠/𝛼) · 𝑎) ⊆ 𝐹𝑟(𝑟 · ([𝛼←[ 𝑠]𝑎)),

ii) 𝐵𝑑(𝑟(𝑠/𝛼) · 𝑎) ⊆ 𝐵𝑑(𝑟 · ([𝛼←[ 𝑠]𝑎)) provided 𝑠 is basic,

iii) if 𝐹𝑟(𝑟) ∩𝐵𝑑(𝑎) = ∅ then 𝑟𝑎 = 𝑟,

iv) if 𝛼 ̸∈ 𝐵𝑑(𝑎) ∪ 𝐹𝑟(𝑎) then 𝑟(𝑠/𝛼)𝑎 = 𝑟𝑎(𝑠𝑎/𝛼) provided 𝑠 is basic.

Proof. By induction on 𝑟 and 𝑎.

Lemma 5.16. Let 𝑟 : 𝜌 and 𝑎 : 𝜍 be Σ-terms, 𝑠 : 𝜎 a basic Σ-term, 𝛼𝜌 ∈ Σ and 𝜋 a
regular proof. Under the assumption that N𝑖

𝜋([𝛼←[ 𝑟]𝑎) is normal the following hold.

1. 𝑠 · ([𝛼←[ 𝑟]𝑎) ∼ 𝑠(𝑟/𝛼) · 𝑎,

2. 𝑟 ∼ 𝑟∘,

3. [𝛼←[ 𝑟]𝑎 ∼ [𝛼←[ 𝑟 · 𝑎]𝑎,

4. If 𝐸𝑉 (𝜋) ∩ 𝐹𝑟(𝑟) = ∅ then N𝑖
𝜋([𝛼←[ 𝑟]𝑎) ∼ N𝑖

𝜋(𝑟∘/𝛼)𝑎,

5. If 𝛼 ̸∈ 𝐹𝑟(𝜋) then N𝑖
𝜋𝑎 ∼ N𝑖

𝜋([𝛼←[ 𝑟]𝑎).

Proof. 1 is proved via induction on the basic term 𝑠. That 𝑟 and 𝑎 are Σ-terms is
necessary for showing 𝑠(𝑟/𝛼) · 𝑎 < 𝑠 · ([𝛼 ←[ 𝑟]𝑎). 2 follows from 1 by induction on
𝑟. Regarding 3, Lemma 5.15(i,ii) imply 𝐹𝑟(𝑎∘) ⊆ 𝐹𝑟(𝑎) and 𝐵𝑑(𝑎∘) ⊆ 𝐵𝑑(𝑎), so
𝛼 ̸∈ 𝐹𝑟(𝑎∘) by normality. Hence, if 𝑡 is a basic term then

𝑡 · [𝛼←[ 𝑟]𝑎 ∼ 𝑡(𝑟∘/𝛼)𝑎∘ ∼ 𝑡𝑎∘((𝑟∘)𝑎∘
/𝛼)

∼ 𝑡𝑎∘(((𝑟∘)𝑎∘)𝑎∘
/𝛼)

∼ 𝑡((𝑟∘)𝑎∘
/𝛼)𝑎∘

∼ 𝑡 · [𝛼←[ 𝑟 · 𝑎]𝑎.
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The first and last equivalence are applications of 2; the second and fourth equivalence
are consequences of Lemma 5.15(iv); and the third equivalence uses Lemma 5.15(iii) and
the fact that 𝐹𝑟(𝑎∘)∩𝐵𝑑(𝑎∘) = ∅. Via 2 the above holds for 𝑡 an arbitrary Σ-term, and
from there generalises to deduce [𝛼←[ 𝑟]𝑎 ∼ [𝛼←[ 𝑟 · 𝑎]𝑎.

4 is derived by induction on 𝜋. By 2 we may assume 𝑟 is a basic term, i.e., 𝑟 = 𝑟∘.
In the base case, where 𝜋 is an axiom, the equivalence is trivial as N𝑖

𝜋([𝛼 ←[ 𝑟]𝑎)𝑟1𝑟2 ∼
N𝑖

𝜋(𝑟/𝛼)𝑎𝑟1𝑟2 for any choice of 𝑟1 and 𝑟2 of appropriate type. The induction step is
straightforward except in the case of quantifier rules. If 𝜋 ends in the inference

𝜋0 ⊢ Γ, 𝐴(𝑠⃗/𝑣⃗)
∃𝑠⃗ −−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ,∃𝑣⃗𝐴

where 𝑠⃗ = (𝑠𝑗)𝑗≤𝑘 then we have, if 𝑖 = |Γ|, 𝑏 = [𝛼 ←[ 𝑟]𝑎 and 𝑟1, . . . , 𝑟|Γ| and 𝑡 are
suitable normal terms,

N|Γ|𝜋 𝑏𝑟1 · · · 𝑟|Γ|𝑡 ∼ ⟨𝑠0 · 𝑏, . . . , 𝑠𝑘 · 𝑏, N|Γ|𝜋0 𝑏𝑟1 · · · 𝑟|Γ|⟩

∼ ⟨𝑠0(𝑟/𝛼) · 𝑎, . . . , 𝑠𝑘(𝑟/𝛼) · 𝑎, N|Γ|
𝜋

(𝑟/𝛼)
0

𝑎𝑟1 · · · 𝑟|Γ|⟩

∼ N|Γ|
𝜋(𝑟/𝛼)𝑎𝑟1 · · · 𝑟|Γ|𝑡

where the second equivalence due to the induction hypothesis for N|Γ|𝜋0 ([𝛼 ←[ 𝑟]𝑎). The
case 𝑖 < |Γ| is similar. For applications of the ∀ inferences, we consider the inference

𝜋0 ⊢ Γ, 𝐴(𝛽/𝑣⃗)
∀

𝛽
−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ,∀𝑣⃗𝐴

for 𝛽 = (𝛽𝜄
𝑗)𝑗≤𝑘. By normality of N𝑖

𝜋([𝛼←[ 𝑟]𝑎) and the assumption that 𝐹𝑟(𝑟)∩𝐸𝑉 (𝜋) =
∅, it follows that 𝛽𝑗 ̸∈ 𝐹𝑟(𝑎) ∪ 𝐹𝑟(𝑟) for each 𝑗. Let 𝑟1, . . . , 𝑟|Γ|, 𝑠0, . . . , 𝑠𝑘 and 𝑡 be
such that the term 𝑛 := N𝑖

𝜋([𝛼 ←[ 𝑟]𝑎)𝑟1 · · · 𝑟|Γ|⟨𝑠0, . . . , 𝑠𝑘, 𝑡⟩ is well-typed and normal.
In particular, 𝛼, 𝛽0, . . . , 𝛽𝑘 ̸∈ 𝐹𝑟(⟨𝑠0, . . . , 𝑠𝑘, 𝑡⟩). Moreover, as 𝑠𝑗 has simple type for
each 𝑗 ≤ 𝑘, Lemma 3.27 implies that 𝑠⃗ is a sequence of Σ-terms. Then assuming
𝛼 ̸∈ {𝛽𝑗 | 𝑗 ≤ 𝑘}, and writing [𝛽 ←[ 𝑠⃗]𝑏 in place of [𝛽0 ←[ 𝑠0] · · · [𝛽𝑘 ←[ 𝑠𝑘]𝑏, we have

𝑛 ∼ N𝑖
𝜋0([𝛽 ← [ 𝑠⃗][𝛼←[ 𝑟]𝑎)𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖

𝜋
(𝑠⃗/𝛽)(𝑟/𝛼)
0

𝑎𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖

𝜋
(𝑟/𝛼)(𝑠⃗/𝛽)
0

𝑎𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖

𝜋
(𝑟/𝛼)
0

([𝛽 ←[ 𝑠⃗]𝑎)𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖
𝜋(𝑟/𝛼)𝑎𝑟1 · · · 𝑟|Γ|⟨𝑠0, . . . , 𝑠𝑘, 𝑡⟩.

The third equivalence holds since 𝛼 ̸∈ 𝐹𝑟(⟨𝑠0, . . . , 𝑠𝑘, 𝑡⟩) and 𝛽𝑗 ̸∈ 𝐹𝑟(𝑟) for any 𝑗. If

37



𝛼 = 𝛽𝑗 then 𝜋(𝑟/𝛼) = 𝜋 and, using again that 𝛼 ̸∈ 𝐹𝑟(⟨𝑠0, . . . , 𝑠𝑘⟩), we have

𝑛 ∼ N𝑖
𝜋0([𝛽 ←[ 𝑠⃗][𝛼←[ 𝑟]𝑎)𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖

𝜋
(𝑠⃗/𝛽)(𝑟/𝛼)
0

𝑎𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖

𝜋
(𝑠⃗/𝛽)
0

𝑎𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖
𝜋0([𝛽 ←[ 𝑠⃗]𝑎)𝑟1 · · · 𝑟|Γ|𝑡

∼ N𝑖
𝜋𝑎𝑟1 · · · 𝑟|Γ|⟨𝑠0, . . . , 𝑠𝑘, 𝑡⟩

∼ N𝑖
𝜋(𝑟/𝛼)𝑎𝑟1 · · · 𝑟|Γ|⟨𝑠0, . . . , 𝑠𝑘, 𝑡⟩.

5 is a special case of 4.

Let 𝜋 be a proof with end-sequent 𝐴1, . . . , 𝐴𝑚, 𝐵, 𝐶1, . . . , 𝐶𝑛 and suppose 𝑎 : 𝜍, 𝑟𝑖 : 𝜏*𝐴𝑖
,

𝑠 : 𝜏*𝐵 and 𝑡𝑗 : 𝜏*𝐶𝑗
are terms for each 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 such that N𝑚

𝜋 𝑎𝑟⃗𝑠𝑡⃗ is
normal. Let 𝜌 = 𝜏*𝐵.

Lemma 5.17. If 𝐵 is prenex Σ1 then

N𝑚
𝜋 𝑎𝑟⃗𝑠𝑡⃗ ∼ N𝑚

𝜋 𝑎𝑟⃗c𝜌𝑡⃗.

Proof. Since 𝐵 is Σ1, 𝜏*𝐵 = 𝜏𝐵 → 𝜖. Lemma 5.2 completes the proof.

Lemma 5.18. If 𝑒(𝐵) > 0 and there are no applications of contraction to 𝐵 in 𝜋 then

N𝑚
𝜋 𝑎𝑟⃗𝑠𝑡⃗ ∼ N𝑚

𝜋 𝑎𝑟⃗c𝜌𝑡⃗.

Lemma 5.19. If the final inference in 𝜋 is an application of p with sub-proof 𝜋′ ⊢
𝐴1, . . . , 𝐴𝑚, 𝐶1, 𝐵, 𝐶2, . . . , 𝐶𝑛 then for each 𝑗 ∈ [0, 𝑚) ∪ [𝑚 + 2, 𝑚 + 𝑛],

N𝑗
𝜋𝑎𝑟1 · · · 𝑟𝑚𝑠𝑡1 · · · 𝑡𝑛 ∼ N𝑗

𝜋′𝑎𝑟1 · · · 𝑟𝑚𝑡1𝑠𝑡2 · · · 𝑡𝑛

The proofs of the final two lemmas proceed by induction on 𝜋.

5.3 Language Preservation for Gentzen-style Cut Elimination
Let 𝜋 and 𝜋′ be regular proofs of some sequent Γ. We say that 𝜋 subsumes 𝜋′, in symbols
𝜋′ < 𝜋, if N𝑖

𝜋′ < N𝑖
𝜋 for every 𝑖 < |Γ|. If 𝜋 and 𝜋′ each subsumes the other then 𝜋 and

𝜋′ are equivalent, in symbols 𝜋 ∼ 𝜋′. As an immediate consequence of the definition we
have

Lemma 5.20. Suppose 𝜋 and 𝜋′ are proofs of the same Σ1 sequent. If 𝜋′ < 𝜋 then
𝐿(𝜋′) ⊆ 𝐿(𝜋).

Herbrand schemes have the property that their languages are invariant under many
basic proof transformations. The first example we give concerns the operation of sub-
stitution in proofs:

Lemma 5.21. Suppose 𝜋 and 𝜋′ are proofs with the same end-sequent such that 𝜋′ is
the result of replacing a sub-proof 𝜋0 of 𝜋 by 𝜋′0. If 𝜋0 < 𝜋′0 then 𝜋 < 𝜋′.
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Proof. Let 𝜋, 𝜋0, 𝜋′ and 𝜋′0 be as in the statement. We assume 𝜋 and 𝜋′ have the same
end-sequent, say Γ. Given a subproof 𝜋̂ of 𝜋 which is not a proper subproof of 𝜋0, let 𝜋̂′

denote the corresponding subproof of 𝜋′. Observe that if 𝜋̂ is a subproof of 𝜋 but not a
proper subproof of 𝜋0 then the non-terminals N𝑗

𝜋̂ and N𝑗
𝜋̂′ are of the same type for each

𝑗. Fix 𝑖 < |Γ| and a normal term 𝑡0 = 𝑡(N𝑖
𝜋/𝑥). Suppose 𝑡0 → 𝑡1 → · · · → 𝑡𝑘 = 𝑟 is a

derivation in H of a Σ-term 𝑟. By Lemma 5.10, 𝑡𝑖 is normal for every 𝑖 ≤ 𝑘 and, without
loss of generality, we may assume 𝑡 does not feature any non-terminals labelled by proofs
with 𝜋0 as a sub-proof. Throughout this derivation, recursively replace each occurrence
of a non-terminal N𝑗

𝜋̂ for which 𝜋̂ is not a proper subproof of 𝜋0 by the non-terminal N𝑗
𝜋̂′ .

Arguing by induction on 𝑘, using 𝜋0 < 𝜋′0, we deduce 𝑡(N𝑖
𝜋′/𝑥)→* 𝑠 for some Σ-term 𝑠

with 𝑠∘ = 𝑟∘.

We now turn our attention to the analysis of the subsumption relation with respect to
the cut reduction and permutation steps of Figures 2 and 3. Only the most interesting
cases will be covered in detail: the cut and quantifier permutation, and contraction and
quantifier reduction. As before, we leave instances of the permutation inference implicit
and make use of Lemma 5.19 without reference. Recall the characterisation of the cut
inference from Remark 3.25:

𝜋0 ⊢ Γ, 𝐴 𝜋1 ⊢ Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, Δ
N𝑖

𝜋𝑎𝑥⃗𝑦⃗ ∼

⎧⎪⎪⎨⎪⎪⎩
N𝑖

𝜋0𝑎𝑥⃗(N𝑛
𝜋1𝑎𝑦⃗(N𝑚

𝜋0𝑎𝑥⃗)), if 𝑢(𝐴) > 0,
N𝑖

𝜋0𝑎𝑥⃗(N𝑛
𝜋1𝑎𝑦⃗), if 𝑒(𝐴) > 0,

N𝑖
𝜋0𝑎𝑥⃗⟨⟩, if 𝐴 is q.f.,

where 𝑖 < |Γ| and 𝑥⃗, 𝑦⃗ and 𝑎 are terms of suitable type.

5.3.1 Cut Permutation

Suppose 𝜋  𝜋′ are the two proofs

𝜋0

Γ, 𝐴, 𝐵

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

𝜋̂ ⊢ Γ, 𝐵, Δ

𝜋2

Λ, 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, Δ, Λ

 

𝜋0

Γ, 𝐴, 𝐵

𝜋2

Λ, 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−

𝜋̂′ ⊢ Γ, 𝐴, Λ

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

𝜋′ ⊢ Γ, Δ, Λ

Due to the asymmetry in the production rules for cut, it is necessary to split the analysis
of this reduction into two cases, depending on whether or not 𝐴 and 𝐵 are both univer-
sally quantified. Provided at least one of the two formulæ is existentially quantified or
quantifier free, the two proofs above are equivalent and their languages are equal. This
is proved in Lemma 5.22. If both 𝐴 and 𝐵 are universally quantified we do not expect
equivalence to hold in general. However, if there are no contractions to the formula 𝐴
in 𝜋1 or the formula 𝐵̄ in 𝜋2, the proofs 𝜋 and 𝜋′ are equivalent. This is relevant to the
cut reduction strategies employed in Theorem 1.1 and is treated in Lemma 5.25.

Lemma 5.22. For 𝜋  𝜋′ as above, if at least one of 𝑢(𝐴) and 𝑢(𝐵) is zero then 𝜋 ∼ 𝜋′.

Proof. If one of 𝐴 or 𝐵 is quantifier-free the argument is straightforward following the
production rules for cut. This leaves the following three cases to consider: 𝑢(𝐴), 𝑢(𝐵) >
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0, 𝑢(𝐴), 𝑢(𝐵̄) > 0 and 𝑢(𝐴), 𝑢(𝐵̄) > 0. We consider only the first case as the second is
symmetric and the third follows a simpler argument. Thus assume 𝑒(𝐴), 𝑢(𝐵) > 0.

Let 𝑟⃗, 𝑠⃗, 𝑡⃗ be sequences of terms of length 𝑚 = |Γ|, 𝑛 = |Δ| and 𝑜 = |Λ| respectively,
and let 𝑎 : 𝜍 be an arbitrary substitution stack. By the production rules for cut we have,
for each 𝑖 ≤ 𝑚, 𝑗 < 𝑛 and 𝑘 < 𝑜, and each term 𝑤, 𝑤′ of suitable type,

N𝑖
𝜋̂𝑎𝑟⃗𝑤𝑠⃗ ∼

{︃
N𝑖

𝜋0𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗)𝑤, if 𝑖 < 𝑚,

N𝑚+1
𝜋0 𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗)𝑤, if 𝑖 = 𝑚,
N𝑚+1+𝑗

𝜋̂ 𝑎𝑟⃗𝑤𝑠⃗ ∼ N𝑗
𝜋1𝑎𝑠⃗(N𝑚

𝜋0𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗)𝑤)

N𝑖
𝜋̂′𝑎𝑟⃗𝑤′𝑡⃗ ∼ N𝑖

𝜋0𝑎𝑟⃗𝑤′(N𝑜
𝜋2𝑎𝑡⃗(N𝑚+1

𝜋0 𝑎𝑟⃗𝑤′)) N𝑚+1+𝑘
𝜋̂′ 𝑎𝑟⃗𝑤′𝑡⃗ ∼ N𝑘

𝜋2𝑎𝑡⃗(N𝑚+1
𝜋0 𝑎𝑟⃗𝑤′)

In particular,

N̂𝑚
𝜋̂ 𝑎𝑟⃗𝑠⃗ ∼ N𝑚+1

𝜋0 𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗) (15)

and so, for 𝑖 ≤ 𝑚,

N𝑖
𝜋̂′𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗)⃗𝑡 ∼ N𝑖
𝜋0𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗)(N𝑜
𝜋2𝑎𝑡⃗(N̂𝑚

𝜋̂ 𝑎𝑟⃗𝑠⃗)). (16)

We prove N𝑖
𝜋𝑎𝑟⃗𝑠⃗𝑡⃗ ∼ N𝑖

𝜋′𝑎𝑟⃗𝑠⃗𝑡⃗ for every 𝑖 < 𝑚 + 𝑛 + 𝑜, from which Lemma 5.14 implies
N𝑖

𝜋 ∼ N𝑖
𝜋′ . For 𝑖 < 𝑚 we have

N𝑖
𝜋𝑎𝑟⃗𝑠⃗𝑡⃗ ∼ N𝑖

𝜋̂𝑎𝑟⃗(N𝑜
𝜋2𝑎𝑡⃗(N̂𝑚

𝜋̂ 𝑎𝑟⃗𝑠⃗))𝑠⃗ ∼ N𝑖
𝜋0𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗)(N𝑜
𝜋2𝑎𝑡⃗(N̂𝑚

𝜋̂ 𝑎𝑟⃗𝑠⃗))
∼ N𝑖

𝜋̂′𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗)⃗𝑡

∼ N𝑖
𝜋′𝑎𝑟⃗𝑠⃗𝑡⃗

by applying (16). For 𝑗 < 𝑛,

N𝑚+𝑗
𝜋 𝑎𝑟⃗𝑠⃗𝑡⃗ ∼ N𝑚+1+𝑗

𝜋̂ 𝑎𝑟⃗(N𝑜
𝜋2𝑎𝑡⃗(N̂𝑚

𝜋̂ 𝑎𝑟⃗𝑠⃗))𝑠⃗ ∼ N𝑗
𝜋1𝑎𝑠⃗(N𝑚

𝜋0𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗)(N𝑜

𝜋2𝑎𝑡⃗(N̂𝑚
𝜋̂ 𝑎𝑟⃗𝑠⃗)))

∼ N𝑗
𝜋1𝑎𝑠⃗(N𝑚

𝜋̂′𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗)⃗𝑡)

∼ N𝑚+𝑗
𝜋′ 𝑎𝑟⃗𝑠⃗𝑡⃗

again applying (16). For 𝑘 < 𝑜, using (15):

N𝑚+𝑛+𝑘
𝜋 𝑎𝑟⃗𝑠⃗𝑡⃗ ∼ N𝑘

𝜋2𝑎𝑡⃗(N̂𝑚
𝜋̂ 𝑎𝑟⃗𝑠⃗) ∼ N𝑘

𝜋2𝑎𝑡⃗(N𝑚+1
𝜋0 𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗))
∼ N𝑚+1+𝑘

𝜋̂′ 𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗)⃗𝑡

∼ N𝑚+𝑛+𝑘
𝜋′ 𝑎𝑟⃗𝑠⃗𝑡⃗.

As noted above, in the case 𝑢(𝐴) and 𝑢(𝐵) are both positive, language equality holds
only in particular circumstances. A sufficient condition for this is given by the next
lemma.

Lemma 5.23. Let 𝜋  𝜋′ be as above and assume 𝑢(𝐴), 𝑢(𝐵) > 0. Let 𝜌 = 𝜏*
𝐴

, 𝜎 = 𝜏*
𝐵̄

,
𝑅 = N̂𝑚

𝜋̂′𝑎𝑟⃗𝑡⃗ and 𝑆 = N̂𝑚
𝜋̂ 𝑎𝑟⃗𝑠⃗. If

𝑅 ∼ N̂𝑚
𝜋0𝑎𝑟⃗(N𝑜

𝜋2𝑎𝑡⃗𝑆) and 𝑆 ∼ N̂𝑚+1
𝜋0 𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗𝑅)

then 𝜋 ∼ 𝜋′.

40



Proof. Recall that 𝑅 and 𝑆 have type 𝜌 and 𝜎 respectively. Then for 𝑖 < 𝑚,

N𝑖
𝜋𝑎𝑟⃗𝑠⃗𝑡⃗ ∼ N𝑖

𝜋̂𝑎𝑟⃗(N𝑜
𝜋2𝑎𝑡⃗𝑆)𝑠⃗

∼ N𝑖
𝜋0𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗(N̂𝑚
𝜋0𝑎𝑟⃗(N𝑜

𝜋2𝑎𝑡⃗𝑆)))(N𝑜
𝜋2𝑎𝑡⃗𝑆)

∼ N𝑖
𝜋0𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗𝑅)(N𝑜
𝜋2𝑎𝑡⃗(N̂𝑚+1

𝜋0 𝑎𝑡⃗(N𝑛
𝜋1𝑎𝑠⃗𝑅)))

∼ N𝑖
𝜋̂′𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗𝑅)⃗𝑡
∼ N𝑖

𝜋′𝑎𝑟⃗𝑠⃗𝑡⃗

The other cases, namely 𝑚 ≤ 𝑖 < 𝑛 + 𝑜 follow similar reasoning.

Lemma 5.24. If 𝐴, 𝐵 ∈ Π1 ∪ Σ1 then 𝜋 ∼ 𝜋′.

Proof. Assume 𝐴 and 𝐵̄ are both Σ1 formulæ (if not, apply Lemma 5.22). Let 𝑅 and 𝑆
be as in Lemma 5.23. We have, by Lemma 5.17,

𝑅𝑤 ∼ N𝑚
𝜋0𝑎𝑟⃗𝑤(N𝑛

𝜋2𝑎𝑡⃗(N̂𝑚+1
𝜋0 𝑎𝑟⃗𝑤)) 𝑆𝑤′ ∼ N𝑚+1

𝜋0 𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗(N̂𝑚

𝜋0𝑎𝑟⃗𝑤′))𝑤′

∼ N𝑚
𝜋0𝑎𝑟⃗𝑤(N𝑛

𝜋2𝑎𝑡⃗𝑆) ∼ N𝑚+1
𝜋0 𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗𝑅)𝑤′

and hence

𝑅 ∼ N̂𝑚
𝜋0𝑎𝑟⃗(N𝑜

𝜋2𝑎𝑡⃗𝑆) 𝑆 ∼ N̂𝑚+1
𝜋0 𝑎𝑟⃗(N𝑛

𝜋1𝑎𝑠⃗𝑅).

The previous lemma then implies 𝜋 ∼ 𝜋′.

Lemma 5.25. For the same 𝜋 and 𝜋′, if there are no contractions to either the formula
𝐴 in the sub-proof 𝜋1 or the formula 𝐵̄ in the sub-proof 𝜋2 then 𝜋 ∼ 𝜋′.

Proof. Suppose there are no contractions to 𝐵̄ in 𝜋2 and let 𝑅 and 𝑆 be as above. By
Lemma 5.18, N𝑘

𝜋2𝑎𝑡⃗𝑢 ∼ N𝑘
𝜋2𝑎𝑡⃗𝑣 for any two terms 𝑢, 𝑣 : 𝜏*

𝐵̄
. Hence, in particular,

𝑅 ∼ N̂𝑚
𝜋0𝑎𝑟⃗(N𝑜

𝜋2𝑎𝑡⃗𝑆) N𝑜
𝜋2𝑎𝑡⃗𝑆 ∼ N̂𝑚+1

𝜋0 𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑠⃗𝑅)

which suffice, by the proof of Lemma 5.23, to show 𝜋 ∼ 𝜋′.

5.3.2 Contraction Reduction

Consider the two proofs

𝜋0

Γ, 𝐴, 𝐴
c −−−−−−−−−

𝜋̂ ⊢ Γ, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, Δ

 

𝜋0

Γ, 𝐴, 𝐴

𝜋1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

𝜋̂′ ⊢ Γ, 𝐴, Δ

𝜋*
1

Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, Δ, Δ
c* −−−−−−−−−−

𝜋′ ⊢ Γ, Δ

where 𝜋*1 denotes a copy of 𝜋1 with fresh eigenvariables. Observe that 𝜋1 ∼ 𝜋*1.
Although the reduction above does not in general induce language inclusion, for the

two scenarios required in Theorem 1.1, namely either 𝑢(𝐴) = 0 or there are no applica-
tions of contraction are applied to the formula 𝐴 in the sub-proof 𝜋1, we have 𝜋′ < 𝜋.
The following two lemmas deal with these two cases.
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Lemma 5.26. If 𝑢(𝐴) = 0 then 𝜋′ < 𝜋.

Proof. If 𝐴 is quantifier-free then 𝜋 ∼ 𝜋′ is easily established by following the reduction
rules for cut. So assume 𝑢(𝐴) = 0 < 𝑢(𝐴). Let 𝑚 = |Γ| and 𝑛 = |Δ|, and fix 𝑖 < 𝑚 and
𝑗 < 𝑛. Let 𝑟 = N𝑛

𝜋1𝑎𝑦⃗ and 𝑟* = N𝑛
𝜋*

1
𝑎𝑦⃗. Unravelling the production rules for the two

proofs yield

N𝑖
𝜋𝑎𝑥⃗𝑦⃗ ∼ N𝑖

𝜋0𝑎𝑥⃗𝑟𝑟 N𝑚+𝑗
𝜋 𝑎𝑥⃗𝑦⃗ = {N𝑗

𝜋1𝑎𝑦⃗(N𝑚+1
𝜋0 𝑎𝑥⃗𝑟𝑟), N𝑗

𝜋1𝑎𝑦⃗(N𝑚
𝜋0𝑎𝑥⃗𝑟𝑟)}

N𝑖
𝜋′𝑎𝑥⃗𝑦⃗ ∼ N𝑖

𝜋0𝑎𝑥⃗𝑟*𝑟 N𝑚+𝑗
𝜋′ 𝑎𝑥⃗𝑦⃗ ∼ {N𝑗

𝜋1𝑎𝑦⃗(N𝑚+1
𝜋0 𝑎𝑥⃗𝑟*𝑟), N𝑗

𝜋*
1
𝑎𝑦⃗(N𝑚

𝜋0𝑎𝑥⃗𝑟*𝑟)}

Since 𝜋1 ∼ 𝜋*1, Lemma 5.13 implies 𝜋′ < 𝜋.

Lemma 5.27. If 𝑢(𝐴) > 0 and there are no contractions on the formula 𝐴 in 𝜋1, then
𝜋′ ∼ 𝜋.

Proof. Suppose 𝑢(𝐴) > 0. Let 𝜏 = 𝜏*
𝐴

. Lemma 5.18 implies N𝑗
𝜋1𝑎𝑦⃗𝑠 ∼ N𝑗

𝜋1𝑎𝑦⃗c𝜏 for every
𝑠 : 𝜏 . Concerning derivations from 𝜋, this yields the following equivalences for 𝑖 < |Γ|
and 𝑗 < |Δ|.

N𝑖
𝜋𝑎𝑥⃗𝑦⃗ ∼ N𝑖

𝜋̂𝑎𝑥⃗(N𝑛
𝜋1𝑎𝑦⃗(N̂𝑚

𝜋̂ 𝑎𝑥⃗)) N𝑚+𝑗
𝜋 𝑎𝑥⃗𝑦⃗ ∼ N𝑗

𝜋1𝑎𝑦⃗(N̂𝑚
𝜋̂ 𝑎𝑥⃗)

∼ N𝑖
𝜋̂𝑎𝑥⃗(N𝑛

𝜋1𝑎𝑦⃗c𝜏 ) ∼ N𝑗
𝜋1𝑎𝑦⃗c𝜏

∼ N𝑖
𝜋0𝑎𝑥⃗(N𝑛

𝜋1𝑎𝑦⃗c𝜏 )(N𝑛
𝜋1𝑎𝑦⃗c𝜏 )

Starting from 𝜋′ we obtain

N𝑖
𝜋′𝑎𝑥⃗𝑦⃗ ∼ N𝑖

𝜋̂′𝑎𝑥⃗
(︀
N𝑛

𝜋*
1
𝑎𝑦⃗

(︁
N̂𝑚

𝜋̂′𝑎𝑥⃗𝑦⃗
)︁)︀

𝑦⃗ N𝑚+𝑗
𝜋′ 𝑎𝑥⃗𝑦⃗ ∼ {N𝑚+1+𝑗

𝜋̂′ 𝑎𝑥⃗(N𝑛
𝜋*

1
𝑎𝑦⃗c𝜏 )𝑦⃗, N𝑗

𝜋*
1
𝑎𝑦⃗c𝜏}

∼ N𝑖
𝜋̂′𝑎𝑥⃗(N𝑛

𝜋*
1
𝑎𝑦⃗c𝜏 )𝑦⃗ ∼ {N𝑗

𝜋1𝑎𝑦⃗c𝜏 , N𝑗
𝜋*

1
𝑎𝑦⃗c𝜏}

∼ N𝑖
𝜋0𝑎𝑥⃗(N𝑛

𝜋*
1
𝑎𝑦⃗c𝜏 )(N𝑛

𝜋1𝑎𝑦⃗c𝜏 )

So 𝜋′ ∼ 𝜋.

5.3.3 Quantifier Permutation

Concerning permuting quantifier rules with cut, consider the following two proofs.

𝜋0

Γ, 𝐴(𝛼⃗/𝑣⃗), 𝐵
∀𝛼⃗ −−−−−−−−−−−−−−−−

𝜋̂ ⊢ Γ,∀𝑣⃗𝐴, 𝐵

𝜋1

Δ, 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ,∀𝑣⃗𝐴, Δ

 

𝜋0

Γ, 𝐴(𝛼⃗/𝑣⃗), 𝐵

𝜋1

Δ, 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−

𝜋̂′ ⊢ Γ, 𝐴(𝛼⃗/𝑣⃗), Δ
∀ −−−−−−−−−−−−−−−−−−−−

𝜋′ ⊢ Γ, ∀𝑣⃗𝐴, Δ

(17)

Let 𝛼⃗ = (𝛼𝑗)𝑗≤𝑝 and 𝑣⃗ = (𝑣𝑗)𝑗≤𝑝. Regularity ensures that 𝑢(𝐴) = 0. In the following, if
𝑢⃗ = (𝑢𝑗)𝑗≤𝑝 is a sequence of terms of type 𝜄 and 𝑢𝑝+1 : 𝜏*𝐴, we write 𝑢⃗⋆𝑢𝑝+1 to abbreviate
the sequence term ⟨𝑢0, . . . , 𝑢𝑝+1⟩ : 𝜏*∀𝑣⃗𝐴.

Like with the case of permuting cuts, an application of the quantifier permutation
reduction does not preserve equivalence of proofs in all cases. For the main theorem it
suffice to prove only 𝜋′ < 𝜋. This is taken up in Lemma 5.29 below. First, however, we
show that if 𝐵 is not universally quantified then indeed 𝜋 ∼ 𝜋′.
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Lemma 5.28. For 𝜋 and 𝜋′ above, if 𝑢(𝐵) = 0 then 𝜋′ ∼ 𝜋.

Proof. Suppose 𝑢(𝐵) = 0 and 𝐵 is not quantifier-free. The other cases involve much
similar arguments. Fix 𝑟⃗ and 𝑠⃗ sequences of normal terms of length 𝑚 = |Γ| and
𝑛 = |Δ| respectively, and normal terms 𝑡 and 𝑢⃗ ⋆ 𝑢′ of type 𝜏*∀𝑣⃗𝐴. By regularity of 𝜋 and
Lemma 5.16,

N𝑗
𝜋1([𝛼⃗←[ 𝑢⃗]𝑎)𝑠⃗ ∼ N𝑗

𝜋1𝑎𝑠⃗

for each 𝑗 ≤ 𝑛. Concerning 𝜋 the following equivalences therefore appear for 𝑖 ≤ 𝑚,
𝑗 < 𝑛 and 𝑘 ≤ 𝑚 + 1,

N𝑖
𝜋𝑎𝑟⃗𝑡𝑠⃗ ∼ N𝑖

𝜋̂𝑎𝑟⃗𝑡(N𝑛
𝜋1𝑎𝑠⃗) N𝑘

𝜋̂𝑎𝑟⃗(𝑢⃗ ⋆ 𝑢′) ∼ N𝑘
𝜋0([𝛼⃗←[ 𝑢⃗]𝑎)𝑟⃗𝑢′

N𝑚+1+𝑗
𝜋 𝑎𝑟⃗𝑡𝑠⃗ ∼ N𝑗

𝜋1𝑎𝑠⃗(N𝑚+1
𝜋̂ 𝑎𝑟⃗𝑡(N𝑛

𝜋1𝑎𝑠⃗))

So, if 𝑡 is a normal term and 𝑡 ∼ {𝑢⃗0 ⋆ 𝑢′0, . . . , 𝑢⃗𝑙 ⋆ 𝑢′𝑙} is given by Lemma 5.7 then for
𝑖 ≤ 𝑚 and 𝑗 < 𝑛,

N𝑖
𝜋𝑎𝑟⃗𝑡𝑠⃗ ∼

{︀
N𝑖

𝜋0([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘(N𝑛
𝜋1𝑎𝑠⃗) | 𝑘 ≤ 𝑙

}︀
N𝑚+1+𝑗

𝜋 𝑎𝑟⃗𝑡𝑠⃗ ∼
{︀
N𝑗

𝜋1𝑎𝑠⃗(N𝑚+1
𝜋0 ([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘(N𝑛

𝜋1𝑎𝑠⃗)) | 𝑘 ≤ 𝑙
}︀

Examining 𝜋′, we observe

N𝑖
𝜋′𝑎𝑟⃗𝑡𝑠⃗ ∼

{︀
N𝑖

𝜋̂′([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘𝑠⃗ | 𝑘 ≤ 𝑙
}︀

∼
{︀
N𝑖

𝜋0([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘(N𝑛
𝜋1𝑎𝑠⃗) | 𝑘 ≤ 𝑙

}︀
N𝑛+𝑗

𝜋′ 𝑎𝑟⃗𝑡𝑠⃗ ∼ {N𝑗
𝜋1𝑎𝑠⃗(N𝑚+1

𝜋0 ([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘(N𝑛
𝜋1𝑎𝑠⃗)) | 𝑘 ≤ 𝑙

}︀
Hence N𝑖

𝜋′ ∼ N𝑖
𝜋 for every 𝑖 ≤ 𝑚 + 𝑛 and so 𝜋′ ∼ 𝜋.

Lemma 5.29. For 𝜋 and 𝜋′ as in (17), 𝜋′ < 𝜋.

Proof. Fix 𝑟⃗ and 𝑠⃗ sequences of terms of length 𝑚 = |Γ| and 𝑛 = |Δ| respectively. Let
𝑢⃗ ⋆ 𝑢′ : 𝜏*∀𝑣⃗𝐴. Suppose 𝑢(𝐵) > 0 and 𝑖 ≤ 𝑚. The other cases have been considered earlier
or involve similar but simpler arguments. As was observed earlier,

N𝑗
𝜋1([𝛼⃗←[ 𝑢⃗]𝑎)𝑠⃗ ∼ N𝑗

𝜋1𝑎𝑠⃗

for each 𝑗 ≤ 𝑛. With respect to 𝜋′ the following equivalences therefore appear.

N𝑖
𝜋′𝑎𝑟⃗(𝑢⃗ ⋆ 𝑢′)𝑠⃗ ∼ N𝑖

𝜋̂′([𝛼⃗←[ 𝑢⃗]𝑎)𝑟⃗𝑢′𝑠⃗

∼ N𝑖
𝜋0([𝛼⃗←[ 𝑢⃗]𝑎)𝑟⃗𝑢′(N𝑛

𝜋1𝑎𝑠⃗(N𝑚+1
𝜋0 ([𝛼⃗←[ 𝑢⃗]𝑎)𝑟⃗𝑢′))

whereas the rules for 𝜋 yield, for arbitrary 𝑡 : 𝜏*∀𝑣⃗𝐴,

N𝑖
𝜋𝑎𝑟⃗𝑡𝑠⃗ ∼ N𝑖

𝜋̂𝑎𝑟⃗𝑡(N𝑛
𝜋1𝑎𝑠⃗(N𝑚+1

𝜋̂ 𝑎𝑟⃗𝑡)) N𝑖
𝜋̂𝑎𝑟⃗(𝑢⃗ ⋆ 𝑢′) ∼ N𝑖

𝜋0([𝛼⃗←[ 𝑢⃗]𝑎)𝑟⃗𝑢′

If 𝑡 is a normal term and 𝑡 ∼ {𝑢⃗0 ⋆ 𝑢′0, . . . , 𝑢⃗𝑙 ⋆ 𝑢′𝑙} is given by Lemma 5.7 then for each
𝑖 ≤ 𝑚,

N𝑖
𝜋̂𝑎𝑟⃗𝑡 ∼

{︀
N𝑖

𝜋0([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘 | 𝑘 ≤ 𝑙
}︀

N𝑖
𝜋𝑎𝑟⃗𝑡𝑠⃗ ∼

{︀
N𝑖

𝜋0([𝛼⃗← [ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘(N𝑛
𝜋1𝑎𝑠⃗(N𝑚+1

𝜋0 ([𝛼⃗←[ 𝑢⃗𝑗 ]𝑎)𝑟⃗𝑢′𝑗)) | 𝑘, 𝑗 ≤ 𝑙
}︀

(18)
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whereas, due to pattern-matching in the production rule for 𝜋′,

N𝑖
𝜋′𝑎𝑟⃗𝑡𝑠⃗ ∼ {N𝑖

𝜋0([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘(N𝑛
𝜋1𝑎𝑠⃗(N𝑚+1

𝜋0 ([𝛼⃗←[ 𝑢⃗𝑘]𝑎)𝑟⃗𝑢′𝑘)) | 𝑘 ≤ 𝑙
}︀

(19)

Hence N𝑖
𝜋′ < N𝑖

𝜋 and 𝜋′ < 𝜋.

The contrast between equations (18) and (19) demonstrates why 𝜋 < 𝜋′ need not hold
in general.

5.3.4 Quantifier Reduction

Consider the reduction

𝜋0

Γ, 𝐴(𝛼⃗/𝑣⃗)
∀𝛼⃗ −−−−−−−−−−−−−

𝜋̂0 ⊢ Γ, ∀𝑣⃗𝐴

𝜋1

Δ, 𝐴(𝑠⃗/𝑣⃗)
∃𝑠⃗ −−−−−−−−−−−−−−

𝜋̂1 ⊢ Δ,∃𝑣⃗𝐴
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

𝜋 ⊢ Γ, Δ

 

𝜋
(𝑠⃗/𝛼⃗)
0

Γ, 𝐴(𝑠⃗/𝑣⃗)

𝜋1

Δ, 𝐴(𝑠⃗/𝑣⃗)
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

𝜋′ ⊢ Γ, Δ

(20)

Lemma 5.30. If 𝜋  𝜋′ is the reduction above then 𝜋 ∼ 𝜋′.

Proof. Let 𝑚 = |Γ|, 𝑛 = |Δ|, 𝛼⃗ = (𝛼𝑖)𝑖≤𝑝 and 𝑠⃗ = (𝑠𝑖)𝑖≤𝑝. Recall that 𝑠⃗ · 𝑎 = (𝑠𝑖 · 𝑎)𝑖≤𝑝.
Note that regularity of 𝜋 implies 𝑢(𝐴) = 0. This leaves two cases to consider: 𝐴 is
quantifier-free or 𝑒(𝐴) > 0. Suppose the latter, so the cut in 𝜋′ remains a quantified
cut (the case 𝐴 is q.f. follows an analogous argument). The following equivalences arise,
where 𝑖 < 𝑚 and 𝑗 < 𝑛.

N𝑖
𝜋𝑎𝑟⃗𝑡⃗ ∼ N𝑖

𝜋̂0𝑎𝑟⃗(N𝑛
𝜋̂1𝑎𝑡⃗(N𝑚

𝜋̂0𝑎𝑟⃗)) N𝑚+𝑗
𝜋 𝑎𝑟⃗𝑡⃗ ∼ N𝑗

𝜋̂1
𝑎𝑡⃗(N𝑚

𝜋̂0𝑎𝑟⃗)
∼ N𝑖

𝜋̂0𝑎𝑟⃗(𝑠⃗ · 𝑎 ⋆ N𝑛
𝜋1𝑎𝑡⃗) ∼ N𝑗

𝜋1𝑎𝑡⃗(N𝑚
𝜋̂0𝑎𝑟⃗(𝑠⃗ · 𝑎 ⋆ N𝑛

𝜋1𝑎𝑡⃗))
∼ N𝑖

𝜋0([𝛼⃗←[ 𝑠⃗ · 𝑎]𝑎)𝑟⃗(N𝑛
𝜋1𝑎𝑡⃗) ∼ N𝑗

𝜋1𝑎𝑡⃗(N𝑚
𝜋0([𝛼⃗←[ 𝑠⃗ · 𝑎]𝑎)𝑟⃗(N𝑛

𝜋1𝑎𝑡⃗))
∼ N𝑖

𝜋
(𝑠⃗/𝛼⃗)
0

𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑡⃗) ∼ N𝑗

𝜋1𝑎𝑡⃗(N𝑚

𝜋
(𝑠⃗/𝛼⃗)
0

𝑎𝑟⃗(N𝑛
𝜋1𝑎𝑡⃗))

∼ N𝑖
𝜋′𝑎𝑟⃗𝑡⃗ ∼ N𝑚+𝑗

𝜋′ 𝑎𝑟⃗𝑡⃗.

The penultimate equivalence in each column is given by Lemma 5.16.

5.3.5 Remaining Reductions

The remaining rules are all straightforward to analyse and all induce language equality
with the exception of weakening reduction for which only language inclusion holds in
general.

5.4 Proof of Main Theorem
We can now prove Theorem 1.1. Let 𝜋 ⊢ ∃𝑣⃗𝐹𝑞𝑓 be a regular proof and 𝜋 = 𝜋0  𝜋1  
· · ·  𝜋𝑛 be a reduction of 𝜋 to a quasi cut-free proof 𝜋𝑛 such that for each 𝑖 < 𝑛, the
reduction 𝜋𝑖  𝜋𝑖+1 applies a cut reduction or permutation rule from Figures 2 or 3
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to a sub-proof of 𝜋𝑖 with the restriction that a rule reducing the strong quantifier side
of a cut is applied only if no other reduction of this cut is possible. By Lemma 5.21
and the analysis in the previous section, 𝐿(𝜋𝑖+1) ⊆ 𝐿(𝜋𝑖) for each 𝑖 < 𝑛. This together
with Lemma 3.31 establishes part (iii) of the theorem. The existence of a reduction of
the form above is well-known: see, e.g. [42], hence (i). Acyclicity of H𝜋 is shown in
Lemma 3.26, the bound on the order of H𝜋 is given by Corollary 3.34, and the language
bound in (ii) follows from Theorem 3.35.

6 Discussion
This work contributes to the structural analysis of first-order proofs with respect to their
Herbrand content. To a first-order classical proof 𝜋 ⊢ 𝐹 of a Σ1 formula we associate a
recursion scheme H with a finite language that constitutes a Herbrand set for 𝐹 . More
generally, the language of H covers the Herbrand set implicit in any quasi cut-free proof
obtained from 𝜋 by a sequence of reductions fulfilling the following two restrictions.

1. A contraction on a universally quantified formula is reduced only when no other
reduction rule is applicable to this cut;

2. If two cuts are permuted in the following form then either there are no contractions
on the formula 𝐵̄ in the relevant subproof, or one of 𝐴 and 𝐵 is not universally
quantified.

Γ, 𝐴, 𝐵 Δ, 𝐴
cut −−−−−−−−−−−−−−−−

Γ, Δ, 𝐵 Λ, 𝐵̄
cut −−−−−−−−−−−−−−−−−−−−

Γ, Δ, Λ
 

Γ, 𝐴, 𝐵 Λ, 𝐵̄
cut −−−−−−−−−−−−−−−−

Γ, Λ, 𝐴 Δ, 𝐴
cut −−−−−−−−−−−−−−−−−−−−

Γ, Δ, Λ

The size of the Herbrand set is bounded by 24|𝜋|3
𝑛+2 where |𝜋| is the number of inferences

in 𝜋 and 𝑛 is the maximal quantifier rank of a cut in 𝜋. Comparing with related work,
the bound on the cardinality of the Herbrand expansion obtained by Gerhardy and
Kohlenbach [20, Corollary 15] is 23‖𝑡‖

dg(𝜑)+1 where 𝜑 is a proof in Shoenfield’s calculus [41],
𝑡 is the realiser extracted from 𝜑, and ‖𝑡‖ is the number of symbols in 𝑡. The degree
dg(𝜑) is the maximal ¬-depth of a cut formula in 𝜑. The ¬-depth of a formula is
defined precisely in the discussion on pp. 17–25 of [19] as the maximal number of nested
negations over quantifier-free sub-formulæ (that may contain an arbitrary number of
negations). This is sufficient for describing the height of the tower of exponentials
since, in Shoenfield’s system, ∃𝑥 is considered an abbreviation of ¬∀𝑥¬. Thus (the
translation of) a Π𝑛 ∪ Σ𝑛 formula has ¬-depth at most 𝑛. Presumably it is possible to
give a polynomial translation from the sequent calculus into Shoenfield’s system which
preserves the maximal ¬-depth of cut formulæ (but, to the knowledge of the authors,
this has not been done in the literature) and, moreover, to bound ‖𝑡‖ polynomially in
terms of the number of inferences of 𝜑. Under these assumptions, the bound of Gerhardy
and Kohlenbach would yield the upper bound 2𝑝(|𝜋|)

𝑛+1 on the cardinality of a Herbrand
expansion for some polynomial 𝑝 and any sequent calculus proof 𝜋 with Π𝑛 ∪ Σ𝑛-cuts.
This would be one exponent less than our own.
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Closely related is a bound obtained by Buss in [11]. The proof of Theorem 9 of [11]
shows that, given a proof 𝜋 where all cut formulæ are contained in Π𝑛 ∪ Σ𝑛, there is
a cut-free proof whose number of inferences is no greater than 2|𝜋|𝑛+2. As an immediate
corollary this also yields the upper bound of 2|𝜋|𝑛+2 on the cardinality of the Herbrand ex-
pansion. If one is interested in the cardinality of the Herbrand expansion, Buss’s bound
and our Theorem 1.1 give the same number of iterations of the exponential function,
but Gerhardy and Kohlenbach’s would give one less. If one is interested in the number
of inferences in the cut-free proof, Buss’s bound is one exponential better than ours but
has the same number of exponentials as the one that could be obtained from Gerhardy
and Kohlenbach’s since the number of inferences is at most exponential in the cardinal-
ity of the Herbrand expansion (considering the symbolic complexity of the end-sequent
is constant). That being said, the bounds we obtain apply to any cut-free proof (and
Herbrand disjunction) that can be reached by the class of reductions pertaining to 1
and 2 above. In particular, it places no restriction on which cut is to be reduced at
any given step, and therefore accommodates a variety of strategies, including top-most
and maximal cut-complexity. Whether this freedom of strategies necessitates the larger
bound is not entirely clear, and requires further investigation.

Our approach provides a framework that appears well-suited for extensions. Below we
highlight finer features of our representation of Herbrand’s theorem and some potential
applications.

Sequent-based versus trace-based grammars In this paper, the grammar associated
to a proof is ‘sequent’-based in the following sense. Consider an inference of the form

𝐺0, . . . , 𝐺𝑛
r −−−−−−−−−−−−−
𝐹0, . . . , 𝐹𝑚

The production rules corresponding to r can be seen as transforming a sequence of inputs
(𝑥0, . . . , 𝑥𝑚) for the formulæ 𝐹0, . . . , 𝐹𝑚 to a sequence of terms (𝑡0, . . . , 𝑡𝑛) which are used
as inputs for 𝐺0, . . . , 𝐺𝑛 in the inference rule immediately above r. The production rules
effect the whole sequence of inputs regardless of which formula is active. This is in
contrast with the ‘trace’-based grammars of, e.g., [24, 1, 2] where an inference of the
form

Γ, 𝐺
r −−−−−
Γ, 𝐹

is associated a production rule that updates an input for 𝐹 to an input for 𝐺, entirely
ignoring presence of formulæ in Γ. In the latter type of grammars the derivations can be
viewed as traces that climb up and also down the proof tree essentially mimicking the
traces revealed through Gentzen-style cut-elimination. These grammars are generally
cyclic and it is necessary to place equality constraints (the ‘rigidity’ conditions of [24, 1])
on derivations to ensure finite languages. For proofs that contain cuts with complexity
greater than Π2/Σ2 the trace-based analysis quickly becomes infeasible. In contrast,
the sequent-based approach generates an acyclic term grammar that not only ensures
a finite language but allows one to obtain upper bounds on language size by standard
language-theoretic arguments.
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Providing a minimal grammar As mentioned in the introduction, part of the motiva-
tion behind this study is to ultimately invert the cut-elimination procedure and find an
algorithmic method for introducing cuts into cut-free proofs. The idea has been success-
fully carried out for Π1/Σ1-cut introduction and more recently for the introduction of a
single Π2/Σ2-cut (see [26, 25, 27, 32]). The general method proceeds as follows. Given
a cut-free proof 𝜋, one first computes a concise representation of 𝜋 as a term grammar
(such as a regular tree grammar whose language contains the Herbrand set induced by
𝜋). This grammar is then viewed as a proof with cut, in which the cut-formulæ are yet to
be determined. Finding the cut-formulæ involves solving a unification problem induced
by the grammar. Key to successfully carrying out this procedure is identifying natural
classes of formal grammars that describe the instantiation structure of a proof with
cut. Higher order recursion schemes provide a promising candidate to lift the method of
cut-introduction above the Π2 level.

First-order logic in finite types A natural extension to consider is first-order logic in
finite (simple) types, namely many-sorted predicate logic with a sort of individuals for
each simple type and well-typed application as a term forming operation. On the sequent
calculus side, we add new quantifier inferences for each type:

Γ, 𝐴(𝛼𝜎/𝑣𝜎)
∀𝜎

𝛼 −−−−−−−−−−−−−−Γ, ∀𝑣𝜎𝐴

Γ, 𝐴(𝑟𝜎/𝑣𝜎)
∃𝜎

𝑟 −−−−−−−−−−−−−−Γ,∃𝑣𝜎𝐴

Here one can use the type hierarchy underpinning higher order recursion schemes. The
formula types 𝜏𝐴 and 𝜏*𝐴 are extended to incorporate higher-type quantification (for
example 𝜏∃𝑣𝜎𝐹 = 𝜎 × 𝜏𝐹 if 𝑢(𝐹 ) = 0). The corresponding production rules for the new
quantifier inferences will be identical to the rules for the ground type, though the move
to higher-type means that substitution stacks can contain substitutions of higher-type
symbols. We expect the analogous language preservation lemmas to hold. Moreover,
Herbrand schemes for higher-type logic may provide a direct way to study the relation
between the present work and the approach via functional interpretation in [20].

Lifting the prenex restriction Our representation of first-order proofs as recursion
schemes forces an asymmetric interpretation of formulæ to types that does not easily
generalise to non-prenex cuts. Specifically, the type of an existentially quantified formula
is (except in the case of Σ1) an order higher than the dual universally quantified formula.
This disparity is due to the production rules for cut which treat the cut formula from one
premise as a function which receives as its input ‘witnesses’ for the dual (cut) formula in
the other premise. If the same representation is applied to non-prenex cuts then we must
have that the type associated to a disjunction is an order higher than that assigned to the
dual conjunction. Writing sound production rules for the disjunction and conjunction
introduction inferences then becomes non-trivial.

One possible remedy is to switch to a two-sided sequent calculus. The order distinction
forced by the production rules for cut becomes a distinction between the two sides of
the sequent arrow thus permitting a more uniform association of formulæ to types that
may permit a generalisation to cuts of any form. The hurdle here, however, will be in a
satisfactory interpretation of negation which requires further investigation.
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