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Solving quadratic equations
in many variables

Jean-Pierre Tignol

Fields are number systems in which every linear equa-
tion has a solution, such as the set of all rational
numbers QQ or the set of all real numbers R. All fields
have the same properties in relation with systems of
linear equations, but quadratic equations behave dif-
ferently from field to field. Is there a field in which
every quadratic equation in five variables has a solu-
tion, but some quadratic equation in four variables
has no solution? The answer is in this snapshot.

1 Fields

No problem is more fundamental to algebra than solving polynomial equations.
Indeed, the name algebra itself derives from a ninth century treatise [1] where the
author explains how to solve quadratic equations like 22 + 10z = 39. It was clear
from the start that some equations with integral coefficients like 22 = 2 may not
have any integral solution. Even allowing positive and negative numbers with
infinite decimal expansion as solutions (these numbers are called real numbers),
one cannot solve 2 = —1 because the square of every real number is positive
or zero. However, it is only a small step from the real numbers to the solution
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of every polynomial equation: one gives the solution of the equation 2% = —1
(or 22 + 1 = 0) the name i and defines complez numbers as expressions of the
form a + bi, where a and b are real numbers. This formal process is called
adjoining a zero of the polynomial 2 + 1 to the real numbers .

A famous result due to the German mathematician Carl Friedrich Gauss (1777
1855) asserts that every polynomial equation (of any positive degree) with
complex numbers as coefficients has a solution that is a complex number. This
is known as the Fundamental Theorem of Algebra, even though every proof in-
volves some argument from analysis because the very definition of real numbers
is based on an approximation process.

Thus, whether it is possible to solve an equation depends on the numbers
that are considered acceptable solutions. To discuss this type of question, one
selects a set F' of elements (usually numbers, but not always, as we will see
later) on which one can operate with an addition and a multiplication satisfying
the same rules as when one operates with integers, such as, for example, the
distributive property. If F' contains at least two distinct elements 0 and 1, and
if every equation of the form ax + b =0 for a, b in F' with a # 0 has a solution
in F', then the set F' is said to be a field. Examples include the set Q of rational
numbers, which are quotients of integers, the set R of real numbers, and the set
C of complex numbers, but not the set Z of (positive and negative) integers,
since for instance 2x + 3 = 0 has no solutions in Z even though the coefficients
2 and 3 belong to Z.

The idea of a field emerged during the 19th century from the consideration
of examples more exotic than Q, R, and C. For instance, one may consider a set
consisting just of 0 and 1, and define an addition by setting 1+1 = 0. (The other
sums 0+0=0,04+1=1+0 =1, and the multiplications 0-0=0-1=1-0=0
and 1-1 =1 are given by the rules in the integers.) This set is just like Z in
which one would have decided that 2 = 0 (and therefore 4 = 0 since 4 =2 - 2,
and —11 =1 since —11 = 2 - (=6) + 1, etc.); it is a field denoted by Fy. More
generally, if p is a prime integer, one can identify p with 0 in Z and obtain a
field with p elements 0, 1, ..., p — 1, which is denoted by F,. Note that in
contrast to the other fields we have seen so far, IF,, contains only finitely many
elements; in other words, it is an example of a finite field.

Quiz 1: Do we obtain a field with 4 elements by deciding that 4 = 0 in Z
(but 2 #£0)?

The examples above illustrate general procedures that can be used to produce
a wealth of examples of fields with various properties. Just like the field Q

is obtained from Z by forming fractions ¢ with a, b in Z (and b # 0), we

The degree of a polynomial is its largest exponent. For example, the polynomial 423 4z —5
has degree 3.



can start with a field F' of our choice and build a new field by considering

fractions H where f(t1,...,t,) and g(t1,...,t,) are polynomials in n
variables t1, ..., ¢, with coefficients in F (and g(¢1,...,t,) # 0). The field thus
obtained is known as the field of rational functions in the variables t1, . .., t,, over

F; it is denoted by F(t1,...,t,). But there is more: before forming fractions,
we can decide to identify with zero all the polynomials that are multiples of a
given polynomial p(ty,...,t,). To be precise, the polynomial p(ti,...,t,) has
to be irreducible, that is, it is not the product of two nonconstant polynomials
with coefficients in F'. This condition is an analogue to the requirement that p
be a prime number in the construction of F,. Along with F', the resulting field
contains n elements uq, ..., u, related by the condition that p(uq,...,u,) =0.
Roughly speaking, we have enlarged F' by formally adjoining a zero of the
polynomial p(ti, ..., ).

Quiz 2: What do we obtain if we start with F = R and apply this construction
to polynomials in one variable t with p(t) =t> + 12

2 Quadratic algebra versus linear algebra

Mathematicians designate by linear algebra the branch of algebra that deals
with the solution of systems of equations of degree 1 in an arbitrary number
of variables. Remarkably, the basic results of linear algebra hold over every
field: solving a system of linear equations involves the same theoretical aspects
and procedures whether the coefficients are complex or real numbers, or in
a finite field like F,,. For equations of degree higher than 1, the situation
is completely different, and we may try to distinguish fields based on which
equations have solutions. The field C is among the simplest in this respect,
because all equations (barring “constant” equations like 1 = 0) have solutions.
In the 1950s, Serge Lang had the insight to consider polynomial equations in
more than one variable [6]. Similar as for polynomials in one variable, one can
also define the degree of a polynomial in several variables; summing first over all
exponents in each summand of a polynomial, one calls the highest of these sums
the degree of the polynomial. For instance, the polynomial x5 - 23 — 21 - 23 has
degree 5+ 3 = 8. A polynomial is called homogeneous if all its summands have
the same degree. Every homogeneous polynomial has a trivial zero; this is when
all its variables are set to 0. Every other zero of a homogeneous polynomial is
called nontrivial. Note that every polynomial can be turned into a homogeneous
polynomial by using an additional indeterminate to raise the degree of each
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summand to the maximal degree. For instance, the polynomial 2923 — 21123
can be homogenized into x3z3 — 2z12323. The homogenized polynomial with
x3 = 1 plugged in has exactly the same zeros as the initial polynomial. Thus,
restricting to homogeneous polynomials does not entail any significant loss of
generality, and actually has some technical advantages.

Lang proposed the following definition relating the degree and the number
of variables:

Definition. Let n be a nonnegative integer. A field F satisfies the C),-property
if for every positive integer d > 0, every homogeneous polynomial of degree d
in at least d" + 1 variables with coefficients in F' has a nontrivial zero. If F
satisfies the C,-property, we also say that it is a C,,-field.

With this definition, the field C has the Cy-property; this follows directly
from the Fundamental Theorem of Algebra. Some results that predate Lang’s
definition can be stated conveniently with this notation: Chiungtze C. Tsen
proved that the field C(¢) of rational functions in one variable over C satisfies
the C1-property, and by a result by Claude Chevalley and Ewald Warning every
finite field is also a C;-field. Lang extended Tsen’s result by showing that the
field of rational functions F'(¢) in one variable over a C,-field F' has property
Ch+1; but proving that a given field has property C,, may be extremely difficult
because one needs to consider homogeneous polynomials of all degrees. (See [3]
for a detailed discussion of the C),-property.)

By restricting to homogeneous polynomials of degree 2 (which are simply
called quadratic forms), Irving Kaplansky introduced in [4] a more manageable
notion:

Definition. The u-invariant of a field F is the smallest integer u such that
every quadratic form in at least u 4+ 1 variables with coefficients in F' has a
nontrivial zero, or oo if no such integer exists. We write w(F) for the u-invariant
of F.

Thus, by definition u(F) < 2™ if F is a C,-field. In particular u(C) = 1, and
from the Chevalley-Warning theorem it is not difficult to derive that u(F,) < 2
for every prime p. Similarly, one can use the Tsen—Lang theorem to see that
u((C(tl, e ,tn)) < 2" for every n > 0. In fact, even the equalities u(F,) = 2
and u((C(tl, e ,tn)) = 2" are true in these cases; but to show that “>” holds,
it suffices to give an example of a form in 2" variables that has only the trivial
zero, which is not too difficult.

On the other hand, since for all n > 1 the quadratic form 2% + - - + 22 does
not have any nontrivial zero in R, it follows that u(R) = oo, and also u(Q) = co.

Quiz 3: Find a quadratic form in two variables over Fy or F3 that does not
have any nontrivial zero. Find a quadratic form in four variables over C(t1,t2)
that does not have a nontrivial zero.



Since quadratic forms are much better understood than homogeneous poly-
nomials of degree d > 2, one may expect that computing the u-invariant of a
field would be much easier than establishing the C),-property for some n. It is
true that a few results are known on the u-invariant, but its computation is still
surprisingly difficult. In the next sections, we discuss recent advances on two
questions:

e Given an integer n, find a field F' with u(F) = n.
e Given a field F with u(F) known, compute u(F(t)).

We will use the standard terminology inspired by geometry: the number of
variables is the dimension of a quadratic form, and a quadratic form is isotropic
if it has a nontrivial zero (and anisotropic otherwise). Thus, u(F) = n means
that there exists an n-dimensional quadratic form with coefficients in F' that
is anisotropic, and that every quadratic form of dimension n + 1 over F is
isotropic.

Quiz 4: Show that if every quadratic form of dimension n is isotropic over a
given field F', then also every quadratic form of dimension n + 1 is isotropic
over F.

3 Fields with prescribed u-invariant

As we saw in the last section, u((C(tl, e ,tn)) = 2" for every n > 0. On the
other hand, it is not too difficult to see that the u-invariant of a field cannot
take the values 3, 5, or 7. In spite of the scarcity of examples of fields whose
u-invariant he could compute, Kaplansky boldly conjectured that w(F') is either
oo or a power of 2 for every field F.

This was disproved by Alexander Merkurjev in 1988. In a short piece of
work, which surprised all the specialists of quadratic forms, Merkurjev produced
a field with u-invariant 6. He used the following amazing construction, which
is described in detail in [5, Ch. 13] and [2, §38]. Start with a field Fy and an
anisotropic quadratic form gg of dimension 6 over Fy. The idea is to enlarge Fj
by adjoining formally a zero of every 7-dimensional quadratic form to F. For
this, we need to consider the collection of all quadratic forms in 7 variables
over Fy. For each of these forms p(t1,...,t7), we apply in turn the procedure
sketched at the end of Section 1. At the end, we obtain a field F} over which all
the 7-dimensional quadratic forms with coefficients in Fy are isotropic; but there
may be 7-dimensional quadratic forms over F; that are not isotropic. Therefore,
we repeat the construction with the collection of 7-dimensional quadratic forms
over F, and obtain a field F» where all of these have a nontrivial zero. Repeating
the same construction again and again, we obtain an increasing sequence of
fields Fy, Fy, Fs, ... It makes sense to consider the limit (or union) F, of this



series: it consists of all the elements that lie in at least one of the fields F; (and
hence also in Fj for all j > 7). Now, let ¢ be a 7-dimensional quadratic form
with coefficients in Fi,. For n large enough, all the coefficients of ¢ lie in F,;
but then F, ;1 contains a nontrivial zero of ¢, hence F, contains a nontrivial
zero of ¢. Thus, u(Fw) < 6. The delicate part is of course to prove that
the u-invariant of F, is exactly 6 and not less. For this, Merkurjev makes a
particular choice of the quadratic form ¢g over Fj, and he shows that ¢y remains
anisotropic when one adjoins a zero to any quadratic form in 7 variables. Thus,
go remains anisotropic throughout the series of fields Fy, Fy, ..., hence also
over Fo,. Therefore, u(Fy) = 6.

Merkurjev soon found a way to define quadratic forms of any even dimension
2n that remain anisotropic when a zero of a quadratic form of higher dimension
is formally adjoined to the original field. His construction could then be
modified to yield fields F' with u(F) = 2n for any integer n. The same iterative
construction was used again in 2001 by Oleg Izhboldin to construct a field with
u-invariant 9, and most recently by Alexander Vishik in 2009 to yield a field
F with u(F) = 2" 4+ 1 for an arbitrary integer r > 3. To this date, whether
there exists a field with an odd w-invariant that is not of the form 2" + 1 is
an open problem. Because Merkurjev’s construction yields huge intimidating
fields, another intriguing problem is to construct fields of rational expressions
in a finite number of elements with a u-invariant that is not a power of 2.

Quiz 5: Show that the quadratic form x3 + x3 + 23 becomes isotropic when a
zero of the quadratic form x3 4+ x3 + 23 + 2% is adjoined to R.

4 Computing the u-invariant

Fields of rational functions in one variable are well understood from various
viewpoints, but they still present challenging problems in terms of quadratic
forms. The Tsen—Lang theorem, which shows that for every C,,-field F' the
field F(t) has the Cy,41-property, suggests that u(F(t)) = 2u(F) might hold for
every field F. This is easy to prove if F is a C,-field with u(F) = 2™. Hence,
for instance, U(]Fp(tl, . ,tn)) = 2"+ for every prime p and any number n of
variables. But the property does not hold in general: David Leep showed me
an example of a field F with w(F) =1 and u(F(t)) > 4. And for an arbitrary
field F' with finite u-invariant we still do not even know whether u(F(t)) is finite.

Substantial progress has been made in the last few years for special kinds
of fields F', which are obtained from the field Q of rational numbers by an
approximation procedure. If we talk about approximation, we have to specify
how we want to measure distance. Real numbers are constructed from rational
numbers by successive approximations for the usual notion of distance. But
for every prime p we can define a distance between rational numbers for which



the sequence p, p%, p?, ... decreases to zero. If we use this distance instead
of the usual one, the approximation procedure that produces real numbers in
the usual case now yields new numbers called p-adic numbers. These num-
bers form a field denoted by Q,, which was first considered by Kurt Hensel
around 1897. Fields of p-adic numbers have proven extremely useful in number
theory. The field Q, has a close connection with the finite field IF,,, from which
one can prove that u(Q,) = 4. Emil Artin conjectured in the early 30s that
Qp has the Cy-property, but this conjecture turned out to be false, hence we
cannot use the Tsen-Lang theorem to derive that u((@p(t)) = 8. It was a major
breakthrough when Raman Parimala and Venapally Suresh proved in 2008 that
indeed u((@p(t)) = 8 for p # 2. (Another proof was found shortly after by David
Harbater, Julia Hartmann, and Daniel Krashen.) Using profound results in the
analytic study of systems of quadratic forms over p-adic fields due to Roger
Heath-Brown, in 2013 David Leep was able to remove the restriction on p and
to show that u(Qp(tl, . ,tn)) = 272 for any prime p and any number n of
variables. In spite of this important result, there are still basic questions about
the u-invariant of fields of rational functions that remain open.



Hints for solving the quizzes

Quiz 1: Does the equation 2z + 1 = 0 have a solution?

Quiz 2: This construction is a more involved description of the complex num-
bers C, compare the first paragraph of this snapshot.

Quiz 3: Does the quadratic form 2% + x122 + 23 have a nontrivial zero over Fy?
How about the quadratic form 2% + 23 over F3?

For the last part of the quiz, you may in a first step try to find a quadratic
form in two variables over C(¢;) without a nontrivial zero, like t;2% + z3. Let
us check that indeed there cannot be a nontrivial solution of the equation
ti2? + 23 = 0 over C(¢1): no matter what rational functions f(t1) and g(t;) we
plug in for the variables x; and x5, the degree of the enumerator of t; - f(t1)?
is always odd, while the degree of the enumerator of g(t;)? is always even, so
these two terms can never add up to zero. In a similar spirit, you may now try
to show that to(t;22 + 23) + t123 + 22 has no nontrivial zero over C(ty,t2).

Quiz 4: Consider a quadratic form p(x1,...,2,4+1) of dimension n + 1 over
the field F. There are two possible cases: if plugging in z,41 = 0 yields a
quadratic form of dimension n, then by our assumption this quadratic form has a
nontrivial zero, say (u1,...,uy). Then (ui,...,u,,0) is a nontrivial zero of the
quadratic form p(z1,...,Z,41). If, on the other hand, plugging z,+1 = 0 into
p(x1,...,T,y1) yields a quadratic form of dimension lower than n, this means
that at least one variable x; only appears in terms which also contain x,,41. So
(0,...,0,z; = 1,0,...,0) is a nontrivial zero of p(x1,...,ZTnt1).

Quiz 5: N(Q)te that if #2+a2+22422 = 0, then (z123 — 2224)° + (2174 — T223)° +
2, .2
(23 +2%)” =0.
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