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Abstract

We consider a domain Ωε ⊂ RN , N ≥ 2, with a very rough boundary depending
on ε. For instance, if N = 3 the domain Ωε has the form of a brush with an ε-periodic
distribution of thin cylinders with fixed height and a small diameter of order ε. In Ωε

a nonlinear monotone problem with nonlinear Signorini boundary conditions, depending
on ε, on the lateral boundary of the cylinders is considered. We study the asymptotic
behavior of this problem, as ε vanishes, i.e. when the number of thin attached cylinders
increases unboundedly, while their cross sections tend to zero. We identify the limit
problem which is a nonstandard homogenized problem. Namely, in the region filled up
by the thin cylinders the limit problem is given by a variational inequality coupled to an
algebraic system.

Keywords: Homogenization of rough boundaries, nonlinear monotone problems, non-
linear Signorini boundary conditions.
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1 Introduction

This paper is devoted to studying the asymptotic behavior, as ε vanishes, of a nonlinear
monotone problem with nonlinear Signorini boundary conditions, depending on ε, in a domain
Ωε ⊂ RN , N ≥ 2, whose boundary contains a very rough part depending on ε. The geometry
of Ωε is rigorously introduced in Section 2. Roughly speaking, Ωε has the form of a brush in
3D (see Figure 1) or the form of a comb in 2D. It is composed of two parts: a fixed box Ωb

and a “forest” Ωa
ε of cylinders with fixed height and small cross section of diameter of order ε,

ε-periodically distributed in the first N − 1 directions on the upper basis of Ωb.

Figure 1: Ωε

The upper boundary and the lateral boundary of these cylinders are denoted by Σa
ε and

Σa,lat
ε , respectively. Here as well as in the whole of the present paper, the superscripts a, b, and

lat refer to “above”, “below”, and “lateral”, respectively. Moreover, Ωa denotes the “smallest”
box containing Ωa

ε for every ε, Σa and Σ0 its upper basis and its lower basis, respectively, and
Ω = Ωa ∪ Σ0 ∪ Ωb (see Figure 2).
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Figure 2: Ω

Boundary-value problems in a domain with rough boundary arise in many fields of biology,
physics and engineering sciences. For instance, for understanding the motion of ciliated mi-
croorganisms, the flow in a channel with rugose boundary, heat transmission through winglets,
propagation of electromagnetic waves in regions with rough boundaries, air flow through com-
pression system in turbo machine such as a jet engine, the vibrations of foundations of build-
ings, etc. (for instance, see [6], [14], [18], [33], and [41]). It is often impossible to approach
these problems directly with numerical methods, because the rough boundary requires a large
number of mesh points in its neighborhood. Thus, the computational cost associated with
such a problem grows rapidly when ε gets smaller. Moreover, it can occur that the required
discretization step becomes too small for the machine precision. Then, the goal is to approach
the problem on Ωε, when the periodicity ε gets smaller, with a fictious problem on Ω which
can be numerically solved.

In this paper, the following Signorini free boundary value problem is considered

−div(a(x,Duε(x))) + a0(x, uε(x)) = f(x), in Ωε,

uε = 0, on Σa
ε ,

uε(x) ≤ g(x), a(x,Duε(x))νε(x) + ελh(x, uε(x)) ≤ 0,

(uε(x)− g(x))(a(x,Duε(x))νε(x) + ελh(x, uε)) = 0,
on Σa,lat

ε ,

a(x,Duε(x))νε(x) = 0, on ∂Ωε \
(
Σa
ε ∩ Σa,lat

ε

)
,

(1.1)
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where a, a0, and h are Carathéodory functions, satisfying monotone and usual p-growth con-
ditions in the second variable (see assumptions (3.1)-(3.12)), p ∈ [2,+∞[, f ∈ L

p
p−1 (Ω),

g ∈ W 1,p(Ωa) is a non negative function with g|Σa∪Σ0 = 0, λ ∈ [1,+∞[, and νε denotes
the unit outer normal on ∂Ωε. The Signorini boundary conditions in the third and fourth lines
in (1.1) mean that on the lateral boundary of the cylinders Σa,lat

ε one can distinguish two a
priori unknown subsets where uε satisfies the complementary boundary conditions:

uε(x) = g(x), or a(x,Duε(x))νε(x) = −ελh(x, uε).

Problem (1.1) can modelize chemical activity in a multi-structure with thick absorbers
(for instance, the adsorption of nutrients on the tissues of the stomach wall and intestine
lining). The impossibility to control physical processes on the lateral boundary of the teeth
suggests to use Signorini boundary conditions which seem more realistic for describing real
phenomena. Some experiments in thick absorbers are described in [32]. See also [44] about
nonlinear boundary conditions in chemical engineering.

The weak formulation of problem (1.1) is given by the following variational inequality (for
instance, see [37] or our Appendix)

uε ∈ Kε =
{
v ∈ W 1,p(Ωε) : v ≤ g on Σa,lat

ε , v|Σaε = 0
}
,∫

Ωε

a(x,Duε)D(v − uε)dx+

∫
Ωε

a0(x, uε)(v − uε)dx

+ελ
∫

Σa,latε

h(x, uε)(v − uε)dσ ≥
∫

Ωε

f(v − uε)dx, ∀v ∈ Kε.

(1.2)

The existence, the uniqueness, and a priori H1(Ωε)-estimates (independent of ε) of the solution
uε to problem (1.2) will be proved in Section 5. The goal of this paper is to study the
asymptotic behaviour of uε as ε vanishes, i.e. when the number of thin attached cylinders
increases unboundedly, while their thickness tends to zero. In addition, the passage to the
limit is accompanied by the perturbed coefficient ελ in the nonlinear Signorini conditions. The
influence of this perturbation on the asymptotic behavior of the solution will be also studied.

As said above, to studying the asymptotic behavior of problem (1.2), as ε vanishes, one
works in the fixed domain Ω. To this aim, one introduces the zero extension operator to Ωa,
i.e. ṽ denotes the zero extension to Ωa of any function v defined in Ωa

ε (see definition (2.3)).
The main result of this paper is stated in the following theorem.

Theorem 1.1. Let Ωa, Ωb, Σ0, Ωε, Σa
ε , and Σa,lat

ε be defined in Section 2. Assume (3.1)-(3.15).
For every ε, let uε be the unique solution to problem (1.2) and set uaε = uε|Ωaε , ubε = uε|

Ωb
. Let

K be defined by

K =

{
v = (va, vb) ∈ Lp(Ωa)×W 1,p(Ωb) : DxNv

a ∈ Lp(Ωa),

va ≤ g a.e. in Ωa, va|Σa = 0, va|Σ0
= vb|Σ0

}
.

(1.3)

Then,
ũaε ⇀ |ω′|ua weakly in Lp(Ωa), (1.4)
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D̃xNu
a
ε = DxN ũ

a
ε ⇀ |ω′|DxNu

a weakly in Lp(Ωa), (1.5)

D̃x′uaε ⇀ |ω′|d′ weakly in (Lp(Ωa))N−1, (1.6)

ubε ⇀ ub weakly in W 1,p(Ωb), (1.7)

˜a(x,Duaε) ⇀ |ω′| (0, · · · , 0, aN (x, (d′, DxNu
a))) weakly in (L

p
p−1 (Ωa))N , (1.8)

a(x,Dubε) ⇀ a(x,Dub) weakly in (L
p
p−1 (Ωb))N , (1.9)

˜a0(x, uaε) ⇀ |ω′|a0(x, ua) weakly in L
p
p−1 (Ωa), (1.10)

a0(x, ubε) ⇀ a0(x, ub) weakly in L
p
p−1 (Ωb), (1.11)

˜h(x, uaε) ⇀ |ω′|h(x, ua) weakly in L
p
p−1 (Ωa), (1.12)

as ε tends to zero, and (ua, ub) and d′ is the unique solution to the following system

(ua, ub) ∈ K, d′ ∈ (Lp(Ωa))N−1,

a′ (x, (d′, DxNu
a)) = 0, a.e. in Ωa,

|ω′|
∫

Ωa
(aN (x, (d′, DxNu

a)) (DxNv −DxNu
a) + a0(x, ua)(v − ua)) dx

+δλ,1|∂ω′|
∫

Ωa
h(x, ua)(v − ua)dx

+

∫
Ωb

(
a(x,Dub)(Dv −Dub) + a0(x, ub)(v − ub)

)
dx

≥ |ω′|
∫

Ωa
f(v − ua)dx+

∫
Ωb
f(v − ub)dx, ∀v ∈ K,

(1.13)

where a′ = (a1, · · · , aN−1), a = (a′, aN), |ω′| and |∂ω′| denote the (N − 1)-Lebesgue measure
and the (N−2)-Hausdorff measure of the cross-section ω′ of the reference cylinder (see Section
2) and of its boundary ∂ω′, respectively, and δλ,1 is the Kronecker delta.

Problem (1.13) admits a unique solution (ua, ub) ∈ K, d′ ∈ (Lp(Ωa))N−1. This problem is
composed by the algebraic system

a′ (x, (d′(x), DxNu
a(x))) = 0, a.e. in Ωa, (1.14)

with N − 1 equations and N unknowns (d′, ua), coupled to a variational inequality involving
(d′, ua, ub), with ua and ub satisfying a transmission condition on Σ0. In the case of the p-
laplacian, i.e. a(x, ξ) = |ξ|p−2ξ, the algebraic system (1.14) implies d′ = 0 and consequently
in problem (1.13) aN (x, (d′, DxNu

a)) = |DxNu
a|p−2DxNu

a. In general, d′ is not the zero valued
function, also in the linear case a(x, ξ) = A(x)ξ (see Reamark 7.2).

If λ > 1, the Signorini boundary condition does not give any contribution to the limit
problem; while if λ = 1, the Signorini boundary condition becomes the volume integral

|∂ω′|
∫

Ωa
h(x, ua)(v − ua)dx,
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in the limit problem. If λ < 1, the existence and the uniqueness of the solution to problem
(1.2) holds agains true, but one can not expect to obtain a priori estimates independent of ε,
without additional assumptions on h (see Remark 5.4).

If in problem (1.2) one adds the term

εβ
∫

Σa,latε

w(v − uaε)dσ, ∀v ∈ Kε,

with β ∈ [1,+∞[ and w ∈ W 1, p
p−1 (Ωa

ε), it is easy to prove that the following term

δβ,1|∂ω′|
∫

Ωa
w(v − ua)dx, ∀v ∈ K.

will appears in limit problem (1.13).
Problem (1.13) can be seen as the weak formulation of the following problem.

a′ (x, (d′, DxNu
a)) = 0, a.e. in Ωa,

−DxNaN (x, (d′, DxNu
a)) + a0(x, ua) + δλ,1

|∂ω′|
|ω′|

h(x, ua) ≤ f, in Ωa,

ua ≤ g in Ωa,

(ua − g)

(
−DxNaN (x, (d′, DxNu

a)) + a0(x, ua) + δλ,1
|∂ω′|
|ω′|

h(x, ua)− f
)

= 0, in Ωa,

−div(a(x,Dub)) + a0(x, ub) = f, in Ωb,

ua = 0, on Σa,

ua = ub, |ω′|aN (x, (d′, DxNu
a)) = aN(x,Dub), on Σ0,

a(x,Dub) · ν = 0 on ∂Ωb \ Σ0.

The geometry of Ωε and problem (1.2) are rigorously introduced in Section 2 and in Sec-
tion 3, respectively. Section 4 is devoted to introducing an auxiliary problem which transforms
the surface integral appearing in problem (1.2) into a volume integral (see also [15], [27], and
[36]). The existence, the uniqueness, and a priori H1(Ωε)-estimates (independent of ε) of
the solution uε to problem (1.2) are proved in Section 5. The proof is based on showing the
equi-coercivity, the hemicontinuity, the equi-boundedness, and the strict monotonicity of oper-
ator Aε associated with the left-hand side of the variational inequality in (1.2) (see definition
(3.16)-(3.17)), and on applying a general result given by J.L. Lions in [34]. Consequently, a
convergence result is obtained in Theorem 6.1 in Section 6. In the same section, the method of
oscillating test functions introduced by L. Tartar in [45] allows us to prove that the first N − 1

components of the L
p
p−1 (Ω)-weak limit of ˜a(x,Duaε) are zero (Proposition 6.2). The identifi-

cation of the other weak limits (Proposition 6.4) is based on a monotone inequality proved
in Proposition 6.3. Differently from [5], we explicitly note that the proof of this monotone
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relation does not make use of the convergence of the energies, which we can not prove in this
variational inequality. Finally, the limit variational inequality is identified in Section 7, where
also the uniqueness of its solution is proved.

The Signorini boundary conditions were introduced in [43] (see also [26]). About vari-
ational inequality, we refer to [11], [24], [31], and [34]. The homogenization of Signorini’s
type-like problems in perforated domains was studied in [16]. The homogenization of highly
rough boundary is largely studied in literature. The pioneering work was the Ph.D. thesis of
R. Brizzi and J.-P. Chalot [12] (partially published in [13]) where the Laplace equation with
homogeneous Neumann boundary condition was studied, while non-homogeneous Neumann
boundary conditions were considered in [27]. Later, the problem has been revisited in [17] by
the the unfolding technique (see also [1] for a semi-linear problem). An asymptotic expansion
giving an error estimate was built in [35] (see also [39] for the spectral problem). Robin con-
ditions were considered in [19]. Strongly contrasting diffusivity in linear problems was studied
in [30]. Monotone operators always with homogeneous Neumann boundary condition were
studied in [5]. Integral energies with convex integrands defined on one-dimensional networks
were considered in [10]. Linear Signorini boundary conditions were introduced in [38] for the
Laplace equation and in [37] for a semi-linear equation. Linear elasticity was investigated in
[6], [7], and [8], while Stokes problems in [2] and in [18]. Nonconvex energies were treated in [3].
Problems with more general right-hand side were recently examined in [29] and [28]. See [20],
[21], [22], [23], [41], and [42] for control problems. See [4] and [40] for transmission problems
in domains separated by an oscillating interface, and [25] for an Helmotz equation posed in
two half-planes communicating through a random set of channels. The best constant for the
Sobolev trace embedding in Ωε was studied in [9]. A large bibliography on the homogenization
of boundaries with teeth having vanishing height is also present in literature, but this argument
is beyond the scope of this paper and a reader interested in this subject can see the references
quoted in [29].

2 The geometry of the domain with highly rough bound-

ary

Let N ∈ N, N ≥ 2. A generic element of RN−1 will be denoted by x′ and a generic element of
RN = RN−1 × R will be denoted by x = (x′, xN). If A is a Lebesgue-measurable subset of RN

(resp. RN−1), the characteristic function of A in RN (resp. RN−1) will be denoted by χA and
the N -dimensional (resp. (N − 1)-dimensional) measure of A by |A|. The Kronecker delta will
be denoted by δij.

Let Ω′ ⊂ RN−1 be a bounded open connected set with Lipschitz boundary. Moreover, let
la ∈]0,+∞[ and ψb ∈ C(RN−1) be such that

la > 0 > ψb(x′), ∀x′ ∈ RN−1.
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We set
Σa =

{
x ∈ RN ; x′ ∈ Ω′, xN = la

}
,

Ωa =
{
x ∈ RN : x′ ∈ Ω′, 0 < xN < la

}
,

Σ0 =
{
x ∈ RN : x′ ∈ Ω′, xN = 0

}
,

Ωb =
{
x ∈ RN : x′ ∈ Ω′, ψb(x′) < xN < 0

}
,

Ω =
{
x ∈ RN : x′ ∈ Ω′, ψb(x′) < xN < la

}
= Ωa ∪ Σ0 ∪ Ωb.

Let ε ∈]0, 1[ be a parameter taking values in a vanishing sequence of real positive numbers,
let ω′ ⊂⊂]0, 1[N−1 be a bounded open connected set with Cm+2-regularity, m > N−1

2
, and let

Qε be the “forest of cylinders” defined by

Qε =
⋃

k∈ZN−1: εω′+εkbΩ′

(εω′ + εk)× [0, la].

Then, we set

Ωa
ε = Ωa∩Qε, Σa

ε = Σa∩Qε, Σ0
ε = Σ0∩Qε, Σa,lat

ε = ∂Ωa
ε \(Σa

ε∪Σ0
ε), Ωε = Ωa

ε∪Σ0
ε∪Ωb,

(Ωε is a “comb” in dimension N = 2 or a “brush” in dimension N = 3, with basis Ωb and teeth
Qε ∩ Ωa).

Note that
χΩaε ⇀ |ω

′| weakly-star in L∞(Ωa), as ε→ 0, (2.1)

and

χΣaε ⇀ |ω
′| weakly-star in L∞(Σa), χΣ0

ε
⇀ |ω′| weakly-star in L∞(Σ0), as ε→ 0. (2.2)

For every ε and for every function v ∈ (L1(Ωa
ε))

M , with M ∈ N, M ≥ 1, we set

ṽ(x) =

{
v(x), if x ∈ Ωa

ε ,

0, if x ∈ Ωa \ Ωa
ε .

(2.3)

Note that this extension operator actually depends on ε, although this dependence does not
appear in the notation. Moreover, for every function v ∈ (Lp(Ωε))

N , we set

‖v‖Lp(Ωε) = ‖ |v| ‖Lp(Ωε).

3 The problem

Let p ∈ [2,+∞[, let

a : (x, ξ) ∈ Ω× RN → a(x, ξ) = (a1(x, ξ), · · · , aN−1(x, ξ), aN(x, ξ)) = (a′(x, ξ), aN(x, ξ)) ∈ RN

be a function such that
a is a Carathéodory function, (3.1)
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a(x, ·) is strictly monotone for a.e. x ∈ Ω, (3.2)

∃α ∈]0,+∞[, α1 ∈ L1(Ω) : α|ξ|p + α1(x) ≤ a(x, ξ)ξ, a.e. x ∈ Ω, ∀ξ ∈ RN , (3.3)

∃β ∈]0,+∞[, β1 ∈ L
p
p−1 (Ω) : |a(x, ξ)| ≤ β|ξ|p−1 + β1(x), a.e. x ∈ Ω, ∀ξ ∈ RN ; (3.4)

let
a0 : Ω× R→ R

be a function such that
a0 is a Carathéodory function, (3.5)

a0(x, ·) is monotone for a.e. x ∈ Ω, (3.6)

∃γ ∈]0,+∞[, γ1 ∈ L
p
p−1 (Ω) : |a0(x, t)| ≤ γ|t|p−1 + γ1(x), a.e. x ∈ Ω, ∀t ∈ R; (3.7)

let
h : Ωa × R→ R

be a function such that
h is a continuous function, (3.8)

h(x, ·) is monotone for a.e. x ∈ Ωa, (3.9)

∃η ∈]0,+∞[, η1 ∈ W 1, p
p−1 (Ωa) : |h(x, t)| ≤ η|t|p−1 + η1(x), a.e. x ∈ Ωa, ∀t ∈ R; (3.10)

∃Dh and it is a Carathéodory valued-function, (3.11) ∃θ ∈]0,+∞[, θ1 ∈ L
p
p−1 (Ωa) : |Dth(x, t)| ≤ θ|t|p−2,

|Dxih(x, t)| ≤ θ|t|p−1 + θ1(x), a.e. x ∈ Ωa, ∀t ∈ R, ∀i ∈ {1, · · · , N};
(3.12)

let
f ∈ L

p
p−1 (Ω), (3.13)

g ∈ W 1,p(Ωa), g ≥ 0 a.e. in Ωa, g|Σa∪Σ0 = 0, (3.14)

and
λ ∈ [1,+∞[. (3.15)

Consider the operator

Aε : W 1,p(Ωε,Σ
a
ε) =

{
v ∈ W 1,p(Ωε) : v|Σaε = 0

}
7−→

(
W 1,p(Ωε,Σ

a
ε)
)′

(3.16)

that corresponds to the problem (1.1) through the relation

〈Aε(u), v〉ε =

∫
Ωε

(a(x,Du(x))Dv + a0(x, u(x))v) dx

+ελ
∫

Σa,latε

h(x, u(x))vdσ, ∀u, v ∈ W 1,p(Ωε,Σ
a
ε),

(3.17)

where 〈·, ·〉ε denotes the duality pairing of (W 1,p(Ωε,Σ
a
ε))
′

and W 1,p(Ωε,Σ
a
ε).

The following proposition clarifies the meaning of the last integral in (3.17).
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Proposition 3.1. Assume (3.8)-(3.12). Fix ε and let u ∈ W 1,p(Ωa
ε). Then,

h(·, u|Σa,latε
(·)) ∈ L

p
p−1 (Σa,lat

ε ), (3.18)

h(·, u(·)) ∈ W 1,1(Ωa
ε), (3.19)

(h(·, u(·)))|Σa,latε
∈ L1(Σa,lat

ε ), (3.20)

and
h(·, u|Σa,latε

(·)) = (h(·, u(·)))|Σa,latε
, a.e. on Σa,lat

ε , (3.21)

where u|Σa,latε
(·) and (h(·, u(·)))|Σa,latε

denote the trace of uε and the trace of h(·, u(·)) on Σa,lat
ε ,

respectively.

Proof. Assumption (3.10) implies (3.18). Assumptions (3.10) and (3.12) imply (3.19) and
consequently (3.20).

To prove (3.21), let {ϕn}n∈N ⊂ C∞(Ωa
ε) be a sequence such that

ϕn → u strongly in W 1,p(Ωa
ε), as n→ +∞. (3.22)

Consequently,
ϕn|Σa,latε

→ u|Σa,latε
strongly in Lp(Σa,lat

ε ), as n→ +∞. (3.23)

Limits (3.22) and (3.23) provide the existence of a subsequence of N, still denoted by N,
(w0, w1, · · · , wN) ∈ (Lp(Ωa

ε))
N+1, and z ∈ Lp(Σa,lat

ε ) such that
ϕn → u, Dϕn → Du, a.e. in Ωa

ε , as n→ +∞,

|ϕn| ≤ w0, |Dxiϕn| ≤ wi, a.e. in Ωa
ε , ∀i ∈ {1, · · · , N}, ∀n ∈ N,

(3.24)

and 
ϕn|Σa,latε

→ u|Σa,latε
, a.e. in Σa,lat

ε , as n→ +∞∣∣∣ϕn|Σa,latε

∣∣∣ ≤ z, a.e. in Σa,lat
ε .

(3.25)

Using Lebesgue’s dominated convergence theorem and assumptions (3.8), (3.10)-(3.12), from
(3.24) one deduces

h(·, ϕn(·))→ h(·, u(·)) strongly in W 1,1(Ωa
ε), as n→ +∞, (3.26)

and consequently,

(h(·, ϕn(·)))|Σa,latε
→ (h(·, u(·)))|Σa,latε

strongly in L1(Σa,lat
ε ), as n→ +∞. (3.27)

Using the Lebesgue dominated convergence Theorem and assumptions (3.8) and(3.10), from
(3.25) one deduces

h(·, ϕn|Σa,latε
(·))→ h(·, u|Σa,latε

(·)) strongly in L
p
p−1 (Σa,lat

ε ), as n→ +∞. (3.28)

On the other side, thanks to (3.8), one has

h(·, ϕn|Σa,latε
(·)) = (h(·, ϕn(·)))|Σa,latε

, on Σa,lat
ε . (3.29)

Funally, (3.21) is obtained passing to the limit, as n diverges, in (3.29) and using (3.27) and
(3.28).
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Remark 3.2. By virtue of Proposition 3.1, it is not necessary to distinguish between the
functions h(·, u|Σa,latε

(·)) and (h(·, u(·)))|Σa,latε
, and from now on, by abuse of notation, both

functions will be denoted by h(·, u) on Σa,lat
ε . Moreover from now on, some dependances on x

will be omitted when it is clear. So, for instance, a(x,Du(x)) and a0(x, u(x)) will be denoted
by a(x,Du) and a0(x, u), respectively.

The weak formulation of (1.1) is (for instance, see [37] or our Appendix)
uε ∈ Kε =

{
v ∈ W 1,p(Ωε,Σ

a
ε) : v ≤ g on Σa,lat

ε

}
,

〈Aε(uε), v − uε〉ε ≥
∫

Ωε

f(v − uε)dx, ∀v ∈ Kε.
(3.30)

In section 5, the existence, the uniqueness, and a priori estimates of the solution uε of problem
(3.30) will be proved. In what follows, we set

uaε = uε|Ωaε and ubε = uε|
Ωb
.

The goal of this paper is to study the asymptotic behaviour of the solution uε to problem
(3.30), as ε vanishes.

4 An auxiliary problem

This section is devoted to introduce an auxiliary problem which transforms a (N−1)-dimensional
integral into a N -dimensional integral (see also [15], [27], and [36]).

Let Ξ be the unique weak solution to the following problem

∆Ξ =
|∂ω′|
|ω′|

, in ω′,

DΞ·ν = 1, on ∂ω′,∫
ω′

Ξdy′ = 0,

(4.1)

where ν denotes the unit outer normal on ∂ω′ and |∂ω′| the (N − 2)-Hausdorff measure of ∂ω′.
Note that Ξ belongs to C2(ω′), since ω′ has Cm+2-regularity with m > N−1

2
. Consequently Ξ

is also a classical solution to problem (4.1). In what follows, we set

CΞ = sup
ω′
|DΞ|. (4.2)

Lemma 4.1. Let Ξ be denoting also the ]0, 1[N−1- periodic extension to
⋃

k∈ZN−1

(ω′ + k) of the

solution to problem (4.1). Then, one has

ε

∫
Σa,latε

vdσ =
|∂ω′|
|ω′|

∫
Ωaε

vdx+ ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′vdx, ∀v ∈ W 1,1(Ωa

ε). (4.3)
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Proof. Problem (4.1) implies
∆

(
Ξ

(
x′

ε

))
=

1

ε2

|∂ω′|
|ω′|

, in εω′ + εk,

D

(
Ξ

(
x′

ε

))
ν =

1

ε
, on ε∂ω′ + εk,

∀k ∈ ZN−1, (4.4)

where ν denotes the unit outer normal on
⋃

k∈ZN−1

(ε∂ω′ + εk).

Let v ∈ W 1,1(Ωa
ε). Multiplying equations in (4.4) by ε2v, integrating by parts, summing up

on k such that εω′ + εk ⊂ Ω′ , and then integrating in xN on ]0, la[ give (4.3).

5 The existence, the uniqueness, and a priori estimate of

the solution to problem (3.30)

This section is devoted to proving the existence, the uniqueness, and a priori estimates of
the solution to problem (3.30). To this aim, the Poincaré inequality in W 1,p(Ωε,Σ

a
ε) with a

constant independent of ε is needed. It was proved in [35] (see Lemma 1.1) in the case p = 2.
For the convenience of the reader, here with a few of changes the proof in the case p ∈ [2,+∞[
is provided.

Lemma 5.1. The following inequality holds.

∃CPoi ∈]0,+∞[, ∃ε0 ∈]0, 1[ : ‖u‖Lp(Ωε) ≤ CPoi‖Du‖Lp(Ωε),

∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε ∈]0, ε0[.

(5.1)

Proof. Suppose the contrary. Then, there exist a subsequence of {ε}, {εm}m∈N, and a sequence
of functions {vm}m∈N with vm ∈ W 1,p(Ωεm ,Σ

a
εm) such that

lim
m→+∞

εm = 0,

‖vm‖Lp(Ωεm ) = 1 , (5.2)

‖Dvm‖Lp(Ωεm ) <
1

m
. (5.3)

Obviously, the sequence {vm} is bounded in W 1,p(Ωb) and without loss of generality one
can assume that it is a Cauchy sequence in Lp(Ωb). Consequently, thanks to (5.3), {vm} is a
Cauchy sequence also in W 1,p(Ωb). Indeed,

‖vm − vn‖pW 1,p(Ωb)
≤ ‖vm − vn‖pLp(Ωb)

+ 2p−1

(
1

m
+

1

n

)p
, ∀m,n ∈ N.

Hence,
∃v ∈ W 1,p(Ωb) : vm → v strongly in W 1,p(Ωb), as m→ +∞. (5.4)
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On the other side, due to the uniform Dirichlet condition on Σa
εm and (5.3), one get∫

Ωaεm

|vm|p dx ≤ lp
∫

Ωaεm

|Dx3vm|
p dx <

lp

mp
, ∀m ∈ N. (5.5)

Then, (5.2), (5.3), (5.4), and (5.5) imply
1 = ‖vm‖pLp(Ωεm ) −→

∫
Ωb
|v|pdx, as m→ +∞,

∫
Ωb
|∇v|pdx = 0.

This get

v =
1

p
√
|Ωb|

, a.e. in Ωb. (5.6)

Now note that, on the one hand, one has∫
Σ0
εm

|vm|p dx′ ≤ lp−1

∫
Ωaεm

|Dx3vm|
p dx <

lp−1

mp
−→ 0, as m→ +∞.

which implies∣∣∣∣∣
∫

Σ0
εm

vm dx
′

∣∣∣∣∣ ≤ |Σ0
εm|

p−1
p ‖vm‖Lp(Σ0

εm
) ≤ |Ω′|

p−1
p ‖vm‖Lp(Σ0

εm
) −→ 0 as m→ +∞. (5.7)

On the other hand, (5.4), (5.6), and (2.2) provide∫
Σ0
εm

vm dx
′ =

∫
Σ0

χΣ0
εm
vm dx

′ −→ |ω′| 1
p
√
|Ωb|
|Ω′| 6= 0, as m→ +∞,

which contradicts (5.7). The lemma is so proved.

Remark 5.2. In what follows, all constants in inequalities are independent of the parameter ε.
Moreover, the symbol ”∀ε” will mean that ”∃ε0 ∈]0, 1[ : ∀ε ∈]0, ε0[”.

Theorem 5.3. Assume (3.1)-(3.15). Let Aε be defined by (3.16)-(3.17). Then, for every ε,
problem (3.30) admits a solution uε and it is unique. Moreover,

∃ c > 0 : ‖Duε‖Lp(Ωε) ≤ c, ∀ε. (5.8)

Proof. The proof will be divided into five steps.
Step 1. This step is devoted to proving the equi-coercivity of Aε, i.e.

∃c1, c2 ∈]0,+∞[ : 〈Aε(u), u〉ε ≥ −c1 + c2‖Du‖pLp(Ωε)
, ∀u ∈ W 1,p(Ωε,Σ

a
ε), ∀ε. (5.9)
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Assumption (3.3) implies

〈Aε(u), u〉ε ≥ α‖Du‖pLp(Ωε)
− ‖α1‖L1(Ω) +

∫
Ωε

a0(x, u)udx+ ελ
∫

Σa,latε

h(x, u)udσ,

∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.10)

As far as the second term in the right-hand side of (5.10) is concerned, assumption (3.6)
implies ∫

Ωε

a0(x, u)udx =

∫
Ωε

(a0(x, u)− a0(x, 0))(u− 0)dx+

∫
Ωε

a0(x, 0)udx

≥
∫

Ωε

a0(x, 0)udx, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.11)

Moreover, the Young inequality, (3.7), and the Poincaré inequality provide the following esti-
mate for the last term in (5.11)

∣∣∣∣∫
Ωε

a0(x, 0)udx

∣∣∣∣ ≤ ‖γ1‖
p
p−1

L
p
p−1 (Ω)

δ
p
p−1 p

p−1

+
δp

p
‖u‖pLp(Ωε)

≤ p− 1

p

1

δ
p
p−1

‖γ1‖
p
p−1

L
p
p−1 (Ω)

+
δp

p
Cp
Poi ‖Du‖

p
Lp(Ωε)

,

∀δ ∈]0,+∞[, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.12)

By combining (5.11) and (5.12) one obtains∫
Ωε

a0(x, u)udx ≥ −p− 1

p

1

δ
p
p−1

‖γ1‖
p
p−1

L
p
p−1 (Ω)

− δpC
p
Poi

p
‖Du‖pLp(Ωε)

,

∀δ ∈]0,+∞[, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.13)

As far as the last term in the right-hand side of (5.10) is concerned, assumption (3.9)
implies

ελ
∫

Σa,latε

h(x, u)udσ = ελ
∫

Σa,latε

(h(x, u)− h(x, 0))(u− 0)dσ + ελ
∫

Σa,latε

h(x, 0)udσ

≥ ελ
∫

Σa,latε

h(x, 0)udσ, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.14)

The Young inequality and (3.10) provide the following estimate for the last term in (5.14)

∣∣∣∣ελ ∫
Σa,latε

h(x, 0)udσ

∣∣∣∣ ≤ ελ

‖η1‖
p
p−1

L
p
p−1 (Σa,latε )

δ
p
p−1 p

p−1

+
δp

p
‖u‖p

Lp(Σa,latε )

 ,

∀δ ∈]0,+∞[, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.15)
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On the other side, since |η1|
p
p−1 ∈ W 1,1(Ωa), Lemma 4.1 gives

ελ‖η1‖
p
p−1

L
p
p−1 (Σa,latε )

= ελ−1

(
|∂ω′|
|ω′|
‖η1‖

p
p−1

L
p
p−1 (Ωaε )

+ ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′(|η1|

p
p−1 )dx

)

≤
(
|∂ω′|
|ω′|
‖η1‖

p
p−1

L
p
p−1 (Ωa)

+ CΞ

∫
Ωa
|Dx′(|η1|

p
p−1 )|dx

)

≤
(
|∂ω′|
|ω′|

+ CΞ

)
‖|η1|

p
p−1‖W 1,1(Ωa), ∀ε,

(5.16)

where CΞ is defined in (4.2). Moreover, since |u|p ∈ W 1,1(Ωa
ε), Lemma 4.1, (3.15), the Poincaré

inequality, and the Young inequality give

ελ‖u‖p
Lp(Σa,latε )

= ελ−1

(
|∂ω′|
|ω′|
‖u‖pLp(Ωaε ) + ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′(|u|p)dx

)

≤
(
|∂ω′|
|ω′|

Cp
Poi‖Du‖

p
Lp(Ωaε ) + CΞ p

∫
Ωaε

|u|p−1|Du|dx
)

≤
(
|∂ω′|
|ω′|

Cp
Poi‖Du‖

p
Lp(Ωaε ) + CΞ(p− 1)‖u‖pLp(Ωaε ) + CΞ‖Du‖pLp(Ωaε )

)

≤
(
|∂ω′|
|ω′|

Cp
Poi + CΞ(p− 1)Cp

Poi + CΞ

)
‖Du‖pLp(Ωaε ),

∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.17)

By combining (5.14)-(5.17) one obtains

ελ
∫

Σa,latε

h(x, u)udσ ≥ −p− 1

p

1

δ
p
p−1

(
|∂ω′|
|ω′|

+ CΞ

)
‖|η1|

p
p−1‖W 1,1(Ωa)

−δ
p

p

(
|∂ω′|
|ω′|

Cp
Poi + CΞ(p− 1)Cp

Poi + CΞ

)
‖Du‖pLp(Ωaε ),

∀δ ∈]0,+∞[, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.18)

Inequalities (5.10), (5.13), and (5.18) provide

〈Aε(u), u〉ε

≥ −‖α1‖L1(Ω) −
p− 1

p

1

δ
p
p−1

[
‖γ1‖

p
p−1

L
p
p−1 (Ω)

+

(
|∂ω′|
|ω′|

+ CΞ

)
‖|η1|

p
p−1‖W 1,1(Ωa)

]

+

[
α− δp

p

((
1 +
|∂ω′|
|ω′|

+ CΞ(p− 1)

)
Cp
Poi + CΞ

)]
‖Du‖pLp(Ωaε ),

∀δ ∈]0,+∞[, ∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.19)
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Finally, (5.9) follows from (5.19) with a suitable choice of δ.

Step 2. This step is devoted to proving the hemicontinuity of Aε, i.e. the continuity of the
function

t ∈ [0, 1]→ 〈Aε(u1 + tv), u2〉ε,
for every u1, u2, v ∈ W 1,p(Ωε,Σ

a
ε) and for every ε.

Fix t ∈ [0, 1], ε, and u1, u2, v ∈ W 1,p(Ωε,Σ
a
ε). By (3.17) one has

〈Aε(u1 + tv), u2〉ε

=

∫
Ωε

(a(x,D(u1 + tv))Du2 + a0(x, u1 + tv)u2) dx+ ελ
∫

Σa,latε

h(x, u1 + tv)u2dσ.
(5.20)

Assumptions (3.1), (3.4), (3.5), (3.7), (3.8), (3.10), and Lebesgue’s dominated convergence
theorem provide that

lim
t→t

∫
Ωε

a(x,D(u1 + tv))Du2dx =

∫
Ωε

a(x,D(u1 + tv))Du2dx,

lim
t→t

∫
Ωε

a0(x, u1 + tv)u2dx =

∫
Ωε

a0(x, u1 + tv)u2dx,

lim
t→t

∫
Σa,latε

h(x, u1 + tv)u2dσ =

∫
Σa,latε

h(x, u1 + tv)u2dσ.

(5.21)

By combining (5.20) and (5.21) one obtains

lim
t→t
〈Aε(u1 + tv), u2〉ε = 〈Aε(u1 + tv), u2〉ε.

Step 3. This step is devoted to proving the equi-boundedness of Aε, i.e.

∃C ∈]0,+∞[ : |〈Aε(u), v〉ε|

≤ C
(

1 + ‖u‖p−1
W 1,p(Ωε)

)
‖v‖W 1,p(Ωε), ∀u, v ∈ W 1,p(Ωε,Σ

a
ε), ∀ε.

(5.22)

As far as the first integral in the right-hand side of (3.17) is concerned, assumptions (3.4)
and (3.7), and Hölder inequality imply

∣∣∣∣∫
Ωε

a(x,Du)Dvdx

∣∣∣∣
≤
∫

Ωε

(β|Du|p−1 + β1)|Dv|dx ≤
(
β‖u‖p−1

W 1,p(Ωε)
+ ‖β1‖

L
p
p−1 (Ω)

)
‖v‖W 1,p(Ωε),

∣∣∣∣∫
Ωε

a0(x, u)vdx

∣∣∣∣
≤
∫

Ωε

(γ|u|p−1 + γ1)|v|dx ≤
(
γ‖u‖p−1

W 1,p(Ωε)
+ ‖γ1‖

L
p
p−1 (Ω)

)
‖v‖W 1,p(Ωε).

∀u, v ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.23)
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As far as the last integral in the right-hand side of (3.17) is concerned, assumption (3.10)
and Hölder inequality imply∣∣∣∣ελ ∫

Σa,latε

h(x, u)vdσ

∣∣∣∣
≤ ελ

∫
Σa,latε

(η|u|p−1 + η1)|v|dσ ≤ ελ
(
η‖u‖p−1

Lp(Σa,latε )
+ ‖η1‖

L
p
p−1 (Σa,latε )

)
‖v‖Lp(Σa,latε )

=
(
ηελ

p−1
p ‖u‖p−1

Lp(Σa,latε )
+ ελ

p−1
p ‖η1‖

L
p
p−1 (Σa,latε )

)
ε
λ
p ‖v‖Lp(Σa,latε ), ∀u, v ∈ W 1,p(Ωε,Σ

a
ε), ∀ε.

(5.24)
Moreover, (5.16) gives

ελ
p−1
p ‖η1‖

L
p
p−1 (Σa,latε )

=

(
ελ‖η1‖

p
p−1

L
p
p−1 (Σa,latε )

) p−1
p

≤
(
|∂ω′|
|ω′|

+ CΞ

) p−1
p

‖|η1|
p
p−1‖

p−1
p

W 1,1(Ωa), ∀ε,

(5.25)

and (5.17) gives

ελ
p−1
p ‖u‖p−1

Lp(Σa,latε )
=
(
ελ‖u‖p

Lp(Σa,latε )

) p−1
p

≤
(
|∂ω′|
|ω′|

Cp
Poi + CΞ(p− 1)Cp

Poi + CΞ

) p−1
p

‖Du‖p−1
Lp(Ωaε ),

≤
(
|∂ω′|
|ω′|

Cp
Poi + CΞ(p− 1)Cp

Poi + CΞ

) p−1
p

‖u‖p−1
(W 1,p(Ωaε )),

∀u ∈ W 1,p(Ωε,Σ
a
ε), ∀ε,

(5.26)

and

ε
λ
p ‖v‖Lp(Σa,latε ) =

(
ελ‖v‖p

Lp(Σa,latε )

) 1
p

≤
(
|∂ω′|
|ω′|

Cp
Poi + CΞ(p− 1)Cp

Poi + CΞ

) 1
p

‖Du‖Lp(Ωaε ),

≤
(
|∂ω′|
|ω′|

Cp
Poi + CΞ(p− 1)Cp

Poi + CΞ

) 1
p

‖u‖W 1,p(Ωaε ),

∀v ∈ W 1,p(Ωε,Σ
a
ε), ∀ε.

(5.27)

Finally, (5.22) follows from (3.17) and (5.23)-(5.27).
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Step 4. This step is devoted to proving the strict monotonicity of Aε, i.e.
〈Aε(u1)−Aε(u2), u1 − u2〉ε ≥ 0 ∀u1, u2 ∈ W 1,p(Ωε,Σ

a
ε),

〈Aε(u1)−Aε(u2), u1 − u2〉ε = 0 ⇐⇒ u1 = u2,

for every ε.
This property follows from assumptions (3.2), (3.6), (3.9), and the Poincaré inequality in

W 1,p(Ωε,Σ
a
ε).

Thus, the existence and uniqueness of the solution to problem (3.30) for every fixed value
ε now follow directly from Theorems 8.2 and 8.3 in [34].

Step 5. This step is devoted to the proof of a priori estimate.
We can choose v = 0 as test-function in (3.30), since 0 belongs to Kε. Then, one has

〈Aε(uε), uε〉ε ≤
∫

Ωε

fuεdx, ∀ε. (5.28)

By virtue of (5.9), the Young inequality, and the Poincaré inequality, inequality (5.28) provides

−c1 + c2‖Duε‖pLp(Ωε)
≤ p− 1

pδ
p
p−1

∫
Ωε

|f |
p
p−1dx+

δp

p

∫
Ωε

|uε|pdx

≤ p− 1

pδ
p
p−1

‖f‖
p−1
p

L
p−1
p (Ω)

+
δp

p
Cp
Poi‖Duε‖

p
Lp(Ωε)

, ∀δ ∈]0,+∞[, ∀ε.

(5.29)

Finally, a priori estimate (5.8) follows from (5.29) and (3.13), with a suitable choice of δ.

Remark 5.4. Of course, the previous proof of the existence and uniqueness of the solution of
problem (3.30) works also if λ < 1, but in this last case the previous proof of a priori estimate
(5.8) does not work. Indeed, if λ < 1, one can not expect to obtain estimates (5.8) without
additional assumptions, as showed by the following example proved in [27]. Let uε ∈ H1(Ωε)
be the unique weak solution of 

−∆uε + uε = f, in Ωε,

Duενε = ελ, on ∂Ωε,
(5.30)

where f ∈ L2(Ω) and λ ∈ [0, 1[, Then,

∃µ1, µ2 ∈]0,+∞[ :
µ1

ε1−λ ≤ ‖uε‖H1(Ωε) ≤
µ2

ε1−λ , ∀ε.

The following result is a consequence of a priori estimate (5.8).

Corollary 5.5. Assume (3.1)-(3.15). Let Aε be defined by (3.16)-(3.17). For every ε, let uε
be the solution to problem (3.30) and set uaε = uε|Ωaε . Then,

∃C ∈]0,+∞[ : ‖h(x, uaε)‖W 1,1(Ωaε ) ≤ C, ∀ε. (5.31)
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Proof. Assumptions (3.10) and (3.12), and Hölder inequality provide that

‖h(x, uaε)‖Lp(Ωaε ) ≤ η

∫
Ωaε

|uaε |p−1dx+

∫
Ωaε

|η1|dx

≤ |Ω|
1
p

(
η‖uaε‖

p−1
Lp(Ωaε ) + ‖η1‖

L
p
p−1 (Ωa)

)
, ∀ε.

and

‖∂xi(h(x, uaε))‖L1(Ωaε ) ≤ ‖(∂xih)(x, uaε)‖L1(Ωaε ) + ‖(∂th)(x, uaε)∂xiu
a
ε‖L1(Ωaε )

≤ θ

∫
Ωaε

|uaε |p−1dx+

∫
Ωaε

|θ1|dx+ θ

∫
Ωaε

|uaε |p−2||∂xiuaε |dx

≤ |Ω|
1
p

(
θ‖uaε‖

p−1
Lp(Ωaε ) + ‖θ1‖

L
p
p−1 (Ωa)

)
+ θ‖uaε‖

p−2
Lp(Ωaε )‖∂xiu

a
ε‖L p2 (Ωaε )

≤ |Ω|
1
p

(
θ‖uaε‖

p−1
Lp(Ωaε ) + ‖θ1‖

L
p
p−1 (Ωa)

+ θ‖uaε‖
p−2
Lp(Ωaε )‖∂xiu

a
ε‖Lp(Ωaε )

)
, ∀ε, ∀i ∈ {1, · · · , N},

which imply (5.31), thanks to a priori estimate (5.8) and the Poincaré inequality.

6 Convergence results

As a consequence of (5.3), we have the following result.

Proposition 6.1. Assume (3.1)-(3.15). Let Aε be defined by (3.16)-(3.17). For every ε,
let uε be the solution to problem (3.30) and set uaε = uε|Ωaε , ubε = uε|

Ωb
. Let K be defined

in (1.3). Then, there exist a subsequence of {ε}, still denoted with {ε}, and (depending on

the subsequence) (ua, ub) ∈ K, d′ ∈ (Lp(Ωa))N−1, (Aa, Ab) ∈ ((L
p
p−1 (Ωa))N × (L

p
p−1 (Ωb))N ,

(Aa0, A
b
0) ∈ L

p
p−1 (Ωa)× L

p
p−1 (Ωb), and Ha ∈ L

p
p−1 (Ωa) such that

ũaε ⇀ |ω′|ua weakly in Lp(Ωa), (6.1)

D̃xNu
a
ε = DxN ũ

a
ε ⇀ |ω′|DxNu

a weakly in Lp(Ωa), (6.2)

D̃x′uaε ⇀ |ω′|d′ weakly in (Lp(Ωa))N−1, (6.3)

ubε ⇀ ub weakly in W 1,p(Ωb), (6.4)

˜a(x,Duaε) ⇀ |ω′|Aa weakly in ((L
p
p−1 (Ωa))N , (6.5)

a(x,Dubε) ⇀ Ab weakly in ((L
p
p−1 (Ωb))N , (6.6)

˜a0(x, uaε) ⇀ |ω′|Aa0 weakly in L
p
p−1 (Ωa), (6.7)

a0(x, ubε) ⇀ Ab0 weakly in L
p
p−1 (Ωb), (6.8)

˜h(x, uaε) ⇀ |ω′|Ha weakly in L
p
p−1 (Ωa), (6.9)

as ε tends to zero.
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Proof. This proposition is an immediate consequences of a priori estimate (5.8), the Poincaré
inequality (5.1), and assumptions (3.4), (3.7), (3.10), and (3.12) (for instance, see [5]). For
sake of completeness, we just recall the proof of (for instance, see [37])

ua ≤ g, a.e. in Ωa. (6.10)

Since uε ∈ Kε, one has

ε

∫
Σa,latε

uaεϕdσ ≤ ε

∫
Σa,latε

gϕdσ, ∀ϕ ∈ C∞0 (Ωa) : ϕ ≥ 0 in Ωa, ∀ε. (6.11)

Thanks to Lemma 4.1, inequality (6.11) is equivalent to

|∂ω|
|ω|

∫
Ωa
ũaεϕdx+ ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′(u

a
εϕ)dx

≤ |∂ω|
|ω|

∫
Ωa
χΩaεgϕdx+ ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′(gϕ)dx, ∀ϕ ∈ C∞0 (Ωa) : ϕ ≥ 0 in Ωa, ∀ε.

By passing to the limit, as ε tends to zero, in this inequality, limits (2.1), (6.1), and a priori
estimate (5.8) provide∫

Ωa
uaϕdx ≤

∫
Ωa
gϕdx, ∀ϕ ∈ C∞0 (Ωa) : ϕ ≥ 0 in Ωa,

which gives (6.10).

The first N − 1 components of Aa are identified by the following proposition (compare [5]).

Proposition 6.2. Assume (3.1)-(3.15). Let Aε be defined by (3.16)-(3.17). For every ε, let

uε be the solution to problem (3.30). Let Aa ∈
(
L

p
p−1 (Ωa)

)N
be satisfying (6.5), up to a

subsequence. Then
(Aa1, · · · , AaN−1) = 0, a.e. in Ωa. (6.12)

Proof. Fix i ∈ {1, · · · , N − 1} and let us prove that

Aai = 0, a.e. in Ωa. (6.13)

Let wi± ∈ W 1,∞
per

(
]0, 1[N−1

)
be a function such that (compare [12]) wi±(y′) = ±yi, for a.e. y′ = (y1, · · · , yN−1) ∈ ω′,

|wi±| ≤ 1, a.e. in ]0, 1[N−1.

Extend this function by periodicity on RN−1 and for every ε set

wiε± : x = (x′, xN) ∈ RN → εwi±

(
x′

ε

)
− ε.

Note that
‖wiε±‖L∞(RN ) ≤ 2ε, ∀ε, (6.14)
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Dxjw
i
ε± = ±δij in Ωa

ε , ∀j ∈ {1, · · · , N}, ∀ε, (6.15)

and, since wiε± ≤ 0, in Ωa
ε ,

wiε±ψ + uε ∈ Kε, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa, ∀ε.

Choosing these last functions as test functions in the inequality in (3.30) gives∫
Ωaε

(
a(x,Duaε)D

(
wiε±ψ

)
+ a0(x, uaε)w

i
ε±ψ

)
dx+ ελ

∫
Σa,latε

h(x, uaε)w
i
ε±ψdσ

≥
∫

Ωaε

fwiε±ψdx, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa, ∀ε,

(6.16)

that is, thanks to (6.15),∫
Ωaε

(
±ai(x,Duaε)ψ + wiε±a(x,Duaε)Dψ + a0(x, uaε)w

i
ε±ψ

)
dx

+ελ
∫

Σa,latε

h(x, uaε)w
i
ε±ψdσ ≥

∫
Ωaε

fwiε±ψdx, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa, ∀ε.

(6.17)

As far as the first integral in (6.17) is concerned, (6.5), (6.7), and (6.14) provide that∫
Ωaε

(
±ai(x,Duaε)ψ + wiε±a(x,Duaε)Dψ + a0(x, uaε)w

i
ε±ψ

)
dx

=

∫
Ωa

(
± ˜ai(x,Duaε)ψ + wiε±

˜a(x,Duaε)Dψ + ˜a0(x, uaε)w
i
ε±ψ

)
dx

−→ ±|ω′|
∫

Ωa
Aiψdx, as ε→ 0, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa.

(6.18)

As far as the second integral in (6.17) is concerned, estimate (5.31) and Lemma 4.1 give∣∣∣∣ελ ∫
Σa,latε

h(x, uaε)w
i
ε±ψdx

∣∣∣∣
=

∣∣∣∣ελ−1 |∂ω′|
|ω′|

∫
Ωaε

h(x, uaε)w
i
ε±ψdx+ ελ

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′

(
h(x, uaε)w

i
ε±ψ

)
dx

∣∣∣∣
=

∣∣∣∣∣ελ−1 |∂ω′|
|ω′|

∫
Ωaε

h(x, uaε)w
i
ε±ψdx+ ελ

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′(h(x, uaε))w

i
ε±ψdx+

ελ
∫

Ωaε

±(DxiΞ)

(
x′

ε

)
h(x, uaε)ψdx+ ελ

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′ψh(x, uaε)w

i
ε±dx

∣∣∣∣∣
≤ Cελ

[
2
|∂ω′|
|ω′|
‖ψ‖L∞(Ωa) + CΞ‖ψ‖C1(Ωa)(4ε+ 1)

]
−→ 0,

as ε→ 0, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa,

(6.19)
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where CΞ is defined in (4.2).
As far as the last integral in (6.17) is concerned, (3.13) and (6.14) provides that∣∣∣∣∫

Ωaε

fwiε±ψdx

∣∣∣∣ ≤ ε2‖ψ‖L∞(Ωa)‖f‖L1(Ωa) −→ 0,

as ε→ 0, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa.

(6.20)

Finally, passing to the limit, as ε vanishes, in (6.17), thanks to (6.18)-(6.20), one obtains

±
∫

Ωa
Aiψdx ≥ 0, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa,

i.e. ∫
Ωa
Aiψdx = 0, ∀ψ ∈ C∞0 (Ωa) : ψ ≥ 0 in Ωa,

which implies (6.13).

Let

V =

{
v = (va, vb) ∈ C∞(Ωa)× C∞(Ωb) :

va ≤ g a.e. in Ωa, va|Σa = 0, va|Σ0
= vb|Σ0

}
.

(6.21)

To identify other limits of Proposition 6.1, the following monotone relation is needed.

Proposition 6.3. Assume (3.1)-(3.15). Let Aε be defined by (3.16)-(3.17). For every ε,
let uε be the solution to problem (3.30). Let (ua, ub) ∈ K, d′ ∈ (Lp(Ωa))N−1, (Aa, Ab) ∈
((L

p
p−1 (Ωa))N×(L

p
p−1 (Ωb))N , (Aa0, A

b
0) ∈ L

p
p−1 (Ωa)×L

p
p−1 (Ωb), and Ha ∈ L

p
p−1 (Ωa) be satisfying

(6.1)-(6.9), up to a subsequence. Then

|ω′|
∫

Ωa
(AaN(DxNu

a − τN) + a(x, τ)(τ − (d′, DxNu
a)) + (Aa0 − a0(x, φ)) (ua − φ)) dx

+

∫
Ωb

((
Ab − a(x, τ)

)
(Dub − τ) +

(
Ab0 − a0(x, φ)

)
(ub − φ)

)
dx

+δλ,1|∂ω′|
∫

Ωa
(Ha − h(x, ψ)) (ua − ψ)dx ≥ 0,

∀τ ∈ (Lp(Ω))3 , ∀φ ∈ Lp(Ω), ∀ψ ∈ Lp(Ωa),

(6.22)

where δλ,1 is the Kronecker delta.

Proof. Fix τ ∈ (Lp(Ω))3 and φ ∈ Lp(Ω).
Assumptions (3.2), (3.6), and (3.9) provide∫

Ωε

((a(x, τ)− a(x,Duε)) (τ −Duε) + (a0(x, φ)− a0(x, uε)) (φ− uε)) dx

+ελ
∫

Σa,latε

(h(x, ψ)− h(x, uε)(ψ − uε)dσ ≥ 0, ∀ψ ∈ C∞(Ωa), ∀ε.
(6.23)
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On the other side, by virtue of (3.30), one has∫
Ωε

(a(x,Duε)(Dv −Duε) + a0(x, uε)(v − uε)) dx+ ελ
∫

Σa,latε

h(x, uε)(v − uε)dσ

≥
∫

Ωε

f(v − uε)dx, ∀v ∈ V , ∀ε.

(6.24)

Adding (6.23) to (6.24) gives∫
Ωε

(a(x,Duε)(Dv − τ) + a(x, τ)(τ −Duε) + a0(x, uε)(v − φ) + a0(x, φ)(φ− uε)) dx

+ελ
∫

Σa,latε

(h(x, uε)(v − ψ) + h(x, ψ)(ψ − uε)) dσ

≥
∫

Ωε

f(v − uε)dx, ∀v ∈ V , ∀ψ ∈ C∞(Ωa), ∀ε.

Since
h(x, uε)(v − ψ) + h(x, ψ)(ψ − uε) ∈ W 1,1(Ωa

ε),

thanks to 4.1 the last inequatily becomes∫
Ωε

(a(x,Duε)(Dv − τ) + a(x, τ)(τ −Duε) + a0(x, uε)(v − φ) + a0(x, φ)(φ− uε)) dx

+ελ−1

(
|∂ω′|
|ω′|

∫
Ωaε

(h(x, uε)(v − ψ) + h(x, ψ)(ψ − uε)) dx

+ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′ (h(x, uε)(v − ψ) + h(x, ψ)(ψ − uε)) dx

)

≥
∫

Ωε

f(v − uε)dx, ∀v ∈ V , ∀ψ ∈ C∞(Ωa), ∀ε,
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i.e.∫
Ωa

(
˜a(x,Duaε)(Dv − τ) + a(x, τ)(τχΩaε − D̃uaε) + ˜a0(x, uaε)(v − φ) + a0(x, φ)(φχΩaε − ũaε)

)
dx

+

∫
Ωb

(
a(x,Dubε)(Dv − τ) + a(x, τ)(τ −Dubε) + a0(x, ubε)(v − φ) + a0(x, φ)(φ− ubε)

)
dx

+ελ−1

(
|∂ω′|
|ω′|

∫
Ωa

(
˜h(x, uaε)(v − ψ) + h(x, ψ)(ψχΩaε − ũaε)

)
dx

+ε

∫
Ωaε

(DΞ)

(
x′

ε

)
Dx′ (h(x, uε)(v − ψ) + h(x, ψ)(ψ − uε)) dx

)

≥
∫

Ωa
f(vχΩaε − ũaε)dx+

∫
Ωb
f(v − ubε)dx, ∀v ∈ V , ∀ψ ∈ C∞(Ωa), ∀ε,

Now passing to the limit, as ε vanishes, in this inequality, thanks to (2.1), (5.31), (6.1)-(6.9),

and (6.12), and taking into account that h(·, ψ(·)) ∈ W 1, p
p−1 (Ωa), one obtains

|ω′|
∫

Ωa
(AaN(DxNv − τN) + a(x, τ)(τ − (d′, DxNu

a)) + Aa0(v − φ) + a0(x, φ)(φ− ua)) dx

+

∫
Ωb

(
Ab(Dv − τ) + a(x, τ)(τ −Dub) + Ab0(v − φ) + a0(x, φ)(φ− ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
(Ha(v − ψ) + h(x, ψ)(ψ − ua)) dx

≥ |ω′|
∫

Ωa
f(v − ua)dx+

∫
Ωb
f(v − ub)dx, ∀v ∈ V , ∀ψ ∈ C∞(Ωa).

(6.25)
Finally, since V is dense in K and C∞(Ωa) is dense in Lp(Ωa), inequality (6.25) holds true with
v = (ua, ub) and ψ ∈ Lp(Ωa), too. So (6.22) is proved.

The limits of Proposition 6.1 will be identified in the next proposition, by using monotone
inequality (6.22).

Proposition 6.4. Assume (3.1)-(3.15). Let Aε be defined by (3.16)-(3.17). For every ε,
let uε be the solution to problem (3.30). Let (ua, ub) ∈ K, d′ ∈ (Lp(Ωa))N−1, (Aa, Ab) ∈
((L

p
p−1 (Ωa))N×(L

p
p−1 (Ωb))N , (Aa0, A

b
0) ∈ L

p
p−1 (Ωa)×L

p
p−1 (Ωb), and Ha ∈ L

p
p−1 (Ωa) be satisfying

(6.1)-(6.9), up to a subsequence. Then

a′ (x, (d′, DxNu
a)) = 0, a.e. in Ωa, (6.26)

AaN = aN (x, (d′, DxNu
a)) , a.e. in Ωa, (6.27)

Ab = a(x,Dub), a.e. in Ωb, (6.28)

Aa0 = a0(x, ua), a.e. in Ωa, (6.29)
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Ab0 = a0(x, ub), a.e. in Ωb, (6.30)

Ha = h(x, ua), a.e. in Ωa, (6.31)

where a′ = (a1, · · · , aN−1).

Proof. In (6.22) choosing

τ = (d′ + tϕ,DxNu
a), a.e. in Ωa, with ϕ ∈ (C∞0 (Ωa))N−1 and t ∈]0,+∞[,

τ = Dub, a.e. in Ωb,

φ = ua, a.e. in Ωa,

φ = ub, a.e. in Ωb,

ψ = ua, a.e. in Ωa,

one derives∫
Ωa
a′ (x, (d′ + tϕ,DxNu

a)) tϕdx ≥ 0, ∀ϕ ∈ (C∞0 (Ωa))N−1, ∀t ∈]0,+∞[. (6.32)

By multiplying (6.32) by 1
t

and letting t tend to zero, thanks to assumptions (3.1) and (3.4),
one obtains ∫

Ωa
a′ (x, (d′, DxNu

a))ϕdx ≥ 0, ∀ϕ ∈ (C∞0 (Ωa))N−1,

which implies (6.26).
In (6.22) choosing

τ = (d′, DxNu
a + tϕ), a.e. in Ωa, with ϕ ∈ C∞0 (Ωa) and t ∈]0,+∞[,

τ = Dub, a.e. in Ωb,

φ = ua, a.e. in Ωa,

φ = ub, a.e. in Ωb,

ψ = ua, a.e. in Ωa,

one derives∫
Ωa

(−AaN + aN (x, (d′, DxNu
a + tϕ))) tϕdx ≥ 0, ∀ϕ ∈ C∞0 (Ωa), ∀t ∈]0,+∞[. (6.33)

By multiplying (6.33) by 1
t

and letting t tend to zero, thanks to assumptions (3.1) and (3.4),
one obtains ∫

Ωa
(−AaN + aN (x, (d′, DxNu

a)))ϕdx ≥ 0, ∀ϕ ∈ C∞0 (Ωa),

which implies (6.27).
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By arguing in the same way, one identifies the other limits. More precisely, in (6.22)
choosing 

τ = (d′, DxNu
a), a.e. in Ωa,

τ = Dub + tϕ, a.e. in Ωb, with ϕ ∈ (C∞0 (Ωb))N and t ∈]0,+∞[,

φ = ua, a.e. in Ωa,

φ = ub, a.e. in Ωb,

ψ = ua, a.e. in Ωa,

one derives (6.28).
In (6.22) choosing

τ = (d′, DxNu
a), a.e. in Ωa,

τ = Dub, a.e. in Ωb,

φ = ua + tϕ, a.e. in Ωa, with ϕ ∈ C∞0 (Ωa) and t ∈]0,+∞[,

φ = ub, a.e. in Ωb,

ψ = ua, a.e. in Ωa,

one derives (6.29).
In (6.22) choosing

τ = (d′, DxNu
a), a.e. in Ωa,

τ = Dub, a.e. in Ωb,

φ = ua, a.e. in Ωa,

φ = ub + tϕ, a.e. in Ωb, with ϕ ∈ C∞0 (Ωb) and t ∈]0,+∞[,

ψ = ua, a.e. in Ωa,

one derives (6.30).
In (6.22) choosing

τ = (d′, DxNu
a), a.e. in Ωa,

τ = Dub, a.e. in Ωb,

φ = ua, a.e. in Ωa,

φ = ub, a.e. in Ωb,

ψ = ua + tϕ, a.e. in Ωa, with ϕ ∈ C∞0 (Ωa) and t ∈]0,+∞[,
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one derives (6.31).

7 Proof of Theorem 1.1

Proof. Proposition 6.1, Proposition 6.2, and Proposition 6.4 provide the existence of a sub-
sequence of {ε}, still denoted with {ε}, and (depending on the subsequence) (ua, ub) ∈ K,
d′ ∈ (Lp(Ωa))N−1 such that (1.4)-(1.12), and (6.26) hold true. Moreover, choosing in (6.25)

τ = (d′, DxNu
a), a.e. in Ωa,

τ = Dub, a.e. in Ωb,

φ = ua, a.e. in Ωa,

φ = ub, a.e. in Ωb,

ψ = ua, a.e. in Ωa,

(note that this choice is admissible since C∞(Ωa) is dense in Lp(Ωa)), and taking into account
(6.27)-(6.31), one derives

|ω′|
∫

Ωa
(aN (x, (d′, DxNu

a)) (DxNv −DxNu
a) + a0(x, ua)(v − ua)) dx

+

∫
Ωb

(
a(x,Dub)(Dv −Dub) + a0(x, ub)(v − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
h(x, ua)(v − ua)dx

≥ |ω′|
∫

Ωa
f(v − ua)dx+

∫
Ωb
f(v − ub)dx, ∀v ∈ V ,

which implies the variational inequality in (1.13), since V is dense in K.
To prove the uniqueness of the solution to problem (1.13), at first note that this problem
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is equivalent to

(ua, ub) ∈ K, d′ ∈ (Lp(Ωa))N−1,

|ω′|
∫

Ωa
(a (x, (d′, DxNu

a)) ((ξ,DxNv)− (d′, DxNu
a)) + a0(x, ua)(v − ua)) dx

+

∫
Ωb

(
a(x,Dub)(Dv −Dub) + a0(x, ub)(v − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
h(x, ua)(v − ua)dx

≥ |ω′|
∫

Ωa
f(v − ua)dx+

∫
Ωb
f(v − ub)dx, ∀v ∈ K, ∀ξ ∈ (Lp(Ωa))N−1.

(7.1)

Assume that also (ua, ub) ∈ K and d
′ ∈ (Lp(Ωa))N−1 is a solution to problem (7.1), i.e.

(ua, ub) ∈ K, d
′ ∈ (Lp(Ωa))N−1,

|ω′|
∫

Ωa

(
a
(
x, (d

′
, DxNu

a)
)

((ξ,DxNv)− (d
′
, DxNu

a)) + a0(x, ua)(v − ua)
)
dx

+

∫
Ωb

(
a(x,Dub)(Dv −Dub) + a0(x, ub)(v − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
h(x, ua)(v − ua)dx

≥ |ω′|
∫

Ωa
f(v − ua)dx+

∫
Ωb
f(v − ub)dx, ∀v ∈ K, ∀ξ ∈ (Lp(Ωa))N−1.

(7.2)

By choosing v = (ua, ub) and ξ = d
′

as test functions in (7.1), v = (ua, ub) and ξ = d′ as
test functions in (7.2), and adding the obtained inequalities, one obtains

|ω′|
∫

Ωa

(
a (x, (d′, DxNu

a))− a
(
x, (d

′
, DxNu

a)
))

((d
′
, DxNu

a)− (d′, DxNu
a))dx

+|ω′|
∫

Ωa
(a0(x, ua)− a0(x, ua)) (ua − ua)dx

+

∫
Ωb

((
a(x,Dub)− a(x,Dub)

)
(Dub −Dub) +

(
a0(x, ub)− a0(x, ub)

)
(ub − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
(h(x, ua)− h(x, ua)) (ua − ua)dx ≥ 0.

(7.3)
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On the other side, by virtue of assumptions (3.2), (3.6), and (3.9), one has

|ω′|
∫

Ωa

(
a (x, (d′, DxNu

a))− a
(
x, (d

′
, DxNu

a)
))

((d
′
, DxNu

a)− (d′, DxNu
a))dx

+|ω′|
∫

Ωa
(a0(x, ua)− a0(x, ua)) (ua − ua)dx

+

∫
Ωb

((
a(x,Dub)− a(x,Dub)

)
(Dub −Dub) +

(
a0(x, ub)− a0(x, ub)

)
(ub − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
(h(x, ua)− h(x, ua)) (ua − ua)dx ≤ 0.

(7.4)

Comparing (7.3) and (7.4) gives

|ω′|
∫

Ωa

(
a (x, (d′, DxNu

a))− a
(
x, (d

′
, DxNu

a)
))

((d
′
, DxNu

a)− (d′, DxNu
a))dx

+|ω′|
∫

Ωa
(a0(x, ua)− a0(x, ua)) (ua − ua)dx

+

∫
Ωb

((
a(x,Dub)− a(x,Dub)

)
(Dub −Dub) +

(
a0(x, ub)− a0(x, ub)

)
(ub − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
(h(x, ua)− h(x, ua)) (ua − ua)dx = 0,

i.e.

|ω′|
∫

Ωa

(
a (x, (d′, DxNu

a))− a
(
x, (d

′
, DxNu

a)
))

((d′, DxNu
a)− (d

′
, DxNu

a))dx

+|ω′|
∫

Ωa
(a0(x, ua)− a0(x, ua)) (ua − ua)dx

+

∫
Ωb

((
a(x,Dub)− a(x,Dub)

)
(Dub −Dub) +

(
a0(x, ub)− a0(x, ub)

)
(ub − ub)

)
dx

+δλ,1|∂ω′|
∫

Ωa
(h(x, ua)− h(x, ua)) (ua − ua)dx = 0,

which implies, by virtue of (3.2), (3.6), and (3.9),

∫
Ωa

(
a (x, (d′, DxNu

a))− a
(
x, (d

′
, DxNu

a)
))

((d′, DxNu
a)− (d

′
, DxNu

a))dx = 0,

∫
Ωb

(
a(x,Dub)− a(x,Dub)

)
(Dub −Dub)dx = 0.

(7.5)
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Thanks to (3.2), from (7.5) it follows that

d′ = d
′
, a.e. in Ωa,

DxNu
a = DxNu

a, a.e. in Ωa, (7.6)

Dub = Dub, a.e. in Ωb. (7.7)

Due to
ua|Σa = 0 = ua|Σa ,

equality (7.6) implies
ua = ua, a.e. in Ωa. (7.8)

Moreover, since
ua|Σ0

= ub|Σ0
, ua|Σ0

= ub|Σ0
,

equality (7.8) implies
ub|Σ0

= ub|Σ0
,

which combined with (7.7) gives
ub = ub, a.e. in Ωb.

The uniqueness of the solution to problem (1.13) is so proved. It implies that limits in (1.4)-
(1.12) hold true for all the sequence {ε}. The proof of Theorem 1.1 is so completed.

Remark 7.1. If in definition (3.17) of Aε, one adds the term

εβ
∫

Σa,latε

wvdσ, ∀v ∈ W 1,p(Ωε,Σ
a
ε),

with β ∈ [1,+∞[ and w ∈ W 1, p
p−1 (Ωa

ε), then it is easy to prove that the following term

δβ,1|∂ω′|
∫

Ωa
w(v − ua)dx.

will appears in limit problem (1.13).

Remark 7.2. Let
a(x, ξ) = A(x)ξ, a.e. x ∈ Ω, ∀ ξ ∈ RN ,

where A is a N ×N matrix-valued function such that
A = (Aij)i,j∈{1,··· ,N} ∈ (L∞(Ω))N×N ,

∃α ∈]0,+∞[ : A(x) ξ ξ ≥ α |ξ|2, a.e. x ∈ Ω, ∀ ξ ∈ RN .

Set
A′ = (Aij)i,j=1,...,N−1, V ′ = (AiN)i=1,··· ,N−1, H ′ = (ANj)j=1,··· ,N−1,

so that the matrix A can be written by blocks as

A =

(
A′ V ′

H ′ ANN

)
.
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Moreover, define
a0 = ANN −H ′ (A′)−1 V ′, a.e. in Ω.

Then, it is easily seen that in Theorem 1.1 (for instance, compare [29])

d′ = −A′−1
V ′DxNu

a, a.e. in Ωa,

and
aN (x, (d′, DxNu

a)) = a0DxNu
a, a.e. in Ωa.

In particular,
d′ = (0, · · · , 0) and a0 = 1, a.e. in Ωa,

if A = I.
In the case of the p-laplacian, i.e.

a(x, ξ) = |ξ|p−2ξ,

the algebraic system (1.14) implies d′ = 0 and consequently

aN (x, (d′, DxNu
a)) = |DxNu

a|p−2DxNu
a.

8 Appendix

This section is devoted to recalling how to obtain the weak formulation (3.30) of the problem
(1.1).

Since the trace of g on Σ0 is equal to zero, extending g = 0 on Ωb, one obtains that g ∈ Kε
(see (3.30) for the definition of Kε).

Assume that problem (1.1) admits a classical solution. Multiplying the equation in problem
(1.1) by uε − g, integrating by parts on Ωε, and taking into account the boundary conditions
for uε give ∫

Ωb

a(x,Duε)Duεdx+

∫
Ωaε

a(x,Duε)D(uε − g)dx

+

∫
Ωb

a0(x, uε)uεdx+

∫
Ωaε

a0(x, uε)(uε − g)dx+ ελ
∫

Σa,latε

h(x, uε)(uε − g)dσ

=

∫
Ωb

fuεdx+

∫
Ωaε

f(uε − g) dx.

(8.1)

Now, multiplying the equation in problem (1.1) by v − g with v ∈ Kε and integrating by
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parts on Ωε give∫
Ωb

a(x,Duε)Dvdx+

∫
Ωaε

a(x,Duε)D(v − g)dx

+

∫
Ωb

a0(x, uε)vdx+

∫
Ωaε

a0(x, uε)(v − g)dx+ ελ
∫

Σa,latε

h(x, uε)(v − g)dσ

=

∫
Ωb

fvdx+

∫
Ωaε

f(v − g)dx

+

∫
Σa,latε

(
a(x,Duε))νε(x) + ελh(x, uε)

)
(v − g)dσ, ∀v ∈ Kε.

(8.2)

Since
v ≤ g and a(x,Duε))νε(x) + ελh(x, uε) ≤ 0, a.e. on Σa,lat

ε ,

one has ∫
Σa,latε

(
a(x,Duε)νε(x) + ελh(x, uε)

)
(v − g) dσ ≥ 0. (8.3)

Then, combining (8.2) and (8.3) gives∫
Ωb

a(x,Duε)Dvdx+

∫
Ωaε

a(x,Duε)D(v − g)dx

+

∫
Ωb

a0(x, uε)vdx+

∫
Ωaε

a0(x, uε)(v − g)dx+ ελ
∫

Σa,latε

h(x, uε)(v − g)dσ

≥
∫
Ωb

fvdx+

∫
Ωaε

f(v − g)dx, ∀v ∈ Kε.

(8.4)

Finally, subtracting (8.1) from (8.4), one obtains∫
Ωε

a(x,Duε)D(v − uε)dx+

∫
Ωε

a0(x, uε)(v − uε)dx+ ελ
∫

Σa,latε

h(x, uε)(v − uε)dσ

≥
∫

Ωε

f(v − uε)dx, ∀v ∈ Kε.

By taking into account definition (3.17) of Aε, the weak formulation (3.30) of the problem
(1.1) is so obtained.

33



Acknowledgments

The authors wish to thank the ”Mathematisches Forschungsinstitut Oberwolfach” (Germany)
where they were invited from July 30 to August 12, 2017, in the framework of ”Rip Programme”
and where this research was started.

The first author is a member of (and his scientific activity is partially supported by) the
”Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)”
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Dunod, Paris, (1969).

[35] T.A. Mel’nyk, Homogenization of the Poisson equation in a thick periodic junction, Z.
Anal. Anwendungen, 18 (1999), pp. 953–975.

[36] T.A. Mel’nyk, Homogenization of a singularly perturbed parabolic problem in a thick
periodic junction of the type 3:2:1, Ukrainian Math. J. 52 (2000), 11, pp. 1737-1748.

[37] T.A. Mel’nyk and I.A. Nakvasiuk, Homogenization of a semilinear variational in-
equality in a thick multi-level junction, Journal of Inequalities and Applications (2016)
2016-104

[38] T.A. Mel’nyk, I.A. Nakvasiuk, and W.L. Wendland, Homogenization of the Sig-
norini boundary-value problem in a thick junction and boundary integral equations for the
homogenized problem, Math. Methods Appl. Sci. 34 (2011), 7, 758-775.

[39] T.A. Mel’nyk and S.A. Nazarov, Asymptotic behavior of the Neumann spectral prob-
lem solution in a domain of “tooth comb” type, J. Math. Sci., 85 (1997), pp. 2326–2346.

[40] J. Nevard and J.B. Keller, Homogenization of rough boundaries and interfaces, SIAM
J. Appl. Math., 57 (1997), pp. 1660–1686.

36



[41] A. K. Nandakumaran, R. Prakash, and B. C. Sardar, Periodic controls in an
oscillating domain: controls via unfolding and homogenization, SIAM J. Control Optim.
53 (2015), 5, pp. 3245-3269.

[42] R. Prakash, Optimal control problem for the time-dependent Kirchhoff-Love plate in a
domain with rough boundary, Asymptot. Anal. 81 (2013), 3-4, pp. 337-355.

[43] A. Signorini, Sopra alcune questioni di Elastostatica. Atti della Soc. Ital. per il Progresso
della Scienze (1963).

[44] I. Stakgold, Reaction-diffusion problems in chemical engineering, Nonlinear Diffusion
Problems (Montecatini Terme, 1985), pp. 119-152, Lecture Notes in Math. 1224 Springer,
Berlin, (1986)
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