

Oberwolfach
Preprints

Mathematisches Forschungsinstitut Oberwolfach gGmbH
Oberwolfach Preprints (OWP) ISSN 1864-7596

OWP 2018 - 12
ARMIN EFTEKHARI, RAPHAEL A. HAUSER AND
ANDREAS GRAMMENOS

MOSES: A Streaming Algorithm for Linear
Dimensionality Reduction

Oberwolfach Preprints (OWP)

Starting in 2007, the MFO publishes a preprint series which mainly contains research results
related to a longer stay in Oberwolfach. In particular, this concerns the Research in Pairs-
Programme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an
Oberwolfach Lecture, for example.

A preprint can have a size from 1 - 200 pages, and the MFO will publish it on its website as well as
by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard
copies (DIN A4, black and white copy) by surface mail.

Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its
website www.mfo.de as a documentation of the research work done at the MFO, which you are
accepting by sending us your file.

In case of interest, please send a pdf file of your preprint by email to or ,
respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at
the MFO.

There are no requirements for the format of the preprint, except that the introduction should
contain a short appreciation and that the paper size (respectively format) should be DIN A4,
"letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we
shall add a running number (20XX - XX).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer
and would like to thank you in advance for your cooperation.

Imprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany

Tel +49 7834 979 50
Fax +49 7834 979 55
Email
URL www.mfo.de

The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.

DOI 10.14760/OWP-2018-12

rip@mfo.de owlf@mfo.de

admin@mfo.de

MOSES: A Streaming Algorithm for
Linear Dimensionality Reduction

Armin Eftekhari, Raphael A. Hauser, Andreas Grammenos∗

June 12, 2018

Abstract

This paper introduces Memory-limited Online Subspace Estimation Scheme (MOSES) for both es-
timating the principal components of data and reducing its dimension. More specifically, consider a
scenario where the data vectors are presented sequentially to a user who has limited storage and process-
ing time available, for example in the context of sensor networks. In this scenario, MOSES maintains
an estimate of leading principal components of the data that has arrived so far and also reduces its
dimension. In terms of its origins, MOSES slightly generalises the popular incremental Singular Value
Decomposition (SVD) to handle thin blocks of data. This simple generalisation is in part what allows
us to complement MOSES with a comprehensive statistical analysis that is not available for incremental
SVD, despite its empirical success. This generalisation also enables us to concretely interpret MOSES as
an approximate solver for the underlying non-convex optimisation program. We also find that MOSES
shows state-of-the-art performance in our numerical experiments with both synthetic and real-world
datasets.

Keywords— Principal component analysis, Linear dimensionality reduction, Subspace identification,
Streaming algorithms, Non-convex optimisation.

1 Introduction
Linear models are pervasive in data and computational sciences and Principal Component Analysis (PCA) in
particular is an indispensable tool for detecting linear structure in collected data [1, 2, 3, 4, 5, 6, 7]. Principal
components are the directions that preserve most of the “energy” of a dataset and can be used for linear
dimensionality reduction, among other things. In turn, successful dimensionality reduction is at the heart
of classification, regression, and other learning tasks that often suffer from the “curse of dimensionality”,
where having a small number of training samples in relation to the dimension of data typically leads to
overfitting [8].

In this work, we are interested in both computing the principal components and reducing the dimension
of data that is presented sequentially to a user. Due to hardware limitations, the user can only store small
amounts of data, which in turn severely limits the available processing time for each incoming data vector.
For example, consider a network of battery-powered and cheap sensors that must relay their measurements
to a central node on a daily basis. Each sensor has a small storage and does not have the power to relay all
the raw data to the central node. One solution is then for each sensor to reduce the dimension of its data
to make transmission to the central node possible. Even if each sensor had unlimited storage, the frequent
daily updates scheduled by the central node would force each sensor to reduce the dimension of its data “on
the go” before transmitting it to the central node. A number of similar problems are listed in [9].

Motivated by such scenarios, we are interested in developing a streaming algorithm for linear dimension-
ality reduction, namely an algorithm with minimal storage and computational requirements. As more and
more data vectors arrive, this algorithm would keep a running estimate of the principal components of the

∗AE is with the Alan Turing Institute in London and the School of Mathematics, University of Edinburgh. RAH is with
the Mathematical Institute at the University of Oxford and the Alan Turing Institute. AG is with the University of Cambridge
and the Alan Turing Institute. Emails: aeftekhari@turing.ac.uk, hauser@maths.ox.ac.uk, ag926@cl.cam.ac.uk.

1

data and project the available data onto this estimate to reduce its dimension. As we will see shortly, what
we need here is a streaming algorithm to compute truncated Singular Value Decomposition (SVD).

Incremental SVD is a streaming algorithm that updates its estimate of truncated SVD of the data
matrix with every new incoming vector [10, 11, 12, 13, 14]. To the best of our knowledge and despite
its popularity, incremental SVD lacks comprehensiv statistical guarantees. In fact, [15] only very recently
provided stochastic analysis for two of the variants of incremental SVD in [16, 17]. To be specific, in [15]
the authors studied how well the output of incremental SVD approximates (only) the leading principal
component of data, in expectation. In particular, [15] does not offer any guarantees for dimensionality
reduction, see Section 5 for a detailed review of the prior art.

Contributions. In this paper, we propose Memory-limited Online Subspace Estimation Scheme (MOSES)
for streaming dimensionality reduction. MOSES slightly generalises incremental SVD to update its estimate
with every incoming thin block of data, rather than with every incoming vector. This small difference between
incremental SVD and MOSES is in part what enables us to complement MOSES with a comprehensive
statistical analysis. Indeed, Theorem 1 below considers the important case where the incoming data vectors
are drawn from a zero-mean normal distribution. This stochastic setup is a powerful generalisation of
the popular spiked covariance model common in statistical signal processing [18]. Theorem 1 states that
MOSES nearly matches the performance of “offline” truncated SVD (which has unlimited memory and
computing resources), provided that the corresponding covariance matrix is well-conditioned and has a
small residual. Moreover, we concretely interpret MOSES as an approximate solver for the underlying non-
convex optimisation program. We also find that MOSES shows state-of-the-art performance in our numerical
experiments with both synthetic and real-world datasets.

Organisation. The rest of this paper is organised as follows. Section 2 formally introduces MOSES and
Section 3 motivates this algorithm from an optimisation viewpoint. Section 4 then presents the statistical
guarantees for MOSES, summarised in Theorem 1. Prior art is reviewed in Section 5 and Section 6 numeri-
cally compares MOSES with two main alternatives in the current literature. The proofs are differed to the
supplementary material.

2 Introducing MOSES
Consider a sequence of vectors {yt}Tt=1 ⊂ Rn, presented to us sequentially, and let

YT :=
[
y1 y2 · · · yT

]
∈ Rn×T , (1)

for short. We conveniently assume throughout that YT is centred, namely the entries of each row of YT sum
up to zero. It is then a consequence of the celebrated Eckart-Young-Mirsky Theorem [19, 20] that leading r
principal components of YT in fact coincide with leading r left singular vectors of YT . More specifically, let

YT
SVD
= STΓTQ

∗
T (2)

be the SVD of YT , where ST ∈ Rn×n and QT ∈ RT×T are orthonormal bases, and the diagonal matrix
ΓT ∈ Rn×T contains the singular values of YT in nonincreasing order. Let us assume that rank(YT) ≥ r.
Then the first r columns of ST , which we collect in ST,r ∈ Rn×r, are leading r principal components of YT .
We accordingly decompose YT into two components, namely

YT
SVD
= STΓTQ

∗
T

=
[
ST,r ST,r+

] [ΓT,r
ΓT,r+

] [
QT,r Q∗T,r+

]
= ST,rΓ

∗
T,rQT,r + ST,r+ΓT,r+Q

∗
T,r+

=: YT,r + YT,r+ , (3)

2

where the empty blocks are zero. It is easy to see that the column and row spaces of YT,r are orthogonal to
those of YT,r+ , namely

YT,rY
∗
T,r+ = 0n×n, Y ∗T,rYT,r+ = 0T×T . (4)

Moreover, the Eckart-Young-Mirsky Theorem implies that YT,r = SVDr(YT) is a rank-r truncation of YT .
That is, YT,r is a best rank-r approximation of YT with the corresponding residual

‖YT − YT,r‖2F = min
rank(X)=r

‖YT −X‖2F

= ‖YT,r+‖2F (see (4))

=
∑
i≥r+1

σ2
i (YT)

=: ρ2r(YT), (5)

where σ1(YT) ≥ σ2(YT) ≥ · · · are the singular values of YT . Given leading r principal components of YT ,
namely ST,r in (3), we can reduce the dimension of data from n to r by projecting YT onto the span of ST,r,
that is

S∗T,r · YT = S∗T,r(YT,r + YT,r+) (see (3))

= S∗T,rYT,r (see (4))

= ΓT,rQ
∗
T,r ∈ Rr×T . (see (4)) (6)

The projected data matrix S∗T,rYT ∈ Rr×T again has T data vectors (namely, columns) but these vectors
are embedded in (often much smaller) Rr rather than Rn. Note also that

YT,r = SVDr(YT)

= ST,rS
∗
T,r · YT

= ST,rS
∗
T,r(YT,r + YT,r+) (see (3))

= ST,rS
∗
T,rYT,r (see (4))

= ST,r︸︷︷︸
PCs

· ΓT,rQ
∗
T,r︸ ︷︷ ︸

projected data

. (see (3)) (7)

That is, rank-r truncation of YT encapsulates both leading r principal components of YT , namely ST,r, and
the projected data matrix S∗T,rYT = ΓT,rQ

∗
T,r. In other words, computing a rank-r truncation of the data

matrix both yields its principal components and reduces the dimension of data at once.

We are in this work interested in developing a streaming algorithm to compute YT,r = SVDr(YT), a rank-r
truncation of the data matrix YT . More specifically, to compute YT,r, we are only allowed one pass through
the columns of YT and have available a limited amount of storage, namely O(n) bits. See also Figure 1.

3

Figure 1: Given a data matrix YT ∈ Rn×T , truncated SVD finds the best low-dimensional linear model to
represent the data: For a typically small integer r, we compute YT,r = SVDr(YT) = ST,r · S∗T,rYT , where
ST,r ∈ Rn×r contains leading r principal components of YT and S∗T,rYT ∈ Rr×T is the projected data matrix
with reduced dimension r (instead of n). This paper presents MOSES, a streaming algorithm for truncated
SVD. Put differently, MOSES keeps both a running estimate of the principal components and the projection
of data, received so far, onto this estimate.

For a block size b, our strategy is to iteratively group every b incoming vectors into an n× b block and then
update a rank-r estimate of the data that has been received so far. We assume throughout that r ≤ b ≤ T
and in fact often take the block size as b = O(r). It is convenient to assume that the number of blocks
K := T/b is an integer. Upon arrival of a new data block {yt}kbt=(k−1)b+1, we concatenate these vectors to
form the matrix

yk =
[
y(k−1)b+1 · · · ykb

]
∈ Rn×b.

For every k ∈ [1 : K] := {1, · · · ,K}, we then set

Ŷkb,r = SVDr
([

Ŷ(k−1)b,r yk

])
∈ Rn×kb, (8)

with the convention that Ŷ0,r is the empty matrix. We call this simple algorithm MOSES for Memory-limited
Online Subspace Estimation Scheme. The output of MOSES after K iterations is

ŶKb,r = ŶT,r,

which contains both an estimate of leading r principal components of YT and the projection of YT onto
this estimate, as discussed below. For easy reference, MOSES is summarised in Algorithm 1. An efficient
implementation of MOSES is given in Algorithm 2, which explicitly maintains both the estimates of principal
components and the projected data. As discussed below, the storage and computational requirements of
Algorithm 2 are nearly optimal.

Discussion. MOSES maintains a rank-r estimate of the data that has been received so far, and updates
its estimate in every iteration to account for the new incoming block of data. In other words, MOSES
simultaneously keeps an estimate of principal components and the projection of the available data onto this
estimate. More specifically, note that the final output of MOSES, namely ŶT,r ∈ Rn×T , is at most rank-r,
and let

ŶT,r
SVD
= ŜT,rΓ̂T,rQ̂

∗
T,r, (9)

be its SVD. Then, ŜT,r ∈ Rn×r is MOSES’s estimate of principal components of the data matrix YT , and

Ŝ∗T,rŶT,r = Γ̂T,rQ̂T,r ∈ Rr×T

is the projection of ŶT,r onto this estimate. That is, Ŝ∗T,rŶT,r is the MOSES’s estimate of the projected data
matrix.

4

It is natural to ask how MOSES compares with the “offline” truncated SVD. To be concrete, recall that
YT,r = SVDr(YT) is a rank-r truncation of the data matrix YT with the corresponding residual of ρ2r(YT),
see (5). Because YT,r is a best rank-r approximation of YT , the final output ŶT,r of MOSES cannot be a
better approximation of YT , that is

min
rank(X)=r

‖YT −X‖2F = ‖YT − YT,r‖2F = ρ2r(YT) ≤ ‖YT − ŶT,r‖2F . (10)

However, our main technical contribution in Theorem 1 below states that, under certain conditions, ŶT,r is
not much worse than YT,r, in the sense that

ρ2r(YT) ≤ ‖YT − ŶT,r‖2F . poly(T) · ρ2r(YT), (11)

and the polynomial factor above is relatively small. That is, MOSES for streaming dimensionality reduction
nearly matches the performance of its offline version that has access to unlimited storage and computing
resources, see Section 4 for the details.

Origins. Incremental SVD is a streaming algorithm that updates its estimate of (truncated) SVD of the
data matrix with every new incoming vector [10, 11, 12, 13, 14]. It is easy to verify that MOSES slightly
generalises incremental SVD to update its estimate with every incoming block of data, rather than with
every incoming data vector. As detailed later in Section 5, this small difference between incremental SVD
and MOSES is in part what enables us to complement MOSES with a comprehensive statistical analysis in
Theorem 1 which is, to the best of our knowledge, absent from the literature of incremental SVD, despite
its popularity and empirical success. See Section 5 for more details. This small difference also allows us to
concretely interpret MOSES as an approximate solver for the underlying non-convex program, as detailed
in Section 3.

Storage and computational requirements. The efficient implementation of MOSES in Algorithm 2 is
based on the ideas from incremental SVD and it is straightforward to verify that Algorithms 1 and 2 are
indeed equivalent; at iteration k, the relation between the output of Algorithm 1 (Ŷkb,r) and the output of
Algorithm 2 (Ŝkb,r, Γ̂kb,r, Q̂kb,r) is

Ŷkb,r
SVD
= Ŝkb,rΓ̂kb,rQ̂

∗
kb,r,

where the right-hand side above is the SVD of Ŷkb,r. More specifically, Ŝkb,r ∈ Rn×r has orthonormal
columns and is the MOSES’s estimate of leading r principal components of Ykb ∈ Rn×kb, where we recall
that Ykb is the data received so far. Moreover,

Ŝ∗kb,rŶkb,r = Γ̂kb,rQ̂
∗
kb,r ∈ Rr×kb

is the projection of Ŷkb,r onto this estimate, namely Ŝ∗kb,rŶkb,r is MOSES’s estimate of the projected data
matrix so far. In words, the efficient implementation of MOSES in Algorithm 2 explicitly maintains estimates
of both principal components and the projected data, at every iteration.

Let us now evaluate the storage and computational requirements of MOSES. At the start of iteration k,
Algorithm 2 stores the matrices

Ŝ(k−1)b,r ∈ Rn×r, Γ̂(k−1)b,r ∈ Rr×r, Q̂(k−1)b,r ∈ R(k−1)b×r,

and after that also receives and stores the incoming block yk ∈ Rn×b. This requires O(r(n + (k − 1)b +

1)) + O(bn) bits of memory, because Γ̂(k−1)b,r is diagonal. Assuming that b = O(r), Algorithm 2 therefore
requires O(r(n+ kr)) bits of memory at iteration k. Note that this is optimal, as it is impossible to store a
rank-r matrix of size n× kb with fewer bits when b = O(r).

It is also easy to verify that Algorithm 2 performs O(r2(n+kb)) = O(r2(n+kr)) flops in iteration k. The
dependence of both storage and computational complexity on k is due to the fact that MOSES maintains
both an estimate of principal components in Ŝkb,r and an estimate of the projected data in Γkb,rQ

∗
kb,r. To

5

maximise the efficiency, one might optionally “flush out” the projected data after every n/b iterations, as
described in the last step in Algorithm 2.

Algorithm 1 MOSES: A streaming algorithm for linear dimensionality reduction

Input: Sequence of vectors {yt}t≥1 ⊂ Rn, rank r, and block size b ≥ r.

Output: Sequence {Ŷkb,r}k, where Ŷkb,r ∈ Rn×kb for every k ≥ 1.

Body:

1. Set Ŷ0,r ← {}.

2. For k ≥ 1, repeat

(a) Form yk ∈ Rn×b by concatenating {yt}kbt=(k−1)b+1.

(b) Set Ŷkb,r = SVDr([Ŷ(k−1)b,r yk]), where SVDr(·) returns a rank-r truncated SVD of its argument.

6

Algorithm 2 Efficient implementation of MOSES in Algorithm 1

Input: Sequence of vectors {yt}t ⊂ Rn and block size b.

Output: Sequence {Ŝkb,r, Γ̂kb,r, Q̂kb,r}k.

Body:

1. For k = 1,

(a) Form y1 ∈ Rn×b by concatenating {yt}bt=1.

(b) Set
[Ŝb,r, Γ̂b,r, Q̂b,r] = SVDr(y1),

where Ŝb,r ∈ Rn×r and Q̂b,r ∈ Rb×r have orthonormal columns, and the diagonal matrix Γ̂b,r ∈
Rr×r contains leading r singular values.

2. For k ≥ 2, repeat

(a) Form yk ∈ Rn×b by concatenating {yt}kbt=(k−1)b+1.

(b) Set
q̇k = Ŝ∗(k−1)b,ryk ∈ Rr×b,

ẑk = yk − Ŝ(k−1)b,rq̇k ∈ Rn×b.

(c) Let [ŝk,vk] = QR(ẑk) be the QR decomposition of ẑk, where ŝk ∈ Rn×b has orthonormal columns
and vk ∈ Rb×b.

(d) Let [
uk, Γ̂kb,r, q̂k

]
= SVDr

([
Γ̂(k−1)b,r q̇k

0b×r vk

])
, (12)

where uk, q̂k ∈ R(r+b)×r have orthonormal columns and the diagonal matrix Γ̂kb,r ∈ Rr×r contains
leading r singular values in nonincreasing order.

(e) Let
Ŝkb,r =

[
Ŝ(k−1)b,r ŝk

]
uk.

(f) (optional) If the number of rows of Q̂(k−1)b,r exceeds n and Q̂(k−1)b,r is not needed any more,
it is optional in order to improve efficiency to set Q̂kb,r = q̂k.

(g) Otherwise, set

Q̂kb,r =

[
Q̂(k−1)b,r 0

0 Ib

]
q̂k. (13)

3 Optimisation Viewpoint
MOSES has a natural interpretation as an approximate solver for the non-convex optimisation program
underlying PCA, which serves as its motivation. More specifically, recall that leading r principal components
of YT are obtained by solving the non-convex program

min
U∈G(n,r)

‖YT − PUYT ‖2F , (14)

where the minimization is over the Grassmannian G(n, r), the set of all r-dimensional subspaces in Rn.
Above, PU ∈ Rn×n is the orthogonal projection onto the subspace U . By construction in Section 2, note

7

that

YT =
[
y1 y2 · · · yT

]
(see (1))

=
[
y1 y2 · · · yK

]
∈ Rn×T , (15)

where {yk}Kk=1 are the incoming blocks of data. This allows us to rewrite Program (14) as

min
U∈G(n,r)

‖YT − PUYT ‖2F = min
U∈G(n,r)

K∑
k=1

‖yk − PUyk‖2F (see (15))

=

{
min

∑K
k=1 ‖yk − PUK · · ·PUkyk‖

2
F

U1 = U2 = · · · = UK ,
(16)

where the last minimisation above is over all identical subspaces {Uk}Kk=1 ⊂ G(n, r). Our strategy is to make
a sequence of approximations to the program in the last line above. In the first approximation, we only keep
the first summand in the last line of (16). That is, our first approximation reads as{

min
∑K
k=1 ‖yk − PUK · · ·PUkyk‖

2
F

U1 = U2 = · · · = UK
≥

{
min ‖y1 − PUK · · ·PU1y1‖2F
U1 = U2 = · · · = UK

= min
U∈G(n,r)

‖y1 − PUy1‖2F , (17)

where the second line above follows by setting U = U1 = · · · = UK . Let Ŝb,r be a minimiser of the program
in the last line above. Note that Ŝb,r simply spans leading r principal components of y1, akin to Program
(14). This indeed coincides with the output of MOSES in the first iteration, because

Ŷb,r = SVDr(y1) (see (8))
= PŜb,ry1. (similar to the second line of (7)) (18)

Next consider the next approximation in which we keep two of the summands in the last line of (16), namely{
min

∑K
k=1 ‖yk − PUK · · ·PUkyk‖

2
F

U1 = U2 = · · · = UK
≥

{
min ‖y1 − PUK · · ·PU1y1‖2F + ‖y2 − PUK · · ·PU2y2‖2F
U1 = U2 = · · · = UK ,

(19)

and then we substitute U1 = Ŝb,r above to arrive at the new program{
min ‖y1 − PUK · · ·PU2PŜb,ry1‖2F + ‖y2 − PUK · · ·PU2y2‖2F
U2 = U3 = · · · = UK

= min
U∈G(n,r)

‖y1 − PUPŜb,ry1‖2F + ‖y2 − PUy2‖2F , (20)

8

where the second program above follows by setting U = U2 = · · · = UK . We can rewrite the above program
as

min
U∈G(n,r)

‖y1 − PUPŜb,ry1‖2F + ‖y2 − PUy2‖2F

= min
U∈G(n,r)

∥∥∥[y1 − PUPŜb,ry1 y2 − PUy2

]∥∥∥2
F

= min
U∈G(n,r)

∥∥∥[PŜ⊥b,r
y1 0n×b

]
+ PU⊥

[
PŜb,ry1 y2

]∥∥∥2
F

= ‖PŜ⊥b,ry1‖2F + min
U∈G(n,r)

∥∥∥PU⊥ [PŜb,ry1 y2

]∥∥∥2
F

(see the text below)

= ‖PŜ⊥b,ry1‖2F + min
U∈G(n,r)

∥∥∥PU⊥ [Ŷb,r y2

]∥∥∥2
F
, (see (18)) (21)

and let Ŝ2b,r be a minimiser of the last program above. Above, ⊥ shows the orthogonal complement of a sub-
space. The second to last line above follows because Ŝ2b,r is always within the column span of [PŜb,ry1 y2].

Note also that Ŝ2b,r is the span of leading r principal components of the matrix [Ŷ1,r y2], similar to Pro-
gram (14). This again coincides with the output of MOSES in the second iteration, because

Ŷ2b,r = SVDr

([
Ŷb,r y2

])
(see (8))

= PŜ2b,r

[
Ŷb,r y2

]
. (similar to the second line of (7)) (22)

Continuing this procedure precisely produces the iterates of MOSES. Therefore we might interpret MOSES
as an optimisation algorithm for solving Program (14) by making a sequence of approximations.

4 Performance of MOSES
In this section, we study the performance of MOSES in a stochastic setup. Consider the probability space
(Rn,B, µ), where B is the Borel σ-algebra and µ is an unknown probability measure with zero mean, namely´
Rn y µ(dy) = 0. We are interested in finding an r-dimensional subspace U that best approximates the
probability measure µ. That is, with y drawn from this probability space, we are interested in finding an
r-dimensional subspace U that minimises the population risk :

min
U∈G(n,r)

E ‖y − PUy‖22 = min
U∈G(n,r)

ˆ
Rn
‖y − PUy‖2F µ(dy)

=: ρ2r(µ). (23)

Since µ is unknown, we cannot directly solve Program (23) but suppose that instead we have access to the
training samples {yt}Tt=1 ⊂ Rn drawn independently from this probability space (Rn,B, µ). Let us form
YT ∈ Rn×T by concatenating these vectors, see (1). In lieu of Program (23), we then replace the population
risk above with the empirical risk :

min
U∈G(n,r)

1

T

T∑
t=1

‖yt − PUyt‖22 = min
U∈G(n,r)

1

T
‖YT − PUYT ‖2F (see (1))

=
1

T

∥∥YT − PST,rYT
∥∥2
F

(see the text below)

=
1

T
‖YT − YT,r‖2F (YT,r = SVDr(YT))

=:
ρ2r(YT)

T
. (see (5)) (24)

9

Here, ST,r ∈ G(n, r) is a minimiser of the above program with orthonormal basis ST,r ∈ Rn×r. Note that
ST,r consists of leading r principal components of YT , namely it contains leading r left singular vectors
of YT by the Eckart-Young-Mirsky Theorem [19]. Given its principal components, we can then reduce the
dimension of the data matrix YT ∈ Rn×T from n to r by computing S∗T,rYT ∈ Rr×T . Note also that ST,r is
a possibly sub-optimal choice in Program (23), namely

Ey‖y − PST,ry‖22 ≥ ρ2r(µ). (see (23)) (25)

But one would hope that ST still nearly minimises Program (23), in the sense that

Ey‖y − PST,ry‖22 ≈ ρ2r(µ), (26)

with high probability over the choice of training data {yt}Tt=1. That is, one would hope that the generalisation
error of Program (24) is small. Above, Ey stands for expectation over y, so that the left-hand side of (26)
is still a random variable because of its dependence on ST .

If the training data {yt}Tt=1 is presented to us sequentially and little storage is available, we cannot hope
to directly solve Program (24). Moreover, even if we have enough storage, we might not want to wait for all
the data to arrive before solving Program (24). In this streaming scenario, we may apply MOSES to obtain
the (rank-r) output ŶT,r. We then set

ŜT,r = span(ŶT,r), (27)

with orthonormal basis ŜT ∈ Rn×r. Note that ŜT is MOSES’ estimate of leading r principal components of
the data matrix YT and is possibly suboptimal in the sense that

‖YT − ŶT,r‖F ≥ ρr(YT). (see (24)) (28)

But we would still hope that the output ŶT,r of MOSES is a nearly optimal choice in Program (24), in the
sense that

‖YT − ŶT,r‖F ≈ ρr(YT), (29)

with high probability over the choice of {yt}Tt=1. Moreover, as with (26), ŜT,r is again a possibly suboptimal
choice for Program (23), and yet we would hope that

Ey‖y − PŜT,ry‖
2
2 ≈ ρ2r(µ), (30)

with high probability over the choice of {yt}Tt=1.
To summarise the discussion above, the key questions are whether (26,29,30) hold. Let us answer these

questions for the important case where µ is a zero-mean Gaussian probability measure with covariance matrix
Ξ ∈ Rn×n. For this choice of µ in (23), it is not difficult to verify that

ρ2r(µ) =

n∑
i=r+1

λi(Ξ), (31)

where λ1(Ξ) ≥ λ2(Ξ) ≥ · · · are the eigenvalues of the covariance matrix Ξ. From now on, let us use the
shorthand

ρr = ρr(µ), λi = λi(Ξ), i ∈ [1 : n].

For our choice of µ above as a Gaussian measure with covariance matrix Ξ ∈ Rn×n, one can use standard
tools from the covariance estimation literature to show that (26) holds when T is sufficiently large, the proof
of which is included in Appendix B of the supplementary material for completeness [21, 22, 23].

Proposition 1. Suppose that {yt}Tt=1 ⊂ Rn are drawn independently from a zero-mean Gaussian measure
µ with covariance matrix Ξ ∈ Rn×n and form YT ∈ Rn×T by concatenating these vectors, see (1). Suppose
also that ST,r ∈ G(n, r) is the span of leading r principal components of YT . For 1 ≤ α ≤

√
T/ log T , it then

holds that
ρ2r(YT)

T
. αρ2r, (32)

10

Ey‖y − PST,ry‖22 . αρ2r + α(n− r)λ1

√
log T

T
, (33)

except with a probability of at most T−Cα
2

, where C is a universal constant. Here, . suppresses any universal
constants for a more tidy presentation.

In words, (33) states that the generalisation error of Program (24) is small, namely (26) holds. Indeed,
as T increases, the right-hand side of (33) approaches the residual squared of YT /

√
T , which is bounded

by Cαρ2r. In particular, (26) holds when α = O(1) and T is sufficiently large. As the dimension r of the
subspace that we fit to the data approaches the ambient dimension n, note that the right-hand side of (33)
vanishes.

In contrast, MOSES operates in a streaming regime, where we are unable to fully store the data matrix
YT and consequently unable to find its principal components directly. That is, we cannot directly solve
Program (24) in the streaming regime. However, Theorem 1 below states that MOSES approximately solves
Program (24), namely MOSES approximately estimates the leading principal components of YT and reduces
the dimension of data from n to r with only O(r(n + T)) bits of memory, rather than O(nT) bits required
for solving Program (24) with “offline” truncated SVD. Moreover, MOSES approximately solves Program
(23). In other words, MOSES satisfies both (29,30). These statements are made concrete below and proved
in Appendix C of the supplementary material.

Theorem 1. (Performance of MOSES) Suppose that {yt}Tt=1 ⊂ Rn are drawn independently from a
zero-mean Gaussian probability measure µ with covariance matrix Ξ ∈ Rn×n. Let us define

κ2r :=
λ1
λr
, ρ2r =

n∑
i=r+1

λi, ηr := κr +

√
2αρ2r

p
1
3λr

, (34)

where λ1 ≥ λ2 ≥ · · · are the eigenvalues of Ξ. Let ŜT,r = span(ŶT,r) be the span of the output of MOSES,
see (27). Then, for tuning parameters 1 ≤ α ≤

√
T/ log T and p > 1, it holds that

‖YT − ŶT,r‖2F
T

.
αp

1
3 4pη

2
r

(p
1
3 − 1)2

·min
(
κ2rρ

2
r, rλ1 + ρ2r

)(T

pη2rb

)pη2r−1
, (35)

Ey‖y − PŜT,ry‖
2
2 .

αp
1
3 4pη

2
r

(p
1
3 − 1)2

·min
(
κ2rρ

2
r, rλ1 + ρ2r

)(T

pη2rb

)pη2r−1
+ α(n− r)λ1

√
log T

T
, (36)

except with a probability of at most T−Cα
2

+ e−Cαr and provided that

b ≥ αp
1
3 r

(p
1
6 − 1)2

, b ≥ Cαr, T ≥ pη2rb. (37)

The requirement T ≥ pη2rb in the last line above is only for a compact bound in (35,36) and is not
necessary. A general expression for arbitrary T is given in the proof, see (72). A few remarks about
Theorem 1 are in order.

Discussion of Theorem 1. On the one hand, Theorem 1 and specifically (35) state that (29) holds
under certain conditions, namely MOSES approximately solves Program (14) or, in other words, MOSES
successfully performs streaming (linear) dimensionality reduction. Indeed, (35) loosely speaking states that
‖YT − ŶT,r‖2F scales with ρ2rT pη

2
r/bpη

2
r−1, whereas the residual squared of YT scales with ρ2rT by (32). That

11

is,

‖YT − ŶT,r‖2F ∝
(
T

b

)pη2r−1
ρ2r(YT)

=

(
T

b

)pη2r−1
‖YT − YT,r‖2F , (see (24)) (38)

after ignoring the less important terms. In words, applying offline truncated SVD to YT outperforms the
streaming MOSES by a polynomial factor in T/b.

• This polynomial factor can be negligible when the covariance matrix Ξ of the Gaussian data distribution
µ is well-conditioned (κr = O(1)) and has a small residual (ρ2r = O(λr)), in which case we will have
ηr = O(1), see (34). With p = O(1), (38) then reads as

‖YT − ŶT,r‖2F ∝
(
T

b

)O(1)

ρ2r(YT).

In particular, when the covariance matrix of the data distribution is rank-r, we have by (31) that
ρr = 0. Consequently, (38) reads as ŶT,r = YT,r = YT , namely the outputs of offline truncated SVD
and MOSES coincide. In fact, MOSES correctly identifies the r-dimensional span of incoming data
after processing the very first block.

• At the cost of a larger multiplicative factor on the right-hand side of (35), one might reduce the power
of T in the first term of (35) by choosing p closer to one.

• The dependence of our results on the condition number κr and residual ρr is very likely not an artifact
of the proof techniques, see (34). Indeed, when κr � 1, certain directions are less often observed in
the incoming data vectors {yt}Tt=1, which tilts the estimate of MOSES towards the dominant principal
components corresponding to the very large singular values. Moreover, if ρr � 1, there are too many
significant principal components and MOSES can at most “remember” r of them from its previous
iteration. In this scenario, approximating the incoming data with a rank-r subspace is not a good idea
in the first place, in the sense that the residual ρr(YT) corresponding to the offline truncated SVD will
be large too, and we should perhaps increase the dimension r of the subspace that we wish to fit to
the incoming data {yt}Tt=1.

• Note also that, as b increases, performance of MOSES naturally approaches that of the offline truncated
SVD. In particular, when b = T , MOSES processes all of the data at once and reduces to offline
truncated SVD. This trend is somewhat imperfectly reflected in (35).

On the other hand, Theorem 1 and specifically (36) state that (30) holds under certain conditions. Indeed,
for sufficiently large T , (36) loosely speaking reads as

Ey‖y − PŜT,ry‖
2
2 ∝

(
T

b

)pη2r−1
ρ2r

=

(
T

b

)pη2r−1
min

U∈G(n,r)
E ‖y − PUy‖22 . (see Program (23)) (39)

That is, the output of MOSES is sub-optimal for Program (23) by a polynomial factor in T , which is negligible
if the covariance matrix Ξ of the data distribution µ is well-conditioned and has a small residual, see the
discussion above.

Spiked covariance model. A popular model in the statistics literature is the spiked covariance model,
where the data vectors {yt}Tt=1 are drawn from a distribution with a covariance matrix Ξ. Under this
model, Ξ is a low-rank perturbation of the identity matrix [18, 23], namely λ1(Ξ) = · · · = λr(Ξ) = λ and

12

λr+1(Ξ) = · · · = λn(Ξ) = 1. Proposition 1 in this case reads as

E‖y − PST,ry‖22 ∝ (n− r) + (n− r)λ
√

log T

T
, (40)

where ST,r spans leading r principal components of the data matrix YT . In contrast, Theorem 1 roughly
speaking states that

E‖y − PŜT,ry‖
2
2 ∝ (n− r)

(
Tλ

bn

)n
λ

+ (n− r)λ
√

log T

T
, (41)

where ŜT,r spans the output of MOSES. When λ & n log(T/b) = n logK in particular, we find that the
error bounds in (40,41) are of the same order. That is, under the spiked covariance model, MOSES for
streaming truncated SVD matches the performance of “offline” truncated SVD, provided that the underlying
distribution has a sufficiently large spectral gap. In practice, (41) is often a conservative bound.

Proof strategy. Starting with (36), the proof of Theorem 1 in Appendix C of the supplementary material
breaks down the error associated with MOSES into two components as

Ey‖y − PŜT,ry‖2 ≤
1

T
‖YT − PŜT,rYT ‖

2
F +

∣∣∣∣ 1

T
‖YT − PŜT,rYT ‖

2
F − Ey‖y − PŜT,ry‖

2
2

∣∣∣∣ . (42)

That is, we bound the population risk with the empirical risk. We control the empirical risk in the first part
of the proof by noting that

‖YT − PŜT,rYT ‖F = ‖PŜ⊥T,rYT ‖F

= ‖PŜ⊥T,r (YT − ŶT,r)‖F (see (27))

≤ ‖YT − ŶT,r‖F , (43)

where the last line gauges how well the output of MOSES approximates the data matrix YT , see (35). We
then bound ‖YT − ŶT,r‖F in two steps: As it is common in these types of arguments, the first step finds a
deterministic upper bound for this norm, which is then evaluated for our particular stochastic setup.

• The deterministic bound appears in Lemma 2 and gives an upper bound for ‖YT − ŶT,r‖F in terms of
the overall “innovation”. Loosely speaking, the innovation ‖PS⊥

(k−1)b,r
yk‖F at iteration k is the part of

the new data block yk that cannot be described by the leading r principal components of data arrived
so far, which span the subspace S(k−1)b,r.

• The stochastic bound is given in Lemma 3 and uses a tight perturbation result.

Our argument so far yields an upper bound on the empirical loss ‖YT − PŜT,rYT ‖F that holds with high
probability. In light of (42), it remains to control∣∣∣∣ 1

T
‖YT − PŜT,rYT ‖

2
F − Ey‖y − PŜT,ry‖

2
2

∣∣∣∣ =
1

T

∣∣∣‖YT − PŜT,rYT ‖
2
F − E‖YT − PŜT,rYT ‖

2
F

∣∣∣
=

1

T

∣∣∣‖PŜ⊥T,rYT ‖2F − E‖PŜ⊥T,rYT ‖
2
F

∣∣∣ (44)

with a standard large deviation bound.

Other stochastic models. While our results were restricted to the Gaussian distribution, they extend
easily and with minimal change to the larger class of subgaussian distributions. Beyond subgaussian data
models, Lemma 2 is the key deterministic result, relating the MOSES error to the overall innovation. One
might therefore control the overall innovation, namely the right-hand side of (69) in Lemma 2, for any other
stochastic model at hand.

13

5 Prior Art
In this paper, we presented MOSES for streaming (linear) dimensionality reduction, an algorithm with
minimal storage and computational requirements. One might think of MOSES as an online “subspace
tracking” algorithm that identifies the linear structure of data as it arrives. Once the data has fully arrived,
both principal components and the projected data are readily made available by MOSES and the user could
immediately proceed with any additional learning and inference tasks. Note also that t in our notation need
not correspond to time, see (1). For example, only a small portion of a large data matrix YT can be stored
in the fast access memory of the processing unit, which could instead use MOSES to fetch and process the
data in small chunks and iteratively update its estimate of leading principal components. Moreover, MOSES
can be easily adapted to the dynamic case where the distribution of data changes over time. In dynamic
subspace tracking, each data vector yt is drawn from a subspace S(t) ∈ G(n, r) that might vary with time.

A closely related line of work is the incremental SVD [10, 11, 12, 13, 14]. Incremental SVD is a streaming
algorithm that, given the (truncated) SVD of Yt−1 ∈ Rn×(t−1), aims to compute the truncated) SVD of
Yt = [Yt−1 yt] ∈ Rn×t, where yt ∈ Rn is the newly arrived data vector and Yt−1 is the matrix formed
by concatenating the previous data vectors, see (1). It is easy to verify that MOSES slightly generalises
incremental SVD to handle data blocks, see Algorithm 1. This small difference between incremental SVD
and MOSES is in part what enables us to complement MOSES with a comprehensive statistical analysis
in Theorem 1 which is, to the best of our knowledge, not available for incremental SVD, despite its long
history and popularity. Indeed, [15] only very recently provided stochastic analysis for two of the variants
of incremental SVD in [16, 17]. The results in [15] hold in expectation and for the special case of r = 1, the
first leading principal component. Crucially, these results measure the angle ∠[ST,r, ŜT,r] between the true
leading principal components of the data matrix and those estimated by incremental SVD. In this sense,
these types of results are inconclusive because incremental SVD estimates both left and right leading singular
vectors of the data matrix, namely incremental SVD both estimates the leading principal components of the
data matrix ŜT,r and reduces the dimension of data by computing Ŝ∗T,rŶT,r ∈ Rr×T , where ŶT,r is the final
output of incremental SVD. In contrast to [15], Theorem 1 and specifically (35) assesses the quality of both
of these tasks and establishes that, under certain conditions, MOSES performs nearly as well as offline SVD.
GROUSE [24] is a closely related algorithm for streaming PCA (on data with possibly missing entries) that
can be interpreted as projected stochastic gradient descent on the Grassmannian manifold. GROUSE is
effectively identical to incremental SVD when the incoming data is low-rank [24]. In [25], the authors offer
theoretical guarantees for GROUSE that again does not account for the projected data and are based on the
proof techniques of [15]. Their results hold without any missing data, in expectation, and in a setup similar
to the spiked covariance model. An alternative to GROUSE is SNIPE that has much stronger theoretical
guarantees in case of missing data [26, 27]. In Section 6, we numerically compare MOSES with GROUSE.

One might also view MOSES as a stochastic algorithm for PCA. Indeed, note that Program (23) is
equivalent to {

max Ey‖UU∗y‖2F
U∗U = Ir

=

{
max Ey〈UU∗, yy∗〉
U∗U = Ir

=

{
max Ey〈UU∗, yy∗〉
U∗U 4 Ir,

(45)

where the maximisation is over matrix U ∈ Rn×r. Above, U∗U 4 Ir is the unit ball with respect to the
spectral norm and A 4 B means that B − A is a positive semi-definite matrix. The last identity above
holds because a convex function is always maximised on the boundary of the feasible set. Using the Schur
complement, we can equivalently write the last program above as

max E〈UU∗, yy∗〉[
In U

U∗ Ir

]
< 0(n+r)×(n+r).

=


max 〈UU∗,Ξ〉[

In U

U∗ Ir

]
< 0(n+r)×(n+r),

(46)

where Ξ = E[yy∗] ∈ Rn×n is the covariance matrix of the data distribution µ. Note that Program (46) has a
convex (in fact, quadratic) objective function that is maximised on a convex (conic) feasible set. We cannot
hope to directly compute the gradient of the objective function above, namely 2ΞU , because the distribution

14

of y and hence its covariance matrix Ξ are unknown. Given an iterate Ŝt, one might instead draw a random
vector yt+1 from the probability measure µ and move along the direction 2yt+1y

∗
t+1Ŝt, motivated by the

observation that E[2yt+1y
∗
t+1Ŝt] = 2ΞŜt. This is then followed by back projection onto the feasible set of

Program (45). That is,
Ŝt+1 = P

(
St + 2αt+1yt+1y

∗
t+1Ŝt

)
, (47)

for an appropriate step size αt+1. Above, P(A) projects onto the unit spectral norm ball by setting to one
all singular values of A that exceed one. The stochastic projected gradient ascent for PCA, described above,
is itself closely related to the so-called power method and is at the heart of [28, 29, 30, 31, 32], all lacking a
statistical analysis similar to Theorem 1. One notable exception is the power method in [28] which in a sense
applies mini-batch stochastic projected gradient ascent to solve Program (46), with data blocks (namely,
batches) of size b = Ω(n). There the authors offer statistical guarantees for the spiked covariance model, see
Section 4. As before, these guarantees are for the quality of estimated principal components and silent about
the quality of projected data, which is addressed in Theorem 1. Note also that, especially when the data
dimension n is large, one disadvantage of this approach is its large block size; it takes a long time of Ω(n) for
the algorithm to update its estimate of the principal components. In this setup, we may think of MOSES as
a stochastic algorithm for PCA based on alternative minimisation rather than gradient ascent, see Section 3.
Moreover, MOSES updates its estimate frequently, after receiving every b = O(r) data vectors, and also
maintains the projected data. In Section 6, we numerically compare MOSES with the power method in [28].
A few closely related works are [33, 34, 35, 34].

In the context of online learning and regret minimisation, [36, 32] offer two algorithms the former of
which is not memory optimal and the latter does not have guarantees similar to Theorem 1. See also [37].
A Bayesian approach to PCA is studied in [38, 39]. The expectation maximisation algorithm there could be
implemented in an online fashion but without theoretical guarantees.

Ideas from sketching and randomised linear algebra could be integrated into MOSES and other streaming
dimensionality reduction algorithms [40, 41, 42, 43, 44, 45]. It is also perhaps worth pointing out that one
might consider a streaming algorithm as a special case of distributed computing along the “cone” tree shown
in Figure 2, see also [46, 47]. When the data vectors have missing entries, a closely related problem is
low-rank matrix completion [48, 49, 50].

y1•
y2•

y3• · · · •
yK

Ŷ1,r

•
Ŷ2,r

•
Ŷ3,r

•
ŶK,r

· · ·

Figure 2: Streaming problems may be interpreted as a special case of distributed computing. Each data
block yk lives on a node of the chain graph and the nodes are combined, from left to right, following the
structure of the “cone” tree.

15

6 Experiments
In this section, we investigate the numerical performance of MOSES and compare it against two alternative
algorithms, namely GROUSE [24] and the power method in [51], on both synthetic and real-world datasets.
In all of our experiments, we reveal one by one the data vectors {yt}Tt=1 ⊂ Rn and, for every t, hope to
compute a rank-r truncated SVD of the data matrix arrived so far, namely [y1, · · · , yt]. For the tests that use
synthetic data, the vectors {yt}Tt=1 are drawn independently from a zero-mean Gaussian distribution with
covariance matrix Ξ = SΛS∗, where S ∈ Rn×n is a generic orthonormal basis obtained by orthogonalising
a standard random Gaussian matrix. The entries of the diagonal matrix Λ ∈ Rn×n, namely the eigenvalues
of the covariance matrix Ξ, are selected according to the power law: λi = i−α for a positive α. To be more
succinct, where possible we use MATLAB’s notation for specifying the value ranges in this section.

To assess the performance of MOSES, let Yt = [y1, · · · , yt] ∈ Rn×t be the data received by time t and let
Ŷ m
t,r be the output of MOSES at time t.1 Then the error incurred by MOSES is

1

t
‖Yt − Ŷ m

t,r‖2F , (48)

see Theorem 1. Recall from (5) that the above error is always worse (larger) than the residual of Yt, namely

‖Yt − Ŷ m
t,r‖2F ≥ ‖Yt − Yt,r‖2F = ρ2r(Yt), (see (5)) (49)

where Yt,r = SVDr(Yt) is a rank-r truncated SVD of Yt and ρ2r(Yt) is the corresponding residual. Later in
this section, we compare MOSES against GROUSE [24] and power method [28], both described in Section 5.
These algorithms only estimate the principal components of the data, as opposed to MOSES which also
projects the data onto these estimates. More specifically, let Ŝgt,r ∈ G(n, r) and Ŝpt,r ∈ G(n, r) be the span
of the output of GROUSE and the power method at time t, respectively. These algorithms then incur the
errors

1

t
‖Yt − PŜgt,r

Yt‖2F ,
1

t
‖Yt − PŜpt,r

Yt‖2F , (50)

respectively. Above, PA ∈ Rn×n is the orthogonal projection onto the subspace A. We now set out to do
various tests and report the results. We remark that the accompanying MATLAB code is publicly available.2

Ambient dimension. On a synthetic dataset with α = 1 and T = 2000, we first test MOSES by varying
the ambient dimension as n ∈ {200 : 200 : 1200}, and setting the rank and block size to r = 15, b = 2r = 30.
The average error over ten trials is reported in Figure 3a. Note that the error is increasing in n, see the
discussion under spiked covariance model in Section 4.

Block size. On a synthetic dataset with α = 1 and T = 2000, we test MOSES by setting the ambient
dimension and rank to n = 1200, r = 15, and varying the block size as b ∈ {r : r : 15r}. The average error
over ten trials is reported in Figure 3b. Note that the MOSES is robust against the choice of the block size
and that, at the extreme case of b = T , error vanishes and MOSES reduces to “offline” truncated SVD.

Rank. On a synthetic dataset with α = 1 and T = 2000, we test MOSES by setting the ambient dimension
and block size to n = 1200, b = 2r, and varying the rank as r ∈ {5 : 5 : 25}. The average error over ten
trials is reported in Figure 3c. As expected, the error is decreasing in the dimension r of the subspace that
we fit to the data and in fact, at the extreme case of r = n, there would be no error at all.

Comparisons on synthetic datasets. On synthetic datasets with α ∈ {0.01, 0.1, 0.5, 1} and T = 2000,
we compare MOSES against GROUSE and power method.3 More specifically, we set the ambient dimension

1Note that MOSES updates its estimate after receiving each block of data, namely after every b data vectors. For the sake of
an easier comparison with other algorithms (with different block sizes), we properly “interpolate” the outputs of all algorithms
over time.

2https://github.com/andylamp/moses
3The MATLAB code for GROUSE is publicly available at http://sunbeam.ece.wisc.edu/grouse.

16

https://github.com/andylamp/moses
http://sunbeam.ece.wisc.edu/grouse

200 400 600 800 1000 1200
ambient dimension (n)

1.95

2

2.05

2.1

2.15

er
ro

r

10-6

(a) Variable n, for r = 15, b = 2r

 r 3r 5r 7r 9r 11r 13r 15r
block size (b)

2.114

2.116

2.118

2.12

2.122

2.124

2.126

2.128

er
ro

r

10-5

(b) Variable b, for n = 1200, r = 15

5 10 15 20 25
rank (r)

1

2

3

4

5

6

er
ro

r

10-6

(c) Variable r, for n = 1200, b = 2r

Figure 3: Performance of MOSES on synthetic datasets, see Section 6 for the details.

to n = 200 and the rank to r = 10. For MOSES, the block size was set to b = 2r. For GROUSE and
power method, we set the step size and block size to 2 and 2n = 400, respectively, as these values seemed to
produced the best results overall. Both GROUSE and power method were initialised randomly, as prescribed
in [24, 51]. The average errors of all three algorithms over ten trials versus time is shown in Figure 4. Because
of its large blocks size of O(n) [51], Note that the power method updates its estimate of principal components
much slower than MOSES, but the two algorithms converge to similar errors. The slow updates of power
method will become a problem when working with dynamic data, where the distribution of arriving data
changes over time. We will also see later that MOSES is much faster than the power method.

In order to better evaluate the practicality of our method we also evaluate all these three algorithms on
actual, publicly available datasets; we use four different datasets that contain mote (sensor node) voltage,
humidity, light, and temperature measurements over time [52]. These datasets were selected because they
are publicly available and are representative of real-world applications due to their ambient dimension n
being sufficiently large (> 45) to reflect practical deployments.

Comparison on the mote voltage dataset. The first dataset we evaluate has an ambient dimension of
n = 46 and has T = 7712 columns; it is an inherently volatile dataset as it contains the rapid small voltage
changes the motes exhibit during operation. With the rest of parameters as described in the synthetic
comparison above, the errors over time for all algorithms is shown in Figure 5a in logarithmic scale. MOSES
here outperforms both GROUSE and power method.

17

500 1000 1500 2000
samples

0

0.02

0.04

0.06

0.08

0.1

er
ro

r

MOSES
PM
GROUSE
Offline

(a) α = 0.01

500 1000 1500 2000
samples

0

0.01

0.02

0.03

0.04

0.05

er
ro

r

MOSES
PM
GROUSE
Offline

(b) α = 0.1

500 1000 1500 2000
samples

0

0.5

1

1.5

2

2.5

3

3.5

er
ro

r

10-3

MOSES
PM
GROUSE
Offline

(c) α = 0.5

500 1000 1500 2000
samples

0

0.2

0.4

0.6

0.8

1

er
ro

r

10-3

MOSES
PM
GROUSE
Offline

(d) α = 1

Figure 4: Comparisons on synthetic datasets, see Section 6 for the details.

Comparison on the mote humidity dataset. The second dataset evaluated has an ambient dimension
of n = 48 and has T = 7712 columns. This dataset contains the humidity measurements of motes and is more
periodic in nature with a larger range than the voltage dataset. With the rest of parameters as described in
the synthetic comparison above, the errors over time for all algorithms is shown in Figure 5b in logarithmic
scale. MOSES again outperforms the other two algorithms.

Comparison on the mote light dataset. The third dataset has an ambient dimension n = 48 and has
T = 7712 columns. This dataset contains the light measurements of the motes and contains much more
frequent value changes while having the highest range of all four datasets studied in this section. With the
rest of parameters as described in the synthetic comparison above, the errors over time for all algorithms is
shown in Figure 5c in logarithmic scale. As before, MOSES outperforms the other two algorithms.

Comparison on the mote temperature dataset. The last real dataset we consider in this instance
has an ambient dimension of n = 56 and has T = 7712 columns. This dataset contains the temperature
measurements of the sensor motes and has mostly periodic value changes and infrequent spikes. With the
rest of parameters as described in the synthetic comparison above, the errors over time for all algorithms is
shown in Figure 5d in logarithmic scale. It is evident that MOSES outperforms the other two algorithms.

Computational complexity on synthetic datasets. Let us now turn our attention to the computa-
tional performance of these three algorithms. On synthetic datasets with α = 1 and T = 2000, we compare
the run-time of MOSES to GROUSE and power method, where the block sizes of MOSES and power method,

18

0 2000 4000 6000 8000
samples

10-6

10-4

10-2

100

102

er
ro

r

MOSES
PM
GROUSE

(a) Voltage dataset

0 2000 4000 6000 8000
samples

10-2

100

102

104

er
ro

r

MOSES
PM
GROUSE

(b) Humidity dataset

0 2000 4000 6000 8000
samples

100

102

104

106

108

er
ro

r

MOSES
PM
GROUSE

(c) Light dataset

0 2000 4000 6000 8000
samples

10-4

10-2

100

102

104

106

er
ro

r

MOSES
PM
GROUSE

(d) Temperature dataset

Figure 5: Comparisons on real-world datasets, see Section 6 for the details.

and the step size of GROUSE were set as described in the synthetic tests earlier. This simulation was carried
out with MATLAB 2017b on a 2012 Mac Pro configured with Dual 6-core Intel Xeon X5690 with 64GB of
DDR3 ECC RAM. The average run-time of all three algorithms over five trials and for various choices of
rank r is shown in Figure 6. We note that the computational cost of MOSES remains consistently small
throughout these simulations, especially for large ambient dimensions and ranks where GROUSE and power
method perform poorly, see Figure 6c.

Acknowledgements
AE is supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1 and also by the Turing
Seed Funding grant SF019. RAH is supported by EPSRC grant EP/N510129/1. AG is supported by the
Alan Turing Institute under the EPSRC grant EP/N510129/1 and TU/C/000003. AE is grateful to Chinmay
Hedge, Mike Wakin, Jared Tanner, and Mark Davenport for insightful suggestions and valuable feedback.
Parts of this project were completed when AE was a Leibniz Fellow at Oberwolfach Research Institute for
Mathematics and AE is extremely grateful for their hospitality.

References
[1] P. van Overschee and B. L. de Moor. Subspace identification for linear systems: Theory, implementation, applications.

Springer US, 2012.

[2] B. A. Ardekani, J. Kershaw, K. Kashikura, and I. Kanno. Activation detection in functional MRI using subspace modeling
and maximum likelihood estimation. IEEE Transactions on Medical Imaging, 18(2):101–114, 1999.

19

200 400 600 800 1000
ambient dimension (n)

0

5

10

15

20

25

30

av
er

ag
e

pe
r

tr
ia

l t
im

e
(s

ec
)

MOSES
PM
GROUSE

(a) Running time with r = 1

200 400 600 800 1000
ambient dimension (n)

0

5

10

15

20

25

30

35

av
er

ag
e

pe
r

tr
ia

l t
im

e
(s

ec
)

MOSES
PM
GROUSE

(b) Running time with r = 10

200 400 600 800 1000
ambient dimension (n)

0

20

40

60

80

100

av
er

ag
e

pe
r

tr
ia

l t
im

e
(s

ec
)

MOSES
PM
GROUSE

(c) Running time with r = 50

Figure 6: Computational comlexity of all algorithms on synthetic datasets, see Section 6 for the details.

[3] H. Krim and M. Viberg. Two decades of array signal processing research: The parametric approach. IEEE Signal processing
magazine, 13(4):67–94, 1996.

[4] L. Tong and S. Perreau. Multichannel blind identification: From subspace to maximum likelihood methods. Proceedings
of IEEE, 86:1951–1968, 1998.

[5] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component Analysis. Interdisciplinary Applied Mathematics.
Springer New York, 2016.

[6] Raphael H Hauser and Armin Eftekhari. Pca by optimisation of symmetric functions has no spurious local optima. arXiv
preprint arXiv:1805.07459, 2018.

[7] Raphael A Hauser, Armin Eftekhari, and Heinrich F Matzinger. Pca by determinant optimization has no spurious local
optima. arXiv preprint arXiv:1803.04049, 2018.

[8] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer Series in Statistics. Springer New York, 2013.

[9] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from highly incomplete information.
In Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 704–711. IEEE, 2010.

[10] James R Bunch, Christopher P Nielsen, and Danny C Sorensen. Rank-one modification of the symmetric eigenproblem.
Numerische Mathematik, 31(1):31–48, 1978.

[11] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications,
415(1):20–30, 2006.

[12] Matthew Brand. Incremental singular value decomposition of uncertain data with missing values. Computer Vision?ECCV
2002, pages 707–720, 2002.

[13] Pierre Comon and Gene H Golub. Tracking a few extreme singular values and vectors in signal processing. Proceedings of
the IEEE, 78(8):1327–1343, 1990.

[14] Yongmin Li. On incremental and robust subspace learning. Pattern recognition, 37(7):1509–1518, 2004.

20

[15] A. Balsubramani, S. Dasgupta, and Y. Freund. The fast convergence of incremental pca. In Advances in Neural Information
Processing Systems, pages 3174–3182, 2013.

[16] TP Krasulina. The method of stochastic approximation for the determination of the least eigenvalue of a symmetrical
matrix. USSR Computational Mathematics and Mathematical Physics, 9(6):189–195, 1969.

[17] E. Oja. Subspace methods of pattern recognition. Electronic & electrical engineering research studies. Research Studies
Press, 1983.

[18] Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of statistics,
pages 295–327, 2001.

[19] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211–218, 1936.

[20] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford, pages 1156–1159, 1966.

[21] Armin Eftekhari, Ping Li, Michael B Wakin, and Rachel A Ward. Learning the differential correlation matrix of a smooth
function from point samples. arXiv preprint arXiv:1612.06339, 2016.

[22] Raphael Hauser, Raul Kangro, Jüri Lember, and Heinrich Matzinger. Quantifying the estimation error of principal
components. arXiv preprint arXiv:1710.10124, 2017.

[23] Roman Vershynin. How close is the sample covariance matrix to the actual covariance matrix? Journal of Theoretical
Probability, 25(3):655–686, 2012.

[24] L. Balzano and S. J Wright. On GROUSE and incremental SVD. In IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 1–4. IEEE, 2013.

[25] Dejiao Zhang and Laura Balzano. Global convergence of a grassmannian gradient descent algorithm for subspace estimation.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, page 1460ï¿œ1468, 2016.

[26] Armin Eftekhari, Gregory Ongie, Laura Balzano, and Michael B Wakin. Streaming principal component analysis from
incomplete data. arXiv preprint arXiv:1612.00904, 2018.

[27] A. Eftekhari, L. Balzano, and M. B. Wakin. What to expect when you are expecting on the Grassmannian. arXiv preprint
arXiv:1611.07216, 2016.

[28] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory limited, streaming pca. In Advances in Neural
Information Processing Systems, pages 2886–2894, 2013.

[29] E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random
matrix. Journal of mathematical analysis and applications, 106(1):69–84, 1985.

[30] Terence D Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural networks,
2(6):459–473, 1989.

[31] Kwang In Kim, Matthias O Franz, and Bernhard Scholkopf. Iterative kernel principal component analysis for image
modeling. IEEE transactions on pattern analysis and machine intelligence, 27(9):1351–1366, 2005.

[32] Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimization for pca and pls. In Commu-
nication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pages 861–868. IEEE, 2012.

[33] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications. In Advances in Neural
Information Processing Systems, pages 2861–2869, 2014.

[34] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic gradient descent for some
non-convex matrix problems. arXiv preprint arXiv:1411.1134, 2014.

[35] Prateek Jain, Chi Jin, ShamMKakade, Praneeth Netrapalli, and Aaron Sidford. Streaming pca: Matching matrix bernstein
and near-optimal finite sample guarantees for oja’s algorithm. In Conference on Learning Theory, pages 1147–1164, 2016.

[36] Manfred K Warmuth and Dima Kuzmin. Randomized online pca algorithms with regret bounds that are logarithmic in
the dimension. Journal of Machine Learning Research, 9(Oct):2287–2320, 2008.

[37] Christos Boutsidis, Dan Garber, Zohar Karnin, and Edo Liberty. Online principal components analysis. In Proceedings of
the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 887–901. Society for Industrial and Applied
Mathematics, 2015.

[38] Sam T Roweis. Em algorithms for pca and spca. In Advances in neural information processing systems, pages 626–632,
1998.

[39] Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

[40] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Fixed-rank approximation of a positive-semidefinite
matrix from streaming data. In Advances in Neural Information Processing Systems, pages 1225–1234, 2017.

[41] Jiawei Chiu and Laurent Demanet. Sublinear randomized algorithms for skeleton decompositions. SIAM Journal on
Matrix Analysis and Applications, 34(3):1361–1383, 2013.

[42] Farhad Pourkamali-Anaraki and Stephen Becker. Randomized clustered nystrom for large-scale kernel machines. arXiv
preprint arXiv:1612.06470, 2016.

[43] Alex Gittens and Michael W Mahoney. Revisiting the nystrom method for improved large-scale machine learning. The
Journal of Machine Learning Research, 17(1):3977–4041, 2016.

21

[44] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions: Simple and deterministic
matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016.

[45] Anna C Gilbert, Jae Young Park, and Michael B Wakin. Sketched svd: Recovering spectral features from compressive
measurements. arXiv preprint arXiv:1211.0361, 2012.

[46] MA Iwen and BW Ong. A distributed and incremental svd algorithm for agglomerative data analysis on large networks.
SIAM Journal on Matrix Analysis and Applications, 37(4):1699–1718, 2016.

[47] Ahmed Sameh, Bernard Philippe, Dani Mezher, and Michael W Berry. Parallel algorithms for the singular value decom-
position. In Handbook of parallel computing and statistics, pages 133–180. Chapman and Hall/CRC, 2005.

[48] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery from incomplete observations. IEEE
Journal of Selected Topics in Signal Processing, 10(4):608–622, 2016.

[49] Armin Eftekhari, Dehui Yang, and Michael B Wakin. Weighted matrix completion and recovery with prior subspace
information. IEEE Transactions on Information Theory, 2018.

[50] A. Eftekhari, M. B. Wakin, and R. A. Ward. MC2: A two-phase algorithm for leveraged matrix completion. arXiv preprint
arXiv:1609.01795, 2016.

[51] I. Mitliagkas, C. Caramanis, and P. Jain. Streaming PCA with many missing entries. Preprint, 2014.

[52] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein, and Wei Hong. Model-driven data acquisition
in sensor networks. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages
588–599. VLDB Endowment, 2004.

[53] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar and G. Kutyniok, editors,
Compressed Sensing: Theory and Applications, pages 95–110. Cambridge University Press, 2012.

[54] Mark Rudelson, Roman Vershynin, et al. Hanson-wright inequality and sub-gaussian concentration. Electronic Commu-
nications in Probability, 18, 2013.

[55] P. Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical Mathematics, 12(1):99–
111, 1972.

[56] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Classics in Mathematics.
Springer Berlin Heidelberg, 2013.

A Notation and Toolbox
This section collects the notation and a number of useful results in one place for the convenience of the
reader. We will always use bold letters for matrices and calligraphic letters for subspaces, for example
matrix A and subspace S. In particular, 0a×b denotes the a × b matrix of all zeros. For integers a ≤ b,
we use the convention that [a : b] = {a, · · · , b}. We will also use MATLAB’s matrix notation to represent
rows, columns, and blocks of matrices, for example A[1 : r, :] is the restriction of matrix A to its first r rows.
Throughout, C is an absolute constant, the value of which might change in every appearance.

In the appendices, λ1(A) ≥ λ2(A) ≥ · · · denote the eigenvalues of a symmetric matrix A and σ1(B) ≥
σ2(B) ≥ · · · denotes the singular values of a matrix B. Also ρ2r(B) =

∑
i≥r+1 σ

2
i (B) stands for the residual

of matrix B.
Let us also recall some of the spectral properties of a standard random Gaussian matrix, namely a matrix

populated with independent random Gaussian variables with zero-mean and unit variance. For a standard
Gaussian matrix G ∈ Ra×b with a ≥ b and for fixed α ≥ 1, Corollary 5.35 in [53] dictates that

√
a− α

√
b ≤ σb(G) ≤ σ1(G) ≤

√
a+ α

√
b, (51)

except with a probability of at most e−Cα
2b. Moreover, for a matrix Γ ∈ Ra′×a and α ≥ 1, an application of

the Hensen-Wright inequality [54, Theorem 1.1] yields that∣∣∣‖ΓG‖2F − E‖ΓG‖2F
∣∣∣ ≤ β, (52)

for β ≥ 0 and except with a probability of at most

exp

(
−min

(
β2

b‖Γ‖2‖Γ‖2F
,

β

‖Γ‖2

))
,

22

where ‖ · ‖ stands for spectral norm. In particular, with the choice β = α2‖Γ‖2F b above and α ≥ 1, we find
that

‖ΓG‖2F ≤ (1 + α2)‖Γ‖2F b ≤ 2α2‖Γ‖2F b, (53)

except with a probability of at most

exp
(
−Cα2b‖Γ‖2F /‖Γ‖2

)
≤ exp(−Cα2b).

In a different regime, with the choice of β = α2‖Γ‖2F
√
b in (52) and α2 ≤

√
b, we arrive at∣∣‖ΓG‖2F − E‖ΓG‖2F

∣∣ =
∣∣‖ΓG‖2F − b‖Γ‖2F ∣∣ ≤ α2‖Γ‖2F

√
b, (54)

except with a probability of at most

exp
(
−Cα4‖Γ‖2F /‖Γ‖2

)
≤ exp(−Cα4).

B Proof of Proposition 1
Let

Ξ = SΛS∗ = SΣ2S∗ ∈ Rn×n (55)

be the eigen-decomposition of the covariance matrix Ξ, where S ∈ Rn×n is an orthonormal matrix and the
diagonal matrix Λ = Σ2 ∈ Rn×n contains the eigenvalues of Ξ in nonincreasing order, namely

Λ = Σ2 =


σ2
1

σ2
2

. . .
σ2
n

 ∈ Rn×n, σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
n. (56)

Throughout, we also make use of the condition number and residual, namely

κr =
σ1
σr
, ρ2r = ρ2r(Ξ) =

n∑
i=r+1

σ2
i . (see (31)) (57)

Recall that {yt}Tt=1 ⊂ Rn are the data vectors drawn from the Gaussian measure µ with zero mean and
covariance matrix Ξ, and that YT ∈ Rn×T is obtained by concatenating {yt}Tt=1. It follows that

yt = SΣgt, t ∈ [1 : T],

YT = SΣGT , (58)

where gt ∈ Rn and GT ∈ Rn×T are standard random Gaussian vector and matrix, respectively. That is,
gt and GT are populated with independent Gaussian random variables with zero mean and unit variance.
With these preparations, we are now ready to prove Proposition 1. For y drawn from the Gaussian measure

23

µ, note that

Ey‖y − PST,ry‖22 = Ey‖PS⊥T,ry‖
2
2

= Ey〈PS⊥T,r , yy
∗〉

= 〈PS⊥T,r ,Ξ〉

=

〈
PS⊥T,r ,Ξ−

YTY
∗
T

T

〉
+

1

T
〈PS⊥T,r ,YTY

∗
T 〉

=

〈
PS⊥T,r ,Ξ−

YTY
∗
T

T

〉
+

1

T
‖PS⊥T,rYT ‖

2
F

=

〈
PS⊥T,r ,Ξ−

YTY
∗
T

T

〉
+
ρ2r(YT)

T
(see Program (24))

=
1

T

(
E‖PS⊥T,rYT ‖

2
F − ‖PS⊥T,rYT ‖

2
F

)
+
ρ2r(YT)

T
. (see (58)) (59)

Let us next control the two components in the last line above. The first component above involves the
deviation of random variable ‖PS⊥T,rYT ‖

2
F from its expectation. By invoking the Hensen-Wright inequality

in Appendix A and for α̃2 ≤
√
T , we write that

E‖PS⊥T,rYT ‖
2
F − ‖PS⊥T,rYT ‖

2
F = E‖PS⊥T,rSΣ ·GT ‖2F − ‖PS⊥T,rSΣ ·GT ‖2F (see (58))

≤ α̃2‖PS⊥T,rSΣ‖2F
√
T (see (54))

≤ α̃2‖PS⊥T,rS‖
2
F ‖Σ‖

2
√
T

≤ α̃2(n− r)σ2
1

√
T , (see (56,57)) (60)

except with a probability of at most e−Cα̃
4

. In particular, for the choice of α̃2 = α2
√

log T with α2 ≤√
T/ log T , we find that

E‖PS⊥T,rYT ‖
2
F − ‖PS⊥T,rYT ‖

2
F ≤ α2(n− r)σ2

1

√
T log T , (61)

except with a probability of T−Cα
4

. We next bound the second term in the last line of (59), namely the
residual of YT . Note that

ρ2r(YT) = ρ2r(SΣGT) (see (58))

= ρ2r(ΣGT) (S∗S = In)

= min
rank(X)=r

‖ΣGT −X‖2F . (see (57)) (62)

By substituting above the suboptimal choice of

Xo =

[
Σ[1 : r, 1 : r] ·GT [1 : r, :]

0(n−r)×T

]
, (63)

we find that

ρ2r(YT) = min
rank(X)=r

‖ΣGT −X‖2F (see (62))

≤ ‖ΣGT −Xo‖2F
= ‖Σ[r + 1 : n, r + 1 : n] ·GT [r + 1 : n, :]‖F . (see (63)) (64)

24

Note that GT [r + 1 : n, :] ∈ R(n−r)×T is a standard Gaussian matrix. For α ≥ 1, an application of the
Hensen-Wright inequality in Appendix A therefore implies that

ρ2r(YT) ≤ ‖Σ[r + 1 : n, r + 1 : n] ·GT [r + 1 : n, :]‖2F (see (64))

≤ 2α2‖Σ[r + 1 : n, r + 1 : n]‖2FT (see (53))

= 2α2ρ2rT, (see (57)) (65)

except with a probability of at most e−Cα
2T . We now substitute the bounds in (61) and (65) back into (59)

to arrive at

E‖y − PST,ry‖22 ≤ α2(n− r)σ2
1

√
T log T + 2α2ρ2r, (66)

when α2 ≤
√
T/ log T and except with a probability of at most

T−Cα
4

+ e−Cα
2T ≤ T−Cα

4

,
(
α2 ≤

√
T/ log T

)
where we have used the abuse of notation in which C is a universal constant that is allowed to change in
every appearance. This completes the proof of Proposition 1.

C Proof of Theorem 1
In the rest of this paper, we slightly unburden the notation by using Yk ∈ Rn×kb to denote Ykb. For example,
we will use YK ∈ Rn×T instead of YT because T = Kb. We also write Ŝk,r instead of Ŝkb,r. As with the
proof of Proposition 1, we argue that

Ey‖y − PŜK,ry‖
2
2 ≤

1

T

(
E‖PŜ⊥K,rYT ‖

2
F − ‖PŜ⊥K,rYT ‖

2
F

)
+

1

T
‖PŜ⊥K,rYK‖

2
F (similar to (59))

≤ α2(n− r)σ2
1

√
log T

T
+

1

T
‖PŜ⊥K,rYK‖

2
F (see (61))

= α2(n− r)σ2
1

√
log T

T
+

1

T
‖PŜ⊥K,r (YK − ŶK,r)‖2F (see (27))

≤ α2(n− r)σ2
1

√
log T

T
+

1

T
‖YK − ŶK,r‖2F , (67)

except with a probability of at most T−Cα
4

and provided that α2 ≤
√
T/ log T . It therefore remains to

control the norm in the last line above. Recall that the output of MOSES, namely ŶK,r, is intended to
approximate a rank-r truncation of YK . We will therefore compare the error ‖YK − ŶK,r‖F in (67) with the
true residual ρr(YK). To that end, our analysis consists of a deterministic bound and a stochastic evaluation
of this bound. The deterministic bound is as follows, see Appendix D for the proof.

Lemma 2. For every k ∈ [1 : K], let Yk,r = SVDr(Yk) ∈ Rn×kb be a rank-r truncation of Yk and set
Sk,r = span(Yk,r) ∈ G(n, r). For p > 1, we also set

θk := 1 +
p

1
3 ‖yk‖2

σr(Yk−1)2
. (68)

Then the output of MOSES, namely ŶK,r, satisfies

‖YK − ŶK,r‖2F ≤
p

1
3

p
1
3 − 1

K∑
k=2

(
K∏

l=k+1

θl

)
‖PS⊥k−1,r

yk‖2F , (69)

where PS⊥k−1,r
∈ Rn×n is the orthogonal projection onto the orthogonal complement of Sk−1,r. Above, we use

25

the convention that
∏K
l=K+1 θl = 1.

In words, (69) gives a deterministic bound on the performance of MOSES. The term ‖PS⊥k−1,r
yk‖F in

(69) is in a sense the “innovation” at iteration k, namely the part of the new data block yk that cannot be
described by the current estimate Sk−1,r. The overall innovation in (69) clearly controls the performance of
MOSES. In particular, if the data blocks are drawn from the same distribution, this innovation gradually
reduces as k increases. For example, if {yk}Kk=1 are drawn from a distribution with a rank-r covariance
matrix, then the innovation term vanishes almost surely after finitely many iterations. In contrast, when
the underlying covariance matrix is high-rank, the innovation term decays more slowly and never completely
disappears even as k → ∞. We will next evaluate the right-hand side of (69) in a stochastic setup, see
Appendix G for the proof.

Lemma 3. Suppose that {yt}Tt=1 are drawn from a zero-mean Gaussian probability measure with the covari-
ance matrix Ξ ∈ Rn×n. Let σ2

1 ≥ σ2
2 ≥ · · · be the eigenvalues of Ξ and recall the notation in (57). For

p > 1, also let

ηr := κr +

√
2αρr

p
1
6σr

.

For α ≥ 1, it then holds that

‖YK − ŶK,r‖2F ≤
50p

4
3α2

(p
1
3 − 1)2

·min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)
η2rb

(
2K

pη2r
+ 2

)pη2r
, (70)

except with a probability of at most e−Cα
2r and provided that

b ≥ p
1
3α2r

(p
1
6 − 1)2

, b ≥ Cα2r.

Substituting the right-hand side of (70) back into (67) yields that

Ey‖y − PŜK,ry‖
2
2 ≤ α2(n− r)σ2

1

√
log T

T
+

1

T
‖YK − ŶK,r‖2F , (see (67))

≤ α2(n− r)σ2
1

√
log T

T
+

50p
4
3α2

(p
1
3 − 1)2

·min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

) η2r
K

(
2K

pη2r
+ 2

)pη2r
. (71)

In particular, if K ≥ pη2r , we may simplify the above bound to read

Ey‖y − PŜK,ry‖
2
2 ≤ α2(n− r)σ2

1

√
log T

T
+

50p
1
3α24pη

2
r

(p
1
3 − 1)2

·min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)(K

pη2r

)pη2r−1
, (72)

which completes the proof of Theorem 1.

D Proof of Lemma 2
Recall that the output of MOSES is the sequence of rank-r matrices {Ŷk}Kk=1. For every k < K, it is more
convenient in the proof of Lemma 2 to pad both Yk, Ŷk,r ∈ Rn×kb with zeros to form the n×Kb matrices[

Yk 0n×(K−k)b
]
,

[
Ŷk,r 0n×(K−k)b

]
. (73)

We overload the notation Yk, Ŷk,r to show the new n×Kb matrices in (73). Let

Ŝk,r = span(Ŷk,r) ∈ G(n, r),

Q̂k,r = span(Ŷ ∗k,r) ∈ G(Kb, r) (74)

26

denote the (r-dimensional) column and row spaces of the rank-r matrix Ŷk,r ∈ Rn×Kb, respectively. Let also
Ŝk,r ∈ Rn×r and Q̂k,r ∈ RKb×r be orthonormal bases for these subspaces. We also let Ik ⊂ RKb denote the
b-dimensional subspace spanned by the coordinates [(k − 1)b+ 1 : bk], namely

Ik = span

 0(k−1)b×b
Ib

0(K−k)b×b

 ∈ G(Kb, b), (75)

and we use the notation

Jk := I1 ⊕ I2 · · · ⊕ Ik ∈ G(Kb, kb), k ∈ [1 : K], (76)

to denote the kb-dimensional subspace that spans the first kb coordinates in RKb. The following technical
lemma, proved in Appendix E, gives another way of expressing the output of MOSES, namely {Ŷk,r}Kk=1.

Lemma 4. For every k ∈ [1 : K], it holds that

Ŷk,r = YKPQ̂k,r , (77)

or equivalently
Ŷk−1,r + YkPIk = YKPQ̃k , (78)

where
Q̃k := Q̂k−1,r ⊕ Ik ⊂ RKb (79)

is the direct sum of the two subspaces Q̂k−1,r and Ik. In particular, the update rule (8) can be written as

YKPQ̂k,r = SVDr

(
YKPQ̃k

)
, k ∈ [2 : K]. (80)

Lastly we have the inclusion
Q̂k,r ⊂ Q̃k ⊂ Jk ∈ G(Kb, kb). (81)

In particular, (77) and (81) together imply that

Ŷk,r = YKPJkPQ̂k,r = YkPQ̂k,r ,

that is, only Yk (containing the first kb data vectors) contributes to the formation of Ŷk,r, the output of
algorithm at iteration k, which was to be expected of course. Recall that Ŷk,r is intended to approximate
Yk,r = SVDr(Yk). In light of Lemma 4, let us now derive a simple recursive expression for the residual
Yk − Ŷk,r. For every k ∈ [2 : K], it holds that

Yk − Ŷk,r = YKPJk − YKPQ̂k,r (see (76) and (77))

= YKPJk−1
+ YKPIk − YKPQ̂k,r (see (76))

= Yk−1 + YKPIk − YKPQ̂k,r (see (76))

= Yk−1 − Ŷk−1,r + YKPQ̂k−1,r
+ YKPIk − YKPQ̂k,r (see (77))

=
(
Yk−1 − Ŷk−1,r

)
+ YK

(
PQ̂k−1,r

+ PIk

)
− YKPQ̂k,r

=
(
Yk−1 − Ŷk−1,r

)
+ YK

(
PQ̃k − PQ̂k,r

)
. (see (79)) (82)

Interestingly, the two terms in the last line of (82) are orthogonal, as proved by induction in Appendix F.

Lemma 5. For every k ∈ [2 : K], it holds that〈
Yk−1 − Ŷk−1,r,YK

(
PQ̃k − PQ̂k,r

)〉
= 0. (83)

27

For fixed k ∈ [2 : K], Lemma 5 immediately implies that

‖Yk − Ŷk,r‖2F =
∥∥∥(Yk−1 − Ŷk−1,r

)
+ YK

(
PQ̃k

− PQ̂k,r

)∥∥∥2
F

(see (82))

= ‖Yk−1 − Ŷk−1,r‖2F + ‖YK(PQ̃k − PQ̂k,r)‖
2
F (see Lemma 5)

= ‖Yk−1 − Ŷk−1,r‖2F + ρr

(
Ŷk−1,r + YkPIk

)
. (see (80) and (78)) (84)

Recalling from (74) that Ŝk−1,r = span(Ŷk−1,r), we bound the above expression by writing that

‖Yk − Ŷk,r‖2F = ‖Yk−1 − Ŷk−1,r‖2F + ρr

(
Ŷk−1,r + YkPIk

)
≤ ‖Yk−1 − Ŷk−1,r‖2F +

∥∥∥PŜ⊥k−1,r

(
Ŷk−1,r + YkPIk

)∥∥∥2
F

= ‖Yk−1 − Ŷk−1,r‖2F + ‖PŜ⊥k−1,r
yk‖2F , (see (74)) (85)

where the second line follows from the sub-optimality of the choice of subspace Ŝk−1,r. Let us focus on the
last norm above. For every k, let Yk,r = SVDr(Yk) be a rank-r truncation of Yk with the column span
Sk,r = span(Yk,r). We now write that

‖PŜ⊥k−1,r
yk‖F ≤ ‖PŜ⊥k−1,r

PSk−1,r
yk‖F + ‖PŜ⊥k−1,r

PS⊥k−1,r
yk‖F (triangle inequality)

≤ ‖PŜ⊥k−1,r
PSk−1,r

‖F · ‖yk‖+ ‖PS⊥k−1,r
yk‖F . (86)

The first norm in the last line above gauges the principal angles between the two r-dimensional subspaces
Ŝk−1,r and Sk−1,r. We can bound this norm with a standard perturbation result, for example see [26, Lemma
6] or [55]. More specifically, we may imagine that Yk−1 is a perturbed copy of Yk−1,r. Then the angle between
Sk−1,r = span(Yk−1,r) and Ŝk−1,r = span(Ŷk−1,r) is controlled by the amount of perturbation, namely with
the choice of A = Ŷk−1,r,B = Yk−1,Br = Yk−1,r in [26, Lemma 6], we find that

‖PŜ⊥k−1,r
PSk−1,r

‖F ≤
‖Yk−1 − Ŷk−1,r‖F

σr (Yk−1)
. (87)

By plugging (87) back into (86), we find that

‖PŜ⊥k−1,r
yk‖ ≤

‖yk‖
σr (Yk−1)

· ‖Yk−1 − Ŷk−1,r‖F + ‖PS⊥k−1,r
Yk‖F . (88)

In turn, for p > 1, substituting the above inequality into (85) yields that

‖Yk − Ŷk,r‖2F ≤ ‖Yk−1 − Ŷk−1,r‖2F + ‖PŜ⊥k−1,r
yk‖2F (see (85))

≤

(
1 +

p
1
3 ‖yk‖2

σr (Yk−1)
2

)
‖Yk−1 − Ŷk−1,r‖2F +

p
1
3

p
1
3 − 1

‖PS⊥k−1,r
yk‖2F (see (88))

=: θk‖Yk−1 − Ŷk−1,r‖2F +
p

1
3

p
1
3 − 1

‖PS⊥k−1,r
yk‖2F . (89)

where we used the inequality (a1 + a2)2 ≤ qa21 +
qa22
q−1 for scalars a1, a2 and q > 1, with the choice of q = p

1
3 .

By unfolding the recursion in (89), we arrive at

‖YK − ŶK,r‖2F ≤
p

1
3

p
1
3 − 1

K∑
k=2

(
K∏

l=k+1

θl

)
‖PS⊥k−1,r

yk‖2F , (90)

28

which completes the proof of Lemma 2.

E Proof of Lemma 4
The proof is by induction. For k = 1, it holds that

Ŷ1,r = SVDr(Y1) (see Algorithm 1)
= Y1PQ̂1,r

(see (74))

= YKPI1PQ̂1,r

= YKPQ̂1,r
,

(
Q̂1,r ⊆ I1

)
(91)

which proves the base of induction. Next suppose that (77-81) hold for [2 : k] with k < K. We now show
that (77-81) hold also for k + 1. We can then write that

Ŷk+1,r = SVDr

(
Ŷk,r +

[
0n×kb yk+1 0n×(K−k−1)b

])
(see Algorithm 1)

= SVDr

(
YKPQ̂k,r + YKPIk+1

)
(assumption of induction)

= SVDr

(
YKPQ̃k+1

)
, (see (79)) (92)

which completes the proof of Lemma 4.

F Proof of Lemma 5
In this proof only, it is convenient to use the notation rowspan(A) to denote the row span of a matrix A,
namely rowspan(A) = span(A∗). For every k ∈ [1 : K], recall from (80) that YK(PQ̃k−PQ̂k,r) is the residual
of rank-r truncation of YKPQ̃k . Consequently,

YK(PQ̃k − PQ̂k,r) = YKPQ̂Ck,r
, k ∈ [1 : K], (93)

where Q̂Ck,r is the orthogonal complement of Q̂k,r with respect to Q̃k, namely

Q̃k = Q̂k,r ⊕ Q̂Ck,r, Q̂k,r ⊥ Q̂Ck,r k ∈ [1 : K], (94)

in which we conveniently set Q̃1 = I1, see (75). Using (93), we can rewrite (82) as

Yk − Ŷk,r = (Yk−1 − Ŷk−1,r) + Yk(PQ̃k − PQ̂k,r) (see (82))

= (Yk−1 − Ŷk−1,r) + YKPQ̂Ck,r
, k ∈ [2 : K]. (95)

With the preliminaries out of the way, let us rewrite the claim of Lemma 5 as〈
Yk−1 − Ŷk−1,r,YKPQ̂Ck,r

〉
= 0, k ∈ [2 : K], (96)

see (83) and (93). Because Q̂Ck,r ⊂ Q̃k by (94), it suffices to instead prove the stronger claim that

rowspan(Yk−1 − Ŷk−1,r) ⊥ Q̃k, k ∈ [2 : K]. (97)

29

We next prove (97) by induction. The base of induction, namely k = 2, is trivial. Suppose now that (97)
holds for [2 : k] with k < K. We next show that (97) holds for k + 1 as well. Note that

rowspan(Yk − Ŷk,r) = rowspan
(

(Yk−1 − Ŷk−1,r) + YKPQ̂Ck,r

)
(see (95))

⊆ rowspan(Yk−1 − Ŷk−1,r)⊕ Q̂Ck,r. (98)

As we next show, both subspaces in the last line above are orthogonal to Q̃k+1. Indeed, on the one hand,{
rowspan(Yk−1 − Ŷk−1,r) ⊥ Q̃k ⊇ Q̂k,r, (induction hypothesis and (81))
rowspan(Yk−1 − Ŷk−1,r) ⊂ Jk−1 ⊥ Ik+1, (see (81) and (76))

=⇒ rowspan(Yk−1 − Ŷk−1,r) ⊥ (Q̂k,r ⊕ Ik+1) = Q̃k+1. (see (79)) (99)

On the other hand, {
Q̂Ck,r ⊥ Q̂k,r,
Q̂Ck,r ⊂ Q̃k ⊂ Jk ⊥ Ik+1, (see (81) and (76))

=⇒ Q̂Ck,r ⊥ (Q̂k,r ⊕ Ik+1) = Q̃k+1. (see (79)) (100)

By combining (99) and (100), we conclude that

rowspan(Yk − Ŷk,r) ⊆ rowspan(Yk−1 − Ŷk−1,r)⊕ Q̂Ck,r (see (98))

⊥ Q̃k+1. (see (99,100)) (101)

Therefore, (97) holds for every k ∈ [2 : K] by induction. In particular, this proves Lemma 5.

G Proof of Lemma 3
Recall that yk ∈ Rn×b,Yk ∈ Rn×kb denote the kth block and the concatenation of the first k blocks of
data, respectively. Since the data vectors are independently drawn from a zero-mean Gaussian probability
measure with covariance matrix Ξ, it follows from (55,56) that

yk = SΣgk,

Yk = SΣGk, (102)

for every k ∈ [1 : K], where gk ∈ Rn×b and Gk ∈ Rn×kb are standard random Gaussian matrices. For fixed
k ∈ [2 : K], let us now study each of the random quantities on the right-hand side of (69). The following
results are proved in Appendices H and I, respectively.

Lemma 6. (Bound on ‖yk‖) For α ≥ 1, p > 1, and fixed k ∈ [1 : K], it holds that

‖yk‖ ≤ p
1
6 (σ1 +

√
2αp−

1
6 ρr)
√
b, (103)

except with a probability of at most e−Cα
2b and provided that

b ≥ α2r

(p
1
6 − 1)2

. (104)

Lemma 7. (Bound on σr(Yk)) For α ≥ 1, p > 1, and fixed k ∈ [1 : K], it holds that

σr(Yk) ≥ p− 1
6σr
√
kb, (105)

30

except with a probability of at most e−Cα
2r and provided that

b ≥ α2r

(1− p−1
6)2

. (106)

By combining Lemmas 6 and 7, we find for fixed k ∈ [2 : K] that

θk = 1 +
p

1
3 ‖yk‖2

σr(Yk−1)2
(see (68))

≤ 1 +
p(σ1 +

√
2αp−

1
6 ρr)

2b

σ2
r(k − 1)b

(see Lemmas 6 and 7)

=: 1 +
pη2r
k − 1

, (107)

except with a probability of at most e−Cα
2r and provided that (106) holds. In particular, it follows that

K∏
l=k+1

θl ≤
K∏

l=k+1

(
1 +

pη2r
l − 1

)
(see (107))

≤ (K − 1 + pη2r)K−1+pη
2
r

(K − 1)K−1
· (k − 1)k−1

(k − 1 + pη2r)k−1+pη
2
r

(see below)

=

(
1 +

pη2r
K − 1

)K−1(
1 +

pη2r
k − 1

)−k+1(
K − 1 + pη2r
k − 1 + pη2r

)pη2r
, (108)

holds for every k ∈ [2 : K] and except with a probability of at most Ke−Cαr, where the failure probability
follows from an application of the union bound. The second line above is obtained by bounding the logarithm
of the product in that line with the corresponding integral. More specifically, it holds that

log

(
K∏

l=k+1

(
1 +

pη2r
l − 1

))

=

K−1∑
l=k

log

(
1 +

pη2r
l

)

≤
ˆ K−1

k−1
log

(
1 +

pη2r
x

)
dx

= (K − 1 + pη2r) log(K − 1 + pη2r)− (K − 1) log(K − 1)

− (k − 1 + pη2r) log(k − 1 + pη2r) + (k − 1) log(k − 1), (109)

where the third line above follows because the integrand is decreasing in x. Let us further simplify (108).
Note that K ≥ k ≥ 2 and that pη2r ≥ 1 by its definition in (107). Consequently, using the relation
2 ≤ (1 + 1/x)x ≤ e for x ≥ 1, we can write that

2 ≤
(

1 +
pη2r
k − 1

) k−1

pη2r

≤ e, 2 ≤
(

1 +
pη2r
K − 1

)K−1

pη2r

≤ e. (110)

31

In turn, (110) allows us to simplify (108) as follows:

K∏
l=k+1

θl ≤
(

1 +
pη2r
K − 1

)K−1(
1 +

pη2r
k − 1

)−k+1(
K − 1 + pη2rηr
k − 1 + pη2r

)pη2r
(see (108))

≤
(e

2

)pη2r (K − 1 + pη2r
k − 1 + pη2r

)pη2r
. (see (110)) (111)

Next we control the random variable ‖PS⊥k−1
yk‖F in (69) with the following result, proved in Appendix J.

Lemma 8. (Bound on the Innovation) For α ≥ 1 and fixed k ∈ [2 : K], it holds that

‖PS⊥k−1,r
yk‖F ≤ 5αmin

(
κrρr,

√
rσ1 + ρr

)√
b, (112)

except with a probability of at most e−Cα
2r and provided that b ≥ Cα2r.

By combining Lemma 8 and (111), we finally find a stochastic bound for the right-hand side of (69).
More specifically, it holds that

‖YK − ŶK,r‖2F

≤ p
1
3

p
1
3 − 1

K∑
k=2

(
K∏

l=k+1

θl

)
‖PS⊥k−1,r

yk‖2F (see (69))

≤ 50p
1
3α2

p
1
3 − 1

min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)
b ·
(e

2

)pη2r (
K − 1 + pη2r

)pη2r K∑
k=2

(
k − 1 + pη2r

)−pη2r (see (111) and Lemma 8)

≤ 50p
1
3α2

p
1
3 − 1

min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)
b ·
(e

2

)pη2r (
K − 1 + pη2r

)pη2r ˆ ∞
pη2r

x−pη
2
r dx

=
50p

1
3α2

p
1
3 − 1

min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)
b ·
(e

2

)pη2r (
K − 1 + pη2r

)pη2r · (pη2r)−pη
2
r+1

pη2r − 1

≤ 50p
1
3α2

p
1
3 − 1

min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)
b

(
2K

pη2r
+ 2

)pη2r pη2r
pη2r − 1

≤ 50p
4
3α2

(p
1
3 − 1)2

·min
(
κ2rρ

2
r, rσ

2
1 + ρ2r

)
η2rb

(
2K

pη2r
+ 2

)pη2r
, (p, ηr ≥ 1) (113)

except with a probability of at most e−Cα
2r and provided that

b ≥ p
1
3α2r

(p
1
6 − 1)2

, b ≥ Cα2r.

This completes the proof of Lemma 3.

H Proof of Lemma 6
Note that

‖yk‖ = ‖SΣgk‖ (see (102))
= ‖Σgk‖ (S∗S = In)

≤ ‖Σ[1 : r, 1 : r] · gk[1 : r, :]‖+ ‖Σ[r + 1 : n, r + 1 : n] · gk[r + 1 : n, :]‖ (triangle inequality)
≤ σ1 · ‖gk[1 : r, :]‖+ ‖Σ[r + 1 : n, r + 1 : n] · gk[r + 1 : n, :]‖
≤ σ1 · ‖gk[1 : r, :]‖+ ‖Σ[r + 1 : n, r + 1 : n] · gk[r + 1 : n, :]‖F , (114)

32

where we used MATLAB’s matrix notation as usual. Note that both gk[1 : r, :] ∈ Rr×b and gk[r + 1 : n, :
] ∈ R(n−r)×b in (114) are standard Gausssian random matrices. For α ≥ 1 and p > 1, invoking the results
about the spectrum of Gaussian random matrices in Appendix A yields that

‖yk‖ ≤ σ1 · ‖gk[1 : r, :]‖+ ‖Σ[r + 1 : n, r + 1 : n] · gk[r + 1 : n, :]‖F (see (114))

≤ σ1(
√
b+ α

√
r) +

√
2α‖Σ[r + 1 : n, r + 1 : n]‖F

√
b (see (51,53) and b ≥ r)

= σ1(
√
b+ α

√
r) + αρr

√
2b (see (56,57))

≤ p 1
6σ1
√
b+ αρr

√
2b,

(
if b ≥ α2r

(p
1
6 − 1)2

)
(115)

except with a probability of at most e−Cα
2r + e−Cα

2b ≤ e−Cα2r, where this final inequality follows from the
assumption that b ≥ r. This completes the proof of Lemma 6. We remark that a slightly stronger bound can
be obtained by using Slepian’s inequality for comparing Gaussian processes, see [53, Section 5.3.1] and [56,
Section 3.1].

I Proof of Lemma 7
For a matrix A ∈ Rn×kb, it follows from the Fisher-Courant representation of the singular values that

σr(A) ≥ σr(A[1 : r, :]). (116)

Alternatively, (116) might be verified using Cauchy’s interlacing theorem applied to AA∗. For a vector
γ ∈ Rr×r and matrix A ∈ Rr×r, we also have the useful inequality

σr(diag(γ)A) ≥ min
i∈[r]
|γ[i]| · σr(A), (117)

where diag(γ) ∈ Rr×r is the diagonal matrix formed from the entries of γ. Using the above inequalities, we
may write that

σr(Yk) = σr(SΣGk) (see (102))
= σr(ΣGk) (S∗S = In)

≥ σr (Σ[1 : r, 1 : r] ·Gk[1 : r, :]) (see (116))
≥ σr · σr (Gk[1 : r, :]) . (see (117,56)) (118)

Note also thatGk[1 : r, :] ∈ Rr×kb above is a standard Gaussian random matrix. Using the spectral properties
listed in Appendix A, we can therefore write that

σr(Yk) ≥ σr · σr (Gk[1 : r, :]) (see (118))

≥ σr · (
√
kb− α

√
r) (see (51) and b ≥ r)

≥ σr · p−
1
6

√
kb,

(
if b ≥ α2r

(1− p− 1
6)2

)
(119)

except with a probability of at most e−Cα
2r. This completes the proof of Lemma 7.

33

J Proof of Lemma 8
Without loss of generality, we set S = In in (55) to simplify the presentation, as this renders the contribution
of the bottom rows of yk to the innovation typically small. We first separate this term via the inequality

‖PS⊥k−1,r
yk‖F =

∥∥∥∥PS⊥k−1,r

[
yk[1 : r, :]

yk[r + 1 : n, :]

]∥∥∥∥
F

≤
∥∥∥∥PS⊥k−1,r

[
yk[1 : r, :]
0(n−r)×b

]∥∥∥∥
F

+ ‖yk[r + 1 : n, :]‖F . (triangle inequality) (120)

To control the last norm above, we simply write that

‖yk[r + 1 : n, :]‖F = ‖Σ[r + 1 : n, r + 1 : n] · gk[r + 1 : n, :]‖F (see (102))

≤ α‖Σ[r + 1 : n, r + 1 : n]‖F
√

2b (see (53))

= αρr
√

2b, (see (57)) (121)

except with a probability of at most e−Cα
2b. In the second line above, we used the fact that gk is a standard

Gaussian random matrix. It therefore remains to control the first norm in the last line of (120). Note that∥∥∥∥PS⊥k−1,r

[
yk[1 : r, :]
0(n−r)×b

]∥∥∥∥
F

=

∥∥∥∥PS⊥k−1,r

[
Ir

0n−r

]
·
[

yk[1 : r, :]
0(n−r)×b

]∥∥∥∥
F

=:

∥∥∥∥PS⊥k−1,r
Jr ·

[
yk[1 : r, :]
0(n−r)×b

]∥∥∥∥
F

≤ ‖PS⊥k−1,r
Jr‖F · ‖yk[1 : r, :]‖

≤ ‖PS⊥k−1,r
Jr‖F · ‖Σ[1 : r, 1 : r]‖ · ‖gk[1 : r, :]‖ (see (102))

≤ ‖PS⊥k−1,r
Jr‖F · σ1 · (

√
b+ α

√
r) (see (56,51))

≤ ‖PS⊥k−1,r
Jr‖F · σ1

√
2b,

(
if b ≥ Cα2r

)
(122)

except with a probability of at most e−Cα
2r and provided that b ≥ Cα2r. The fifth line above again uses

the fact that gk is a standard Gaussian random matrix. Let us now estimate the norm in the last line
above. Recall that PSk−1,r

∈ Rn×n projects onto the span of Yk−1,r = SVDr(Yk−1), namely PSk−1,r
projects

onto the span of leading r left singular vectors of Yk−1 = ΣGk−1, see (102). Because the diagonal entries of
Σ ∈ Rn×n are in nonincreasing order, it is natural to expect that PSk−1,r

≈ Jr. We now formalise this notion
using standard results from the perturbation theory. Note that one might think of Yk−1,r = SVDr(Yk−1) as
a perturbed copy of Yk−1. Note also that Jr is the orthogonal projection onto the subspace

span
([

Yk−1[1 : r, :]
0(n−r)×(k−1)b

])
,

34

because Yk−1[1 : r, :] is almost surely full-rank. An application of Lemma 6 in [26] with A as specified inside
the parenthesis above and B = Yk−1 yields that

‖PS⊥k−1,r
Jr‖F ≤

∥∥∥∥Yk−1 − [Yk−1[1 : r, :]
0(n−r)×(k−1)b

]∥∥∥∥
F

σr(Yk−1)

=
‖Yk−1[r + 1 : n, :]‖F

σr(Yk−1)

=
‖Σ[r + 1 : n, r + 1 : n] ·Gk−1[r + 1 : n, :]‖F

σr(Yk−1)
(see (102))

≤
α‖Σ[r + 1 : n, r + 1 : n]‖F

√
2(k − 1)b

σr
√

(k − 1)b/2
(see (53) and Lemma 7 with p = 8)

=
2αρr
σr

, (see (57)) (123)

provided that b ≥ Cα2r and except with a probability of at most e−Cα
2b + e−Cα

2r ≤ e−Cα2r, where this last
inequality follows from the assumption that b ≥ r. It also trivially holds that

‖PS⊥k−1,r
Jr‖F ≤ ‖PS⊥k−1,r

‖ · ‖Jr‖F ≤ ‖Jr‖F = ‖Ir‖F =
√
r,

where we used above the definition of Jr in (122). Therefore, overall we find that

‖PS⊥k−1,r
Jr‖F ≤ min

(
2αρr
σr

,
√
r

)
. (124)

Substituting the above bound back into (122) yields that∥∥∥∥PS⊥k−1,r

[
yk[1 : r, :]
0(n−r)×b

]∥∥∥∥
F

≤ ‖PS⊥k−1,r
Jr‖F · σ1

√
2b (see (122))

≤ min
(
ακrρr, σ1

√
r
)√

8b, (see (124,57)) (125)

except with a probability of at most e−Cα
2r. Combining (121) and (125) finally controls the innovation as

‖PS⊥k−1,r
yk‖F ≤

∥∥∥∥PS⊥k−1,r

[
yk[1 : r, :]
0(n−r)×b

]∥∥∥∥
F

+ ‖yk[r + 1 : n, :]‖F (see (120))

≤ min
(
ακrρr, σ1

√
r
)√

8b+ αρr
√

2b (see (125,121))

≤ 5αmin
(
κrρr, σ1

√
r + ρr

)√
b, (α, κr ≥ 1) (126)

except with a probability of at most e−Cα
2r and provided that b ≥ Cα2r. This completes the proof of

Lemma 8.

35

	OWP2018_12_Deckblatt
	OWP 2018 - 12
	Armin Eftekhari, Raphael A. Hauser and Andreas Grammenos
	MOSES: A Streaming Algorithm for Linear Dimensionality Reduction

	OWP2018_12_Deckblatt-verso
	OWP2018_12_armin
	Introduction
	Introducing MOSES
	Optimisation Viewpoint
	Performance of MOSES
	Prior Art
	Experiments
	Notation and Toolbox
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 3
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

