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Real analyticity is concentrated in
dimension 2

Jacek Bochnak and Wojciech Kucharz

Abstract. We prove that a real-valued function on a real analytic manifold is analytic whenever
all its restrictions to 2-dimensional analytic submanifolds are analytic functions. We also obtain
analogous results in the framework of Nash manifolds and nonsingular real algebraic sets. These
results can be regarded as substitutes in the real case for the classical theorem of Hartogs,
asserting that a complex-valued function defined on an open subset of Cn is holomorphic if it
is holomorphic with respect to each variable separately. In the proofs we use methods of real
algebraic geometry even though the initial problem is purely analytic.

Key words. Real analytic manifold, analytic function, Nash manifold, Nash function, real
algebraic set, regular function.

Mathematics subject classification (2010). 32C05, 32C25, 58A07, 14P20, 14P05.

1 Introduction

One of the main goals of this paper is to prove the following.

Theorem 1.1. Let M be a compact real analytic manifold of dimension at least 3 and
let f : U → R be a function defined on an open subset U of M . Assume that for every
2-dimensional analytic submanifold S of M the restriction f |U∩S is an analytic function.
Then f is an analytic function.

We always assume submanifolds to be closed subsets of the ambient manifold.
Theorem 1.1 can be viewed as a good substitute for the classical Hartogs theorem

which asserts that a separately holomorphic function of n complex variables is in fact
holomorphic in all the variables. It is well known that the analogous statement does not
hold in the real case.

The hypotheses in Theorem 1.1 are global in their nature. We assume analyticity of f
on compact analytic surfaces, which are global objects. Proving analyticity of f on U is
a local matter, we must prove that f is analytic at each point of U . As indicated below,
the global information at our disposal is difficult to translate into local data.

Let g : W → R be a function defined in an open neighborhood W of 0 ∈ Rn, n ≥ 3.
The local theorem proved in [3, 14] asserts that if the restriction g|W∩Q is analytic for
every 2-dimensional vector subspace Q ⊂ Rn, then g is analytic at 0 ∈ Rn.

The first idea of how to approach the proof of Theorem 1.1 is to take a local analytic
coordinate system ϕ : (V, a) → (Rn, 0), n = dimM , around a fixed point a ∈ V ⊂ U



and apply the local result just mentioned above to the function f ◦ ϕ−1 defined in the
open neighborhood ϕ(V ) of 0 ∈ Rn. Unfortunately, the global hypotheses in Theorem 1.1
do not directly imply that f ◦ ϕ−1 is analytic on the intersection of ϕ(V ) with each
2-dimensional vector subspace of Rn. We must therefore modify the initial idea and
apply more sophisticated methods.

In Section 2 we recall several auxiliary results, including one on series of real homoge-
neous polynomials in n variables. It should be mentioned that the convergence of series
of homogeneous polynomials is more complicated to study than the convergence of con-
ceptually close power series. Our main local result is Theorem 3.3, proved in Section 3.
In Section 4, which heavily depends on Theorem 3.3, we investigate global problems and
prove Theorem 1.1.

Although Theorem 1.1 is a statement involving only analytic manifolds and analytic
functions, in its proof we use, quite unexpectedly, methods and notions from real algebraic
geometry (real algebraic sets, semialgebraic sets, real regular functions, the theorems of
Tarski–Seidenberg and of Nash–Tognoli, etc.). As an additional bonus we also obtain
in Section 4 counterparts of Theorem 1.1, stated below, for Nash functions and regular
functions. For background material on real algebraic geometry we refer the reader to the
book [1].

By a Nash manifold we mean a semialgebraic subset N of Rm that is an analytic
submanifold of an open subset of Rm, for some m. A function f : U → R, defined on an
open subset U ⊂ N , is called a Nash function if every point a ∈ U has a semialgebraic
open neighborhood Ua ⊂ U such that the restriction f |Ua is analytic with semialgebraic
graph (in that case, one can take Ua = U , provided U is a semialgebraic set).

Theorem 1.2. Let N be a Nash manifold of dimension at least 3 and let f : N → R
be a function whose restriction to every 2-dimensional Nash submanifold of N is a Nash
function. Then f is a Nash function.

By a real algebraic set we mean an algebraic subset of Rm for some m.

Theorem 1.3. Let X be a nonsingular real algebraic set of pure dimension at least 3
and let f : X → R be a function whose restriction to every 2-dimensional nonsingular
algebraic subset of X is a regular function. Then f is a regular function.

Theorem 1.3 is a significant refinement of [9, Theorem 6.2]. Section 4 contains also
Theorems 4.7 and 4.8 which are more general than Theorems 1.2 and 1.3, respectively.

It is plausible that the compactness of M in Theorem 1.1 is superfluous. We do not
require N (resp. X) in Theorem 1.2 (resp. Theorem 1.3) to be compact.

Replacing in Theorems 1.1, 1.2 and 1.3 the nonsingular surfaces by nonsingular curves
(in the appropriate category) would lead to a false statement.

Counterexample 1.4. Let f : R3 → R be the function defined by

f(x, y, z) =
x8 + y(x2 − y3)2 + z4

x10 + (x2 − y3)2 + z2
for (x, y, z) 6= (0, 0, 0) and f(0, 0, 0) = 0.

Then f is analytic (resp. Nash or regular) on every nonsingular analytic (resp. Nash or
algebraic) curve in R3, but f is not even continuous at (0, 0, 0).

To establish the first part of the assertion it suffices to prove that for any nonsingular
analytic curve C ⊂ R3 passing through (0, 0, 0) the function f |C is analytic at (0, 0, 0).
Since C is nonsingular, it has near (0, 0, 0) a local analytic parametrization

x = x(t), y = y(t), z = z(t) for t near 0 ∈ R,

2



where x(0) = y(0) = z(0) = 0, and at least one of the analytic functions x(t), y(t), z(t)
has zero of order 1 at t = 0. It is not hard to check that the function f(x(t), y(t), z(t)) is
analytic for t near 0 ∈ R. Thus f |C is analytic at (0, 0, 0), as required.

Clearly, the function f is not continuous at (0, 0, 0) since on the curve x2 − y3 = 0,
z = 0 it is equal to 1

x2
away from (0, 0, 0).

2 Auxiliary results

We collect here some results and observations needed in the proofs of the main theorems.
The notations and remarks introduced in this section will be used throughout the rest of
this paper.

Lemma 2.1. Let C = I1 × · · · × In be a rectangle in Rn, where the Ik ⊂ R are open
intervals. Assume that h : C → R is a polynomial function with respect to each variable
separately. Then there exists a polynomial function H : Rn → R such that H|C = h.

Proof. If Ik = R for k = 1, . . . , n, the proof is given in [2, Lemma 1]. The general case
can be established using the same method.

The next lemma is proved in [13], and a simpler proof is given in [3].

Lemma 2.2. Let
∞∑
k=0

Pk be a series of real homogeneous polynomials in n variables,

degPk = k. Let Σ = {a ∈ Rn : ‖a‖ = 1} and assume that there exists an open nonempty
subset Ω of Σ such that for every a ∈ Ω one can find a constant ρ > 0 (depending on a)

such that the series
∞∑
k=0

Pk(x) converges at x = ρa. Then there exist constants c > 0,

r > 0 such that
|Pk(z)| ≤ c

2k
for z ∈ Cn, ‖z‖ ≤ r, k ≥ 0.

In particular, the function z 7→
∞∑
k=0

Pk(z) is holomorphic in the ball ‖z‖ < r, z ∈ Cn.

Let G(k, n) denote the Grassmannian of k-dimensional vector subspaces of Rn. As in
[1, p. 72], we regard G(k, n) as a nonsingular algebraic subset of Rn2

.
Given a vector subspace V ⊂ Rn of dimension n − 2, we define the subset O(V ) of

G(n− 1, n) by
O(V ) = {H ∈ G(n− 1, n) : V ⊂ H}.

The map
η : G(n− 1, n)→ G(1, n) = RPn−1, H 7→ H⊥,

sending H to its orthogonal complement H⊥ in Rn (with respect to the standard inner
product), is a biregular isomorphism of real algebraic sets, see [1, p. 72]. When convenient
we will identify G(n−1, n) with RPn−1 via η. The image of O(V ) by η is a projective line
in RPn−1. Indeed, if H ∈ O(V ), then the vector line H⊥ is contained in the orthogonal
complement U = V ⊥ of V in Rn. Conversely, to each vector line L ⊂ U there corresponds
H = η−1(L) = L⊥ ∈ O(V ). Hence η(O(V )) is the projective line in RPn−1 comprised of
all vector lines lying in the vector plane U .

For n ≥ 3 we define a collection of algebraic (reducible) curves T ⊂ G(n − 1, n) as
follows:
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• if n = 3, then
T = T (L1, L2, L3) = O(L1) ∪O(L2) ∪O(L3),

where L1, L2, L3 ⊂ R3 are linearly independent vector lines;

• if n ≥ 4, then
T = T (V1, V2) = O(V1) ∪O(V2),

where V1, V2 ⊂ Rn are vector subspaces of dimension n−2 with dim(V1∩V2) = n−4.

We call each set T in this collection a test curve. The image η(T ) of T in RPn−1 can
easily be described. If n = 3, then η(T ) ⊂ RP2 is the union of three projective lines in
general position (that is, three lines with no common point). If n ≥ 4, then η(T ) ⊂ RPn−1

is the union of two disjoint projective lines in RPn−1. In either case, η(T ) is an algebraic
curve in RPn−1. Clearly, the union of any three projective lines in general position in RP2

corresponds to a test curve in G(2, 3). Similarly, for n ≥ 4, the union of any two disjoint
projective lines in RPn−1 corresponds to a test curve in G(n− 1, n).

Let e1, . . . , en be the standard vector basis for Rn, ei = (0, . . . , 1, . . . , 0) with 1 in the
ith position. We define the standard test curve T ∗ ⊂ G(n− 1, n) as follows:

• if n = 3, then
T ∗ = T (Re1,Re2,Re3);

• if n ≥ 4, then
T ∗ = T (V1, V2),

where V1 (resp. V2) is the vector subspace of Rn spanned by e1, . . . , en−2 (resp.
e3, . . . , en).

The following fact, which is a simple exercise in linear algebra, is crucial for our purposes:
any vector line L ⊂ Rn is contained in some hyperplane Q ∈ T ∗, and any affine line
l ⊂ Rn that is parallel to one of the coordinate axes is also contained in some Q ∈ T ∗.

For any two test curves T , T ′ in G(n − 1, n) there exists a linear automorphism
λ ∈ GLn(R) such that Tλ = T ′, where

Tλ = {λ(H) ∈ G(n− 1, n) : H ∈ T }.

Finally, for any finite subset H ⊂ G(n−1, n) there exists a test curve T ⊂ G(n−1, n)
such that H ∩ T = ∅.

3 Local results

The following technical result will play a key role in this section.

Proposition 3.1. Let T ⊂ G(n− 1, n) be a test curve, n ≥ 3. Let H be a finite (possibly
empty) subset of T , H the union of all hyperplanes in H, and S1, . . . , Sp the connected
components of Rn \H. Let f : U → R be a function, defined in an open neighborhood U
of 0 ∈ Rn, such that for every hyperplane Q ∈ T \ H the restriction f |U∩Q is an analytic
function. Then there exist analytic functions fi : W → R, defined in an open neighborhood
W ⊂ U of 0 ∈ Rn, such that

fi(0) = f(0) and fi = f on W ∩ Si for i = 1, . . . , p.
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Proof. First we prove the proposition for the standard test curve T = T ∗. By assumption
and the properties of T ∗ recorded in Section 2, for every vector line L ⊂ Rn\(H \{0}) the
function f |U∩L is analytic. This allows us to define, for each integer k ≥ 0, the function

hk : Rn \ (H \ {0})→ R, x 7→ dkf

dtk
(tx)

∣∣∣∣
t=0

.

We claim that for each connected component Si there is a homogeneous polynomial
Hk,i : Rn → R, of degree k, such that

hk(x) = Hk,i(x) for all x ∈ Si.

The claim can be established as follows. Fix Si and choose an open rectangle C ⊂ Si
with sides parallel to the coordinate axes. Let l ⊂ Rn be an affine line parallel to one of
the coordinate axes, with l ∩ C 6= ∅. Since C ∩ H = ∅, the line l is contained in some
hyperplane Q ∈ T \ H. Since f |U∩Q is analytic, it follows from the definition of hk that
hk|Q is a homogeneous polynomial of degree k on Q. In particular, hk|l is a polynomial
function. By Lemma 2.1, the function hk|C is the restriction of a polynomial function
Hk,C : Rn → R, which is necessarily homogeneous of degree k. Observe that for any
two overlapping open rectangles C and D contained in Si we have Hk,C = Hk,D because
on C ∩ D both polynomials are equal to hk|C∩D. Furthermore, given any two points
a, b in Si, we can find a sequence of open rectangles C1, . . . , Cq contained in Si such that
a ∈ C1, b ∈ Cq, and Cj∩Cj+1 6= ∅ for j = 1, . . . , q−1. It follows that Hk,C is independent
of the choice of C. Hence the claim holds with Hk,i = Hk,C .

We are now ready to construct the required analytic functions fi. Let Σ be the unit
(n − 1)-sphere in Rn and let Ωi = Si ∩ Σ. The component Si has the conic structure:
if x ∈ Si then tx ∈ Si for all t > 0. It follows that Ωi is a nonempty open subset of Σ. For
each point a ∈ Ωi the function t 7→ f(ta) is analytic at 0 ∈ R, so there exists a constant
ρa > 0 such that

f(ta) =
∞∑
k=0

1

k!
hk(a)tk =

∞∑
k=0

1

k!
Hk,i(ta) for |t| < ρa.

By Lemma 2.2, the series
∑

1
k!
Hk,i of homogeneous polynomials is uniformly convergent

in a ball ‖z‖ < ri, z ∈ Cn, and its sum fi is holomorphic there. Clearly, fi(ta) = f(ta)
for |t| < min{ri, ρa}. By the identity property for analytic functions,

fi(ta) = f(ta) for |t| < ρi = min{ri, dist(0, ∂U)}.

It follows that
fi(x) = f(x) for all x ∈ Si, ‖x‖ < ρi.

If W is the open ball in Rn with center at 0 ∈ Rn and radius ρ = min{ρ1, . . . , ρp}, then

fi(0) = f(0) and fi = f on W ∩ Si for i = 1, . . . , p,

which completes the proof in the case where T = T ∗ is the standard test curve.
For an arbitrary test curve T in G(n − 1, n), we choose a linear automorphism

λ ∈ GLn(R) for which Tλ = T ∗. Set H′ = {λ(Q) : Q ∈ H} and let H ′ be the union
of all hyperplanes in H′. Then S ′1 = λ(S1), . . . , S ′p = λ(Sp) are the connected components
of Rn \ H ′. Furthermore, let U ′ = λ(U) and f ′ = f ◦ λ−1|U ′ . By applying the first part
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of the proof to T ∗, H′, f ′, we obtain analytic functions f ′i : W
′ → R, defined in an open

neighborhood W ′ ⊂ U ′ of Rn, such that

f ′i(0) = f ′(0) and f ′i = f ′ on S ′i ∩W ′ for i = 1, . . . , p.

Now we complete the proof for the test curve T by settingW = λ−1(W ′) and fi = f ′i ◦ λ|W .

Corollary 3.2. Let T and T ′ be two test curves in G(n− 1, n), n ≥ 3. Let H and H′ be
finite subsets of T and T ′, respectively, with H ∩ H′ = ∅. Let H and H ′ be the unions
of all hyperplanes in H and H′, respectively. Let f : U → R be a function, defined in an
open neighborhood U of 0 ∈ Rn, such that for every hyperplane Q ∈ (T \ H) ∪ (T ′ \ H′)
the restriction f |U∩Q is an analytic function. Then there exists an analytic function
g : W → R, defined in an open neighborhood W ⊂ U of 0 ∈ Rn, such that

g(0) = f(0) and g = f on W \ (H ∩H ′).

Proof. Let S1, . . . , Sp (resp. S ′1, . . . , S
′
q) be the connected components of Rn \ H (resp.

Rn \ H ′). By Proposition 3.1, we can find an open ball W ⊂ U , centered at 0 ∈ Rn,
together with analytic functions f1, . . . , fp (resp. f ′1, . . . , f

′
q) defined on W such that

fi(0) = f(0), f ′j(0) = f(0) and

fi = f on Si ∩W, f ′j = f on S ′j ∩W for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

We claim that
fi = fk for 1 ≤ i ≤ p, 1 ≤ k ≤ p.

For the proof of the claim we first choose two indices i and k for which the components Si
and Sk are adjacent, that it, the intersection Si ∩Sk of their closures in Rn has dimension
n − 1. This means that Si ∩ Sk is contained in a unique hyperplane Q ∈ H, and the
interior Y of Si ∩ Sk in Q is nonempty. Choose a point x0 ∈ Y ∩ (W \ H ′), and let S ′j
be a connected component of Rn \H ′ containing x0. Such a component S ′j exists because
H ∩H′ = ∅ and hence Q /∈ H′. Let N be an open neighborhood of x0 in S ′j ∩W . Then
Ni = N ∩ Si and Nk = N ∩ Sk are nonempty open subsets of Si and Sk, respectively. By
construction,

f ′j = f = fi on Ni and f ′j = f = fk on Nk.

Since f ′j, fi, fk are analytic on W , we get

f ′j = fi and f ′j = fk on W.

Consequently,
fi = fk on W for the chosen i, k.

The claim follows since any two distinct connected components of Rn \H appear in some
sequence Si1 , . . . , Sil in which any two consecutive terms are adjacent components.

Setting g = f1, the claim implies that g = f on W \H. By interchanging the role of
the fi and the f ′j, we get g = f on W \H ′. Thus g = f on W \ (H ∩H ′), as required.

We say that a subset C of Rn, n ≥ 2, is a circle centered at 0 ∈ Rn if it can be written
as

C = {x ∈ Rn : x ∈ V, ‖x‖ = r},
where V ⊂ Rn is a vector subspace of dimension 2, and r is a positive constant.

The main result of this section is the following.
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Theorem 3.3. Let G be a nonempty Zariski open subset of G(n − 1, n), n ≥ 3. Let
f : U → R be a function, defined in an open neighborhood U of 0 ∈ Rn, such that for
every hyperplane Q ∈ G the restriction f |U∩Q is an analytic function. Furthermore,
assume that the restriction f |C is a continuous function for every circle C ⊂ U centered
at 0 ∈ Rn. Then the function f is analytic in a neighborhood of 0 ∈ Rn.

Proof. For the proper algebraic subset A = G(n− 1, n) \G of G(n− 1, n), we choose two
test curves T and T ′ in G(n− 1, n) such that the intersections

H = T ∩ A and H′ = T ′ ∩ A

are finite sets, and H∩H′ = ∅. This is possible since the test curves are algebraic curves
with properties described in Section 2. Clearly, for every hyperplane Q ∈ (T \H)∪(T ′\H′)
the restriction f |U∩Q is an analytic function.

By Corollary 3.2, there exists an analytic function g : W → R, defined in a neighbor-
hood W ⊂ U of 0 ∈ Rn, such that

g(0) = f(0) and g = f on W \H,

where H is the union of all hyperplanes in H (note that a little more is asserted in
Corollary 3.2). We claim that g = f on W . It remains to prove that

g(y) = f(y) for all y ∈ W ∩ (H \ {0}).

To this end, fix a point y ∈ W ∩ (H \ {0}) and pick a circle C ⊂ W centered at 0 ∈ Rn

such that y ∈ C and C ∩ (W \ H) 6= ∅. We can find a sequence {xk} in C \ H that
converges to y. By construction, g(xk) = f(xk) for all k. Since the functions g|C and f |C
are continuous, we get g(y) = f(y), as required.

Next we deal with Nash functions and show how to obtain for them suitable variants
of the last three results. For the sake of clarity we begin with a short review.

By [1, Chapter 8], a function f : U → R, defined on a connected open subset U ⊂ Rn,
is a Nash function if and only if it is algebraic. The latter notion means that f is analytic
and satisfies

P (x, f(x)) = 0 for all x ∈ U,
where P is a nonzero real polynomial in n+ 1 variables. Therefore, in view of [4, p. 202,
Theorem 6], an analytic function on U is Nash on U as long as it is Nash with respect to
each variable separately.

Remark 3.4. With notation as in Proposition 3.1, suppose in addition that for every
hyperplane Q ∈ T \ H the restriction f |U∩Q is a Nash function. If W is connected, then
the fi are Nash functions.

Indeed, assume that W is connected. Then each function fi : W → R is uniquely
determined by the condition fi = f on Si ∩W . This is the case since fi is analytic and
the intersection Si ∩W is an open nonempty set. We may therefore assume that T = T ∗
is the standard test curve (see the last step in the proof of Proposition 3.1). For any affine
line l ⊂ Rn that is parallel to one of the coordinate axes, pick a hyperplane Q ∈ T ∗ with
l ⊂ Q. Since

fi = f on Si ∩W ∩ l ⊂ Si ∩W ∩Q,
the restriction of fi to Si ∩ W ∩ l is a Nash function. In other words, fi|Si∩W is an
analytic function which is Nash with respect to each variable separately. Hence fi|Si∩W
is a Nash function. Consequently, fi is a Nash function on W since it is analytic and W
is connected.
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Remark 3.5. With notation as in Corollary 3.2, suppose in addition that for every
hyperplane Q ∈ (T \ H) ∪ (T ′ \ H′) the restriction f |U∩Q is a Nash function. If W is
connected, then g is a Nash function.

Indeed, we can argue as in the proof of Corollary 3.2, making use of Remark 3.4.

A counterpart of Theorem 3.3 for Nash functions takes the following form.

Theorem 3.6. Let G be a nonempty Zariski open subset of G(n − 1, n), n ≥ 3. Let
f : U → R be a function, defined in an open neighborhood U of 0 ∈ Rn, such that for
every hyperplane Q ∈ G the restriction f |U∩Q is a Nash function. Furthermore, assume
that the restriction f |C is a continuous function for every circle C ⊂ U centered at 0 ∈ Rn.
Then f is a Nash function in a neighborhood of 0 ∈ Rn.

Proof. One can repeat the proof of Theorem 3.3, substituting Remark 3.5 for Corol-
lary 3.2.

The observations discussed in the rest of this section will not be used in the proofs of
Theorems 1.1, 1.2 and 1.3, however, they are of interest in their own right.

Suppose that n ≥ 3. We say that a set Y ⊂ G(n − 1, n) is sufficient if the following
holds: For any function f : U → R, defined in some neighborhood U of 0 ∈ Rn, such that
the restriction f |U∩Q is analytic for every hyperplane Q ∈ Y , the function f is analytic
in a neighborhood of 0 ∈ Rn. We say that a set Z ⊂ G(n − 1, n) is negligible if its
complement G(n− 1, n) \ Z is sufficient.

In order to make the structure of sufficient and negligible sets more transparent, we
can transfer the definition from G(n− 1, n) to RPn−1 and call a set X ⊂ RPn−1 sufficient
(resp. negligible) if its inverse image η−1(X) ⊂ G(n− 1, n) is sufficient (resp. negligible),
where

η : G(n− 1, n)→ RPn−1

is the biregular isomorphism described in Section 2.

Proposition 3.7. For any n ≥ 3, the following hold:

(1) Let T ⊂ RPn−1 be the union of either three projective lines in general position if
n = 3, or two disjoint projective lines if n ≥ 4. Then the set T is sufficient.

(2) For T ⊂ RPn−1 as in (1), let A ⊂ T be a subset comprised of either three points if
n = 3, or two points if n ≥ 4. Assume that each point of A belongs to exactly one
irreducible component of T . Then the set T \ A is not sufficient.

(3) Let B ⊂ RPn−1 be a compact subset that is disjoint from some projective line
in RPn−1. Then B is negligible.

(4) Let X ⊂ RPn−1 be an algebraic set. If dimX ≤ n − 3, then X is negligible (in
particular, the curve T in (1) is negligible for n ≥ 4). If dimX = n − 2, then, for
some finite subset F ⊂ X, the set X \ F is negligible.

(5) The complement of a hyperplane in RPn−1 is never sufficient.

Proof. (1) As explained in Section 2, T = η−1(T ) is a test curve in G(n− 1, n). Hence it
suffices to apply Proposition 3.1 (with H = ∅).

(2) For any vector line L ⊂ Rn, we define the function fL : Rn → R by

fL(x) = 0 for x ∈ Rn \ (L \ {0}) and fL(x) = 1 for x ∈ L \ {0}.

8



Clearly, the restriction fL|Q is identically 0 (hence analytic) for every vector hyperplane
Q ⊂ Rn with Q ∩ L = {0}, but f |L is not analytic at 0 ∈ Rn.

Now we will work with T = η−1(T ) and A = η−1(A).
If n = 3, then T = O(L1) ∪O(L2) ∪O(L3), where L1, L2, L3 are linearly independent

vector lines in R3. Furthermore, A = {Q1, Q2, Q3} with Qi ∈ O(Lj) whenever i = j.
Choose a vector line L ⊂ R3, L 6= Li for i = 1, 2, 3. Then, for any Q ∈ O(Li) with L ⊂ Q,
we have

Q = Li + L = Qi.

It follows that fL|Q is identically 0 for all Q ∈ T \ A. Hence (2) holds because fL is not
analytic at 0 ∈ Rn.

If n ≥ 4, then T = O(V1)∪O(V2), where V1, V2 are (n−2)-dimensional vector subspaces
of Rn with dim(V1∩V2) = n−4. Furthermore, A = {Q1, Q2} with Qi ∈ O(Vi) for i = 1, 2.
Choose a vector line L ⊂ Rn that is contained in Q1∩Q2, but is not contained in V1∪V2.
Then, for any Q ∈ O(Vi) with L ⊂ Q, we have

Q = Vi + L = Qi.

It follows that fL|Q is identically 0 for all Q ∈ T \ A. Hence (2) holds because fL is not
analytic at 0 ∈ Rn.

(3) Suppose that B is disjoint from a projective line l ⊂ RPn−1. Then we can move l
in RPn−1 to produce either three lines in general position if n = 3, or two disjoint lines
if n ≥ 4. These lines can be chosen so that their union T is disjoint from B. Hence
the set B is negligible since T is sufficient by (1).

(4) If dimX ≤ n − 3 (resp. dimX = n − 2), then there exists a set T ⊂ RPn−1, as
in (1), with T ∩X = ∅ (resp. F = T ∩X finite). Thus (4) holds since X (resp. X \ F )
is contained in RPn−1 \ T .

(5) Any hyperplane in RPn−1 corresponds via η to a set of the form

L̃ = {Q ∈ G(n− 1, n) : L ⊂ Q},

where L is a vector line in Rn. The function fL defined in (2) is not analytic at 0 ∈ Rn,
but its restriction fL|Q is identically 0 for every Q in G(n− 1, n) \ L̃. This completes the
proof of (5).

Proposition 3.7 is counter-intuitive: some “small” sets like the curves in (1) are suf-
ficient, while some “large” sets like the complements of hyperplanes in (5) are not. It
does not seem that the size of a set in RPn−1 is essential for sufficiency, but rather its
geometrical configuration and, in particular, its position with respect to projective lines
in RPn−1.

It would be interesting to characterize minimal sufficient subsets of RPn−1, that is, the
ones which do not contain proper sufficient subsets. We do not know any explicit example
of a minimal sufficient set, but conjecture that the curves T in Proposition 3.7 (1) are
minimal. This conjecture is supported by Proposition 3.7 (2).

4 Global results

In this section we prove, after some preparation, the theorems stated in the introduction.
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Lemma 4.1. Let X be a nonsingular real algebraic set of pure dimension m, and let x0

be a point in X. Then, for any integer n with m ≥ n ≥ 0, there exists a regular map
ϕ : X → Rn for which 0 ∈ Rn is a regular value and ϕ(x0) = 0.

Proof. We can assume that X ⊂ Rm+k = Rm × Rk, x0 = 0, and the tangent space to X
at 0 is Rm×{0}. Let π : X → Rn be the restriction of the projection Rn×Rm−n+k → Rn.
Clearly, π is a submersion at 0 ∈ X. Now let r = (m + k)n and let λ1, . . . , λr be a basis
of the vector space of linear maps from Rm+k into Rn. Then 0 ∈ Rn is a regular value of
the map Φ: X × Rr → Rn defined by

Φ(x, t) = π(x) + t1‖x‖2λ1(x) + · · ·+ tr‖x‖2λr(x),

where t = (t1, . . . tr). By applying the Sard theorem (see [7, p. 79, Theorem 2.7] for
details), we can find a point t ∈ Rr such that 0 ∈ Rn is a regular value of the map
Φt : X → Rn, Φt(x) = Φ(x, t). Obviously, the map ϕ = Φt has the required properties.

The next lemma is inspired by [8].

Lemma 4.2. Let X be a nonsingular real algebraic set of dimension m. Let ϕ : X → Rn

be a regular map for which 0 ∈ Rn is a regular value. Then, for any integer k with
0 ≤ k ≤ n, there exists a nonempty Zariski open subset G ⊂ G(k, n) such that ϕ is
transverse to every k-dimensional vector space H in G.

Proof. We set Γ = GLn(R) and work with a fixed H ∈ G(k, n).
First observe that if U is a nonempty Zariski open subset of Γ, then its image under

the regular map
α : Γ→ G(k, n), σ 7→ σ(H)

contains a nonempty Zariski open subset of G(k, n). This can be seen as follows. The
set α(U) is dense in G(k, n) in the Euclidean topology. Furthermore, by the Tarski–
Seidenberg theorem [1], α(U) is a semialgebraic subset of G(k, n). Thus, in view of [1,
Section 2.8], the Zariski closure A of G(k, n)\α(U) is a proper algebraic subset of G(k, n).
The Zariski open set G(k, n) \ A is nonempty and contained in α(U).

In view of this observation, it suffices to prove that the set

Γ0 = {σ ∈ Γ: the map σ ◦ ϕ : X → Rn is transverse to H}

contains a nonempty Zariski open subset of Γ. To this end, consider the regular map

ψ : Γ×X → Rn, (σ, x) 7→ σ(ϕ(x)).

By construction, ψ is a submersion at every point (σ, x) ∈ Γ × X; this is the case if
x ∈ ϕ−1(0) since 0 ∈ Rn is a regular value of ϕ, and is obvious otherwise. In particular, ψ
is transverse to H. Consequently, the inverse image V = ψ−1(H) is a nonsingular Zariski
closed subset of Γ×X. Furthermore, for σ ∈ Γ, the map

ψσ : X → R, x 7→ ψ(σ, x) = σ(ϕ(x))

is transverse to H if and only if σ is a regular value of the regular map

π : V → Γ, (σ, x) 7→ σ.
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Hence the set Γ0 can be written as

Γ0 = {σ ∈ Γ: σ is a regular value of π}.

Now we can easily complete the proof. The set Z ⊂ V of critical points of π is Zariski
closed, the map π being regular. By the Tarski–Seidenberg theorem, the set π(Z) of
critical values of π is semialgebraic. Hence the dimension of π(Z) is the same as the
dimension of its Zariski closure B ⊂ Γ [1, Proposition 2.8.2]. It remains to prove that
B 6= Γ since then Γ \ B is a nonempty Zariski open set contained in Γ0. The equality
B = Γ would imply that π(Z) contains a nonempty open (in the Euclidean topology)
subset of Γ, see [1, Section 2.8], which in turn would violate Sard’s theorem.

Proposition 4.3. Let X be a nonsingular real algebraic set of pure dimension n ≥ 3
and let f : U → R be a function defined on an open (in the Euclidean topology) subset
U ⊂ X. Assume that for every (n− 1)-dimensional nonsingular algebraic subset Y of X
the restriction f |U∩Y is an analytic function. Then f is an analytic function.

Proof. By Hironaka’s theorem on resolution of singularities [6], X is biregularly isomorphic
to a Zariski open subset of a compact nonsingular real algebraic set. Thus the proof is
reduced to the case in which X is compact.

Let x0 be a point in U . By Lemma 4.1, there exists a regular map ϕ : X → Rn for
which 0 ∈ Rn is a regular value and ϕ(x0) = 0. In view of Lemma 4.2, we can find
a nonempty Zariski open subset G ⊂ G(n − 1, n) such that ϕ is transverse to every
hyperplane Q ∈ G. Now we choose a suitable open neighborhood V ′ ⊂ U of x0 so that

Φ = ϕ|V ′ : V ′ → ϕ(V ′) = V

is an analytic diffeomorphism and V ⊂ Rn is an open ball with center at 0 ∈ Rn. Since
X is compact, by replacing V ′ with a smaller set, we can assume that each point in V is
a regular value of ϕ. We claim that the function

g = f ◦ Φ−1 : V → R

is analytic in a neighborhood of 0 ∈ Rn. We prove the claim by showing that g satisfies
the assumptions of Theorem 3.3.

Let Q be a hyperplane in G. Since the map ϕ is transverse to Q, the set Y = ϕ−1(Q)
is a nonsingular algebraic hypersurface in X. Hence, by assumption, f |U∩Y is an analytic
function. It follows that g|V ∩Q is an analytic function.

Let C ⊂ V be a circle centered at 0 ∈ Rn. Since V is a ball, we can find an (n− 1)-
dimensional sphere Σ ⊂ V that contains C. The inverse image Σ′ = ϕ−1(Σ) is a non-
singular algebraic hypersurface in X because each point in V is a regular value of ϕ.
By assumption, the function f |U∩Σ′ is analytic, hence the function g|Σ is also analytic.
Consequently, the restriction g|C is analytic as well.

In view of Theorem 3.3, the function g is analytic in a neighborhood of 0 ∈ Rn, which
means that f is analytic in a neighborhood of x0. Since x0 is an arbitrary point in U , the
function f is analytic on U .

Corollary 4.4. Let X be a nonsingular real algebraic set of pure dimension at least 3 and
let f : U → R be a function defined on an open (in the Euclidean topology) subset U ⊂ X.
Assume that for every 2-dimensional nonsingular algebraic subset S of X the restriction
f |U∩S is an analytic function. Then f is an analytic function.
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Proof. We proceed by induction on n = dimX. The case n = 3 is contained in Propo-
sition 4.3. Suppose that n ≥ 4. By Proposition 4.3, it suffices to prove that for every
algebraic hypersurface Y ⊂ X the restriction f |U∩Y is an analytic function. We fix Y , set
V = U ∩ Y , and consider the function g = f |V . If S ⊂ Y is a nonsingular algebraic sur-
face, then the restriction g|V ∩S = f |U∩S is analytic by assumption. Thus, by the induction
hypothesis, the function g is analytic, which completes the proof.

Theorem 1.1 can be derived from Corollary 4.4 as follows.

Proof of Theorem 1.1. By the theorem of Nash–Tognoli [1, Theorem 14.1.10], we can find
a nonsingular algebraic subset X ⊂ Rm and a C∞ diffeomorphism ϕ : M → X. In view
of Grauert’s theorem [5], M can be analytically embedded in some Rk. Since X has
an analytic tubular neighborhood in Rm, it follows from the Weierstrass approximation
theorem that ϕ can be approximated by analytic diffeomorphisms. We can therefore
assume from the beginning that M is a compact nonsingular real algebraic set. Then it
suffices to apply Corollary 4.4.

Our next goal are variants of Proposition 4.3 and Corollary 4.4 for Nash functions.

Proposition 4.5. Let X be a nonsingular real algebraic set of pure dimension n ≥ 3
and let f : U → R be a function defined on an open (in the Euclidean topology) subset
U ⊂ X. Assume that for every (n− 1)-dimensional nonsingular algebraic subset Y of X
the restriction f |U∩Y is a Nash function. Then f is a Nash function.

Proof. One can argue as in the proof of Proposition 4.3, substituting Theorem 3.6 for
Theorem 3.3.

Corollary 4.6. Let X be a nonsingular real algebraic set of pure dimension at least 3 and
let f : U → R be a function defined on an open (in the Euclidean topology) subset U ⊂ X.
Assume that for every 2-dimensional nonsingular algebraic subset S of X the restriction
f |U∩S is a Nash function. Then f is a Nash function.

Proof. One can copy the proof of Corollary 4.4, substituting Proposition 4.5 for Proposi-
tion 4.3.

Now we can prove a result somewhat more general than Theorem 1.2.

Theorem 4.7. Let N be a Nash manifold of dimension at least 3 and let f : U → R be
a function defined on an open subset U of N . Assume that for every 2-dimensional Nash
submanifold S of N the restriction f |U∩S is a Nash function. Then f is a Nash function.

Proof. The manifold N has finitely many connected components, being a semialgebraic
set. Hence, in view of the Artin–Mazur theorem [1], N can be regarded as an open (in
the Euclidean topology) subset of a nonsingular real algebraic set. We complete the proof
by applying Corollary 4.6.

Proof of Theorem 1.2. It suffices to take U = N in Theorem 4.7.

The proof of Theorem 1.3 requires additional preparation. To begin with, we introduce
some terminology.

Let X be a nonsingular real algebraic set and let f : U → R be a function defined on
an open (in the Euclidean topology) subset U ⊂ X.
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We say that a pair (ϕ, ψ), where ϕ and ψ are regular functions on X, is a rational
representation of f if

ψf = ϕ on U,

and ψ is not identically 0 on any irreducible component of X.
We say that f is a regular function if, for every point x ∈ U , it has a rational

representation (ϕx, ψx) with ψx(x) 6= 0. In that case, we can find a finite collection
(ϕ1, ψ1), . . . , (ϕk, ψk) of rational representations of f such that

U ∩
k⋂
i=1

ψ−1
k (0) = ∅

(this is possible since the Zariski topology on X is Noetherian). Setting

Φ =
k∑
i=1

ϕiψi, Ψ =
k∑
k=0

ψ2
i ,

we obtain a rational representation (Φ,Ψ) of f with Ψ(x) 6= 0 for all x ∈ U . The notion
of regular function introduced here coincides with the standard one familiar from real
algebraic geometry, provided that the set U is Zariski open in X.

We will need the following simple observation, which is explicitly recorded in [10,
Proposition 2.1]: If f is analytic and admits a rational representation, then f is actually
a regular function. This can also be seen directly since, for any point x ∈ U , the ring of
germs of analytic functions at x is faithfully flat over the ring of germs of regular functions
at x (the algebraic assertion here is a consequence of [12, Theorem 8.14]).

In what follows certain constructions will depend on the classical theorem of Bertini
[11]. For this an appropriate setup is necessary.

One can always express X as X = X(R), where X is a nonsingular affine complex
algebraic variety defined over R, and X(R) stands for its set of real points. Moreover, one
can choose X irreducible if X is such.

We denote by Ar (resp. Pr) complex affine (resp. projective) r-space, regarded as a
variety over R.

Theorem 4.8. Let X be a nonsingular real algebraic set of pure dimension at least 3 and
let f : U → R be a function defined on an open (in the Euclidean topology) subset U of X.
Assume that for every 2-dimensional nonsingular algebraic subset S of X the restriction
f |U∩S is a regular function. Then f is a regular function.

Proof. We can assume without loss of generality that X is irreducible and of the form
X = X(R), where X is an irreducible nonsingular complex algebraic variety defined over R.
We regard X as a Zariski locally closed subset of Pr for some r. Set n = dimX = dimX.
By Corollary 4.6, f is a Nash function, hence it remains to prove that f admits a rational
representation. We do it in two steps.

Step 1. Suppose that the set U is connected. Since f is a Nash function, its graph is
contained in an irreducible algebraic hypersurface Y ⊂ X×A1, defined over R. Note that
f has a rational representation if and only if π : Y→ X, the restriction of the projection
X × A1 → X, is a birational morphism. Suppose that π is not birational, that is, it has
degree m > 1. By Bertini’s theorem, for a general linear subspace L ⊂ Pr of dimension
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r − n + 2, both X ∩ L and π−1(X ∩ L) are irreducible algebraic surfaces. We can choose
such an L so that X ∩ L is nonsingular and U ∩ S 6= ∅, where

S = (X ∩ L)(R) = X ∩ L(R).

Note that S is a nonsingular algebraic subset of X of dimension 2. Furthermore, the
restriction π0 : π−1(X ∩ L)→ X ∩ L of π has degree m, and therefore it is not birational.
Since the graph of f |U∩S lies on π−1(X∩L), the function f |U∩S does not admit a rational
representation. Hence f |U∩S is not regular, contrary to the assumption. This completes
the proof of Step 1.

Step 2. Consider the case of an arbitrary U . Pick a point a ∈ U , and let Ua be the
connected component containing a. By Step 1, the restriction f |Ua is a regular function,
and hence there exists a pair (ϕ, ψ) of regular functions on X such that

ψ(x) 6= 0 and ψ(x)f(x) = ϕ(x) for all x ∈ Ua.

Now the proof is reduced to showing

ψ(x)f(x) = ϕ(x) for all x ∈ U.

Suppose this is not the case. Then the set

W = {x ∈ U : ψ(x) 6= 0, ψ(x)f(x) 6= ϕ(x)}

is open and nonempty.
By Bertini’s theorem, there exists an irreducible nonsingular algebraic subset R ⊂ X,

of dimension 2, such that

Ua ∩R 6= ∅ and W ∩R 6= ∅;

we obtain such an R of the form R = (X ∩M)(R), where M ⊂ Pr is a suitable linear
subspace of dimension r− n+ 2. Since the restriction f |U∩R is a regular function, we can
find a pair (α, β) of regular functions on R such that

β(x) 6= 0 and β(x)f(x) = α(x) for all x ∈ U ∩R.

By construction,

f(x) =
ϕ(x)

ψ(x)
and f(x) =

α(x)

β(x)
for all x ∈ Ua ∩R.

Consequently, we get
β(x)ϕ(x) = ψ(x)α(x) for all x ∈ R

because R is irreducible, and the functions ϕ|R, ψ|R, α, β are regular on R. Thus, chosing
a point y ∈ W ∩R, we get

ϕ(y) = ψ(y)
α(y)

β(y)
= ψ(y)f(y),

a contradiction. The proof is complete.

Proof of Theorem 1.3. It suffices to take U = X in Theorem 4.8.
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