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Criteria for algebraicity of analytic functions

Jacek Bochnak, Janusz Gwoździewicz and Wojciech Kucharz

Abstract

We consider functions defined on an open subset of a nonsingular, ei-
ther real or complex, algebraic set. We give criteria for an analytic func-
tion to be a Nash (resp. regular, resp. polynomial) function. Our criteria
depend only on the behavior of such a function along irreducible nonsin-
gular algebraic curves passing trough a given point. In the proofs we use
results on algebraicity of formal power series, which are also established
in this paper.

1 Introduction

Throughout this paper we let F stand for either the field of real numbers R or the
field of complex numbers C. Unless explicitly stated otherwise, all subsets of Fn
will be endowed with the Euclidean topology, induced by the standard norm.
We give criteria for algebraicity of F-analytic (R-analytic = real analytic, C-
analytic = holomorphic) functions. If no confusion is possible we write analytic
instead of F-analytic. The term algebraicity corresponds to three classes of
functions: Nash, regular, and polynomial.

Let X be a nonsingular algebraic subset of Fm and let f : U → F be an
analytic function defined on an open subset U of X. Recall that f is called a
Nash function if every point p ∈ U has a connected open neighborhood Up in
U such that

k∑
i=0

ϕi(x)f(x)k−i = 0 for all x ∈ Up,

where the ϕi : Fm → F are polynomial functions, not all identically equal to
0 on Up. Equivalently, one can require that the Zariski closure of the graph of
f |Up

in X × F be of dimension dimUp.
We say that a function f : A→ F, defined on some subset A of Fm, is regular

at a point p ∈ A if there exist two polynomial functions ϕ, ψ : Fm → F such
that

ψ(p) 6= 0 and ψ(x)f(x) = ϕ(x) for all x ∈ A.

02010 Mathematics Subject Classification: 13J05, 14P05, 14P20, 32C07, 58A07.
Key words: power series, analytic function, Nash function, regular function, al-
gebraic set.
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We say that f is a regular function if it is regular at every point of A. We call
f a polynomial function if it is the restriction of a polynomial function from Fm
to F.

First we consider the case of Nash functions.

Theorem 1.1 Let X ⊂ Fm be a nonsingular algebraic subset, f : U → F an
analytic function defined on a connected open subset U of X, and p a point in
U . Assume that for every irreducible nonsingular algebraic curve C in X, with
p ∈ C, the restriction f |U∩C is a Nash function. Then f is a Nash function.

For regular functions we have the following.

Theorem 1.2 Let X ⊂ Fm be an irreducible nonsingular algebraic subset,
f : U → F an analytic function defined on an open subset U of X, and p a
point in U . Assume that for every irreducible nonsingular algebraic curve C
in X, with p ∈ C, the restriction f |U∩C is a regular function. Then f is a
regular function.

In particular, Theorem 1.2 holds if U = X. Recall that an irreducible
nonsingular algebraic subset of Rm need not to be connected.

Theorems 1.1 and 1.2 fit into the direction of research presented in [2], [3],
[6], [8]–[10]. Their proofs, given in Section 3, depend on rather subtle arguments
involving power series. In Section 2, we deal with problems of a local nature. Of
independent interest is Theorem 2.1, which gives a criterion for algebraicity of
formal power series. It enables us to obtain a criterion, stated as Theorem 2.4,
for an analytic function defined on a connected open neighborhood of the origin
in Fn to be a Nash (resp. regular, resp. polynomial) function. Various aspects
of the local case were investigated by several authors, going back go Hurwitz,
Kronecker and Weierstrass (see [4, pp. 199–203], [15], [16] and the references
therein). The theory of Nash functions is elaborated in [1]. In older texts, for
example [4], Nash functions appear under the name algebraic functions.

2 Algebraicity of power series

To begin with we review some terminology and notation. By a ring we always
mean a commutative ring with identity. Let R be a subring of a ring S. An ele-
ment u ∈ S is said to be algebraic over R if it is a root of a nonzero polynomial P
in R[Z]; if degP = d and u is not a root of any nonzero polynomial in R[Z]
of degree strictly less than d, then u is said to be algebraic of degree d over R.
Given elements u1, . . . , un in S, we denote by R[u1, . . . , un] the subring of S
generated by R and u1, . . . , un. A polynomial F in R[X] = R[X1, . . . , Xn] will
be frequently denoted by F (X) or F (X1, . . . , Xn), where X = (X1, . . . , Xn). We
adopt the same convention for formal power series in R[[X]] = R[[X1, . . . , Xn]].
We will also write Xi = Xi1

1 · · ·Xin
n for i = (i1, . . . , in) ∈ Nn, where N denotes

the set of nonnegative integers.
The following is the key result of this section.
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Theorem 2.1 Let f(X1, . . . , Xn) be a formal power series in variables X1, . . . ,
Xn with coefficients in a field K. Let R be the subring of K generated by the
coefficients of f(X1, . . . , Xn). Assume that there exist elements t1, . . . , tn−1 in K
which are algebraically independent over R. If the power series

f(t1Y, . . . , tn−1Y, Y )

in one variable Y is algebraic of degree d over K[Y ], then f(X1, . . . , Xn) is
algebraic of degree d over K[X1, . . . , Xn].

The proof of this theorem requires some preparation. For the sake of clarity
we record the following fact.

Lemma 2.2 Let R be a subring of a field K and let A = (aij), where i ∈ N and
j ∈ {1, . . . , n}, be an infinite matrix with entries in R. Then the solution space
in Kn of the system of linear equations

n∑
j=1

aijTj = 0, i ∈ N (2.1)

is spanned by solutions lying in Rn. In particular, if (2.1) has a solution
(u1, . . . , un) ∈ Kn with u1 6= 0, then it also has a solution (v1, . . . , vn) ∈ Rn

with v1 6= 0.

Proof. Let r be the number of linearly independent rows of the matrix
A. Then the solution space of (2.1) in Kn is spanned by n − r vectors in Kn,
where K is the field of fractions of R. Multiplying each of these vectors by the
common denominator of its entries, we may assume that they belong to Rn.
The assertion readily follows.

Lemma 2.3 Let h(Y ) = h(Y1, . . . , Yr) be a formal power series in variables
Y = (Y1, . . . , Yr) with coefficients in a field K. Let R be a subring of K that
contains the coefficients of h(Y ). Assume that h(Y ) is algebraic of degree d over
K[Y ]. Then there exists a polynomial H(Y,Z) in R[Y, Z], where Z is a single
variable, with the following properties:

(i) H(Y,Z) is of degree d with respect to Z;

(ii) H(Y, h(Y )) = 0.

Proof. Since h(Y ) is algebraic of degree d over K[Y ], there exists an irre-
ducible polynomial G(Y,Z) in K[Y,Z] such that (i) and (ii) hold with H(Y,Z)
replaced by G(Y,Z). Clearly, G(Y,Z) is irreducible when regarded as a poly-
nomial in Z with coefficients in the field of fractions of K[Y ].

Claim. The polynomial G(Y,Z) is uniquely determined up to multiplication
by a nonzero constant in K.
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Indeed, let F (Y,Z) be another irreducible polynomial in K[Y, Z] such that (i)
and (ii) hold with H(Y, Z) replaced by F (Y,Z). By a standard fact from the
theory of fields,

A(Y )F (Y,Z) = B(Y )G(Y,Z)

for some nonzero polynomials A(Y ), B(Y ) in K[Y ]. Hence F (Y,Z) is a constant
multiple of G(Y,Z), these two polynomials being irreducible. This proves the
Claim.

It remains to show that there is a nonzero constant c ∈ K such that the
polynomial H(Y,Z) = cG(Y, Z) has coefficients in R. To this end let

G(Y,Z) =
∑
j,k

bjkY
jZk,

where j ∈ Nr, k ∈ N, and bjk ∈ K. We get

G(Y, h(Y )) =
∑
i

ciY
i,

where i ∈ Nr, and the coefficients ci ∈ K are of the form

ci =
∑
j,k

aijkbjk = 0,

where aijk ∈ R (recall that the coefficients of h(Y ) belong to R). By replacing
each nonzero element bjk with variable Xjk, we obtain the linear forms

Ci =
∑
j,k

aijkXjk

in n variables, where n is the number of nonzero elements bjk. Now the issue is
to show that the system of linear equations

Ci = 0, i ∈ Nr (2.2)

has a nonzero solution in Rn. In view of the Claim, the solution space of (2.2)
in Kn is a 1-dimensional vector subspace. Since aijk ∈ R, the proof is complete
in view of Lemma 2.2.

Proof of Theorem 2.1. Assume that the formal power series

h(Y ) = f(t1Y, . . . , tn−1Y, Y ) (2.3)

is algebraic of degree d over K[Y ]. Since the coefficients of h(Y ) belong to the
subring S = R[t1, . . . , tn−1] of K, applying Lemma 2.3 we obtain a polynomial
H(Y,Z) in S[Y,Z], of degree d with respect to Z, such that

H(Y, h(Y )) = 0. (2.4)
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The polynomial H(Y,Z) can be expressed as a finite sum

H(Y,Z) =
∑
i,j

Aij(t1, . . . , tn−1)Y iZj ,

where i, j ∈ N, and the Aij are polynomials in R[T1, . . . , Tn−1]. Defining the
polynomial F in R[T1, . . . , Tn−1, Y, Z] by

F (T1, . . . , Tn−1, Y, Z) =
∑
i,j

Aij(T1, . . . , Tn−1)Y iZj ,

we get
H(Y,Z) = F (t1, . . . , tn−1, Y, Z) (2.5)

Note that

F (T1, . . . , Tn−1, Y, f(T1Y, . . . , Tn−1Y, Y )) =
∑
k

Bk(T1, . . . , Tn−1)Y k,

where k ∈ N, and the Bk are polynomials in R[T1, . . . , Tn−1]. In view of (2.3),
(2.4), and (2.5), we get

Bk(t1, . . . , tn−1) = 0 for all k ∈ N,

and hence
F (T1, . . . , Tn−1, Y, f(T1Y, . . . , Tn−1Y, Y )) = 0, (2.6)

the elements tt, . . . , tn−1 being algebraically independent over R. Now, if l ∈ N
is sufficiently large, then

Y lF (T1, . . . , Tn−1, Y, Z) = F̃ (T1Y, . . . , Tn−1Y, Y, Z)

for some polynomial F̃ in K[X1, . . . , Xn, Z] of degree d with respect to Z. Ac-
cording to (2.6), we have

F̃ (T1Y, . . . , Tn−1Y, Y, f(T1Y, . . . , Tn−1Y, Y )) = 0,

which in turn implies that

F̃ (X1, . . . , Xn, f(X1, . . . , Xn)) = 0.

Therefore the power series f(X1, . . . , Xn) is algebraic of degree e over the ring
K[X1, . . . , Xn], for some e ≤ d.

We now prove that e = d. Applying Lemma 2.3 to f(X1, . . . , Xn) we obtain
a polynomial G in R[X1, . . . , Xn, Z], of degree e with respect to Z, such that

G(X1, . . . , Xn, f(X1, . . . , Xn)) = 0.

Obviously
G(t1Y, . . . , tn−1Y, Y, h(Y )) = 0.

The polynomial G(t1Y, . . . , tn−1Y, Y, Z) has degree e with respect to Z, the
elements t1, . . . , tn−1 being algebraically independent over R. Since h(Y ) is
algebraic of degree d over K[Y ], we obtain e = d, as required.

Theorem 2.1 enables us to prove the following result on analytic functions.
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Theorem 2.4 Let f : U → F be an analytic function defined on a connected
open neighborhood U of the origin in Fn. Let W be a nonempty open subset of
Fn and assume that for every vector line L ⊂ Fn, with W ∩L 6= ∅, the restriction
f |U∩L is a Nash, (resp. regular, resp. polynomial) function. Then f is a Nash,
(resp. regular, resp. polynomial) function.

Proof. In a neighborhood of 0 ∈ Fn, the function f is given as a convergent
power series

f(x1, . . . , xn) =
∑

ci1,...,inx
i1
1 · · ·xinn ,

where i1,. . . , in are nonnegative integers. Denoting by R the subring of F
generated by the coefficients ci1,...,in , we can find a vector line L = Fτ ⊂ Fn,
where τ = (t1, . . . , tn−1, 1) ∈ Fn with t1,. . . ,tn−1 algebraically independent over
R, so that L ∩W 6= ∅.

We now consider three cases.

Case 1. If f |U∩L is a Nash function, then the power series

f(t1xn, . . . , tn−1xn, xn)

is algebraic over F[xn]. By Theorem 2.1, the power series f(x1, . . . , xn) is alge-
braic over F[x1, . . . , xn]. Thus f is a Nash function on U , the open set U being
connected.

Case 2. If f |U∩L is a regular function that is not a polynomial function,
then the power series f(t1xn, . . . , tn−1xn, xn) is algebraic of degree 1 over F[xn].
Hence, by Theorem 2.1, the power series f(x1, . . . , xn) is algebraic of degree 1
over F[x1, . . . , xn]. It follows that

ψf = ϕ on U

for some nonzero relatively prime polynomial functions ϕ,ψ : Fn → F.
Suppose that F = C. Since ϕ, ψ are relatively prime, any point p ∈

U∩ψ−1(0) would be an accumulation point of the set ψ−1(0)\ϕ−1(0). This, how-
ever, cannot happen, the function f being holomorphic. Consequently, ψ(p) 6= 0
for all p ∈ U , which means that the function f is regular on U .

If F = R, we can extend f to a holomorphic function defined on a connected
open subset of Cn that contains U . Therefore f is a regular function on U also
for F = R.

Case 3. If f |U∩L is a polynomial function, then the power series

f(t1xn, . . . , tn−1xn, xn) =

∞∑
k=0

( ∑
i1+···+in=k

ci1,...,int
i1
1 · · · t

in−1

n−1
)
xkn

reduces to a polynomial in xn. Hence, for all sufficiently large k, the coefficient
of xkn vanishes. Since t1,. . . ,tn−1 are algebraically independent over R, the
coefficients ci1,...,in with i1+· · ·+in = k large enough are all zero. Consequently,
f is a polynomial function on U .
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3 Global results

The projective space of vector lines in Fn will be denoted by Pn−1(F). We will
make use of the following auxiliary result.

Lemma 3.1 Let X ⊂ Fm be a nonsingular algebraic subset of pure dimension
n ≥ 1. Assume that X contains the origin 0 in Fm. Then there exists a
polynomial map π : X → Fn such that the following hold:

(i) π is the restriction of a surjective linear map Fm → Fn.

(ii) 0 ∈ Fn is a regular value of π.

Furthermore, for such a map π, there exists a nonempty Zariski open subset Ω
of Pn−1(F) such that π is transverse to every vector line in Ω.

Proof. We may assume that after a linear change of coordinates in Fm the
tangent space to X at 0 coincides with Fn × {0} ⊂ Fm. Let ϕ : X → Fn be the
restriction of the canonical projection Fm = Fn × Fm−n → Fn. Clearly ϕ is a
submersion at 0 ∈ X.

Let M be the space of all n-by-m matrices with entries in F. For any constant
ε > 0, we set

Mε = { t = (tij) ∈M : |tij | < ε for 1 ≤ i ≤ n, 1 ≤ j ≤ m }

and consider the map Φ : X ×Mε → Fn defined by

Φ(x, t) =
(
x1 +

m∑
j=1

t1jxj , . . . , xn +

m∑
j=1

tnjxj

)
,

where x = (x1, . . . , xm) ∈ X and t = (tij) ∈ Mε. If ε is sufficiently small, then
the map Φ is a submersion, since for each point x 6= 0 the restriction of Φ to
{x} ×Mε is a submersion, and ϕ is a submersion at 0. Hence, according to
the standard consequence of Sard’s theorem [5, p. 79, Theorem 2.7], the point
0 ∈ Fn is a regular value of the map Φt : X → Fn, Φt(x) = Φ(x, t) for some
t ∈Mε. For the map π = Φt both conditions (i) and (ii) hold.

The last assertion in Lemma 3.1 is proved in [2, Lemma 4.2] for F = R, and
the same argument works also for F = C.

Proof of Theorem 1.1. We may assume without loss of generality that X
is irreducible of dimension n ≥ 1 and p = 0 is the origin in Fm. Let π : X → Fn
and Ω ⊂ Pn−1(F) be as in Lemma 3.1. Choose an open neighborhood N of p
in U so that the map

ϕ = π|N : N → π(N) = V

is a Nash diffeomorphism, where V is a connected open neighborhood of the
origin 0 ∈ Fn. Define g : V → F to be the composite function g = f ◦ ϕ−1.
Since π is transverse to every vector line L ∈ Ω, it follows that the inverse image
π−1(L) is a nonsingular algebraic curve in X, passing through p. Let C(L)
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denote the irreducible component of π−1(L) that contains p. By assumption,
the restriction f |U∩C(L) is a Nash function, which implies that the restriction
g|V ∩L is a Nash function. Applying Theorem 2.4 we get that g itself is a Nash
function. Consequently, f |N is a Nash function. If follows that f is a Nash
function as well, the set U being connected.

It is worthwhile to record the following consequence of Theorem 1.1.

Corollary 3.2 Let f : X → C be a holomorphic function defined on an irre-
ducible nonsingular algebraic subset X ⊂ Cm, and let p be a point in X. Assume
that for every irreducible nonsingular algebraic curve C in X, with p ∈ C, the
restriction f |C is a Nash function. Then f is a polynomial function.

Proof. Since we consider the complex case, the set X is connected. Hence,
in view of Theorem 1.1 (with F = C), f is a Nash function. It readily follows
that the graph of f is an algebraic subset of X×C. Consequently, f is a regular
function by the theorem of Serre [14, Proposition 8] or [12]. It is well known
that any regular function on an algebraic subset of Cm is polynomial.

The proof of Theorem 1.2 is more involved and requires additional prepara-
tion.

Let X ⊂ Fm be an irreducible nonsingular algebraic subset and let f : U → F
be a function defined on an open subset U of X. We say that f admits a rational
representation if there exist two polynomial functions ϕ,ψ : Fm → R such that

ψ(x)f(x) = ϕ(x) for all x ∈ U

and ψ is not identically 0 on X.

We will make use of the following fact (see also [7, Proposition 2.1]).

Lemma 3.3 Let X ⊂ Fm be an irreducible nonsingular algebraic subset and
let U be an open subset of X. If an analytic F-valued function on U admits a
rational representation, then it is a regular function.

Proof. The conclusion holds since for any point p ∈ U , the ring of germs of
analytic functions at p is faithfully flat over the ring of germs of regular functions
at p (the algebraic assertion here follows from [13, Theorem 8.14]).

Now we are in a position to reduce Theorem 1.2 to a local assertion.

Lemma 3.4 With notation and hypothesis as in Theorem 1.2 assume, in ad-
dition, that for some open neighborhood Up ⊂ U of the point p the restriction
f |Up

admits a rational representation. Then f is a regular function.

Proof. By Lemma 3.3, it suffices to prove that f admits a rational represen-
tation (this is not entirely obvious because the set U need not to be connected).
Since f |Up

admits a rational representation, we can choose two polynomial func-
tions ϕ,ψ : Fm → F such that ψ is not identically 0 on X and

ψ(x)f(x) = ϕ(x) for all x ∈ Up.
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It remains to show that this equality actually holds for all x ∈ U . Suppose this
is not the case. Then the set

W = {x ∈ U : ψ(x)f(x) 6= ϕ(x) }

is nonempty and open in U . By a suitable variant of Bertini’s theorem (see
Lemma 3.5 below), there exists an irreducible nonsingular algebraic curve C in
X with

p ∈ C and W ∩ C 6= ∅.

Regularity of the restriction f |U∩C allows us to choose two polynomial functions
α, β : Fm → F with

β(p) 6= 0 and β(x)f(x) = α(x) for all x ∈ U ∩ C.

Thus

ψ(x)
α(x)

β(x)
= ψ(x)f(x) = ϕ(x) for all x ∈ C near p.

Consequently
ψ(x)α(x) = ϕ(x)β(x) for all x ∈ C,

the curve C being irreducible. Now, choose a point q ∈ W ∩ C with β(q) 6= 0.
Then we get

ψ(q)f(q) = ϕ(q),

a contradiction. This completes the proof.

We have used the following consequence of Bertini’s theorem, which is in-
cluded here for the sake of completeness.

Lemma 3.5 Let X ⊂ Fm be an irreducible nonsingular algebraic subset of pos-
itive dimension, p a point in X, and W a nonempty open subset of X. Then
there exists an irreducible nonsingular algebraic curve C in X such that p ∈ C
and W ∩ C 6= ∅.

Proof. We assume that dimX = n ≥ 2 and p = 0 is the origin in Fm. Let
π : X → Fn and Ω ⊂ Pn−1(F) be as in Lemma 3.1. Clearly, the subset π(W ) of
Fn has nonempty interior.

Case 1. Suppose that F = C.
Since 0 ∈ Cn is a regular value of the map π : X → Cn, it follows that for a

general vector line L ⊂ Cn the inverse image π−1(L) is an irreducible algebraic
curve in X (to see the validity of this assertion, one can view Cn as a subset of
Pn(C), identify vector lines in Cn with projective lines in Pn(C) passing through
the point 0 ∈ Cn ⊂ Pn(C), and consult the proof of Bertini’s theorem in [11,
Theorem 3.3.1]). Choosing such a line L so that L ∈ Ω and L ∩ π(W ) 6= ∅, we
obtain an irreducible nonsingular algebraic curve C := π−1(L) in X with p ∈ C
and C ∩W 6= ∅.

Case 2. Suppose that F = R.
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Choose an irreducible nonsingular Zariski locally closed subset X ⊂ Cm,
defined over R, so that its set of real points X(R) coincides with X. Denote again
by π : X→ Cn the restriction of the canonical projection Cm = Cn × Cm−n →
Cn. Shrinking X if necessary, we may assume that 0 ∈ Cn is a regular value of
π. We conclude by proceeding as in Case 1,

In our last lemma we return to the notion of rational representation in the
context of formal power series.

Lemma 3.6 Let K be a field. Let F ∈ K[[V ]] be a formal power series in
variables V = (V1, . . . , Vm), and let ϕ = (ϕ1, . . . , ϕm) be an m-tuple of formal
power series ϕi ∈ K[[T ]] in one variable T , with ϕ(0) = 0. Assume that there
exist two polynomials g, h ∈ K[V ] for which

(Fh− g) ◦ ϕ = 0 and h ◦ ϕ 6= 0.

If the coefficients of the power series F , ϕ1, . . . , ϕm are all in a subring R of K,
then there exist two polynomials G,H ∈ R[V ] for which

(FH −G) ◦ ϕ = 0 and H ◦ ϕ 6= 0.

Proof. Suppose that the subring R contains the coefficients of the power
series F , ϕ1, . . . , ϕm. Let {gα} and {hβ}, for some α and β in Nm, be the
collections of all nonzero coefficients of the polynomials g and h, respectively.
By equating to 0 the coefficients of the power series (Fh − g)(ϕ(T )) in T , we
obtain relations ∑

α

aiαgα +
∑
β

biβhβ = 0 for i ∈ N,

where the aiα and biβ belong to R.
Since the power series h(ϕ(T )) =

∑
j djT

j is nonzero, for some l ∈ N, we
get a relation

dl =
∑
β

cβhβ 6= 0,

where the cβ belong to R.
The system of linear equations{ ∑

α aiαYα +
∑
β biβZβ = 0, i ∈ N

U −
∑
β cβZβ = 0

in variables Yα, Zβ , U has a solution

({Yα}, {Zβ}, U) = ({gα}, {hβ}, dl)

in K, with dl 6= 0. By Lemma 2.2, this system also has a solution

({Gα}, {Hβ}, D)
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in R, with D 6= 0. Hence the polynomials

G =
∑
α

GαV
α, H =

∑
β

HβV
β

belong to R[V ] and have the required properties.

Proof of Theorem 1.2. We may assume that dimX = n ≥ 2. In view of
Lemma 3.1, we may also assume that after a translation and a linear change of
coordinates in Fm the following hold:

(i) p = 0 ∈ U .

(ii) 0 ∈ Fn is a regular value of the restriction π : X → Fn of the canonical
projection Fm = Fn × Fm−n → Fn.

(iii) There exists a nonempty Zariski open subset Ω of Pn−1(F) such that π is
transverse to every vector line in Ω.

(iv) The vector line L = { (y1, . . . , yn) ∈ Fn : y1 = 0, . . . , yn−1 = 0 } is in Ω.

According to (iii) and (iv), if ε > 0 is sufficiently small, then for any elements
t1, . . . , tn−1 in F, with |t1| < ε, . . . , |tn−1| < ε, the line

L(t1, . . . , tn−1) = { (y1, . . . , yn) ∈ Fn : y1 = t1yn, . . . , yn−1 = tn−1yn }

is in Ω.
Let us set k = m− n, Y = (Y1, . . . , Yn), Z = (Z1, . . . , Zk). Denote by I(X)

the ideal of the polynomial ring F[Y, Z] = F[Y1, . . . , Yn, Z1 . . . , Zk] that consists
of all polynomials vanishing on X. Since (ii) holds, we can find polynomials F1,
. . . , Fk in I(X) such that

det

(
∂Fi
∂Zj

(0)

)
6= 0. (3.1)

If A ∈ I(X), then the germ of A at 0 ∈ Fm is a linear combination of the germs
of the Fi with coefficients that are analytic function-germs (Fm, 0) → F. In
particular, the germ of the algebraic set X at 0 ∈ Fm coincides with that of the
zero locus of the polynomials Fi.

It follows from (3.1) and the implicit function theorem for power series that
there exists a unique k-tuple Φ = (Φ1, . . . ,Φk), where each Φj is a formal power
series in F[[Y ]], such that

Φ(0) = 0 and Fi(Y,Φ(Y )) = 0 for i = 1, . . . , k.

Actually, the Φj are convergent power series. Interpreting Φ as an analytic
map-germ

Φ : (Fn, 0)→ (Fk, 0),

we get Fi(b,Φ(b)) = 0 for all b close to 0 ∈ Fn, i = 1, . . . , k. It follows that

graph Φ = the germ of X at 0 ∈ Fm. (3.2)
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Now, let K be the subfield of F generated by the coefficients of the poly-
nomials F1, . . . , Fk. By the implicit function theorem again, Φj ∈ K[[Y ]] for
j = 1, . . . , k.

Choose an analytic function-germ F : (Fm, 0) → F so that its restriction to
(X, 0) coincides with the germ of f at 0. We identify F with its power series
expansion at 0. Thus F is a convergent power series in Y1, . . . , Yn, Z1, . . . , Zk.
Denote by S the subfield of F generated by K and the coefficients of F .

Choose elements t1, . . . , tn−1 in F, with |t1| < ε, . . . , |tn−1| < ε, that are
algebraically independent over S. Since the vector line L(t1, . . . , tn−1) is in Ω,
the inverse image π−1(L(t1, . . . , tn−1)) is a nonsingular algebraic curve in X;
denote by C its irreducible component that contains the point p = 0. Consider
the m-tuple ϕ = (ϕ1, . . . , ϕm) of convergent power series in one variable T ,
where

ϕ1(T ) = t1T, . . . , ϕn−1(T ) = tn−1T, ϕn(T ) = T,

ϕn+j(T ) = Φj(t1T, . . . , tn−1T, T ) for j = 1, . . . , k.

Note that ϕ, regarded as an analytic map-germ ϕ : (F, 0) → (Fm, 0), is a local
parametrization of the curve C near 0. The coefficients of the power series ϕ1,
. . . , ϕm belong to K[t1, . . . , tn−1], hence also to S[t1, . . . , tn−1].

Since the restriction f |U∩C is a regular function, there exist two polynomials
G, H in F[Y,Z] such that

(FH −G) ◦ ϕ = 0 and H ◦ ϕ 6= 0.

By Lemma 3.6 (with R = S[t1, . . . , tn−1]), we can choose such polynomials G,
H in S[t1, . . . , tn−1][Y, Z]. Define two polynomials G̃, H̃ in S[t1, . . . , tn−1][Y,Z]
by

G̃(Y, Z) = G(t1Yn, . . . , tn−1Yn, Yn, Z),

H̃(Y, Z) = H(t1Yn, . . . , tn−1Yn, Yn, Z).

Then
(FH̃ − G̃) ◦ ϕ = 0 and H̃ ◦ ϕ 6= 0.

If l ∈ N is sufficiently large, then there exist two polynomials P , Q in S[Y,Z]
such that

Y lnG̃(Y, Z) = P (t1Yn, . . . , tn−1Yn, Yn, Z),

Y lnH̃(Y,Z) = Q(t1Yn, . . . , tn−1Yn, Yn, Z).

Consequently
(FQ− P ) ◦ ϕ = 0 and Q ◦ ϕ 6= 0.

Since P , Q are in S[Y, Z], we get

(FQ− P )(ϕ(T )) =
∑
r

cr(t1, . . . , tn−1)T r,
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where r ∈ N, and the cr are polynomials in S[T1, . . . , Tn−1]. The equality
(FQ− P ) ◦ ϕ = 0 implies that cr(T1, . . . , Tn−1) = 0, the elements t1, . . . , tn−1
being algebraically independent over S. Thus

(FQ− P )(T1T, . . . , Tn−1T, T,Φ(T1T, . . . , Tn−1T, T )) = 0

as formal power series in T1, . . . , Tn−1, T , which implies that

(FQ− P )(Y,Φ(Y )) = 0 (3.3)

as formal power series in Y1, . . . , Yn. The property Q ◦ ϕ 6= 0 implies that the
polynomial Q does not vanish identically on C.

Since
F |(X,0) = the germ of f at 0 = p ∈ X,

combining (3.2) and (3.3), we see that the restriction f |Up of f to some neigh-
borhood Up ⊂ U of p admits a rational representation. The proof is complete
in view of Lemma 3.4
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