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The Tutte Polynomial of Ideal Arrangements

Hery Randriamaro *

December 20, 2018

Abstract

The Tutte polynomial is originally a bivariate polynomial enumerating the colorings of a
graph and of its dual graph. But it reveals more of the internal structure of the graph like
its number of forests, of spanning subgraphs, and of acyclic orientations. In 2007, Ardila
extended the notion of Tutte polynomial to hyperplane arrangements, and computed the
Tutte polynomials of the classical root systems for a certain prime power of the first
variable. In this article, we compute the Tutte polynomials of ideal arrangements. Those
arrangements were introduced in 2006 by Sommers and Tymoczko, and are defined for
ideals of root systems. For the ideals of the classical root systems, we bring a slight
improvement of the finite field method showing that it can applied on any finite field
whose cardinality is not a minor of the matrix associated to a hyperplane arrangement.
Computing the minor set associated to an ideal of a classical root system permits us
particularly to deduce the Tutte polynomials of the classical root systems. For the ideals
of the exceptional root systems of type Go, Fy, and Fg, we use the formula of Crapo.

Keywords: Tutte Polynomial, Hyperplane Arrangement, Root System, Ideal
MSC Number: 05A15, 20D06

1 Introduction

In one of his last papers [10], Tutte described with these words how in 1954 he became
acquainted with the later called Tutte polynomial: “Playing with my W-functions I obtained
a two-variable polynomial from which either the chromatic polynomial or the flow polynomial
could be obtained by setting one of the variables equal to zero, and adjusting signs.” At the
beginning, this polynomial was effectively associated to a graph [9, § 3]. But in 2007, Ardila
extended the notion of Tutte polynomial to hyperplane arrangements [Il, § 3.

Let K" be a field, and a1, ...,a,,b in K such that (ai,...,a,) # (0,...,0). A hyperplane in
K" is a (n — 1)—dimensional affine subspace H := {(:Ul, conyy) EKY gy + - apx, = b}
that we simply denote by H = {a1x1+ - -+ anx, = b}. A hyperplane arrangement is a finite
set of hyperplanes in K".

Take a hyperplane arrangement A, and denote the set (). 4 H by NA. One says that A is
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central if NA # 0. From now on, every hyperplane arrangement we consider is central.
A subarrangement of A is a subset of 4. The rank function r is defined for each subarrange-
ment B of A by r(B) :=n — dimNB.

Definition 1.1. the Tutte polynomial of the hyperplane arrangement A is

Ta(w,y) = 3 (1w — 1y —1B) (y — 1)#8-15),
BCA

Characteristic Polynomial. Let L(.A) be the set of nonempty intersections of hyperplanes
in A. The elements of L(.A) are partially ordered by reverse inclusion with unique minimal
element R™. The characteristic polynomial of A is x4(q) := > pc L w(R™, E)qdim(E), where
p denotes the Mobius function of the lattice L(A). The characteristic polynomial gives
important information on the associated hyperplane arrangement. The number of chambers
of A is equal to (—1)"x4(—1). Another example considers a closed chamber C of A. One
says that a point of R™ has a k-dimensional projection on C' if its orthogonal projection onto
C lies in the relative interior of a k-dimensional face of C'. The set of the points for which the
projections on C' is k-dimensional forms a cone K¢ j. The ratio of volume vy (C') occupied by
K¢, is defined by

_ | Eexn s
vg(C) = W;
where | - | is the Lebesgue measure, and S™~! the unit sphere. Klivans and Swartz proved

that the sum of the v (C)’s over all chambers C of A is equal to the absolute value of the
coefficient of ¢"Y="*% in y 4(q) [5, Theorem 5]. The characteristic polynomial of A is a
specialization of its Tutte polynomial by

xa(q) = (=1)"Wgnr AT, (1 — ¢,0).

Graphic Arrangement. A finite simple nonoriented graph G consists of the vertex set [n],
and of a subset E of ([g]) as edge set. To the graph G is associated a hyperplane arrangement
Ag in R™ defined by

A = {{zi—2; =0}, e

The Tutte polynomial T4, (z,y) contains much information on the graph G. As exam-
ples, T'4,(2,1) counts the number of forests, T'4,(1,1) the number of spanning forests, and
T s, (1,2) the number of spanning subgraphs. Moreover, the correspondence G <+ Ag may be
used to pull back results concerning arrangements to results concerning graphs. For example,
Zaslavsky’s chamber counting theorem can be translated into Stanley’s theorem which states
that the number of acyclic orientations for graphs is (—1)"x.4,(—1) [6, Theorem 2.94].

From now on, we work in the Fuclidean space R™ with inner product (.,.) the usual dot
product. Recall that a reflection s, associated to a nonzero vector u is a linear map sending
u to its negative while fixing pointwise the hyperplane u. A root system is a finite set ® of
nonzero vectors v in R™ satisfying the conditions

o ®NRu = {u,—u} for all u € P,

e 5,(®) = @ for every u in P,



e s,(v) has integer coefficients for every w,v in ®.

A root system is irreducible if it cannot be expressed as a disjoint union of two nonempty
subsets @1 LI &3 such that (u,u2) = 0 for u; in @1, and ug in Ps.

Denote by {eq,...,e,} the standard basis of R™. There are nine types of irreducible root
systems: The four infinite families of root systems associated to the classical Lie algebras

(Ap-1,n>2) Pu, ., ={ei—¢; |1 <i##j<n}
(Bn, n>2) Op, ={te;te; |1 <i<j<n}U{te |ice[n]},
(Cpyn>2) O, ={fe;tej |1 <i<j<n}U{£2e; |iecn]},
(Dp, n>4) Pp, ={xe; te; |1 <i<j<n},

and the five exceptional root systems
(G2) Pg,={%x(e;—¢j) [ 1<i<ji<3}U{+2e;—e—e)|{i,jk}=1{1,23}}

1
(F4) (I)F4 = {j:ez-:lzej ‘ 1 §Z<] §4}U{:|:€i | 1€ [4}}U{§(:|:61:|:€2:|:€3:|:€4)},

8
1
(Eg) Ppy={te;+e; |1 <i<j<8}U {§Ziei even number of + signs},
i=1
(B7) ®p, ={fe;ite; | 1<i<j<6}U{x(er—es)}

6
U { + %(67 —eg + (Z +e; odd number of + SignS))}a

i=1
(Bg) ®p, = {teite; |1<i<j<5}
Ui+ 1(eg —er—eg+( 5 +e; odd number of + signs))}.
2 —
1=

A vector of a root system is called a root. There exist some subsets A of & called simple
systems such that (A) = R" and each root in ® is a linear combination of roots in A with
coefficients all of the same sign. Fixing a simple system A, a positive root system ®* consists
of the roots with positive coefficients. We endow ®* with the partial order < defined by
u = v, provided v — u is a linear combination of positive roots with positive coefficients.

Definition 1.2. An ideal of a root system @ is a subset I of ®* satisfying the condition
Ifuecl,and v € ® so that u < v, then v € I.

Let I¢ := ®* \ I be the complement of an ideal I. The ideal arrangement A; associated to I
is the hyperplane arrangement
Ar = {ut | ueI.

Poincaré Polynomial of Ideal. The height of a root v = > -\ Ty is ht(v) := D A Tu.
For an ideal I, let \; := #{u € I° | ht(u) = i}. This gives the height partition A\ > Ay > ...
of I¢. With m} := #{\; | \i > A\; —i+ 1}, define the dual partition mg\l > mf\l_l >...>ml
of the A;’s. The numbers m! are called the ideal exponents of 1.

A subset S of I€is said I°closed if for u,v in S, if u+v € I¢ then u4+v € S. And S is of



Weyl type for I if both S and ¢\ S are I°-closed. Denote by Wy the set of subsets of I¢ of
Weyl type. Sommers and Tymoczko proved that, for any ideal I of the root systems of type
Ap—1, Bn, Cy, Ga, Fy, Eg, its Poincaré polynomial is [§, Theorem 4.1]

A1

ST =St ), (1)

SeW; =1

A parabolic subsystem is a subset ® ¢ ® such that there exists a subset A’ ¢ A with the
property & = (A’) N ®. Rohrle showed another condition for the ideal I to satisfy 7,
Theorem 1.26, Theorem 1.27]: Suppose that the ideal I of the root system & satisfies one of
the following conditions

(i) Aj is reducible,

(ii) Ay is irreducible, and there exists a maximal parabolic subsystem ®( of ® such that,
with ®§ = @\ &g, PGNI° # (), G N I° is linearly ordered, and for any u # v in ®§NI°,
there is w in @g so that u, v, and w are linealy dependent.

Suppose that for every proper parabolic subsystem of ®, the Poincaré polynomials of all ideals
factor as in . Then the Poincaré polynomial of I also factors as in (|1f).

Inductive Freeness of Ideal Arrangement. Denote the polynomial algebra R[z, ..., x,)
by S. A linear map 6 : S — S is a derivation if, for f,g € S, 0(fg) = f0(g) + g0(f). Denote
by Der(S) the S—module of derivations of S. @ 4 being the defining polynomial of A, the S—
submodule D(A) := {6 € Der(5) | 0(Q4) € Q4S} of Der(S) is the module of A-derivations.
Recall that A is said free if D(A) is a free S—module. Sommers and Tymoczko showed that
Ay is free if the root system is associated to A,,_1, By, Cy, or Gy [8, Theorem 11.1].

Let @, be the empty arrangement of R™. The class ZF of inductively free arrangements is
the smallest class of hyperplane arrangements satisfying

(1) @, € ZF for n > 0,

(2) if there exists H € A such that AY € ZF, A\ {H} € ZF, and exp A¥ Cexp A\ {H},
then A € ZF.

Hultman proved that the ideal arrangements associated to the root systems of A, 1, By,
Cy, and G9 are inductively free |4, Theorem 6.6, Theorem 7.1]. Rohrle proved that the ideal
arrangements of type D,, are inductively free [7, Theorem 1.7]. He showed as well that if I is
an ideal of a root system ®, and [ satisfies one of the following conditions

(i) Ay is reducible,

(ii) Ay is irreducible, and there exists a maximal parabolic subsystem ®y of ® such that
PE NI+ 0, @GN I€is linearly ordered, and for any u # v in ®§ N I¢, there is w in @8‘
so that u, v, and w are linealy dependent,

(iii) I is composed only of the highest root of ®*,



and each ideal arrangement of a proper parabolic subsystem is inductively free, then Aj
is inductively free with the nonzero exponents given by the ideal exponents mij of I with
the possible exception when the root system is of type Eg and I is one of 4545 ideals [7,
Theorem 1.9, Theorem 1.13, Theorem 1.14, Theorem 1.15].

The aim of this article is to compute, for the four infinite families of root systems,
and for the exceptional root systems Gs, F4, and Eg, the Tutte polynomials of
their ideal arrangements.

For the root systems of types A,,_1, By, C,, and D,,, we use a simple transformation of the
Tutte polynomial, called coboundary polynomial of a hyperplane arrangement.

Definition 1.3. The coboundary polynomial of a hyperplane arrangement A is

= 3 g AB)  _qy#B

BCA

Since Tg(z,y) = W )ZA(@ —1)(y—1), y), computing the coboundary polynomial of a

hyperplane arrangement is equivalent to computing its Tutte polynomial.

Now, we describe the organization and the contents of this article, and list the main results.
In Section [2] we determine the prime numbers for which the finite field method can be
applied, on one side, and on the other side, we prove that the minor set of the matrix
associated to @Xnil is {0,%1}, while the minor set of the matrix associated to @Eﬂ is
{0, £20, +21 .. :|:2L%J}. Those are necessary to compute the Tutte polynomial of ideal
arrangements. By the way, we complete the calculations of Ardila by deducing the Tutte
polynomials of the hyperplane arrangements generated by the classical root systems

o Ay, , = {331 — Ty = 0}1§z‘<j§n’

e Ap, = Ac, = {zita;= 0}1§i<j§n U {2 = O}ie[n]’

e and Ap, = {z; tz; = 0}1§i<j§n'

For a positive integer n, let p(n) be the n'" prime number with p(0) = 2, and define the
polynomial

, (z =Dy -1 —pQ)
Ly ('T7 Y, Z) = : .
je[l;ﬂ] (p(i) = p() (y — "
JF
Moreover, let Par(n) be the set of ordered partitions of n.

Theorem 1.4. For an integer n > 2, let X,, be one of the types in {An_1, By, Dy}. Then,
the Tutte polynomial of Ax,, is

Tay, (2,y) = Z >~ Luul,y,6) x [t*]Xay,, (p(0),1) x o,

k=0 i€[m+1]



i wa000= 5 (), ")

(a1,...,an)EPar(n)

- p(i)-1 n—a u w (b

a=0 (by,...,by, )EPar(n—a)

" M n—a u u b
T (b0 = 2 (T2)(,) 0, ) e ),

a=0 (by,...,by)EPar(n—a)

(]

In Section [3] we introduce a topology on the shifted Young diagrams, and recall the shifted
Young diagrams associated the classical root systems. The open sets of the later diagrams cor-
respond, in fact, to the ideal arrangements. We particularly see that a full ideal arrangement
corresponds to a full connected open set.

In Section I, we deﬁne the signature s;(i) of an integer 7 in accordance with an ideal I, and
the partition AM|...[AM|BM]|. . |B®) of [n] in accordance with I. We also need them to
compute the coboundary polynomial of an ideal arrangement. Remark that the signature sy
depends on the ideal I.

In Section [5] we can finally compute the coboundary polynomial of an ideal arrangement
associated to a classical root system. Then, we deduce the Tutte polynomials of the ideal
arrangements associated to ®4, ,, ®p,, ®¢,, and ®p,. Since the Tutte polynomial of an
ideal arrangement is equal the product of the Tutte polynomials associated to its connected
ideal subarrangements, we just need to consider the full connected ideal arrangements.

Theorem 1.5. Let Ar be a full connected ideal arrangement of ® 4, ,, with associated par-
tition AW|...|A"), and let R = {v e {u+1,....r} | sf(AW)Ns(AW) #£ 0}. Then, the
Tutte polynomial of Ay is

#1°

Tar(,y) =Y ) Looa(w,y,4) x [tF]x4, (p(0), 1) x o*,
k=01i€[n]
N
: HAW >tzp“ (3 )+a Ty pia o
p(i)

with X4, (p(i), t) = Z H < () (u)

IR 4 At
oV 4tall) = gawu=l LT ()

a<1r)+~~-+ag(z.> = #A0)

Theorem 1.6. Let Aj be a full connected ideal arrangement of ®p, or ®c,, with associated

partition AD| .. JAD|BD|. [ |B®) and R™ {l € {u—|—1 S| si(AW)Ns(AD) £ 0},
V) = {l elr| s (B™) N sp(AW) # 0}, SO = {h € v— 1] | s (BM) N s (BM) # 0},

Ro={ler]|s1(0)Ns/(AD) #£ 0}, and Sy = {h € [s] | s1(0) Nsp(BW) £ 0}.



Then, the Tutte polynomial of Ay is

#1°
Ta(zy) = > La(w,y,4) x [t"]xa, (p(0), t) x ¢
k=01i€[n+1]
. _ . - #A(u) - #B(U) fp(u,v
with x4, (p(i),t) = > I1 <a(u) o) OI0) Bl
aé”+..-+a§&>_1=#A<1>uzl 0 2o Op@)—1/ =1 N0 oo Opiy 1
aéT)Jr---Jra( —#A(T)
bél)+"'+b§>1()) 1_#3(1)

bgs>+-~+b<s

p(i)—1=#BY

p(i)—1 (u) (v)
and fp(u,0) = 3 (<aq2 >+ag“> > o) +2bg“)(7b0 2*1 + Y+ > )

q=0 leR(w) 1erY hesS®)
p(i)—1 (v)
by
(v) (h) o ph)
+ b ( + Z p(z) q)+ Z (bq +bp(i)—q)>
q=1 ZER(U hes)
p(i%*l
v v l h
DI ELVED SIS DL
q=1 leRy heSy

Theorem 1.7. Let A; be a full connected tdeal arrangement of ®p, , with associated partition

W AW BW| . |BG), and let R™ = {l € {u+ L...,r} | si(AW) ns(AD) # 01,
RY = {1 er] | s1(BW)nsp(AD) ;A@} and S® = {h e v—l] | s1(B®) N s (BM) £ 0}.
Then, the Tutte polynomial of Ay is

#1°

Tuay(zy) = > La(z,y,i) x [t¥]x4, (p(i),t) x y*

k=01i€[n+1]

L 4 ! #AW s #B®) .
with X4, (p(i),t) = > I1 ( @ @ ) 11 (bw (0 )th( ),
ag ... -1/ w1 \bg - -1

aél>+‘..+a(1) =4#AM) u=1

aé’r)++al(:()) 1:#A(7‘)
(1) 1 _
bg +"'+bp(1) | =#B1)

bgf>+---+b<s>

pii)-1=#B"



p(i)—1 (u)
and fp(u,0) = 3 ((%2 >+agu> 3 (>)+2b<v>< Ly W Y )

q=0 le R(w) ZER(U) hesSw)
P 0~ 0 By L ()
F (M Y @ el ) S 060+ )
g=1 1eRY hesS®)
p(i)—1
2
+ > by
q=1

In Section @ we show how to compute the Tutte polynomial of an ideal arrangement of (I>J(§2,
X and @,

nonnal for the computing. Indeed, the algorithm would implement (#klc) sets of cardinality
k, where k varies from 1 to #I¢, so that the space and time complexity would exceed the
capacity of our computer. That is why we use the formula of Crapo [3, Theorem 2.32] which

reduces the algorithm implementation on (r?ﬁ;)) sets of cardinality r(Ay).

. For most ideals I, one can not directly use the definition of the Tutte poly-

The author would like to thank Gerhard Rohrle to have initiated him to ideal arrangements.

2 Correct Reduction

The finite field method reduces the coboundary polynomial computing for certain prime
powers to a counting problem. We propose a slight improvement of that method which
permits to determine the prime numbers for which it can be used. Then, we compute the
minor sets of the matrices associated to the classical root systems. The finite field method
is, in fact, valid for prime numbers not included in those minor sets. So, we get the valid
prime numbers to use that method and the interpolation formula of Lagrange in order to
compute the coboundary polynomial of an ideal arrangement. By the way, we complete the
calculations of Ardila to obtain the Tutte polynomials associated to the classical root systems.

Definition 2.1. Two hyperplane arrangements A and B are isomorphic if there is an order
preserving bijection between the lattices L(.A) and L(B).

A hyperplane arrangement whose coefficients lie in Z is called a Z—arrangement. Furthermore,
for a prime number p, the finite field composed by the integers modulo p is denoted by IF),.

Definition 2.2. Take a Z-arrangement A in R", and a prime number p. For a hyperplane
H ={a1r1 +--- + apz, = b} in R", define the set H = {a171 + - + @,Zn = b} in ). One
says that 4 reduces correctly over ), if

e for every hyperplane H in A, H is a hyperplane in Fy,
e and, if we define A:= {H | H € A}, A and A are isomorphic.
Let U = {u1,...,un} be a vector set in R™. Define its associated matrix by
My = (u;)ig|m) Where u; is the ™ row.

Denote by Min(U) the minor set of the matrix M.



Lemma 2.3. Take a Z-vector set U in R", and a prime number p. Then, the central Z—
arrangement A = {u*}ycu reduces correctly over Fy if p ¢ {|i| | i € Min(U)}.

Proof. Since p ¢ {|i| | i € Min(U)}, for every subset B of A, r(B) = r(B). That implies that
e H is a hyperplane in [, for every H in A,
e VBB CA: NB#NB = NB#NB,
e VBB CA:NBCNB =nNBCNB.

So, the function from L(A) to L(A), mapping NB to N3, is an order preserving bijection. [

For a hyperplane arrangement A, and a vector Z in [, define the hyperplane arrangement

A(z):={He A|z € H}.
To compute the coboundary polynomial, we use the finite field method based on this theorem.

Theorem 2.4. Consider a Z-vector set U in R"™, and its associated central arrangement
A = {ut}yev. Let p be a prime number in N\ Min(U), and A the reduction of A over Fp.

Then,
P M xalp,t E t#AR)
zeFy

Proof. Remark that

(R1) if V is a m-dimensional subspace of [, then HV =p™,

(R2) and, for a strictly positive integer m, we have 3/, =@+ 1)m
Then,

P xalp,t) = > p B (- 1)F

BCA

_ Z pdimﬂB(t _ 1)#8 _ pdimﬂB(t _ 1)#3
BCA BCA

=Y " #nB-1)* w1
BCA

=Y Y t-1)#B > -1

BCAzenB z€Fy BCA(z)

- Zt#A

iEFg

p

Recall that
of  ={ei—ej|1<i<j<n} and ®f ={eite;|1<i<j<n}U{e|ie][n]}

Now, we compute the minor sets of the matrices associated to q)zn_l, and @En.



Denote by [£n] the set {—n,...,—1,1,...,n}. For i € [n — 1], and r € [£n] with i < |r|,
define the vector

d(i,r) := e; + sgn(r) e}, where sgn is the signum function.

Denote by %, the set of square matrices M = (u;);¢[,) of order n such that u; = d(i;, 7).

Take a matrix M = (u);c|n) of %, with det M # 0. This determinant condition implies that
there is at most two rows uy, = d(ix, 1) and uy, = d(im, ) such that iy = iy, and |rg| = |7l

Algorithm D1. Suppose first that M does not contain two such rows. We transform M
into the matrix (1) & M’, where M’ € 2,,_;.
D1-1. We begin with M = (d(il,m))le[n].

D1-2. Denote by T;; the elementary matrix which switches the ith row with the ;' row.
Let k =min{l € [n] | 4y = 1}.

If Kk # 1, Then set M < Ty ;- M.

D1-3. Denote by R; j(m) the elementary matrix which adds the i*" row multiplied by a scalar
m to the j* row. Set

At this step, if M = (u);e[n), We have
o Vi [n]: w =d(im) or ug = —d(ig, 1),
e if 2 <[, then 4; > 2.

D1-4. Denote by D;(m) the elementary matrix which multiplies all elements on the i*® row
by a nonzero scalar m. Set

M« [ Di=1)-M.

2<i<n
w=—d(iy,m)

D1-5. Denote by C; ;(m) the elementary matrix which adds the i® column multiplied by a
scalar m to the j* column.

If sgn(ry) = —1 Then set M <~ M- Cy |, |(1) Else set M <~ M- Cy . |(—1).

D1-6. Return M.

01 =10 0 10 0 0 O
10 -1 0 0 01 -10 0
Ezxample 1. Applying AlgorithmDlon |1 0 O 1 O |,weobtain |0 0O 1 1 0
00 1 0 1 00 1 0 1
10 0 0 —1 00 1 0 -1

10



Algorithm D2. Suppose now that M contains two such rows with r; < 0. We transform
M into a matrix M = (u})c[n of Dy, with u} = d(1,-2) and uy = d(1,2).
D2-1. We begin with M = (d(il,m))le[n].
D2-2. If m#1 Then set M <- T, - M and set M <~ Ty, - M Else,
Ifk#2 Then set M <— Tg,;, - M and set M < Ty - M Else set M < T2 - M.
D2-3. Denote by L;; the elementary matrix which switches the ith column with the j*"
column. Set
M+ M- le’ik : Lgﬂnm.

D2-4. Set
M« J] Di-1-M
3<i<n
w=—d(i1,r7)
D2-5. Return M.
100 1 0 1 -1 0 0 0
001 -1 0 1 1 0 0 0
FEzample 2. Applying Algorithm D2on [0 1 0 1 0 |,weobtain |O 1 -1 0 0
010 0 -1 1 0 0 0 -1
010 -1 0 0 1 0 1 0
Lemma 2.5. Let M be a square submatriz of order m of a matrix in 9,. Then,
o whether |det M| € {0, 1},
e or there exist an integer m' € [m], and a matrizc M' € Dp,,r such that | det M| = | det M'|.

Proof. Suppose that detM # 0. If M € Z,,, then we are obviously done. Otherwise, there
is an integer i of [m] such that the i row of M has entries 0 everywhere except in the ;"
position, where it is —1 or 1. Denoting by M(3) the submatrix of M obtained by deleting the
i*™® row and the 5™ column of M, we obtain | det M| = | det M(:7)].

Setting M+ M) and repeating the same process as long as necessary, whether we end
up at |det M| = 1 at the end, or we come to a nonnegative integer m’ < m and a square
submatrix M’ of M such that M’ € 2, and | det M| = | det M’|. O

Proposition 2.6. Let M be a square submatrix of a matriz in 9,,. Then,
|det M| € {0,20,2}, ... 2211

Proof. Suppose that M € Z,, with det M # 0. This condition infers that there is at most two
rows ug = d(ig, ri) and uy, = d(imy,, Ty) such that i = i, and |rg| = |[rm].

e If M does not contain two such rows, Algorithm D1 permits us to deduce that there
exists a matrix M’ € 9,,_; such that |det M| = | det M/|.

e Otherwise, Algorithm D2 infers that there is a square submatrix M’ of order n — 2 of a

L1 et M| = 2] det M.

1

—1
matrix in %, such that |det M| = 1

Suppose now that M is a square submatrix of a matrix in %, such that det M # 0. By using
Lemma we deduce after a recursive argument that the value of | det M| must belong to
the set {20,21,...,2L%J}. O

11



Denote by o7, the subset of &, consisting of the matrices M = (d(il, rl)) lefn] such that r; < 0.

Lemma 2.7. Let M be a square submatriz of a matriz in <,. Then, |det M| € {0, 1}.
Proof. 1t is known that the dimension of the subspace generated by {d(i, —7) }1<Z.<j<n
as its orthogonal complement is (ej + - - - + e,,). Therefore, for every M in 27,, det M = 0.

Now, suppose that M be a square submatrix of order m of a matrix in «%,. With an argument
similar to the proof of Lemma whether we end up at |det M| = 1 at the end, or we come
to a nonnegative integer m’ < m and a square submatrix M’ of M such that M’ € 7, and
|det M| = | det M’| = 0. O

isn—1,

We come to the main result of this section.

Theorem 2.8. Take an integer n > 2. Then
Min(®} ) ={0, £1} and Min(®} )= {0, £2°, 2! ... +olsl}

Proof. A minor of M o is the determinant of a square submatrix of a matrix in .@%,. Then,
—1

we deduce from Lemma that Mln(CI>+ ) =10, £1}.
There exists an integer » > n such that a minor ¢ of |\/|<I,+ is the determinant of a square

submatrix of a matrix in Z,.. From Lemma we deduce that

e whether |t| € {0,1},

e or there exist an integer m € [n], and a matrix M € %, such that |t| = | det M|.
We conclude, using Proposition that Min(fbjgn) = {0, £20, +21, ..., +2l3]}, O

Now, we can compute the coboundary polynomials of A4, ,, Ap,, and Ap, .

Theorem 2.9. For an integer n > 2, let X,,, be one of the types in {A,—_1, Bn, Dy }. Then,
the coboundary polynomial of Ax,, is

X.Axm q,t Z Z ( H Z p ( )) X [tkb_CAXm (p(i)at) X tka

k=0 i€[m+1] ]6[m+1] —PU
J#i

(S ()

with Xa,,  (P),t)= Y <p3)> <a1, n ,au> -~ op(i)

(a1,...,au)EPar(n)

p(i)—1
Z 2 QZk 1 brpa®+3 05 L (% )
u bl,...

(b1,...,bu)EPar(n—a)
p(i)—1 n—a
2 QZk 1bkta a— 1)+Zk 1( )
u bl, cee

M= 1M-

>_<-ABn (p(i), t)

X.ADTL (p(i), t) =

I
o

a=0 (by,...,by )EPar(n—a)

12



Proof. The degree of [t*] Y4, (g,t) in variable g is less than or equal to m. From Lemma
and Theorem we know that (p(i), [t*]x.a(p(i), 1)), with i € [m + 1], are m + 1 valid data
tuples. Then, using the polynomial interpolation of Lagrange, we obtain

XAXm q,t Z Z ( H ?Z p ( )> X [tkb_(AXm (p(i),t) X tk.

k=0 i€[m+1] j€[m+1]
J#i

Using the finite field method, Ardila proved that for all powers of a large enough prime ¢,

n n

n q
L+¢q Z XAa, (qat)% = (Z t(Q)%) [1, Theorem 4.1],
neN= ’ neN '
:L-n :L.n n
Z XA, (4, t)m = (Z 27¢(; F) < n! ) [T, Theorem 4.2],
neN neN neN
S a0 = (T2 (Yo g
X, (@)= = (D2 >t , [T, Theorem 4.3].
n! n! n!
neN nEN nGN

The polynomials 4, | (p(i),t), XAp, (p(i),t), and XAp, (p(i),t) are respectively deduced
from [1, Theorem 4.1], [I, Theorem 4.2], and [I, Theorem 4.3]. O

Ezample 3. Using SageMath, we compute the coboundary polynomial X 4 ALy (g,t), and deduce

the Tutte polynomial Tig,, (z,y) = y50+12y5% + 78y +364y5% + 1365952 +4368y°1 +12376¢%° +
318244 + 75582y°% + 16796017 + 1329 + 3527163°% + 143xy°* + 705419y°° 4 858zy53 +
1351922454 + 3718272 + 249513033 + 1301321 + 445266812 + 39039xy°° + 7708415y +
1041042y +12981111%%° + 25282428 + 21313292y 4+ 568854247 + 34183578y *® + 7822y +
12009142y*6 45364473447 +780x%y** +24017502y* 482488835y 46 +429022y*3 +45843 72z y**
124439172y* + 1716022y*? + 8400392zy*3 + 184366182y** + 5577022y*! 4 14845402xy*? +
268521682y*2 + 156156 y40 +25395942zy*! 4 384782112y*2 4 390390 y39 +42181568zy*0 +
542887488y*! 4 8923202293 4 68193697xy3Y + 754658542y40 + 28623930 + 18961802237 +
107530137xy38+1034170357y39+2574:c3y35+37923601:2y36+165670648zy37+1397857032y38+
12870x3y3* + 7204626225 + 2497738102136 + 186451865617 44719023433 4 1309230022734 +
368979039xy35+2455199604y36+141570x 3242287935022 y33+534690507xy34+3192906717y35+
36808223131 +3861000022y>2 4760812702213 +41021378971y>* 485885823130 +6312735022 3 +
106390112421%245208196422y%3+ 71524y +184041023y29 4100267596 2:2y>0 41463187583z 3" +
6536274030y°24-572024y27+3682250x31 28 +1550606202 2 +19804391 752320 4+-8110295765y°1 +
2574024 y*6 469612402317 +23392154522y*8 4263960897222 +995153001 730 +858002:4 /%5 +
1254052823126 4-3448073202212" +34662333422y28 +12076978342y>° +235950x4%4 4216593522325+
4973053802126 4-4486536197xy" +14497575092y28 +56628024 >3 43602742023y +70261791622y*> +
5726217783xy*0+17216245827y%7 +12872°y1 +122694021%2 4579150002343 +9734117252%9%4 +
72089357342y>°+20225890047y*6+90092°y20+246031 52442 +9024015023y>2 4132351999023+
89545170002y +23507359590y2°+360362°y 2 +463963524y?0+13664550923 121 +176 74829252222 +
10976952480x234-27027494637y%4 410810825y '8 +830830024y 194201522321 2390 +2319877131 229> 4
13282216168zy22+30737260554y23+2702702°y 1741421420024y 8428994966023y 194299441127 722 y20+
158659684042y +34570017053y2% +1716257'5+5945942:5116+2333331024y ' " +40755286023y 18+
380286478022y 9 +187112385462120+ 3843994983472 +1029620y 14 +12046322°y'° +3691116024y 6+
560321190x3y'7 4+ 475400068022y + 21786110775xy'? + 422406916363%° + 36036x0y'3 +
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22908602°y* 4 5652504024y + 75446256623y'6 + 585253383042y 7 + 250412097651y +
458441902493/19+96O96$6y12+41 171 13x5y13+84041100x4y14+996144864x3y15+7097905815x2y16+
284064778142y' 449100042277y 8 +171627y'04-21621625y' 1 +701801127y 2412154642524y 13+
129105405023y 4484823638902y 5431786670916y 6 +51835895826y 7 +85802 7 y? +4564562:5y 10+
1144743625y 4- 17137220124y '2 4+ 164403739523y '3 4 998812600522y 4 350555642581y +
538601 18169y16+25740x7y8+900900x6y9+18078060:1:5y10—|—236384148:c4y11—|—2058775719x3y12+
1158311540122y 3438049502062y 4 +54968456400y°+128728y5 4600602y " +164736025y5+
27717690x5y9+319875556x4 10—|—2536227408x3 14 13213854732902 12+40561541020my13+
54956679987y + 514828y° + 1458602 7y% + 286915225y 7 + 413427302°y8 + 424848710x%° +
3070406768230 + 147947370229:2 oy 42339276044953112 + 53641257890y13 + 212 4715293 +
1287028y* + 308880957 y°+ 4975971x6y6 +6053704825y" 4+ 55349151024y + 364250672523y +
161964804432%y'0 4 43092548434xy'! + 50889618637y'2 + 662! + 286210y + 21452792 +
450452813 + 62634Ox7y4 + 82702622577 + 870389522590 + 705403842247 + 421315966523y° +
1723830608522y + 4251881805620 4+ 46659503176y 4 1925210 + 143002y + 11368528y +
13170302 7% 41349848525y +1210509302°y° +8707408712:4y5 +470943201323y " +1768805738 722y +
403527174052y + 4104298698510 + 32670z + 30802228y + 24495902732 + 210109902513 +
1606905302°y* + 1023013992245 + 5013315307235 + 1728345804922y + 36445235541 xy® +
34305690705y° 435742328 + 374088027y + 2833030225y 2 + 1937085152y + 111076966024 y* +
4969514550315 +157991021 762215 4+308715723032y 7 +2690560286 7% 4263755827 +281398262:5+
1934262332%y? + 105509904524 y3 + 442732862023 y* + 1316852908822y + 24040142841 xy° +
19469297133y +13339535254+1354867802°y+801375861 2% y>+335322130023y3+96385253252:2y* +
167364740402y°+127033971353°+459957302°+41610225824 41979224104 23y? 4585996 1536221 +
100124324302y*+7237654710y°+1052580762* +78451516023y+27163284722%y% +4857283288 1>+
3436086940y* +15091797623 482915840822y +1746026568xy% +12637413361> +12054384022 +
397126080z + 316499040y + 39916800z + 39916800y.

3 Shifted Young Diagram

We introduce some definitions on the shifted Young diagram, and associate a topology on it.
Then, we expose the shifted Young diagrams associated to the positive root systems of the
classical Lie algebras. These diagrams play a central role in our computing as the open sets
of these diagrams correspond to the ideal arrangements [2, Theorem 3.1].

Definition 3.1. A shifted Young diagram Y is a finite collection of boxes arranged rows,
b(i, j) designating the box of the i*" row and the j*" column, such that,

e if Y has more than one row,
e if b(i,1;) resp. b(i,r;) designates the leftmost resp. rightmost box on the i*" row of Y,
then ll < li+1 and T > Ti+1-

If a shifted Young diagram Y has k rows, then the k-tuple (r1 — 13 + 1,...,7 — I + 1) is
called its shape. The box set of Y is

B := {b(l,j) | 1€ [k], Jj € {lk,...,Tk}}.

Definition 3.2. Take a shifted Young diagram Y, and a box b(4, j) of B. The box set B, ;
of Y generated by b(i, j) is

B;; = {b(u,v) e B|u>1i,v>j}.
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Lemma 3.3. Define the set 0 := {B;; | i € [k], j € {lg,...,7%}}. Then, O is a basis for
the topological space (B, 0). We denote by 7 the topology of (B, O).

Proof. Let B;, ;,,Bi,j, € O, and i = max(iy,i2), j = max(ji, j2). Then B;, ;, NBi, j, = B

which belongs to 0. O
Definition 3.4. Let O be an element of the topology 7 of a shifted Young diagram with &
rows. There exist an integer m < k, and m tuples (i1, j1),. .., (im,jm) such that

1) 0= U Biji

(2) Vh, le[m] Biyjn € Bivis
(3) Vh,l € [m], h <1 =i <.

The set of generating boxes of O is Gp = (b(il,jl))le[

Definition 3.5. We say that an open set O of a shifted Young diagram Y with k rows is full
if {b(i,r;) | i€ [k]} CO.

Ezxample 4. For the same shifted Young diagram, in Figure
e the open set O; = {b(3,4),b(3,5),b(3,6),b(4,4),b(4,5),b(4,6),b(5,4)} is not full,
e but is the open set O3 = {b(1,6),b(1,7),b(2,6),b(2,7),b(3,6),b(4,4),b(4,5),b(4,6),b(5,4) }.

Figure 1: The open Sets O and O,
The next step helps us to see which hyperplanes play a role in our calculations. We adopt
the following notation, with i < j:
e the tuple (i, j) represents the hyperplane {z; = z;},
e the tuple (i, —j) represents the hyperplane {z; = —z;},
e the tuple (7,0) represents the hyperplane {z; = 0}.

(A) For type A,_1, we use the simple system Ay, , = {ai =e —e€41 |1 €[n— 1]} Its
suitable Young diagram Yy, has shape (n —1,n —2,...,1), and boxes b (i, j) filled with
hyperplanes according to the assignment ba(i,5) = (q; + -+ ap_j)*, 1 <i < j<n-—1
With the adopted notation, by(i,j) = (i,n—j+1),1<i<j<n-—1
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Example 5. The shifted Young diagram Yjy. is

(1,8) (L,7) (1,6) (1,5 (1,4) (1,3) (1,2)
(2,8) (2,7) (2,6) (2,5) (2,4) (2,3)
(3,8) (3,7) (3,6) (3,5) (3,4)

(4,8) (4,7) (4,6) (4,5)

(5.8) (5,7) (5,6)

(6,8) (6,7)

(7.8)

(B) For type B, we use the simple system Ap, = {o; =¢€; — €1 | i € [n—1]} U{an, = en}.
Its suitable Young diagram Yp, has shape (2n — 1,2n — 3,...,1), and boxes bp(i,j) filled
with hyperplanes according to the assignment

by (i, f) = (@it Faj+2au+Fap), 1<j<n—1
B’L’.])_ ) L j
(i + -+ agn—j)t, n<j<2n-1

With the adopted notation, we have

by(if) =4 (5,0, j=n
(t,2n—j+1), n<j<2n-1

Example 6. The shifted Young diagram Yp, is

(27 _3) (27 _4) (27 _5) (27 6) (27 O) (27 6) (27 5) (Qa 4) ( 73)
(47 ) (4, 6) (4,0) (4,6) (4,5)
(5,=6) (5,0) (5,6)
(6,0)

(C) For type C,, we use the simple system A, = {ozl =e—eit1 |1 €[n—1] } U{a, = 2e,}.
Its suitable Young diagram Y, has shape (2n —1,2n — 3,...,1), and boxes b (i, 5) filled
with hyperplanes according to the assignment

o it tai 204t an) g, 1<j<n—1

bC(Z’])_{ai+“‘+042nj7 n<j<2n-1
With the adopted notation, we have
(4,0), I<i=j<n

(,2n—j+1), n<j<2n-1

Ezample 7. The shifted Young diagram Y, is

(1’0) (17_2) (17—3) (1’_4) (1 _5) (1’ 6) (1’6) (175) (1’4) (173) (1’2)
(2,0)  (2,-3) (2,—-4) (2,-5) (2,—-6) (2,6) (2,5 (2,4) (2,3)
3,00 (3,—4) (3,-5) (3,-6) (3,6) (3,5) (3,4)

(4,0) (4,-5) (4,-6) (4,6) (4,5)

(5,0)  (5,—6) (5,6)
(6,0)
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(D) For type D,,, we use the simple system Ap, = {ai =e —€41 |1 € n— 1]} UA{a, =
en—1 + en}. Its suitable Young diagram Yp, has shape (2n —2,2n —4,...,2), and boxes
bp(i,7) filled with hyperplanes according to the assignment

1 .
(it Foj+2a++opo)tan1+ay), 1<j<n—2
bD(Z,]): (ai+"'+an—2+an)L7 ]:n_l
(i + -+ azpj)*, n<j<2n-1

With the adopted notation, we have

[ G-G+Y), 1<i<j<n-1
bD(l’])_{(i,zn—j), n—-l<j<2n-2"°

Example 8. The shifted Young diagram Yp, is

(17_2) (17_3) (1a_4) (17_5) (17_6) (176) (175) (174) (173) (172)
(27 _3) (27 _4) (27 _5) (27 _6) (27 6) (27 5) (27 4) (27 3)
(3,—-4) (3,-5) (3,—6) (3,6) (3,5) (3,4)
(4,-5) (4,-6) (4,6) (4,5)
(5,—6) (5,6)

4 Partition in Accordance

The partition in accordance with an ideal complement is a partition from which we compute
the coboundary polynomial of this ideal. Each box of a shifted Young diagram we consider
represents now a hyperplane (4,7). If (i,j) corresponds to the box b(u,v), we use (i,7)
instead of b(u, v), and write B(4, j) for the box set B,, , to emphasize the hyperplane context.
Moreover, since a box set is a hyperplane arrangement, we can consider an ideal arrangement
as a subset of Yx, , where X,, is any type in {A4,,_1, Byn,Cp, D, }. Remark that, since the
coboundary polynomial of an open set is equal the product of the coboundary polynomials
associated to its connected components, we just need to consider the full connected open sets
or, equivalently, the full connected ideal arrangements.

Definition 4.1. Take a full connected ideal arrangement A; of ®x , with generating boxes
Gr = ((il,jl))le[k]. The signature sy(¢) of an integer ¢ in accordance with I is

sy(i) :={l € [k] | i appears in at least one box of B(i, ji) }.

Define the integer set of I by I; := {i € Z | i appears in at least one box of As}.

Algorithm P. We transform [m] into the partition AM|...|AT|BM|. . |B®) in accor-
dance with an ideal 1.
P-1. We partition [m] in A|B such that

VieA: —i¢l; and Vie B: —ie€lj.
P-2. We partition A in AM|...|A®) such that

o Vi [r], Vu,v € AW, sp(u) = s7(v),
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o Vi,jelr],Vuec AW Yo e AU i+ j= sp(u) # s7(v).
P-3. We partition B in BW|...|B®) such that

o Vi€ [s], Vu,v € B, s7(—u) = s7(—v),

o Vi j€|[s],Vue BW vy e BU i+ j= sp(—u) # sy(—v).

Definition 4.2. Let A; be a full connected ideal arrangement of ®y, . With the notation of
Algorithm P, the partition Py of [m] in accordance with I is Py := AM|...|A®|BW| . |BG),

(A) Let B4, _, be the box set of the diagram Yy, ,. The box set generated by a hyperplane
(i,7) of By, _, is
Ba, ,(i,5) = {(w,v) | i <u<v<j}

Let Ay be a full connected ideal arrangement of 4, ,, Gy = ((il, jl)) and u a nonnegative

le[k)’
integer. Then,

sp(u) ={l € [k] | iy <u < i}
Ezample 9. The ideal arrangement A, of ®4,, with G, = ((1,3),(2,5), (4,7), (6,8)), is

(1,3) (1,2)
(2,5) (2,4) (2,3)
(3,5) (3,4)
Afa = (47 7) (47 6) (47 5)
(5,7) (5,6)
(6,8) (6,7)
(7,8)
The signatures in accordance with I, are
i |1 2 3 4 5 6 7 8

sL(D) [ {17 {12} {12} {23} {23} {34} {34} {4
The partition of [8] in accordance with I, is Pr, = {1}/{2,3}|{4,5}/{6, 7}|{8}.

Lemma 4.3. Let A; be a full connected ideal arrangement of ® 4
AW| . JAM) | Then,

A1=|i|<A2”)> U (A9 || A9)

i=1 jER®)
with RY = {j e {i+1,...,r} | s1(AD) N s7(AY)) £ 0}.

with associated partition

n—1

Proof. Let Gy = ((ilvjl))le[k;]:

o Tt 1 € s;(AD), then (") € Ba,_, (i1, ji)-

e Andif I € s7(AD) N s7(AWD), then AD x AU C By, (if, 71).

18



Therefore,
'

A ) .
|_|< ) > U (AD x| ] AD) c A,

i=1 JjER®
Now, take (z,y) € Ay, which means (z,y) € Ba,_, (i, i) for [ € [k]. There are i,j € [r] such
that z € AW, and y € AY):

o If i = j, then (z,y) € (A;>).

o If i # 7, since s;(AD) N s7(AY)) £ (), then (z,y) € A® x AU,

(B) Define the linear order <; on {—n,...,—1,0,1,...,n} by
1<p2=<p..n<p0=<p—n=<p--<p—2=<p —1.

Consider a box (i,j) of Yp,. The box subset Bp, (i,j) generated by (4, ) is
B, (i,7) = {(u,v) | i <pu=pn, u=<pv =y}

Let Aj be a full connected ideal arrangement of ®p_ , Gy = ((il, jl)) and v a nonnegative

le[k]?
integer. Then,

sp(u) ={l € [k] | iy =pu =p Ji}

Ezample 10. The ideal arrangement Aj, of ®p,, such that G, = {(1,4), (2,0), (4, —5)}, is

(1,4) (1,3) (1,2)

(2,0) (2,6) (2,5) (2,4) (2,3)
o (3,00 (3,6) (3.5 (3,4)
b= (47_5) (47_6) (470) (416) (475)
(6,0)
The signatures in accordance with I are
i |1 2 3 4 5 6 0 -6 =5

s, (1) | {1} {12} {12} {123} {23} {23} {23} {3} {3}

The partition of [6] according to I, is P;, = {1}/{2,3}/{4}|{5,6}.
Let B be a subset of N*. Define

B:={+i|i€ B}, and {f}::{(i,ij)|i,jeB,z’<j}.
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Lemma 4.4. Taoke a full connected ideal arrangement Ay of ®p, with associated partition
W], A BMW| . |BG). Let,

" (4) 4
o A, = | | <A2 ) U (AD x| | AD)

=1 1eR®)
with RO ={l1e {i+1,...,r} | si(AD) nsp(AD) £ 0},

s 210)) ~
o o e L e
j=1 1eRY) hes()
with RY = {1 € [r] | si(BD) N s1(AD) # 0}
and SU) = {h € j —1]] SI(B(j)) N SI(B(h)) # ®}7
[ ] AIO = |_| A LJ |_| B X {O}

l€R, heSo
with Ry = {l € [r] | s1(0) Ns;(AD) # 0}
and Sy = {h € [s] | s7(0)N SI(B(h)) # ®}~
Then Ar = A, WA, UAj.

Proof. Let G = ((ilajl))le[k]:

. , (i) 3(5)
o If I € 57(AD) resp. s;(BY)), then <A2 > resp. {B2 } C Bg, (i1, 71)-

o If € s (AD) N s;(AD), then AD x AO C Bp (i, ji).

o If I € s;(AD) N s;(BY), then A® x BU) C By (i1, ;).

o If I € s;(BMYns;(BY), i < j, then BM x BY) C By (i1, ;).

o If 1 € 5/ (AD)Ns7(0) resp. s;(BY)Ns7(0), then AW x {0} resp. BU) x {0} C Bp, (i1, i)

So, .A[A L .A]B L .A[O C Ay.
Now, take (z,y) € A, which means (z,y) € Bp, (i1,7;) for | € [k]. If y # 0, then there are
i,j € [r] U [s] such that z € A® U B®, and y € AW U BU):

(4) B (i)
o If i = j, then (z,y) € <A2 ) U {B2 }

e If i # j, suppose for example that x € A® and y € BU). Since s;(AD)Ns;(BY) #£ 0,
then (z,y) € A® x BY). The proof is analogous for the other cases.

]
(C) Define the linear order <. on {—n,...,—1,1,...,n} by

1=<e2<e...m=e—n e+ < —2 < —1.
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Consider a box (7, ) of Y¢,. The box subset B¢, (i, 7) generated by (i,7) is

{(w,v) | i Zcu=<cv=cj} it j >0,
Be, (i,j) =4 {(uw,v) |izcu=cn—1u<cv=j}U{(w,0)| —j=cu=n} ifj<O0,
Yo, (i, —(i+ 1)) U {(u,0) | i 2cu =cn} if j =0.

Let Aj be a full connected ideal arrangement of ®¢, , G = ((il’jl))le[kz]’ and v a nonnegative

integer. Then,
S(IL‘)— {le{k]|lljcljc‘]l} If:E;lé()7
IV e a0y ita=o.

Ezample 11. The ideal arrangement Aj, of ®¢;, such that G, = {(1,4), (2, —6), (4,0)}, is

(1L4) (1,3) (1,2)
(2,—6) (2,6) (2,5) (2,4) (2,3)
o™ (4,00 (4,-5) (4,-6) (4,6) (4,5)
(570) (57_6) (576)
(6,0)
The signatures in accordance with I, are
i |1 2 3 4 5 6 -6 =5 0

s() | {1} {12} {12} {123} {23} {23} {23} {3} {23}
The partition of [6] in accordance with I, is Pr, = {1}|{2,3}[{4}/{5}|{6}.

Lemma 4.5. Take a full connected ideal arrangement Ar of ®c, with associated partition
AD| L JADBMW| .| BO). Let,

T (%) ,
o Ar, = |_| <A2 ) L] (A(Z)X |_| A(l))
=1

leR()
with R ={le {i+1,...,7} | si(AD)ns(AD) £ 0},

s (RO i
o« A= | | {32] } u ([ a%u | B®) < BY
j=1 leRg) heS()
with Rg) = {l € [r] | SI(B(j)) N SI(A(Z)) # @}
and SU ={helj—1]|s/(BY)ns(BM) £},
o« A= (|| AO U | | B®) x {0}

leERg heSo
with Ry ={l € [r] | 51(0) N sp(AD) # 0}
and So={h € [s] | sr(0)Nsy(BM) #£0}.

Then A; = A[A (] .A[B U .A]O.

Proof. Tt is analogous to the proof of Lemma [£.4] O
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(D) Consider a box (i,7) of Yp,. The box subset Bp, (i, ) generated by (i, 7) is
Bp, (i,j) = {(w,v) | i Zeu=en—1,u=<cv =i}

Let Aj be a full connected ideal arrangement of ®p , Gy = ((il, jl))le[k]’ and u a nonnegative

integer. Then,
sp(u) ={l € [k] | iy Zcu = ji}

Ezample 12. The ideal arrangement Ay, of ®p,, such that G, = {(1, 3),(2,6), (4, —5)}, is
(1,3) (1,2)

(2,6) (2,5) (2,4) (2,3)
Ar, = (3,6) (3,5) (3,4)
(4,-5) (4,-6) (4,6) (4,5)
(5,—6) (5,6)

The signatures in accordance with Ay, are

i |1 2 3 4 5 6 -6 =5
s,() | {1} {12} {12} {23} {23} {23} {3} {3}
The partitions of [6] in accordance with Iy is Pr, = {1}|{2,3}|{4}/{5,6}.

Lemma 4.6. Take a full connected ideal arrangement Ay of ®p, , with associated partition
AW[.JAO| B[ [BY. Let

" () 4
o Ar, = | | <A2 ) U (AD x| | AD)

i=1 leRM®
with  RD ={l1e {i+1,...,r} | si(AD) nsp(AD) £ 0},
* (BW z . .
o A, = |_|{ ) }u( || AP0 || B™) xBY
j=1 1erY heS ()
with RY = {1 € [r] | s7(BY) N sp(AD) # ¢}
and SY ={he[j—1]|s1(BY)ns(BM)#0)}.
Then Ap = A, U App.
Proof. It is analogous to the proof of Lemma [4.4 O

5 Hyperplane Counting

We compute the coboundary polynomial x 4, (p(z’),t) of an ideal arrangement associated to
a classical root system, for prime numbers p(7) strictly bigger than 2. That computing is
based on the finite field method, the minors associated to the classical root systems, and the
partition in accordance with an ideal. By means of the polynomial interpolation of Lagrange,
one can deduce the deduce the coboundary polynomial

#Ar )
XA, (g,1) = Z Z ( H M) x [t*]xa, (p(i), 1) x t".
k=0 (IS [Y(AI)+1] je [r(.AI)-H]
J#i
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We keep the notation of Section (3] stating that a tuple (,7) represents a hyperplane. The
examples in this section are computed with SageMath.

Lemma 5.1. Take two subsets A, B of [n] such that, for every i € A, and j € B, we have
i <j. Forx = (%1,...,2Z,) € Fy, define the sets

a;i(z):={uec A|z,=1i} and b(Z):={ue B |z, =i}

(1) Consider the hyperplane arrangement A = ( > Then

-1
- al
i=0
(2) Consider the hyperplane arrangement A = A x B. Then

Z#al X #bi(z).

(3) Consider the hyperplane arrangement A = {;1} Then

q—1

#A(T) = #ao(z)? — #ao(T) + Z(#az ) Z#% ) x #a_;(z).

=1

(4) Consider the hyperplane arrangement A = A X B. Then
#A(T) = 2 x #ao(T) x #bo(T) + Z#az X #bi(Z) + Z#aj X #b_(Z).

(5) Consider the hyperplane arrangement A = A x {0}. Then
#A(z) = #ao(@).

Proof. (1) Let 4,5 € A with ¢ < j. Then, Z € (¢, ) if and only if z; = Z;.

(2) Let i € A, j € B. Then, Z € (4, ) if and only if Z; = ;.

(3) Let i,j € A with ¢ < j. Then, z € (i, —j) if and only if z; = —Z;.

(4) Let i € A, j € B. Then, 7 € (i,—j) if and only if z; = —Z;.

(5) Let i € A. Then, Z € (i,0) if and only if z; = 0. O

Theorem 5.2. Let A; be a full connected ideal arrangement of ® 4, ,, with associated par-
tition AW|...|A"T), and let R = {v e {u+1,...,r} | si(AW) N s (AW) # 0}. Then, for

a positive integer i, we have

- #A(U) ) tzp(l (° S2 )+a5u) 2 e rw) a”)
(u)
» (i)

R R SR | (1 o)

a
(1)+ +a(l 7#A(1)u 1 1 >

(7")+ _,’_a(?;) _ #A(r)
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Proof. For a vector T = (T1,...,%,) in F}, define the set aé (z) == {uec AD | 7, = k}. We

have dimNA; = 1 for every full Connected ideal arrangement Ay of @4, . Then,
p(i)xa, (g, t) = Y t#A4E)
mEFp(l)
- Z i (A(l)xl—' R AD) @) (Lemma [4.3))
zelF™

p(i)

i) — T a“) T 1)/~ i) /-
= 3 R T (R @ T #9@) (erma ) (1, 2))

:cEFp(l)

T % ; N @) i
_ > H< Y #A0) ) > S5 (484l S o

. ay’y ..., a )
a§1)+-~.+a§(1):#14(1) i=1 ~7L 2 Tp(d)

af" o tall) =# A
O

Ezample 13. The coboundary polynomial of the ideal arrangement A7, in Example [J] is
X-AIG (q’ t) — t15 + 2qt13 + q2t11 _ 2t13 +4q2t10 + 8qt11 + 6q3t8 + 16q2t9 _ 8qt10 _ 9t11 + 2q4t6 +
6¢3t7 — 14¢%t% — 36t + 410 + 8¢5 + 45310 + 43¢%t7 4 24qt® + 20t + 10¢°3 + 64¢*t* +
3435 — 207¢%t0 — 144gt™ — 16t8 + ¢7 + 15¢5t 4+ 75¢°t% + 69¢*t3 — 244¢3t* — 1464%t° + 312415 +
95t7 — 15¢5 — 180¢°t — 701¢*t% — 810¢°t3 + 124¢>t* 4+ 90qt® — 152t6 + 95¢° + 887¢*t + 2585¢3t% +
2394¢%t% + 376qt* + 14t° — 329¢* — 229443t — 4683¢%t% — 2856¢t> — 320t* + 672¢° + 3276¢°t +
4144qt% + 11933 — 808¢? — 2440qt — 1420t% + 528¢ + 736t — 144, and its Tutte polynomial is

Ty, (2,y) = 2290 + 2zy” + o + 27 + 223 + 623y* + 922y° + 1029 + 5y7 + 82° + 1027y
+ 14a*y? + 2223y3 + 3322y + 322¢° + 15¢° + 262° + 502ty + 7323y% + 8322y3
+ 68zy* + 29y° + 44a* + 9423y + 12022y% + 962y> + 38y* + 4123 + 8222y
+ TTxy® 4 32y% 4 2022 + 322y + 16y° + 4o + 4y.
Theorem 5.3. Let Ay be a full connected ideal arrangement of ®p, , with associated partition
DA BW L |IB®), and R™ {le{u—i—l 7“}]31( )N sp(AD) ) # 0},
RY = {1 € [r] | s2(B®)nsp(AD) £ 9}, 50 = {h € [v—1] | s7(BM) N sy (BM) £ 0},
Ro={ler]|si(0 YN s (AW £ 0}, and Sp = {h e [s] | s7(0) N sp(BM) £ 0}.

Then, for a positive integer i, we have

_ . ! # AW s 4B -
X, (p(0) 1) = > I1 (a(m ) 1) II (bw) e )th( ),

cea
al++a (<) =#AD U=l 0 7 p(

(lér)++a(7(‘ e 1_#A(7’)

bél)+--~+b§2 _,=#BW

p(i)—1"
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p(i)—1

(u)
wi u,v) = “q ol 0 (v) o)
th 5 (u, v) §(<2>+ Y a )+2b ( +Z Y )

leR() 1eRY heS®)

p(i)—1

a1 l h
F (Y @l ) S e ) )

q=1 ZERXO hesS)
p(g 1
(v) (v) ® (h)
+ )b X b F > ag) + ) by
q=1 IERy heSo

Proof. We have dimNA; = 0 for every full connected ideal arrangement A; of ®p,. The
proof is similar to that of Theorem using Lemma and Lemma (1,2,3 4,5). O

Ezample 14. The coboundary polynomial of the ideal arrangement A;, in Example is
X.Alb (q7 t) — t?l —|—qt18 _ t18+2qt15 +2q2t13 +4qtl4 _ 2t15 —4qt13 —4t14 +3q2t11 +2qt12 —|—2t13 +
PO+ 56210 — dgttt — 2412 1 219 — 2110 1411 4 66317 + 246218 + 4qt® — 3110 1 9¢315 + 2427 —
40qt® — 6t 4 3¢ 4 + 33¢3t° + 50¢%t5 — 14qt” 4 165 + 23¢ 3 + 123¢3t* — 184> — 225qt0 + 617 +
¢ + 215t 4 123¢* 1% — 313 — 783¢%t* — 290qt5 + 166t° — 21¢° — 327¢*t — 1362¢3t> — 853¢%t3 +
1427qt* + 275t° 4+ 178¢* + 1965¢3t + 5391¢>t2 + 2508¢t3 — 7T70t* — 774¢> — 5625¢%t — 8778qt> —
1677t% + 1801¢% + 7494qt + 4626t> — 2085¢ — 3528t + 900, and its Tutte polynomial is

Ty, (z,y) = vy + 2y'® + 6y + 52y + 209" + 152y + 5092 + 222y° + 372y10 4+ 105y
+ 8228 + 80xy” + 194y + 235 + 2322y + 156248 + 32297 + 323y° + 54x2y"
+ 2762y" + 48645 + 1223y + 11222y° + 4452° + 672y7 + 25 + 3zty? + 37233
+ 21422y + 662xy° + 85415 + 152° + 2921y + 992392 + 37022y + 899xy?
+ 989y° + 88z 4 24123y + 586x2y? + 1096zy> + 1021y* + 25223 + 6822y
+ 1102232 + 888y> + 35222 + 728y + 568y + 192z + 192y.

Theorem 5.4. Let A; be a full connected ideal arrangement of ®¢, , with associated partition
DI JAD B IB®), and R™ ={le {u+1 S | sr(AWY N sp(AD) #0},

RY = {1 € ] | s1(B®)nsy(AD) # 91, S0 = {h € [v—1] | s/(B®) N s (BM) £ 0},

Ro={ler]|s1(0)Ns/(AD) # fZ)}, and Sy = {h € [s] | s1(0) Nsp(BM) +£0}.

Then, for a positive integer i, we have

_ . : #A(U) - #B(v) fp(u,v
X (p(0) 1) = > 11 <a(“> @ ) 11 <b<v> o )tB( Y
af gy =AM v 0 77 (i) =17 w=1 N0 277 Up(i)—1
p(%
el A

By =# B

bgs>+--.+b(s> —4B()

p(i)—1
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p(i)—1

(u)
wi u,v) = “q ol 0 (v) o)
th 5 (u, v) §(<2>+ Y a )+2b ( +Z Y )

leR() 1eRY heS®)

p(i)—1

a1 l h
F (Y @l ) S e ) )

q=1 ZERXO hesS)
p(g 1
(v) (v) ® (h)
+ )b X b F > ag) + ) by
q=1 IERy heSo

Proof. We have dimNA; = 0 for every full connected ideal arrangement A; of ®¢,. The
proof is similar to that of Theorem using Lemma and Lemma (1,2,3 ,4,5). O

Example 15. The coboundary polynomial of the ideal arrangement 4;, in Example is
XA, (¢, 1) = #21 4 gt18 — 118 1 24415 4 242413 4 3g¢14 — 2415 — 3q#13 — 3¢14 4 262411 4 3112 +
t13 4+ 3% + 6¢%t10 — 2¢t1T — 3t12 — 6¢t10 + 4¢3t7 + 25¢%t® + 16qt° + 13¢%t5 + 25¢%t7 — 52¢t8 —
1787 + 3¢** 4 37435 + 17¢%t5 — 80qt™ + 278 4+ 23¢ 3 + 107¢3t* — 73¢%t> — 152qt® + 517 4+ ¢5 +
21¢°t + 123¢*2 + 13¢3t3 — 636¢2t* — 111qt° + 122t% — 21¢° — 327¢*t — 1366¢°t> — 963¢>t> +
1046qt* + 147° 4+ 178¢* + 1965¢3t + 5419¢°1% + 2764qt> — 520t* — 774¢> — 5625¢%t — 8838qt> —
1837t3 + 1801¢% + 7494qt + 4662t> — 2085¢ — 3528t + 900, and its Tutte polynomial is

T, (z,y) = Y 4+ 2y’ + 6y + 5yt 4 200" + 15xytt + 50y12 + 22%° + 37ay'0 + 105yt
+ 8228 + 7921”4+ 194910 + 2340 + 2222y" + 15229° + 323y° + 323y + 512240
+2692y" + 49148 + 1023y* + 10522y + 43825 + 685y7 + 25 + 3%y + 35234°
+ 20722yt 4 6622y 4 878y° + 152° + 292ty + 10323y? + 37822y + 920xy*
+1024y° + 88z + 24123y + 60222%y? + 11302y> + 1055y + 25222 + 68222y
+ 1118zy* + 9043> + 35222 + 728xy + 568y 4 192z + 192y.

Theorem 5.5. Let Aj be afull connected tdeal arrangement of ®p, , with associated partition
DI JADBW] L BY), and let R = {I € {u + 1,1} | si(AW) N s (AD) £ 9},
={le[r]|s/(BM)ns(AD) 75(7)} and S = {h € v—l] | s1(B™) N s (BM) # 0}

Then, for a positive integer i, we have

_ . - #A(“) #B® .
s (p0), ) = ) 11 ( w ) 11 (bg} " )tm o,
)

a e
aél)erJra(l> —#A(l)u 1 N0 ’ p(z

aér)+...+a(T( ) 1:#,4(7“)

bél)+"‘+b(1()> 1_#B<1)
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p(i)—1 (u) (v)
with fp(u,v) = Y ((aé >+aéu> 3 agn) +2b(<]v)<boT—1 + Y+ 3 b(()h))

q=0 leR(W) leRfj’) hesw)
p(i)—1 b _ 1 " "
v — l h
W (Tt X @ ) X (0 o)
q=1 ZERE:) hes)

[un

p(i)—

(v) (v)
+ bq X bp(i)_q.
q=1

M

Proof. We have dimNA; = 0, for every full connected ideal arrangement A; of ®p, . The
proof is similar to that of Proposition using Lemma and Lemma (1,2,3,4). O

Ezample 16. The coboundary polynomial of the ideal arrangement A, in Example is
XAzd (q, t) — 16 4 qt14 — qt12 + 3q2t10 + 4qt11 412 thlo 4 4 q3t7 + 11q2t8 + 2qt9 _
t10 4 56340 + 27 — 23¢t® — 27 + 13¢3t° + 35¢°t0 + 21¢t7 + 12t8 + 16¢*t3 + 72¢3t* — 19¢°t° —
134qt% — 237 4 ¢% 4+ 16¢°t + 72¢*t% — 9¢3t3 — 292¢t* — 19¢t® + 9415 — 16¢° — 192¢*t — 63132 —
353¢%t3 + 332¢t* + 25t° + 104¢* + 899¢3t + 2012¢2t% + 923¢t3 — 112t* — 350¢° — 2037¢%*t —
2717qt> — 577t% + 639¢> + 2205qt + 1264t% — 594q — 891t + 216, and its Tutte polynomial is

Ty, (z,y) = 2y + y'% + 528 + 5y° + 3225 + 162y™ + 15y° + 23y* + 122%° + 3829 + 3447
+ 2% + 823y3 + 382%y* + 7921 + 63y° + 102° + 16xty + 3423y? + 8122y3
+ 134ay* + 9595 + 392* + 8723y + 1522%y° + 191xy® + 117y* + 7423
+ 16222y 4+ 196xy> 4+ 112y 4 6822 + 1162y + 72> + 24z + 24y.

6 Exceptional Root Systems

We introduce a linear order on the exceptional root systems <I>JC§ , @Jg , and CIDE , and expose
2 4 6

the formula of Crapo by means of this order. As the formula of Crapo computes the Tutte
polynomial of a vector set, we draw the Hasse diagram of these root systems in order to
visualize the vectors that make up their ideals. Then, we compute some examples of Tutte
polynomials of ideal arrangements. These computings are done with SageMath.

Take an exceptional root system ®x, , X, € {Ga, Fy, Eg}, associated to a simple system
Ax, ={ai,...,an}. Define the function 1: @}n — N* by

n uy times up, times
ifu:Zuiai, then l(u):=1...1 ... 7...n.

i=1
It is clear that 1 is a bijection between @}n and 1(@}n). Define the linear order < on @}n by
Va,b e @}n ca<b < 1(a) <1(b).

Let r be the rank function of vector sets in R”, and X a subset of @}n. A basis of X is a
subset B of X such that r(B) = |B| = r(X). Denote by #(X) the basis set of X.
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For a subset A of X, and an element x in X, define the set
Aqp ={acAla<z}
Let X be a subset of @}n, and take a basis B in Z(X):
e Let b € B. One says that b is an internal active element of B if
Vo e Xqp\ B: r({z} U (B\ {b})) <n.
e Let x € X \ B. One says that x is an external active element of B if

r({a:} U B\>:1:) =1(Bpa).

Denote by i(B) resp. e(B) the number of internal resp. external active elements of a basis
B. We compute the Tutte polynomial of the hyperplane arrangement A = {21} ,cx by using
the formula of Crapo [3, Theorem 2.32]

Ta(w,y)= Y, a'Py®.
Be#(X)

In our case, X is a complement @}n \ { of an ideal I of CIJ}n. We represent the Hasse diagram
of (@52, =) resp. ((I)B, =) resp. (<I>EG, <) in Figure [2[ resp. resp. In the Hasse diagrams,
a vector u of @}n is represented by X1(u).

Ezample 17. G1112 is the vector (3,1), F'1234 is the vector (1,1,1,1), and E123445 is the
vector (1,1,1,2,1,0).

G11122
®

G1112

G112
®

G12

Figure 2: Hasse Diagram of (<I>$2, <)

An ideal I of @}}n 1s a connected graph in the Hasse diagram of (q)}n, =) containing its
mazimal element. We compute the following Tutte polynomials with the formula of Crapo.
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F11222333344

F1222333344
|F122333344

F12233344

F1223334

F1223344

F23344

F2334

F234

F34

F4

Figure 3: Hasse Diagram of (@}4, =)

Ezxample 18. The vector tuple I, = ((37 1), (3, 2)) is an ideal of @52, and the Tutte polynomial
of its associated hyperplane arrangement is TAzg (z,y) = 22 + 3% + 22 + 2.

Ezample 19. The vector tuple
Iy = ((1, 1,1,1),(1,1,2,1),(1,2,2,1),(1,2,3,1),(1,2,3,2),(1,2,4,2),(1,3,4,2),(2,3, 4, 2))
is an ideal of @;94, and the Tutte polynomial of its associated hyperplane arrangement is
T, (,y) = y'2 + 4yt + 10910 4 209° + 359° + 2245 + 56y7 + Ty + 82y + 192yt + 1114/°
+ 2% + 52%y? + 452> + 137y* + 1223 + 252y + 83zy? + 14743
+ 4822 + 1092y + 125y + 642 + 64y.
FEzample 20. The vector tuple

I.=((1,1,1,2,1,0),(1,1,1,2,1,1),(1,1,2,2,1,0),(1,1,2,2,1,1),(1,1,1,2,2,1),(1,1,2,2,2,1),
(1,1,2,3,2,1),(1,2,2,3,2,1))
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E12233444556

E1233444556

E123344556

EA2334456, E12344556

Figure 4: Hasse Diagram of (@EG, <)

is an ideal of (I)EG, and the Tutte polynomial of its associated hyperplane arrangement is

Ta,, (z,y) = y* + 6y* + 21y* + 56y + 126y + 252y'7 + 2y"® + 462y + 5ay™* + 791"
+ 182y 4 1281y + 52212 4+ 1978y™ + 1292y + 292792 + 295240 + 4163y™
+ 5229® 4 6232y° 4 5688y10 + 262%y" + 12122y° + 7445y°
+ 110225 + 21762y + 9288y° + 34622y° + 3596xy° + 10957y"
+ 28 + 792393 + 8922%y* + 54042y° + 1206515
+ 222° + 622ty + 30323y% + 182922y + 7235zy* + 12159y°
+1912* + 76223y + 286322y? + 8292zy> + 10860y*
+ 81822 + 31842y + 76462y> + 8136y> + 172822 + 4872xy + 4584y? + 1440z + 1440y.
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