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Est imat ing the volume
of a convex body.

Nicolai Baldin

Sometimes the volume of a convex body needs to
be estimated, if we cannot calculate it analytically.
We explain how statistics can be used not only to
approximate the volume of the convex body, but also
its shape.

1 Calculat ing the volume in analyt ic geometry

Calculating the volume of geometric objects is a major topic in analytic geometry.
In high school, we humbly touch it when we study two- and three-dimensional
shapes. We learn various formulas and techniques of calculating areas and
volumes of simple geometric objects like a polygon and ellipse in planimetrics;
and a polyhedron, cone and sphere in solid geometry. Sometimes, we cover
even some high-dimensional objects, but this is usually already a university
topic. Often advanced geometry problems appear in international olympiads
in mathematics for high school students or even in different university-level
mathematical competitions, see for example [3, Problem 1].

In the two-dimensional case, there are plenty of formulas for calculating
areas of various geometric objects. For example, in order to calculate the area
enclosed by a circle with radius r > 0 we use the formula S = πr2 that was
discovered by the ancient Greeks. Perhaps, we may want to calculate the area
Sp of a simple polygon, for example an irregular pentagon, inscribed in a circle,
see Figure 1(a). In this case the area, of course, depends only on the vertices of
the polygon. Due to the shoelace formula discovered by the prominent German
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(a) Shoelace formula. (b) Pick’s theorem.

Figure 1: Two ways of calculating the volume.

mathematician Carl Friedrich Gauß (1777–1855), we have

Sp = |(a1b2 + a2b3 + a3b4 + a4b5 + a5b1)− (b1a2 + b2a3 + b3a4 + b5a5 + b5a1)|
2 .

A proof of this formula can be found in [7]. Another interesting result is related
to calculating the area of a polygon constructed on a square-grid of points
with integer coordinates such that all the polygon’s vertices are grid points, see
Figure 1(b). Pick’s theorem, described by Georg Alexander Pick (1859–1942),
provides a simple formula for calculating the area S of this polygon in terms
of the number n◦ of grid points located in the interior of the polygon and the
number n∂ of grid points (blue) lying on the polygon’s boundary:

S = n◦ + n∂

2 − 1 .

Already in the three-dimensional case some problems appear to be quite
challenging for arbitrary convex bodies. 1 To calculate the volume enclosed
in a sphere with radius r > 0 we use the well-known formula V = 4πr3/3.

1 A set C ⊂ R3 is said to be convex if, for all x and y in C and all t ∈ [0, 1], the point
(1− t)x+ ty also belongs to C. In other words, every point on the line segment connecting
x and y is in C. A convex set is called a convex body if it satisfies a certain pretty generic
topological property, namely, for the experts, if it has non-empty interior. One example of
a convex body is the convex hull of a finite set of points x1, . . . , xn: it is defined as the set
Ĉ := {

∑
i
λixi|

∑
i
λi = 1, λi ≥ 0}. A polyhedron is a set that can be written as the convex

hull of a finite set of points. For example, the cube is a polyhedron: it is the convex hull of
its eight corners.

2



Calculating the volume of a polyhedron with given vertices inscribed in a
sphere is already an involved task. Let us assume that the boundary of a
polyhedron P is given by a union of triangles Ai, i = 1, . . . , n, (general faces
can be divided into triangles) with vertices (~ai,~bi,~ci) which are assumed to be
ordered counter-clockwise on Ai, when looking at them from the outside of the
polyhedron. This means that on each Ai we can define the outer normal vector
~ni = (~bi −~ai)× (~ci −~ai), which is a vector that is perpendicular to the triangle.
Then the volume of P is given by

VP = 1
6

n∑
i=1

~ai · ~ni . (1)

A proof of this result is based on the “divergence theorem” and can be found
in [6]. As in the two-dimensional case, this result (as well as the divergence
theorem) is due to Gauß.

Generalizing the 3-dimensional case, for d > 3, a d-dimensional sphere is
defined as the set of all points ~x = (x1, . . . , xd) ∈ Rd such that

(x1 − c1)2 + (x2 − c2)2 + . . .+ (xd−1 − cd−1)2 + (xd − cd)2 = r2 ,

where ~c = (c1, ..., cd) is the centre point and r > 0 is the radius. The enclosed
volume is given by

Vd = π
d
2

Γ( d
2 + 1)

rd , (2)

where Γ is the gamma function, which satisfies

Γ( 1
2 ) =

√
π Γ(1) = 1 Γ(x+ 1) = xΓ(x).

The formula (2) can be obtained in different ways, for example using recursion
and integration in spherical coordinates. The analytical expression for the
volume of a polyhedron becomes even more complicated in dimensions d > 3.
We refer to [4] for a comprehensive summary of existing results in calculating
the volume in analytic geometry. What about other convex bodies which have
an arbitrary boundary? There is no unique recipe that allows to calculate the
volume of an arbitrary convex body exactly, but, as we shall see later, there are
several techniques that allow to approximate the volume of an arbitrary convex
body with good precision.
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2 Est imat ing the volume in stat ist ics

There can be no doubt that the origin of analytic geometry in antiquity was
empirical. However, when you think about calculating the volumes of some
natural objects that arise nowadays in biology like a patient’s tumour or in
astronomy like star clusters, the objects themselves are not accessible, in the
sense that we do not know the true shape of a studied object. We have access
to only some information, or the data, often imprecise, and we want to recover
the true shape of the body, its volume and possibly other characteristics. The
data we have are some sort of measurements like the detection of presence of a
body in a certain region. Extracting the information from the data about the
true body is one object of study in statistics.

2.1 A br ief introduct ion to probabi l i ty theory

In order to start conducting a statistical inference analysis, we need to introduce
several notions from the beautiful subject of probability theory. We are mostly
interested in describing the following experiment. Let us pick a random point
X in the interval IAB with end points A and B. It is intuitively clear that the
probability that the point lies in any subinterval IA1B1 is

P(X ∈ IA1B1) = |IA1B1 |
|IAB |

= B1 −A1

B −A
, see Figure 2. (3)

Thus, we also have P(X ∈ IAB) = 1. We say that X is uniformly distributed on

A A1 B1 B

Figure 2: The interval IAB with subinterval IA1B1 .

the interval IAB if the law (3) holds. This is the so-called uniform distribution,
the simplest continuous distribution in probability theory. If we randomly
draw the point X sufficiently many times, we expect its average position to be
close to the midpoint (A+B)/2 from this interval. In probability theory, this
idea of the long-run average of repetitions is incorporated in the notion of the
expected value (sometimes also called the expectation or mean). For instance,
the expected position or value of the variable X is

E[X] = A+B

2 .

Now let us draw n ∈ N points X1, . . . , Xn uniformly from this interval inde-
pendently of each other, that is, for each of the points the law (3) holds, see
Figure 3.
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Figure 3: A sample of n points X1, . . . , Xn drawn uniformly from IAB .

Then the probability to see all the points in the subinterval IA1B1 is

P(X1, . . . , Xn ∈ IA1B1) = (B1 −A1)n

(B −A)n
. (4)

It is quite interesting that whatever the length of the subinterval IA1B1 ( IAB

is, the probability to see all the points lying in this interval tends to zero as the
number of points n tends to infinity, because (B1−A1)/(B−A) < 1. Probability
theory also tells us that the event that two points coincide has probability zero.

Exercise. What is the probability to observe at least one point X1 from the
sample X1, . . . , Xn in the subinterval IA1B1?

Probability theory studies different distributional characteristics of the
points X1, . . . , Xn assuming that the locations of the interval end points
A and B are known. Let us sort the values X1, . . . , Xn in increasing or-
der by defining the points X(1), . . . , X(n) such that X(1) = min(X1, . . . , Xn),
X(2) = min({X1, . . . , Xn} \ {X(1)}), . . . , X(n) = max (X1, . . . , Xn). The stand-
ard questions that we usually elaborate on in a first course in probability theory
at university include:

• What is the probability of observing the largest point X(n) in a certain
subinterval IA1B1 or, in the formal probability theory language, what is the
probability distribution of X(n)?

• What is the length of the interval IX(1)X(n) likely to be equal to, or in formal
language, what is the expectation of the length?

The answers clearly depend on the locations of the points A and B. To answer
the first question, note that the event that X(n) ∈ IAB1 implies that all the
points X1, ..., Xn lie in the subinterval IAB1 . Using equation (4), we compute

P(X(n) ∈ IA1B1) = P(X(n) ∈ IAB1)− P(X(n) ∈ IAA1)
= P(X1, ..., Xn ∈ IAB1)− P(X1, ..., Xn ∈ IAA1)

= (B1 −A)n − (A1 −A)n

(B −A)n
.

In particular, the probability to observe the rightmost point X(n) in the subin-
terval IAM , where M = (A+ B)/2 is equal to (1/2)n which quickly tends to
zero when n goes to infinity.
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To answer the second question about the expected length of the interval
IX(1)X(n) , you may first want to calculate the expected value of X(n) and so
the expected length of the subinterval IX(n)B. Using symmetry, we can also
calculate the length of the interval IAX(1) and thereby of IX(1)X(n) using linearity
of expectation. We just say that

E[|IAX(1) |] = E[X(1)]−A = B −A
n+ 1 , (5)

which implies E[|IX(1)X(n) |] = (B −A)− 2 B−A
n+1 = (n−1)(B−A)

n+1 , and leave details
of the proof as an exercise for ambitious readers.

2.2 Stat ist ical inference in the one-dimensional case

In contrast to probability theory, statistics deals with the inverse problem: we
do not know the locations of the points A and B and we observe only the
points X1, . . . , Xn which lie uniformly over the interval. The problem then is
to conduct statistical inference about the true interval. The questions include

• What is the length LAB of the interval IAB?
• What are the locations of the points A and B?

If we know the length of the interval IAB then we can always estimate the
locations of the points A and B somehow with a better precision. In practice,
it is never possible to determine the desired quantities precisely, but we might
hope to find some functions of the data, so-called estimators, that approximate
these quantities “well”. We comment on the estimation quality in Section 3.

A naive estimator for the length LAB of the interval, which is simply

L̂naive = X(n) −X(1)

performs rather poorly, although it seems to be a good starting point. A more
attractive idea is to somehow dilate, that is to say stretch, the interval IX(1)X(n)

and take the length of the dilated interval as an estimator for LAB. There
are at least two appealing ways how we can dilate the interval: 1) one can
just add and subtract some fixed vectors from the end points X(n) and X(1)
(additive dilation) and 2) one can dilate the interval IX(1)X(n) from its centre
(X(n) +X(1))/2 with some scaling factor (multiplicative dilation). However, in
the one-dimensional case both types of dilations are equivalent.

Let us sketch the idea of a possible dilation. If we repeat our experiment
sufficiently many times the average locations of the ordered points X(1), ..., X(n)
will tend to E[X(1)], ...,E[X(n)] and will lie equidistantly over the interval
IAB, see Figure 4. As we have seen in (5), the distance between the points
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Figure 4: Average locations of the points after repeating the experiment suffi-
ciently many times.

A and X(1), as well as the distance between the points B and X(n), will tend
to E[X(n) −X(1)]/(n− 1):

E[|IAX(1) |] = E[|IX(n)B |] = B −A
n+ 1 =

E[X(n) −X(1)]
n− 1 .

Therefore, a reasonable additive dilation factor is 2(X(n) −X(1))/(n− 1) and
so our dilated estimator for the length is

L̂1 = (X(n) −X(1)) + 2
X(n) −X(1)

n− 1 = (n+ 1)
(n− 1)(X(n) −X(1)) . (6)

This estimator is not only unbiased, which means that E[L̂1] = B − A, but
also, as we shall see in Section 3, is optimal in a certain statistical sense and
therefore it outperforms the estimator L̂naive.

2.3 Higher dimensions

Although the one-dimensional model is very useful to grasp the main ideas of
estimating the volume, it is not widely used in real world applications. The two-
dimensional model already covers several important applications, for example
in geology and medicine. Here, we observe the points X1, ..., Xn lying in a set
C ⊂ R2 and we would like to recover the volume VC of the set and a description
of the set itself. Let us assume that the set C is convex. On the one hand, this
assumption is quite restrictive, but, on the other hand, it allows to develop a
nice theory and it still covers many interesting phenomena.

First, let us focus on estimating the volume of the set C (keep in mind that
if we know the volume of the set we can estimate the shape of the set with a
better precision). As in the one-dimensional case, we would like to start with
a simple estimator. What do you think would be an analogue of the simple
estimator L̂naive = X(n) −X(1) in the two-dimensional case? It is natural to
take the volume |Ĉ| of the convex hull as a starting estimator for the volume VC

of the set C. It is intuitive that this estimator performs quite poorly because it
always underestimates the true volume and so it should be dilated as in the
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Figure 5: The points X1, ..., Xn drawn uniformly over a set C, the convex hull
of the points Ĉ = conv(X1, ..., Xn) and the dilated hull estimator C̃.

one-dimensional case. Without details, we claim that the optimal estimator is

V̂opt = n+ 1
n◦ + 1 |Ĉ| , (7)

where n◦ is the number of points that lie in the interior of the convex hull Ĉ.
These points are coloured purple in Figure 5. Note that V̂opt is the volume of
the “dilated” hull C̃, the set obtained by dilating the convex hull with the same
factor from the centre x̂0 of the convex hull:

C̃ =
{
x̂0 +

( n+ 1
n◦ + 1

)1/2
(x− x̂0)

∣∣∣x ∈ Ĉ} ,
which in fact can be used to estimate the shape of the set C itself. Similarly, the
same estimators for the volume and the set itself can be used in higher dimensions.
Do you see that the estimator (6) is a special case of the estimator (7)?

3 Est imat ion qual i ty

We have already seen that there are different estimators for the length LAB of
the interval IAB based on observations of the points lying in the interval. One
could even estimate the length by L̂ = 1 always and independently of the data.
How can we rank different estimators? How can we say that one estimator is
better than another and according to what criteria? We need to find a function
that measures the performance of our estimators so that we could rank the
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estimators according to their performance. Let us focus on estimating the length
of the interval IAB. It is desirable to have the estimator of the length close
to the true length of the interval. In statistics, to measure this proximity it is
common to use a quadratic loss function,

l(LAB , L̂) = (LAB − L̂)2 ,

essentially because it is differentiable and symmetric: an error above the target
yields the same loss as the same magnitude of error below the target. Given
one particular sample X = (X1, ..., Xn), we can rank all possible estimators
according to this function. Unfortunately, the ranking of estimators based on
the loss function l can be different for different samples! See Figure 6 for an
example when the ranking of l

(
LAB , L̂1

)
and l

(
LAB , L̂naive

)
is different for

two different samples X = (X1, ..., Xn) and X ′ = (X ′1, ..., X ′n). That is why
we would like to rank all estimators according to their “average” loss, which
is the expected loss E[l(LAB , L̂)], also referred to as the risk function. It may
sound quite ambitious, but in fact it is not hard to compare different estimators
according to the risk function. In particular, we can calculate that

E[l(LAB , L̂1)] ≤ E[l(LAB , L̂naive)] .

Similarly in higher dimensions, we measure the performance of an estimator of
the volume of the convex body according to its risk function E[l(VC , V̂ )].

The risk can be seen also as a function of the true parameter (the interval
or the body). Note that our estimator L̂ = 1 for the length LAB estimates it
perfectly when the length LAB indeed equals 1. Since we do not have access
to the true shape of the body, we want our preferred estimator perform well

X2 X1 X6 X4 X5

A B

X3

l
(
LAB , L̂1(X)

)
≤ l
(
LAB , L̂naive(X)

)

X ′4 X ′2X ′3 X ′5 X ′1

A B

X ′6

l
(
LAB , L̂1(X ′)

)
≥ l
(
LAB , L̂naive(X ′)

)
Figure 6: Two samples X = (X1, ..., X6) and X ′ = (X ′1, ..., X ′6) that yield

different rankings of the loss function. In the first case, it is obvious
that X3 − X2 underestimates the length B − A and needs to be
enlarged while in the second case X ′6 −X ′4 is already pretty close to
B −A and the dilation can only increase the loss.
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for all possible shapes. That is why in statistics we often analyse estimators
according to their worst-case risk, supC E[l(VC , V̂ )]. Another desirable uniform
criteria is the so-called UMVU property of an estimator which means that
the estimator is Unbiased and has Minimum Variance 2 among all unbiased
estimators Uniformly over all possible true parameters. One can show that the
estimator for the volume V̂opt in (7) is in fact nearly UMVU in all dimensions,
see [2] and [1] for the proof of this result.

4 Looking fur ther. Computat ional geometry

Fast algorithms for calculating volumes of arbitrary convex bodies are needed
in computer science and computational geometry. As the dimension grows,
the studied objects become more and more complicated and it is no longer
possible to apply some nice analytical formula like (1) even if we know the
location of the object. Different numerical methods based on partitioning the
initial body into simpler sets like cubes serve to estimate the volumes with a
good precision. However, many such numerical methods have been found to be
computationally inefficient and therefore different fast randomised methods to
estimate the volume are used. Often a trade-off between running time of an
algorithm and the quality of the estimate has to be made. We refer to [9] for a
survey of the existing fast randomised algorithms for calculating the volume.

One of such randomised algorithms, although definitely not the fastest, is
exactly to follow the experiment above. Given a body that we want to find
the volume of, we can draw the points uniformly over it, calculate the volume
of the convex hull of the points and then make a necessary dilation. Since
it is computationally easier to calculate the volume of a polytope than of an
arbitrary convex body, this procedure can save expensive running time, although
computing the volume of the convex hull is still an involved task. Nevertheless, it
is fascinating that once the volume of the convex hull is computed the dilation (7)
involving the number of points should be employed to estimate the volume in
an optimal way. This is a beautiful example of achieving a substantial gain
combining efficient algorithms with advanced probability theory and statistics.

To summarise, we have only touched on some of the topics of probability
theory and statistics. For those who would like to explore these subjects in more
detail we refer to introductory books [5] and [8] which we find both entertaining
and rigorous.

2 In probability theory, the variance of a random variable X is defined by
Var(X) := E[(X − E[X])2] and it measures how far the random variable is spread out.
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Solut ion to the exercise:

1− (B−B1)n+(A1−A)n

(B−A)n

Acknowledgements

The author would like to thank Markus Reiß and Martin Wahl for valuable
discussions.

References

[1] N. Baldin, The wrapping hull and a unified framework for volume estimation,
arxiv:1703.01658, 2017.

[2] N. Baldin and M. Reiß, Unbiased estimation of the volume of a convex body,
Stochastic Processes and their Applications 126 (2016), no. 12, 3716–3732,
http://www.sciencedirect.com/science/article/pii/S0304414916300369.

[3] IMC Advisory board, International mathematics competition for
university students, 2015, http://www.imc-math.org.uk/imc2009/
imc2009-day2-solutions.pdf, visited on 28th July 2017.

[4] O. Bretscher, Linear algebra with applications, Pearson Education, 2013.

[5] R. Durrett, Probability: Theory and examples, Cambridge University Press,
2010.

[6] R. Nürnberg, Notes on calculating the volume and centroid of a poly-
hedron, 2015, http://wwwf.imperial.ac.uk/~rn/centroid.pdf, visited on
28th July 2017.

[7] Art of Problem Solving Wiki, Shoelace theorem, http://www.
artofproblemsolving.com/wiki/index.php/Shoelace_Theorem, visited
on 28th July 2017.

[8] Y. Suhov and M. Kelbert, Probability and statistics by example: Volume 1,
basic probability and statistics, Cambridge University Press, 2005.

[9] S. Vempala, Recent Progress and Open Problems in Algorithmic Convex
Geometry, IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2010), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 8, pp. 42–64.

11

https://arxiv.org/abs/1703.01658"
http://www.sciencedirect.com/science/article/pii/S0304414916300369
http://www.imc-math.org.uk/imc2009/imc2009-day2-solutions.pdf
http://www.imc-math.org.uk/imc2009/imc2009-day2-solutions.pdf
http://wwwf.imperial.ac.uk/~rn/centroid.pdf
http://www.artofproblemsolving.com/wiki/index.php/Shoelace_Theorem
http://www.artofproblemsolving.com/wiki/index.php/Shoelace_Theorem


Nicolai Baldin is a PhD student at the
Universi ty of Cambr idge and previously at
Humboldt Universi ty of Ber l in

Mathematical subjects
Probabi l i ty Theory and Stat ist ics,
Geometry and Topology

Connect ions to other f ie lds
Computer Science

License
Creat ive Commons BY-SA 4.0

DOI
10.14760/SNAP-2018-015-EN

Snapshots of modern mathematics from Oberwolfach are written by participants in
the scientific program of the Mathematisches Forschungsinstitut Oberwolfach (MFO).
The snapshot project is designed to promote the understanding and appreciation
of modern mathematics and mathematical research in the interested public worldwide.
It started as part of the project “Oberwolfach meets IMAGINARY” in 2013 with a
grant by the Klaus Tschira Foundation. The project has also been supported by the
Oberwolfach Foundation and the MFO. All snapshots can be found on
www.imaginary.org/snapshots and on www.mfo.de/snapshots.

Junior Edi tor
Mor i tz Firsching
junior- edi tors@mfo.de

Senior Edi tor
Car la Cederbaum
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

http://creativecommons.org/licenses/by-sa/4.0/
http://dx.doi.org/10.14760/SNAP-2018-015-EN
http://www.imaginary.org/snapshots
http://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Estimating the volume of a convex body.
	Calculating the volume in analytic geometry
	Estimating the volume in statistics
	A brief introduction to probability theory
	Statistical inference in the one-dimensional case
	Higher dimensions

	Estimation quality
	Looking further. Computational geometry


